Long term sedimentation of an elliptic disc subject to an electrostatic field using smoothed particle hydrodynamics method

highlights•Long term sedimentation of an ellipse subject to an external electric field is studied.•Horizontal, slanted, vertical and oscillating sedimentation behaviors are observed solely due to electrical forces.•Electrical forces lead to slower descent in narrow channels while the reverse happens...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of multiphase flow Vol. 135; p. 103524
Main Authors Tofighi, N., Feng, J.J., Yildiz, M., Suleman, A.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract highlights•Long term sedimentation of an ellipse subject to an external electric field is studied.•Horizontal, slanted, vertical and oscillating sedimentation behaviors are observed solely due to electrical forces.•Electrical forces lead to slower descent in narrow channels while the reverse happens in wider channels.•We observe no significant change in long term behavior due to different initial orientations.•The electrical effects are more pronounced at higher density ratios. A two dimensional incompressible smoothed particle hydrodynamics scheme for long term sedimentation of rising or falling particulates (bubbles, drops or rigid particles) in Newtonian fluids is presented and validated by simulating the sedimentation of a single elliptic disc. The proposed method is then used to simulate the sedimentation of an elliptic disc subject to an external electric field parallel to the gravitational field. A range of electric field intensities, permittivity ratios, blockage ratios and density ratios are covered in this study. The results show that for given blockage and density ratios, the final sedimentation orientation of the ellipse is dependent on a combination of permittivity ratio and electric field intensity, ranging from horizontal to vertical. Compared to non-electrified sedimentation, an increase in electric field intensity and permittivity ratio lead to vertical sedimentation. As the channels grow wider, the presence of electric field leads to faster ellipse descent, regardless of its initial orientation.
AbstractList highlights•Long term sedimentation of an ellipse subject to an external electric field is studied.•Horizontal, slanted, vertical and oscillating sedimentation behaviors are observed solely due to electrical forces.•Electrical forces lead to slower descent in narrow channels while the reverse happens in wider channels.•We observe no significant change in long term behavior due to different initial orientations.•The electrical effects are more pronounced at higher density ratios. A two dimensional incompressible smoothed particle hydrodynamics scheme for long term sedimentation of rising or falling particulates (bubbles, drops or rigid particles) in Newtonian fluids is presented and validated by simulating the sedimentation of a single elliptic disc. The proposed method is then used to simulate the sedimentation of an elliptic disc subject to an external electric field parallel to the gravitational field. A range of electric field intensities, permittivity ratios, blockage ratios and density ratios are covered in this study. The results show that for given blockage and density ratios, the final sedimentation orientation of the ellipse is dependent on a combination of permittivity ratio and electric field intensity, ranging from horizontal to vertical. Compared to non-electrified sedimentation, an increase in electric field intensity and permittivity ratio lead to vertical sedimentation. As the channels grow wider, the presence of electric field leads to faster ellipse descent, regardless of its initial orientation.
ArticleNumber 103524
Author Suleman, A.
Tofighi, N.
Feng, J.J.
Yildiz, M.
Author_xml – sequence: 1
  givenname: N.
  surname: Tofighi
  fullname: Tofighi, N.
  email: nima@sabanciuniv.edu
  organization: Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
– sequence: 2
  givenname: J.J.
  surname: Feng
  fullname: Feng, J.J.
  email: james.feng@ubc.ca
  organization: Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
– sequence: 3
  givenname: M.
  surname: Yildiz
  fullname: Yildiz, M.
  email: meyildiz@sabanciuniv.edu
  organization: Faculty of Engineering and Natural Sciences (FENS), Sabanci University, Tuzla, 34956, Istanbul, Turkey
– sequence: 4
  givenname: A.
  surname: Suleman
  fullname: Suleman, A.
  email: suleman@uvic.ca
  organization: Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
BookMark eNqNkD1PwzAQhi1UJNrCf_DEluKPJE0WJFQ-ilSJBWbLsS_EURJHtgsqvx5HYWLqdCe9d4_unhVaDHYAhG4p2VBC87t2Y9r-2AUzNtJD3dnvDSNsCnnG0gu0pMW2THjG-QItCSc0KTljV2jlfUsIybYpX6Kfgx0-cQDXYw_a9DAEGYwdsK2xHDB0nRmDUVgbr7A_Vi2ogIOds9g766cFhWsDncZHbyLO99aGBjQepYtZB7g5aWf1aZC9UR73EBqrr9FlLTsPN391jT6en953--Tw9vK6ezgkivM8JGmuZAakyihTUkrCq4qVKcmoZgWp0kLSGrjOKCnKIg7RnAEpWApaKaqqKuVr9DhzVTzWO6iFMvOTwUnTCUrE5FO04r9PMfkUs8-Iuf-HGZ3ppTudD9jPAIjPfhlwwisDg4raXTQptDXnon4Btrqknw
CitedBy_id crossref_primary_10_1063_5_0235072
crossref_primary_10_1103_PhysRevE_106_015306
Cites_doi 10.1146/annurev-fluid-120710-101220
10.1016/j.jcp.2011.06.013
10.1103/PhysRevE.92.063009
10.1086/112164
10.1016/j.euromechflu.2012.02.002
10.1016/j.cma.2012.10.005
10.1016/j.jcp.2015.12.024
10.1016/j.jcis.2012.01.039
10.1016/j.jcp.2012.05.005
10.1017/S0022112095004186
10.1002/fld.3666
10.1016/0010-4655(94)00174-Z
10.1002/nme.5935
10.1016/j.cpc.2015.10.025
10.1016/j.ijheatmasstransfer.2018.09.074
10.1021/jp993706s
10.1017/S0022112094000285
10.1016/j.powtec.2018.07.043
10.1038/srep13572
10.1021/jp407805x
10.1016/j.ijmultiphaseflow.2013.11.003
10.1016/j.cpc.2009.05.008
10.1016/j.jcp.2015.05.015
10.1016/j.compfluid.2011.05.011
10.1038/40817
10.1146/annurev-fluid-120710-101250
10.1002/fld.1971
10.1016/S0309-1708(03)00030-7
10.1017/S0022112008005521
10.1017/S0022112098002493
10.1016/j.jcis.2010.03.003
10.1017/S0022112005008402
10.1017/S0022112065001593
10.1146/annurev.fluid.29.1.27
10.1039/b803015b
10.1063/1.462070
10.1016/0927-796X(96)00191-X
10.1002/nme.2458
10.1006/jcph.1997.5776
10.1093/mnras/181.3.375
10.1016/j.apm.2019.09.030
10.1017/S1323358000020610
10.1088/0953-8984/15/1/302
10.1016/j.euromechflu.2019.07.002
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
DOI 10.1016/j.ijmultiphaseflow.2020.103524
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-3533
ExternalDocumentID 10_1016_j_ijmultiphaseflow_2020_103524
S0301932220306352
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c336t-46ca5e0b512caaa03bb294051d280b48a1fe3d510898b51162e0824edcc1cbb43
IEDL.DBID .~1
ISSN 0301-9322
IngestDate Tue Jul 01 02:45:08 EDT 2025
Thu Apr 24 23:09:11 EDT 2025
Fri Feb 23 02:46:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Smoothed particle hydrodynamics
Electric field
Fluid-particle interaction
Sedimentation
Shifting boundary
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-46ca5e0b512caaa03bb294051d280b48a1fe3d510898b51162e0824edcc1cbb43
ParticipantIDs crossref_citationtrail_10_1016_j_ijmultiphaseflow_2020_103524
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103524
elsevier_sciencedirect_doi_10_1016_j_ijmultiphaseflow_2020_103524
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationTitle International journal of multiphase flow
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gingold, Monaghan (bib0013) 1977; 181
Sullivan, Zhao, Harrison, Austin, Megens, Hollingsworth, Russel, Cheng, Mason, Chaikin (bib0033) 2003; 15
Khorasanizade, Sousa (bib0019) 2016; 200
Ferrand, Laurence, Rogers, Violeau, Kassiotis (bib0011) 2013; 71
Joubert, Wilke, Govender, Pizette, Tuzun, Abriak (bib0018) 2020; 78
Feng, Joseph (bib0010) 1995; 303
Morris, Fox, Zhu (bib0027) 1997; 136
Bonnecaze, Brady (bib0004) 1992; 96
House, Luo, Chang (bib0017) 2012; 374
Newman, Yethiraj (bib0028) 2015; 5
Federico, Marrone, Colagrossi, Aristodemo, Antuono (bib0008) 2012; 34
Lastiwka, Basa, Quinlan (bib0020) 2009; 61
Monaghan (bib0023) 2012; 44
Lucy (bib0022) 1977; 82
He, Bayly, Hassanpour, Muller, Wu, Yang (bib0014) 2018; 338
Suzuki, Inamuro (bib0034) 2011; 49
Adami, Hu, Adams (bib0001) 2012; 231
Swaminathan, Mukundakrishnan, Hu (bib0035) 2006; 551
Feng, Hu, Joseph (bib0009) 1994; 261
Xia, Connington, Rapaka, Yue, Feng, Chen (bib0039) 2009; 625
Monaghan, Kocharyan (bib0025) 1995; 87
Yildiz, Rook, Suleman (bib0041) 2009; 77
Morris (bib0026) 1996; 13
Yang, Huang, Lu (bib0040) 2015; 92
Aidun, Lu, Ding (bib0003) 1998; 373
Hosseini, Feng (bib0016) 2011; 230
Saville (bib0031) 1997; 29
Ern, Risso, Fabre, Magnaudet (bib0007) 2012; 44
Lee, Yen, Hsu (bib0021) 2000; 104
Zainali, Tofighi, Shadloo, Yildiz (bib0042) 2013; 254
Chang, Keh (bib0005) 2013; 117
Tofighi, Ozbulut, Suleman, Feng, Yildiz (bib0037) 2019; 78
Hirschler, Kunz, Huber, Hahn, Nieken (bib0015) 2016; 307
Velev, Gangwal, Petsev (bib0038) 2009; 105
Tofighi, Ozbulut, Rahmat, Feng, Yildiz (bib0036) 2015; 297
Parthasarathy, Klingenberg (bib0029) 1996; 17
Robinson, Ramaioli, Luding (bib0030) 2014; 59
Shao, Lo (bib0032) 2003; 26
Monaghan, Kajtar (bib0024) 2009; 180
Ai, Qian (bib0002) 2010; 346
Zhang, Walayat, Chang, Liu (bib0043) 2018; 116
Cox (bib0006) 1965; 23
Field, Klaus, Moore, Nori (bib0012) 1997; 388
Zhang, Walayat, Huang, Chang, Liu (bib0044) 2019; 128
Monaghan (10.1016/j.ijmultiphaseflow.2020.103524_bib0024) 2009; 180
Monaghan (10.1016/j.ijmultiphaseflow.2020.103524_bib0025) 1995; 87
Suzuki (10.1016/j.ijmultiphaseflow.2020.103524_bib0034) 2011; 49
Zhang (10.1016/j.ijmultiphaseflow.2020.103524_bib0044) 2019; 128
Lucy (10.1016/j.ijmultiphaseflow.2020.103524_bib0022) 1977; 82
Yildiz (10.1016/j.ijmultiphaseflow.2020.103524_bib0041) 2009; 77
Newman (10.1016/j.ijmultiphaseflow.2020.103524_bib0028) 2015; 5
Robinson (10.1016/j.ijmultiphaseflow.2020.103524_bib0030) 2014; 59
Zhang (10.1016/j.ijmultiphaseflow.2020.103524_bib0043) 2018; 116
Adami (10.1016/j.ijmultiphaseflow.2020.103524_bib0001) 2012; 231
Feng (10.1016/j.ijmultiphaseflow.2020.103524_bib0009) 1994; 261
Lee (10.1016/j.ijmultiphaseflow.2020.103524_bib0021) 2000; 104
Parthasarathy (10.1016/j.ijmultiphaseflow.2020.103524_bib0029) 1996; 17
Zainali (10.1016/j.ijmultiphaseflow.2020.103524_bib0042) 2013; 254
Federico (10.1016/j.ijmultiphaseflow.2020.103524_bib0008) 2012; 34
Ferrand (10.1016/j.ijmultiphaseflow.2020.103524_bib0011) 2013; 71
Yang (10.1016/j.ijmultiphaseflow.2020.103524_bib0040) 2015; 92
Field (10.1016/j.ijmultiphaseflow.2020.103524_bib0012) 1997; 388
Ern (10.1016/j.ijmultiphaseflow.2020.103524_bib0007) 2012; 44
Gingold (10.1016/j.ijmultiphaseflow.2020.103524_bib0013) 1977; 181
He (10.1016/j.ijmultiphaseflow.2020.103524_bib0014) 2018; 338
Hirschler (10.1016/j.ijmultiphaseflow.2020.103524_bib0015) 2016; 307
Velev (10.1016/j.ijmultiphaseflow.2020.103524_bib0038) 2009; 105
House (10.1016/j.ijmultiphaseflow.2020.103524_bib0017) 2012; 374
Xia (10.1016/j.ijmultiphaseflow.2020.103524_bib0039) 2009; 625
Hosseini (10.1016/j.ijmultiphaseflow.2020.103524_bib0016) 2011; 230
Cox (10.1016/j.ijmultiphaseflow.2020.103524_bib0006) 1965; 23
Morris (10.1016/j.ijmultiphaseflow.2020.103524_bib0026) 1996; 13
Joubert (10.1016/j.ijmultiphaseflow.2020.103524_bib0018) 2020; 78
Saville (10.1016/j.ijmultiphaseflow.2020.103524_bib0031) 1997; 29
Swaminathan (10.1016/j.ijmultiphaseflow.2020.103524_bib0035) 2006; 551
Lastiwka (10.1016/j.ijmultiphaseflow.2020.103524_bib0020) 2009; 61
Aidun (10.1016/j.ijmultiphaseflow.2020.103524_bib0003) 1998; 373
Feng (10.1016/j.ijmultiphaseflow.2020.103524_bib0010) 1995; 303
Monaghan (10.1016/j.ijmultiphaseflow.2020.103524_bib0023) 2012; 44
Tofighi (10.1016/j.ijmultiphaseflow.2020.103524_bib0037) 2019; 78
Shao (10.1016/j.ijmultiphaseflow.2020.103524_bib0032) 2003; 26
Khorasanizade (10.1016/j.ijmultiphaseflow.2020.103524_bib0019) 2016; 200
Tofighi (10.1016/j.ijmultiphaseflow.2020.103524_bib0036) 2015; 297
Ai (10.1016/j.ijmultiphaseflow.2020.103524_bib0002) 2010; 346
Chang (10.1016/j.ijmultiphaseflow.2020.103524_bib0005) 2013; 117
Bonnecaze (10.1016/j.ijmultiphaseflow.2020.103524_bib0004) 1992; 96
Sullivan (10.1016/j.ijmultiphaseflow.2020.103524_bib0033) 2003; 15
Morris (10.1016/j.ijmultiphaseflow.2020.103524_bib0027) 1997; 136
References_xml – volume: 303
  start-page: 83
  year: 1995
  end-page: 102
  ident: bib0010
  article-title: The unsteady motion of solid bodies in creeping flows
  publication-title: J. Fluid Mech.
– volume: 551
  start-page: 357
  year: 2006
  end-page: 385
  ident: bib0035
  article-title: Sedimentation of an ellipsoid inside an infinitely long tube at low and intermediate Reynolds numbers
  publication-title: J. Fluid Mech.
– volume: 254
  start-page: 99
  year: 2013
  end-page: 113
  ident: bib0042
  article-title: Numerical investigation of Newtonian and non-Newtonian multiphase flows using ISPH method
  publication-title: Comput. Meth. Appl. Mech. Eng.
– volume: 116
  start-page: 530
  year: 2018
  end-page: 569
  ident: bib0043
  article-title: Meshfree modeling of a fluid-particle two-phase flow with an improved SPH method
  publication-title: Int. J. Numer. Methods Fluids
– volume: 15
  start-page: 11
  year: 2003
  end-page: 18
  ident: bib0033
  article-title: Control of colloids with gravity, temperature gradients, and electric fields
  publication-title: J. Phys.-Condes. Matter
– volume: 49
  start-page: 173
  year: 2011
  end-page: 187
  ident: bib0034
  article-title: Effect of internal mass in the simulation of a moving body by the immersed boundary method
  publication-title: Comput. Fluids
– volume: 105
  start-page: 213
  year: 2009
  end-page: 246
  ident: bib0038
  article-title: Particle-localized AC and DC manipulation and electrokinetics
  publication-title: Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.
– volume: 77
  start-page: 1416
  year: 2009
  end-page: 1438
  ident: bib0041
  article-title: SPH with the multiple boundary tangent method
  publication-title: Int. J. Numer. Methods Eng.
– volume: 59
  start-page: 121
  year: 2014
  end-page: 134
  ident: bib0030
  article-title: Fluid-particle flow simulations using two-way-coupled mesoscale SPH-DEM and validation
  publication-title: Int. J. Multiph. Flow
– volume: 261
  start-page: 95
  year: 1994
  end-page: 134
  ident: bib0009
  article-title: Direct simulation of initial-value problems for the motion of solid bodies in a Newtonian fluid 0.1. sedimentation
  publication-title: J. Fluid Mech.
– volume: 78
  start-page: 816
  year: 2020
  end-page: 840
  ident: bib0018
  article-title: 3D Gradient corrected SPH for fully resolved particle-fluid interactions
  publication-title: Appl. Math. Model.
– volume: 5
  start-page: 13572
  year: 2015
  ident: bib0028
  article-title: Clusters in sedimentation equilibrium for an experimental hard-sphere-plus-dipolar Brownian colloidal system
  publication-title: Sci. Rep.
– volume: 181
  start-page: 375
  year: 1977
  end-page: 389
  ident: bib0013
  article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars
  publication-title: Mon. Not. R. Astron. Soc.
– volume: 17
  start-page: 57
  year: 1996
  end-page: 103
  ident: bib0029
  article-title: Electrorheology: mechanisms and models
  publication-title: Mater. Sci. Eng. R-Rep.
– volume: 61
  start-page: 709
  year: 2009
  end-page: 724
  ident: bib0020
  article-title: Permeable and non-reflecting boundary conditions in SPH
  publication-title: Int. J. Numer. Methods Fluids
– volume: 44
  start-page: 97
  year: 2012
  end-page: 121
  ident: bib0007
  article-title: Wake-induced oscillatory paths of bodies freely rising or falling in fluids
  publication-title: Annu. Rev. Fluid Mech.
– volume: 230
  start-page: 7473
  year: 2011
  end-page: 7487
  ident: bib0016
  article-title: Pressure boundary conditions for computing incompressible flows with SPH
  publication-title: J. Comput. Phys.
– volume: 297
  start-page: 207
  year: 2015
  end-page: 220
  ident: bib0036
  article-title: An incompressible smoothed particle hydrodynamics method for the motion of rigid bodies in fluids
  publication-title: J. Comput. Phys.
– volume: 200
  start-page: 66
  year: 2016
  end-page: 75
  ident: bib0019
  article-title: A two-dimensional segmented boundary algorithm for complex moving solid boundaries in smoothed particle hydrodynamics
  publication-title: Comput. Phys. Commun.
– volume: 388
  start-page: 252
  year: 1997
  end-page: 254
  ident: bib0012
  article-title: Chaotic dynamics of falling disks
  publication-title: Nature
– volume: 26
  start-page: 787
  year: 2003
  end-page: 800
  ident: bib0032
  article-title: Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface
  publication-title: Adv. Water Resour.
– volume: 44
  start-page: 323
  year: 2012
  end-page: 346
  ident: bib0023
  article-title: Smoothed particle hydrodynamics and its diverse applications
  publication-title: Annu. Rev. Fluid Mech.
– volume: 92
  start-page: 063009
  year: 2015
  ident: bib0040
  article-title: Sedimentation of an oblate ellipsoid in narrow tubes
  publication-title: Phys. Rev. E
– volume: 13
  start-page: 97
  year: 1996
  end-page: 102
  ident: bib0026
  article-title: A study of the stability properties of smooth particle hydrodynamics
  publication-title: Publ. Astron. Soc. Aust.
– volume: 117
  start-page: 12319
  year: 2013
  end-page: 12327
  ident: bib0005
  article-title: Sedimentation of a charged porous particle in a charged cavity
  publication-title: J. Phys. Chem. B
– volume: 82
  start-page: 1013
  year: 1977
  end-page: 1024
  ident: bib0022
  article-title: A numerical approach to the testing of the fission hypothesis
  publication-title: Astron. J.
– volume: 29
  start-page: 27
  year: 1997
  end-page: 64
  ident: bib0031
  article-title: Electrohydrodynamics: the Taylor-Melcher leaky dielectric model
  publication-title: Annu. Rev. Fluid Mech.
– volume: 307
  start-page: 614
  year: 2016
  end-page: 633
  ident: bib0015
  article-title: Open boundary conditions for ISPH and their application to micro-flow
  publication-title: J. Comput. Phys.
– volume: 34
  start-page: 35
  year: 2012
  end-page: 46
  ident: bib0008
  article-title: Simulating 2D open-channel flows through an SPH model
  publication-title: Eur. J. Mech. B-Fluids
– volume: 78
  start-page: 194
  year: 2019
  end-page: 202
  ident: bib0037
  article-title: Dielectrophoretic interaction of circular particles in a uniform electric field
  publication-title: Eur. J. Mech. B/Fluids
– volume: 87
  start-page: 225
  year: 1995
  end-page: 235
  ident: bib0025
  article-title: SPH simulation of multiphase flow
  publication-title: Comput. Phys. Commun.
– volume: 23
  start-page: 625
  year: 1965
  end-page: 643
  ident: bib0006
  article-title: The steady motion of a particle of arbitrary shape at small Reynolds numbers
  publication-title: J. Fluid Mech.
– volume: 373
  start-page: 287
  year: 1998
  end-page: 311
  ident: bib0003
  article-title: Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation
  publication-title: J. Fluid Mech.
– volume: 71
  start-page: 446
  year: 2013
  end-page: 472
  ident: bib0011
  article-title: Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method
  publication-title: Int. J. Numer. Methods Fluids
– volume: 338
  start-page: 548
  year: 2018
  end-page: 562
  ident: bib0014
  article-title: A GPU-based coupled SPH-DEM method for particle-fluid flow with free surfaces
  publication-title: Powder Technol.
– volume: 128
  start-page: 1245
  year: 2019
  end-page: 1262
  ident: bib0044
  article-title: A finite particle method with particle shifting technique for modeling particulate flows with thermal convection
  publication-title: Int. J. Heat Mass Transf.
– volume: 136
  start-page: 214
  year: 1997
  end-page: 226
  ident: bib0027
  article-title: Modeling low Reynolds number incompressible flows using SPH
  publication-title: J. Comput. Phys.
– volume: 346
  start-page: 448
  year: 2010
  end-page: 454
  ident: bib0002
  article-title: DC dielectrophoretic particle-particle interactions and their relative motions
  publication-title: J. Colloid Interface Sci.
– volume: 104
  start-page: 6815
  year: 2000
  end-page: 6820
  ident: bib0021
  article-title: Sedimentation of a nonconducting sphere in a spherical cavity
  publication-title: J. Phys. Chem. B
– volume: 231
  start-page: 7057
  year: 2012
  end-page: 7075
  ident: bib0001
  article-title: A generalized wall boundary condition for smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
– volume: 374
  start-page: 141
  year: 2012
  end-page: 149
  ident: bib0017
  article-title: Numerical study on dielectrophoretic chaining of two ellipsoidal particles
  publication-title: J. Colloid Interface Sci.
– volume: 625
  start-page: 249
  year: 2009
  end-page: 272
  ident: bib0039
  article-title: Flow patterns in the sedimentation of an elliptical particle
  publication-title: J. Fluid Mech.
– volume: 96
  start-page: 2183
  year: 1992
  end-page: 2202
  ident: bib0004
  article-title: Dynamic simulation of an electrorheological fluid
  publication-title: J. Chem. Phys.
– volume: 180
  start-page: 1811
  year: 2009
  end-page: 1820
  ident: bib0024
  article-title: SPH particle boundary forces for arbitrary boundaries
  publication-title: Comput. Phys. Commun.
– volume: 44
  start-page: 323
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0023
  article-title: Smoothed particle hydrodynamics and its diverse applications
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-120710-101220
– volume: 230
  start-page: 7473
  issue: 19
  year: 2011
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0016
  article-title: Pressure boundary conditions for computing incompressible flows with SPH
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.06.013
– volume: 92
  start-page: 063009
  issue: 6
  year: 2015
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0040
  article-title: Sedimentation of an oblate ellipsoid in narrow tubes
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.92.063009
– volume: 82
  start-page: 1013
  year: 1977
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0022
  article-title: A numerical approach to the testing of the fission hypothesis
  publication-title: Astron. J.
  doi: 10.1086/112164
– volume: 34
  start-page: 35
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0008
  article-title: Simulating 2D open-channel flows through an SPH model
  publication-title: Eur. J. Mech. B-Fluids
  doi: 10.1016/j.euromechflu.2012.02.002
– volume: 254
  start-page: 99
  year: 2013
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0042
  article-title: Numerical investigation of Newtonian and non-Newtonian multiphase flows using ISPH method
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2012.10.005
– volume: 307
  start-page: 614
  year: 2016
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0015
  article-title: Open boundary conditions for ISPH and their application to micro-flow
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.12.024
– volume: 374
  start-page: 141
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0017
  article-title: Numerical study on dielectrophoretic chaining of two ellipsoidal particles
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2012.01.039
– volume: 231
  start-page: 7057
  issue: 21
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0001
  article-title: A generalized wall boundary condition for smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.05.005
– volume: 303
  start-page: 83
  year: 1995
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0010
  article-title: The unsteady motion of solid bodies in creeping flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112095004186
– volume: 71
  start-page: 446
  issue: 4
  year: 2013
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0011
  article-title: Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.3666
– volume: 87
  start-page: 225
  issue: 1–2
  year: 1995
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0025
  article-title: SPH simulation of multiphase flow
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(94)00174-Z
– volume: 116
  start-page: 530
  issue: 8
  year: 2018
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0043
  article-title: Meshfree modeling of a fluid-particle two-phase flow with an improved SPH method
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/nme.5935
– volume: 200
  start-page: 66
  year: 2016
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0019
  article-title: A two-dimensional segmented boundary algorithm for complex moving solid boundaries in smoothed particle hydrodynamics
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2015.10.025
– volume: 128
  start-page: 1245
  year: 2019
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0044
  article-title: A finite particle method with particle shifting technique for modeling particulate flows with thermal convection
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.09.074
– volume: 104
  start-page: 6815
  issue: 29
  year: 2000
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0021
  article-title: Sedimentation of a nonconducting sphere in a spherical cavity
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp993706s
– volume: 261
  start-page: 95
  year: 1994
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0009
  article-title: Direct simulation of initial-value problems for the motion of solid bodies in a Newtonian fluid 0.1. sedimentation
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112094000285
– volume: 338
  start-page: 548
  year: 2018
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0014
  article-title: A GPU-based coupled SPH-DEM method for particle-fluid flow with free surfaces
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2018.07.043
– volume: 5
  start-page: 13572
  year: 2015
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0028
  article-title: Clusters in sedimentation equilibrium for an experimental hard-sphere-plus-dipolar Brownian colloidal system
  publication-title: Sci. Rep.
  doi: 10.1038/srep13572
– volume: 117
  start-page: 12319
  issue: 40
  year: 2013
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0005
  article-title: Sedimentation of a charged porous particle in a charged cavity
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp407805x
– volume: 59
  start-page: 121
  year: 2014
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0030
  article-title: Fluid-particle flow simulations using two-way-coupled mesoscale SPH-DEM and validation
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2013.11.003
– volume: 180
  start-page: 1811
  issue: 10
  year: 2009
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0024
  article-title: SPH particle boundary forces for arbitrary boundaries
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.05.008
– volume: 297
  start-page: 207
  year: 2015
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0036
  article-title: An incompressible smoothed particle hydrodynamics method for the motion of rigid bodies in fluids
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.05.015
– volume: 49
  start-page: 173
  issue: 1
  year: 2011
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0034
  article-title: Effect of internal mass in the simulation of a moving body by the immersed boundary method
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2011.05.011
– volume: 388
  start-page: 252
  issue: 6639
  year: 1997
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0012
  article-title: Chaotic dynamics of falling disks
  publication-title: Nature
  doi: 10.1038/40817
– volume: 44
  start-page: 97
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0007
  article-title: Wake-induced oscillatory paths of bodies freely rising or falling in fluids
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-120710-101250
– volume: 61
  start-page: 709
  issue: 7
  year: 2009
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0020
  article-title: Permeable and non-reflecting boundary conditions in SPH
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.1971
– volume: 26
  start-page: 787
  issue: 7
  year: 2003
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0032
  article-title: Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface
  publication-title: Adv. Water Resour.
  doi: 10.1016/S0309-1708(03)00030-7
– volume: 625
  start-page: 249
  year: 2009
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0039
  article-title: Flow patterns in the sedimentation of an elliptical particle
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112008005521
– volume: 373
  start-page: 287
  year: 1998
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0003
  article-title: Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112098002493
– volume: 346
  start-page: 448
  issue: 2
  year: 2010
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0002
  article-title: DC dielectrophoretic particle-particle interactions and their relative motions
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2010.03.003
– volume: 551
  start-page: 357
  year: 2006
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0035
  article-title: Sedimentation of an ellipsoid inside an infinitely long tube at low and intermediate Reynolds numbers
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112005008402
– volume: 23
  start-page: 625
  issue: 4
  year: 1965
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0006
  article-title: The steady motion of a particle of arbitrary shape at small Reynolds numbers
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112065001593
– volume: 29
  start-page: 27
  year: 1997
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0031
  article-title: Electrohydrodynamics: the Taylor-Melcher leaky dielectric model
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.29.1.27
– volume: 105
  start-page: 213
  year: 2009
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0038
  article-title: Particle-localized AC and DC manipulation and electrokinetics
  publication-title: Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.
  doi: 10.1039/b803015b
– volume: 96
  start-page: 2183
  issue: 3
  year: 1992
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0004
  article-title: Dynamic simulation of an electrorheological fluid
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.462070
– volume: 17
  start-page: 57
  issue: 2
  year: 1996
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0029
  article-title: Electrorheology: mechanisms and models
  publication-title: Mater. Sci. Eng. R-Rep.
  doi: 10.1016/0927-796X(96)00191-X
– volume: 77
  start-page: 1416
  issue: 10
  year: 2009
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0041
  article-title: SPH with the multiple boundary tangent method
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.2458
– volume: 136
  start-page: 214
  issue: 1
  year: 1997
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0027
  article-title: Modeling low Reynolds number incompressible flows using SPH
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1997.5776
– volume: 181
  start-page: 375
  issue: 3
  year: 1977
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0013
  article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/181.3.375
– volume: 78
  start-page: 816
  year: 2020
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0018
  article-title: 3D Gradient corrected SPH for fully resolved particle-fluid interactions
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.09.030
– volume: 13
  start-page: 97
  issue: 1
  year: 1996
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0026
  article-title: A study of the stability properties of smooth particle hydrodynamics
  publication-title: Publ. Astron. Soc. Aust.
  doi: 10.1017/S1323358000020610
– volume: 15
  start-page: 11
  year: 2003
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0033
  article-title: Control of colloids with gravity, temperature gradients, and electric fields
  publication-title: J. Phys.-Condes. Matter
  doi: 10.1088/0953-8984/15/1/302
– volume: 78
  start-page: 194
  year: 2019
  ident: 10.1016/j.ijmultiphaseflow.2020.103524_bib0037
  article-title: Dielectrophoretic interaction of circular particles in a uniform electric field
  publication-title: Eur. J. Mech. B/Fluids
  doi: 10.1016/j.euromechflu.2019.07.002
SSID ssj0005743
Score 2.3196115
Snippet highlights•Long term sedimentation of an ellipse subject to an external electric field is studied.•Horizontal, slanted, vertical and oscillating sedimentation...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103524
SubjectTerms Electric field
Fluid-particle interaction
Sedimentation
Shifting boundary
Smoothed particle hydrodynamics
Title Long term sedimentation of an elliptic disc subject to an electrostatic field using smoothed particle hydrodynamics method
URI https://dx.doi.org/10.1016/j.ijmultiphaseflow.2020.103524
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwEB0hKip6QAWKutAiHypuYTe2N7s5cFgh0BYoF0DiFtljBxZBsmp2VcGBb2cmzsKCOHDoNRlbyYwzM3bemwH4FUuJyiQ66kk0kU6ViVKfdyOKxIgqVWg9E4X_nCbDC3102b1cgP0ZF4ZhlY3vDz699tbNlXajzfZ4NGqfcTKf8o8CTnspj2AGu-7xKt99nIN5BJA9C0cs_Rl2XjBeo5sA27umiJHflv9ovyhrHnpX6vcD1VzwOfwKK03WKAbhwVZhwRdr8GWuluAaLNVYTqzW4eGkLK4Eu1xR0evdNeyiQpS5MIXgCpzkJ1AwIVdUU8snMWJShnt1UxxmGZFAjW4TjIy_EtVdyVwtJ8aNdsT1vSPnGxraVyJ0ov4GF4cH5_vDqGmxEKFSySTSCZqu71gK-2iM6ShrZUo5XOxkv2N138S5V46-237aJ6E4kZ5yBu0dYozWarUBi0VZ-O8gXCJzVNgx2iU6dc5q10tJj8rGSHuWpAV7M31m2NQf5zYYt9kMaHaTvbVHxvbIgj1a0HsePw6VOD48cjAzX_ZqbWUUNj44x-Z_mGMLliUjYmrM9w9YnPyd-p-U0kzsdr1mt-HT4Pfx8PQJirj84g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1RUL8OqKVU0JbWh7a3dDe2N7s5cEAtaCkLl4LELbXHDixikxVZhLaH_in-IDOJt90iDhzKNbEda2YyM07emwH4GEuJyiQ66ko0kU6ViVKfdyKKxIgqVWg9E4X3D5L-kf5-3DlegOsZF4ZhlcH3Nz699tbhSitIszUeDls_OJlP-UcBp72URwRk5Z6fXtG5rdrc_UZK_iTlzvbh134UWgtEqFQyiXSCpuPblsIdGmPaylqZUu4SO9lrW90zce6VI3vtpT0aFCfSU6zU3iHGaK1WtO4jWNLkLrhtwpffc7iSBtXPu4t4e0_g819Q2fCswQmeUojKz8srOqDKmvjekfruyDgX7XZewHJIU8VWI4mXsOCLFXg-V7xwBR7X4FGsXsGvQVmcCPbxoiJ5jgKdqRBlLkwhuOQnOSYUzAAW1aXlTz9iUjb36i48TGuiATWcTjAU_0RUo5LJYU6MgzrE6dSRt58WZkRPFU3r61U4ehDBv4bFoiz8GgiXyBwVto12iU6ds9p1U5KjsjHSISlZh82ZPDMMBc-578Z5NkO2nWW39ZGxPrJGH-vQ_TN_3JT-uPfMrZn6sn-MOaM4dc813vyHNT7A0_7h_iAb7B7svYVnkuE4NeD8HSxOLi79BuVTE_u-tl8BPx_6hbkB6Sc4UQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long+term+sedimentation+of+an+elliptic+disc+subject+to+an+electrostatic+field+using+smoothed+particle+hydrodynamics+method&rft.jtitle=International+journal+of+multiphase+flow&rft.au=Tofighi%2C+N.&rft.au=Feng%2C+J.J.&rft.au=Yildiz%2C+M.&rft.au=Suleman%2C+A.&rft.date=2021-02-01&rft.issn=0301-9322&rft.volume=135&rft.spage=103524&rft_id=info:doi/10.1016%2Fj.ijmultiphaseflow.2020.103524&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijmultiphaseflow_2020_103524
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-9322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-9322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-9322&client=summon