Effect of the dynamic pressure on the similarity solution of cylindrical shock waves in a rarefied polyatomic gas
The similarity solution for a strong cylindrical shock wave in a rarefied polyatomic gas is analyzed on the basis of Rational Extended Thermodynamics with six independent fields; the mass density, the velocity, the pressure and the dynamic pressure. A new ODE system for the similarity solution is de...
Saved in:
Published in | Ricerche di matematica Vol. 70; no. 1; pp. 195 - 206 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.06.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The similarity solution for a strong cylindrical shock wave in a rarefied polyatomic gas is analyzed on the basis of Rational Extended Thermodynamics with six independent fields; the mass density, the velocity, the pressure and the dynamic pressure. A new ODE system for the similarity solution is derived in a systematic way by using the method based on the Lie group theory proposed in the context of the spherical shock wave in a rarefied monoatomic gas in Donato and Ruggeri (J Math Anal Appl 251:395, 2000). The boundary conditions are also specified from the Rankine–Hugoniot conditions for the sub-shock. The derived similarity solution is characterized by only one dimensionless parameter
α
related to the relaxation time for the dynamic pressure. The numerical analysis of the similarity solution is also performed. The solution agrees with the well-known Sedov–von Neumann–Taylor (SNT) solution when
α
is small. When
α
is larger, due to the presence of the dynamic pressure, the deviation from the SNT solution is evident; the strength of a peak near the shock front becomes smaller and the profile becomes broader. |
---|---|
AbstractList | The similarity solution for a strong cylindrical shock wave in a rarefied polyatomic gas is analyzed on the basis of Rational Extended Thermodynamics with six independent fields; the mass density, the velocity, the pressure and the dynamic pressure. A new ODE system for the similarity solution is derived in a systematic way by using the method based on the Lie group theory proposed in the context of the spherical shock wave in a rarefied monoatomic gas in Donato and Ruggeri (J Math Anal Appl 251:395, 2000). The boundary conditions are also specified from the Rankine–Hugoniot conditions for the sub-shock. The derived similarity solution is characterized by only one dimensionless parameter α related to the relaxation time for the dynamic pressure. The numerical analysis of the similarity solution is also performed. The solution agrees with the well-known Sedov–von Neumann–Taylor (SNT) solution when α is small. When α is larger, due to the presence of the dynamic pressure, the deviation from the SNT solution is evident; the strength of a peak near the shock front becomes smaller and the profile becomes broader. The similarity solution for a strong cylindrical shock wave in a rarefied polyatomic gas is analyzed on the basis of Rational Extended Thermodynamics with six independent fields; the mass density, the velocity, the pressure and the dynamic pressure. A new ODE system for the similarity solution is derived in a systematic way by using the method based on the Lie group theory proposed in the context of the spherical shock wave in a rarefied monoatomic gas in Donato and Ruggeri (J Math Anal Appl 251:395, 2000). The boundary conditions are also specified from the Rankine–Hugoniot conditions for the sub-shock. The derived similarity solution is characterized by only one dimensionless parameter α related to the relaxation time for the dynamic pressure. The numerical analysis of the similarity solution is also performed. The solution agrees with the well-known Sedov–von Neumann–Taylor (SNT) solution when α is small. When α is larger, due to the presence of the dynamic pressure, the deviation from the SNT solution is evident; the strength of a peak near the shock front becomes smaller and the profile becomes broader. |
Author | Taniguchi, Shigeru |
Author_xml | – sequence: 1 givenname: Shigeru surname: Taniguchi fullname: Taniguchi, Shigeru email: taniguchi.shigeru@kct.ac.jp organization: Department of Creative Engineering, National Institute of Technology, Kitakyushu College |
BookMark | eNp9kMtKAzEUhoNUsK2-gKuA62iuM9OllHqBgpvuQyaXNnU6mSZTZd7etCO4c3Xg8H__OXwzMGlDawG4J_iRYFw-JUJEVSJMMcJYYIEWV2BKKloixhdkAqYYM4EEZtUNmKW0x5iXAvMpOK6cs7qHwcF-Z6EZWnXwGnbRpnSKFob2sk_-4BsVfT_AFJpT7_M-I3pofGui16qBaRf0J_xWXzZB30IFo4rWeWtgF5pB9eHcu1XpFlw71SR79zvnYPOy2izf0Prj9X35vEaasaJHXHFbaW255ZyZojJCEEMZ4bwunLJCEWOos9TUWtSYOlFWrCbM0NIJ7Sibg4extovheLKpl_twim2-KKng2UbBBMkpOqZ0DCnlf2UX_UHFQRIsz2blaFZms_JiVi4yxEYo5XC7tfGv-h_qB3Knf5I |
Cites_doi | 10.1007/978-1-4612-2210-1 10.1007/s10955-019-02366-5 10.1007/s001610050066 10.1063/1.5125079 10.1016/j.ijnonlinmec.2015.11.003 10.1007/s001610050094 10.1006/jmaa.2000.7073 10.1007/s11587-016-0299-3 10.3934/krm.2018004 10.1007/s00161-011-0213-x 10.1080/00036819508840379 10.1063/1.4967673 10.1007/s10440-014-9939-3 10.1103/PhysRevFluids.3.023401 10.1016/j.ijnonlinmec.2017.10.024 10.1007/978-3-030-29951-4_8 10.1016/j.physleta.2012.08.030 10.1007/978-3-319-13341-6 10.1103/PhysRevE.89.013025 10.1016/j.ijnonlinmec.2015.02.005 10.1063/1.4861368 |
ContentType | Journal Article |
Copyright | Università degli Studi di Napoli "Federico II" 2020 Università degli Studi di Napoli "Federico II" 2020. |
Copyright_xml | – notice: Università degli Studi di Napoli "Federico II" 2020 – notice: Università degli Studi di Napoli "Federico II" 2020. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11587-020-00505-9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1827-3491 |
EndPage | 206 |
ExternalDocumentID | 10_1007_s11587_020_00505_9 |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science (JP) grantid: JP19K04204 |
GroupedDBID | --Z -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 203 29P 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5VS 67Z 6NX 78A 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG5 HG6 HLICF HMJXF HRMNR HVGLF HZ~ H~9 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P2P P9R PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c336t-4a4e8cce4e443d68d551d23144b6fae5a1dd2fe2dbc5b02f5783b13d27f5cf23 |
IEDL.DBID | U2A |
ISSN | 0035-5038 |
IngestDate | Fri Jul 25 11:10:40 EDT 2025 Tue Jul 01 03:35:40 EDT 2025 Fri Feb 21 02:48:17 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Rarefied polyatomic gas Cylindrical symmetry 76L05 35L60 76N15 82C35 76M60 Extended thermodynamics Similarity solution Shock wave Dynamic pressure |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-4a4e8cce4e443d68d551d23144b6fae5a1dd2fe2dbc5b02f5783b13d27f5cf23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2540356351 |
PQPubID | 2044179 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2540356351 crossref_primary_10_1007_s11587_020_00505_9 springer_journals_10_1007_s11587_020_00505_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationSubtitle | A Journal of Pure and Applied Mathematics |
PublicationTitle | Ricerche di matematica |
PublicationTitleAbbrev | Ricerche mat |
PublicationYear | 2021 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | DonatoARuggeriTSimilarity solutions and strong shocks in extended thermodynamics of rarefied gasJ. Math. Anal. Appl.2000251395179041610.1006/jmaa.2000.7073 ArimaTRuggeriTSugiyamaMTaniguchiSNonlinear extended thermodynamics of real gases with 6 fieldsInt. J. Non Linear Mech.201572610.1016/j.ijnonlinmec.2015.02.005 RuggeriTSugiyamaMRational Extended Thermodynamics Beyond the Monatomic Gas2015ChamSpringer10.1007/978-3-319-13341-6 RuggeriTNon-linear maximum entropy principle for a polyatomic gas subject to the dynamic pressureBull. Inst. Math. Acad. Sin. (New Ser.)201611134977431339.35248 ArimaTTaniguchiSRuggeriTSugiyamaMExtended thermodynamics of dense gasesContin. Mech. Thermodyn.20122427110.1007/s00161-011-0213-x BisiMRuggeriTSpigaGDynamical pressure in a polyatomic gas: interplay between kinetic theory and extended thermodynamicsKinet. Relat. Models20181171370818210.3934/krm.2018004 SedovLISimilarity and Dimensional Methods in Mechanics199310Boca RatonCRC Press IkenberryETruesdellCOn the pressure and the flux of energy in a gas according to Maxwell’s kinetic theory, IJ. Ration. Mech. Anal.195651757250070.23504 TaniguchiSRuggeriTOn the sub-shock formation in extended thermodynamicsInt. J. Non Linear Mech.2018996910.1016/j.ijnonlinmec.2017.10.024 ArimaTTaniguchiSRuggeriTSugiyamaMExtended thermodynamics of real gases with dynamic pressure: an extension of Meixner’s theoryPhys. Lett. A20123762799297217010.1016/j.physleta.2012.08.030 TaniguchiSArimaTRuggeriTSugiyamaMEffect of the dynamic pressure on the shock wave structure in a rarefied polyatomic gasPhys. Fluids20142601610310.1063/1.4861368 BoillatGRuggeriTMoment equations in the kinetic theory of gases and wave velocitiesContin. Mech. Thermodyn.19979205146733110.1007/s001610050066 Kosuge, S., Aoki, K., Goto, T.: Shock wave structure in polyatomic gases: numerical analysis using a model Boltzmann equation. In: AIP Conference Proceedings, vol. 1786, pp. 180004 (2016) VincentiWGKrugerCHJrIntroduction to Physical Gas Dynamics1965New YorkWiley BetheHATellerEDeviations from Thermal Equilibrium in Shock Waves, Reprinted by Engineering Research Institute1941Ann ArborUniversity of Michigan TaniguchiSArimaTRuggeriTSugiyamaMOvershoot of the non-equilibrium temperature in the shock wave structure of a rarefied polyatomic gas subject to the dynamic pressureInt. J. Non Linear Mech.2016796610.1016/j.ijnonlinmec.2015.11.003 KosugeSAokiKShock-wave structure for a polyatomic gas with large bulk viscosityPhys. Rev. Fluids2018302340110.1103/PhysRevFluids.3.023401 KosugeSKuoHWAokiKA kinetic model for a polyatomic gas with temperature-dependent specific heats and its application to shock-wave structureJ. Stat. Phys.2019177209401077710.1007/s10955-019-02366-5 MüllerIRuggeriTRational Extended Thermodynamics19982New YorkSpringer10.1007/978-1-4612-2210-1 RuggeriTTaniguchiSBerezovskiASoomereTShock Waves in Hyperbolic Systems of Non-Equilibrium ThermodynamicsApplied Wave Mathematics II2019ChamSpringer16718610.1007/978-3-030-29951-4_8 Nagaoka, R., Taniguchi, S., Ruggeri, T.: Similarity solution of strong spherical shock waves in a rarefied polyatomic gas based on extended thermodynamics. In: AIP Conference Proceedings, vol. 2153, pp. 020014 (2019) Zel’dovichYBRaizerYPPhysics of Shock Waves and High-Temperature Hydrodynamic Phenomena2002MineolaDover Publications ConfortoFMentrelliARuggeriTShock structure and multiple sub-shocks in binary mixtures of Eulerian fluidsRic. Mat.201766221365732510.1007/s11587-016-0299-3 BisiMMartalòGSpigaGShock wave structure of multi-temperature Euler equations from kinetic theory for a binary mixturesActa Appl. Math.201413295325502810.1007/s10440-014-9939-3 GilbargDPaolucciDThe structure of shock waves in the continuum theory of fluidsJ. Ration. Mech. Anal.19532617597240051.18102 TaniguchiSArimaTRuggeriTSugiyamaMThermodynamic theory of the shock wave structure in a rarefied polyatomic gas: beyond the Bethe-Teller theoryPhys. Rev. E20148901302510.1103/PhysRevE.89.013025 BoillatGRuggeriTOn the shock structure problem for hyperbolic system of balance laws and convex entropyContin. Mech. Thermodyn.199810285165285810.1007/s001610050094 DonatoAOliveriFWhen nonautonomous equations are equivalent to autonomous onesAppl. Anal.199558313138319510.1080/00036819508840379 LandauLDLifshitzEMFluid Mechanics19872LondonPergamon Press 505_CR22 505_CR25 S Kosuge (505_CR24) 2019; 177 T Ruggeri (505_CR18) 2016; 11 T Ruggeri (505_CR5) 2015 T Arima (505_CR16) 2012; 376 D Gilbarg (505_CR12) 1953; 2 HA Bethe (505_CR13) 1941 S Taniguchi (505_CR21) 2016; 79 WG Vincenti (505_CR1) 1965 LI Sedov (505_CR28) 1993 A Donato (505_CR26) 2000; 251 YB Zel’dovich (505_CR3) 2002 M Bisi (505_CR19) 2018; 11 T Arima (505_CR17) 2015; 72 A Donato (505_CR27) 1995; 58 E Ikenberry (505_CR29) 1956; 5 G Boillat (505_CR7) 1997; 9 G Boillat (505_CR6) 1998; 10 M Bisi (505_CR9) 2014; 132 S Kosuge (505_CR23) 2018; 3 I Müller (505_CR4) 1998 S Taniguchi (505_CR8) 2018; 99 LD Landau (505_CR2) 1987 T Ruggeri (505_CR11) 2019 T Arima (505_CR15) 2012; 24 F Conforto (505_CR10) 2017; 66 S Taniguchi (505_CR20) 2014; 26 S Taniguchi (505_CR14) 2014; 89 |
References_xml | – reference: GilbargDPaolucciDThe structure of shock waves in the continuum theory of fluidsJ. Ration. Mech. Anal.19532617597240051.18102 – reference: ArimaTTaniguchiSRuggeriTSugiyamaMExtended thermodynamics of real gases with dynamic pressure: an extension of Meixner’s theoryPhys. Lett. A20123762799297217010.1016/j.physleta.2012.08.030 – reference: TaniguchiSRuggeriTOn the sub-shock formation in extended thermodynamicsInt. J. Non Linear Mech.2018996910.1016/j.ijnonlinmec.2017.10.024 – reference: BetheHATellerEDeviations from Thermal Equilibrium in Shock Waves, Reprinted by Engineering Research Institute1941Ann ArborUniversity of Michigan – reference: RuggeriTTaniguchiSBerezovskiASoomereTShock Waves in Hyperbolic Systems of Non-Equilibrium ThermodynamicsApplied Wave Mathematics II2019ChamSpringer16718610.1007/978-3-030-29951-4_8 – reference: BoillatGRuggeriTOn the shock structure problem for hyperbolic system of balance laws and convex entropyContin. Mech. Thermodyn.199810285165285810.1007/s001610050094 – reference: RuggeriTSugiyamaMRational Extended Thermodynamics Beyond the Monatomic Gas2015ChamSpringer10.1007/978-3-319-13341-6 – reference: TaniguchiSArimaTRuggeriTSugiyamaMOvershoot of the non-equilibrium temperature in the shock wave structure of a rarefied polyatomic gas subject to the dynamic pressureInt. J. Non Linear Mech.2016796610.1016/j.ijnonlinmec.2015.11.003 – reference: KosugeSKuoHWAokiKA kinetic model for a polyatomic gas with temperature-dependent specific heats and its application to shock-wave structureJ. Stat. Phys.2019177209401077710.1007/s10955-019-02366-5 – reference: DonatoAOliveriFWhen nonautonomous equations are equivalent to autonomous onesAppl. Anal.199558313138319510.1080/00036819508840379 – reference: RuggeriTNon-linear maximum entropy principle for a polyatomic gas subject to the dynamic pressureBull. Inst. Math. Acad. Sin. (New Ser.)201611134977431339.35248 – reference: BisiMRuggeriTSpigaGDynamical pressure in a polyatomic gas: interplay between kinetic theory and extended thermodynamicsKinet. Relat. Models20181171370818210.3934/krm.2018004 – reference: BisiMMartalòGSpigaGShock wave structure of multi-temperature Euler equations from kinetic theory for a binary mixturesActa Appl. Math.201413295325502810.1007/s10440-014-9939-3 – reference: SedovLISimilarity and Dimensional Methods in Mechanics199310Boca RatonCRC Press – reference: Zel’dovichYBRaizerYPPhysics of Shock Waves and High-Temperature Hydrodynamic Phenomena2002MineolaDover Publications – reference: KosugeSAokiKShock-wave structure for a polyatomic gas with large bulk viscosityPhys. Rev. Fluids2018302340110.1103/PhysRevFluids.3.023401 – reference: VincentiWGKrugerCHJrIntroduction to Physical Gas Dynamics1965New YorkWiley – reference: MüllerIRuggeriTRational Extended Thermodynamics19982New YorkSpringer10.1007/978-1-4612-2210-1 – reference: ArimaTTaniguchiSRuggeriTSugiyamaMExtended thermodynamics of dense gasesContin. Mech. Thermodyn.20122427110.1007/s00161-011-0213-x – reference: TaniguchiSArimaTRuggeriTSugiyamaMEffect of the dynamic pressure on the shock wave structure in a rarefied polyatomic gasPhys. Fluids20142601610310.1063/1.4861368 – reference: ConfortoFMentrelliARuggeriTShock structure and multiple sub-shocks in binary mixtures of Eulerian fluidsRic. Mat.201766221365732510.1007/s11587-016-0299-3 – reference: Nagaoka, R., Taniguchi, S., Ruggeri, T.: Similarity solution of strong spherical shock waves in a rarefied polyatomic gas based on extended thermodynamics. In: AIP Conference Proceedings, vol. 2153, pp. 020014 (2019) – reference: BoillatGRuggeriTMoment equations in the kinetic theory of gases and wave velocitiesContin. Mech. Thermodyn.19979205146733110.1007/s001610050066 – reference: LandauLDLifshitzEMFluid Mechanics19872LondonPergamon Press – reference: ArimaTRuggeriTSugiyamaMTaniguchiSNonlinear extended thermodynamics of real gases with 6 fieldsInt. J. Non Linear Mech.201572610.1016/j.ijnonlinmec.2015.02.005 – reference: TaniguchiSArimaTRuggeriTSugiyamaMThermodynamic theory of the shock wave structure in a rarefied polyatomic gas: beyond the Bethe-Teller theoryPhys. Rev. E20148901302510.1103/PhysRevE.89.013025 – reference: DonatoARuggeriTSimilarity solutions and strong shocks in extended thermodynamics of rarefied gasJ. Math. Anal. Appl.2000251395179041610.1006/jmaa.2000.7073 – reference: IkenberryETruesdellCOn the pressure and the flux of energy in a gas according to Maxwell’s kinetic theory, IJ. Ration. Mech. Anal.195651757250070.23504 – reference: Kosuge, S., Aoki, K., Goto, T.: Shock wave structure in polyatomic gases: numerical analysis using a model Boltzmann equation. In: AIP Conference Proceedings, vol. 1786, pp. 180004 (2016) – volume-title: Introduction to Physical Gas Dynamics year: 1965 ident: 505_CR1 – volume-title: Rational Extended Thermodynamics year: 1998 ident: 505_CR4 doi: 10.1007/978-1-4612-2210-1 – volume: 177 start-page: 209 year: 2019 ident: 505_CR24 publication-title: J. Stat. Phys. doi: 10.1007/s10955-019-02366-5 – volume: 9 start-page: 205 year: 1997 ident: 505_CR7 publication-title: Contin. Mech. Thermodyn. doi: 10.1007/s001610050066 – volume: 5 start-page: 1 year: 1956 ident: 505_CR29 publication-title: J. Ration. Mech. Anal. – ident: 505_CR25 doi: 10.1063/1.5125079 – volume: 79 start-page: 66 year: 2016 ident: 505_CR21 publication-title: Int. J. Non Linear Mech. doi: 10.1016/j.ijnonlinmec.2015.11.003 – volume: 10 start-page: 285 year: 1998 ident: 505_CR6 publication-title: Contin. Mech. Thermodyn. doi: 10.1007/s001610050094 – volume-title: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena year: 2002 ident: 505_CR3 – volume: 251 start-page: 395 year: 2000 ident: 505_CR26 publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.2000.7073 – volume: 2 start-page: 617 year: 1953 ident: 505_CR12 publication-title: J. Ration. Mech. Anal. – volume: 66 start-page: 221 year: 2017 ident: 505_CR10 publication-title: Ric. Mat. doi: 10.1007/s11587-016-0299-3 – volume: 11 start-page: 71 year: 2018 ident: 505_CR19 publication-title: Kinet. Relat. Models doi: 10.3934/krm.2018004 – volume-title: Fluid Mechanics year: 1987 ident: 505_CR2 – volume: 24 start-page: 271 year: 2012 ident: 505_CR15 publication-title: Contin. Mech. Thermodyn. doi: 10.1007/s00161-011-0213-x – volume: 58 start-page: 313 year: 1995 ident: 505_CR27 publication-title: Appl. Anal. doi: 10.1080/00036819508840379 – volume-title: Similarity and Dimensional Methods in Mechanics year: 1993 ident: 505_CR28 – ident: 505_CR22 doi: 10.1063/1.4967673 – volume: 132 start-page: 95 year: 2014 ident: 505_CR9 publication-title: Acta Appl. Math. doi: 10.1007/s10440-014-9939-3 – volume: 3 start-page: 023401 year: 2018 ident: 505_CR23 publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.3.023401 – volume: 99 start-page: 69 year: 2018 ident: 505_CR8 publication-title: Int. J. Non Linear Mech. doi: 10.1016/j.ijnonlinmec.2017.10.024 – start-page: 167 volume-title: Applied Wave Mathematics II year: 2019 ident: 505_CR11 doi: 10.1007/978-3-030-29951-4_8 – volume: 376 start-page: 2799 year: 2012 ident: 505_CR16 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2012.08.030 – volume: 11 start-page: 1 year: 2016 ident: 505_CR18 publication-title: Bull. Inst. Math. Acad. Sin. (New Ser.) – volume-title: Rational Extended Thermodynamics Beyond the Monatomic Gas year: 2015 ident: 505_CR5 doi: 10.1007/978-3-319-13341-6 – volume: 89 start-page: 013025 year: 2014 ident: 505_CR14 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.89.013025 – volume: 72 start-page: 6 year: 2015 ident: 505_CR17 publication-title: Int. J. Non Linear Mech. doi: 10.1016/j.ijnonlinmec.2015.02.005 – volume: 26 start-page: 016103 year: 2014 ident: 505_CR20 publication-title: Phys. Fluids doi: 10.1063/1.4861368 – volume-title: Deviations from Thermal Equilibrium in Shock Waves, Reprinted by Engineering Research Institute year: 1941 ident: 505_CR13 |
SSID | ssj0047504 |
Score | 2.1841536 |
Snippet | The similarity solution for a strong cylindrical shock wave in a rarefied polyatomic gas is analyzed on the basis of Rational Extended Thermodynamics with six... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 195 |
SubjectTerms | Algebra Analysis Boundary conditions Cylindrical waves Dynamic pressure Geometry Group theory Lie groups Mathematics Mathematics and Statistics Numerical Analysis Polyatomic gases Pressure effects Probability Theory and Stochastic Processes Relaxation time Shock waves Similarity solutions Spherical waves |
Title | Effect of the dynamic pressure on the similarity solution of cylindrical shock waves in a rarefied polyatomic gas |
URI | https://link.springer.com/article/10.1007/s11587-020-00505-9 https://www.proquest.com/docview/2540356351 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgXWBAPEWhVB7YIFLjV5KxQi0VqEytVKbI8QMqQVKaFtS_58ZJqEAwsDqJh2Nf-5zY91yELkOmKKeGe5xLECgiUhBSkngm0syXRiSRq94wehDDCbub8mmVFJbXt93rI0m3Um-S3XwOAVHIHVd-zYu2UZMX2h1m8YT06vWXFYbltRljYXZSpcr83sf37WjDMX8ci7rdZrCP9iqaiHvluB6gLZMeot3Rl8dqfoTeSuNhnFkMrViXpeWxu9i6Whicpa49n73OQL0C2cb1NCs-UWvAQDt_EJw_w6KIP-S7yfEsxRKDgDYWuCmeZy9rUOVFv08yP0bjQX98M_SqAgqeolQsPSaZCZUyzDBGtQg10CMNhI6xRFhpYHS0JtYQnSiedImF6KWJTzUJLFeW0BPUSLPUnCIsfCUJEPEgkF1mIyFpomHjD0TCbGCCsIWuahjjeWmTEW8MkQvQYwA9dqDHUQu1a6TjKmTyGJQqjBjwH7-Frmv0N4__7u3sf6-fox1S3Etxf1LaqLFcrMwFEItl0kHN3u3jfb_j5tMn4LbGxA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgDMCA-BSFAh7YIBKxHScZK0RVoO3USt0sxx9QCZLStKD-ey5OQgWCgdVJbnj2-d7F53cIXUZM0YCawAsCCQkKjxW4lCSeiTXzpeFJ7Lo39Ae8O2IP42BcXQrL62r3-kjS7dSry25-AA5RpDuu_ZoXr6MNIANRUcg1Iu16_2WFYHktxliInVRXZX638T0crTjmj2NRF206u2inoom4Xc7rHloz6T7a7n9prOYH6K0UHsaZxTCKddlaHrvC1sXM4Cx14_nkdQLZK5BtXC-z4hO1BAy00wfB-TNsivhDvpscT1IsMSTQxgI3xdPsZQlZeWH3SeaHaNi5G952vaqBgqco5XOPSWYipQwzjFHNIw30SAOhYyzhVhqYHa2JNUQnKkhuiAXvpYlPNQltoCyhR6iRZqk5Rpj7ShIg4mEob5iNuaSJhsAf8oTZ0IRRE13VMIppKZMhVoLIBegCQBcOdBE3UatGWlQukwvIVGHGgP_4TXRdo796_Le1k_-9foE2u8N-T_TuB4-naIsUNSrur0oLNeazhTkDkjFPzt2a-gQlWsgj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSAgGxFMUCnhgg6iN7TjNWAEVr1YMrdQtcvyASpCWJgX133N2GgoIBlYnueGz7_xd7PsOodMmkzSgOvCCQECCwiMJLiWIpyPFfKF5ErnuDZ0uv-6z20Ew-FLF7267l0eSRU2DVWlK8_pYmfqi8M0PwDls6uNasXnRMlqBcOzbdd0nrTIWMyteXgozWuGTednM7za-b00LvvnjiNTtPO1NtDGnjLhVzPEWWtLpNlrvfOqtZjvotRAhxiODYRSros08dpdcpxONR6kbz4YvQ8hkgXjjcsnZT-QM8FBOKwRnTxAg8bt40xkeplhgSKa1AZ6Kx6PnGWTo1u6jyHZRr33Vu7j25s0UPEkpzz0mmG5KqZlmjCreVECVFJA7xhJuhIaZUooYTVQig6RBDHgyTXyqSGgCaQjdQ5V0lOp9hLkvBQFSHoaiwUzEBU0UkICQJ8yEOmxW0VkJYzwuJDPihTiyBT0G0GMHehxVUa1EOp67TxZD1gozBlzIr6LzEv3F47-tHfzv9RO0-nDZju9vuneHaI3Y6yruB0sNVfLJVB8B38iTY7ekPgDnZ8xf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+the+dynamic+pressure+on+the+similarity+solution+of+cylindrical+shock+waves+in+a+rarefied+polyatomic+gas&rft.jtitle=Ricerche+di+matematica&rft.au=Taniguchi+Shigeru&rft.date=2021-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0035-5038&rft.eissn=1827-3491&rft.volume=70&rft.issue=1&rft.spage=195&rft.epage=206&rft_id=info:doi/10.1007%2Fs11587-020-00505-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-5038&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-5038&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-5038&client=summon |