Porous polyurethane particles enhanced the acetate production of a hydrogen-mediated microbial electrosynthesis reactor
Microbial electrosynthesis (MES) is an electricity-driven microbial CO2 fixation process. It is challenging to achieve high coulombic efficiency (CE) in hydrogen-mediated MES reactors due to the poor hydrogen mass transfer. Here, we report that the addition of porous polyurethane (PU) particles coul...
Saved in:
Published in | Bioresource technology reports Vol. 18; p. 101073 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microbial electrosynthesis (MES) is an electricity-driven microbial CO2 fixation process. It is challenging to achieve high coulombic efficiency (CE) in hydrogen-mediated MES reactors due to the poor hydrogen mass transfer. Here, we report that the addition of porous polyurethane (PU) particles could promote the kLa of H2 by 102%, and thereby enhancing the acetate production rate and CE of a hydrogen-mediated MES reactor by 59% and 11%, respectively. The enhanced performance could be attributed to the promotion of the suspended biomass growth. The maximum acetate production rate (1.48 g·L−1·d−1) and the acetate titer (17.22 g·L−1) achieved in the reactor with PU particles were higher than those of the most reported MES reactors. Microbial community analysis indicated that the impact of PU particles on the bacterial community was negligible. These results demonstrated the addition of PU particles is an efficient way to enhance the performance of hydrogen-mediated MES reactors.
[Display omitted]
•Addition of prorous PU particles enhanced the hydrogen mass transfer by 102%.•PU particles boosted biomass growth by 72% and acetate production rate by 59%.•1.65 g·L−1·d−1 acetate production rate and 17.22 g·L−1 acetate titer were achieved.•Porous PU particles are biocompatible and easy to maintain in the reactor. |
---|---|
AbstractList | Microbial electrosynthesis (MES) is an electricity-driven microbial CO₂ fixation process. It is challenging to achieve high coulombic efficiency (CE) in hydrogen-mediated MES reactors due to the poor hydrogen mass transfer. Here, we report that the addition of porous polyurethane (PU) particles could promote the kLa of H₂ by 102%, and thereby enhancing the acetate production rate and CE of a hydrogen-mediated MES reactor by 59% and 11%, respectively. The enhanced performance could be attributed to the promotion of the suspended biomass growth. The maximum acetate production rate (1.48 g·L⁻¹·d⁻¹) and the acetate titer (17.22 g·L⁻¹) achieved in the reactor with PU particles were higher than those of the most reported MES reactors. Microbial community analysis indicated that the impact of PU particles on the bacterial community was negligible. These results demonstrated the addition of PU particles is an efficient way to enhance the performance of hydrogen-mediated MES reactors. Microbial electrosynthesis (MES) is an electricity-driven microbial CO2 fixation process. It is challenging to achieve high coulombic efficiency (CE) in hydrogen-mediated MES reactors due to the poor hydrogen mass transfer. Here, we report that the addition of porous polyurethane (PU) particles could promote the kLa of H2 by 102%, and thereby enhancing the acetate production rate and CE of a hydrogen-mediated MES reactor by 59% and 11%, respectively. The enhanced performance could be attributed to the promotion of the suspended biomass growth. The maximum acetate production rate (1.48 g·L−1·d−1) and the acetate titer (17.22 g·L−1) achieved in the reactor with PU particles were higher than those of the most reported MES reactors. Microbial community analysis indicated that the impact of PU particles on the bacterial community was negligible. These results demonstrated the addition of PU particles is an efficient way to enhance the performance of hydrogen-mediated MES reactors. [Display omitted] •Addition of prorous PU particles enhanced the hydrogen mass transfer by 102%.•PU particles boosted biomass growth by 72% and acetate production rate by 59%.•1.65 g·L−1·d−1 acetate production rate and 17.22 g·L−1 acetate titer were achieved.•Porous PU particles are biocompatible and easy to maintain in the reactor. |
ArticleNumber | 101073 |
Author | Cui, Kai Liu, Zhuangzhuang Guo, Kun Cai, Wenfang Xue, Xiaoyuan |
Author_xml | – sequence: 1 givenname: Xiaoyuan surname: Xue fullname: Xue, Xiaoyuan organization: School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 2 givenname: Zhuangzhuang surname: Liu fullname: Liu, Zhuangzhuang organization: School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 3 givenname: Wenfang surname: Cai fullname: Cai, Wenfang organization: School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 4 givenname: Kai surname: Cui fullname: Cui, Kai organization: School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 5 givenname: Kun surname: Guo fullname: Guo, Kun email: kun.guo@xjtu.edu.cn organization: School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China |
BookMark | eNqFkD1vGzEMhoXCAeI4_gVZNGY5Vx_35aFDYCRpgADt0ALZBB7Fq2WcT44kt_C_j9zLUHRoJxLk-xJ8nys2G_1IjN1IsZJC1h93q84l6lZKKHWeiEZ_YHNVtetCyPJl9kd_yZYx7oQQSpaiUWrOfn31wR8jP_jhdAyUtjASP0BIDgeKnMY8QLI8bYkDUoKU18HbIybnR-57Dnx7ssH_oLHYk3VZYPneYfCdg4HTQJiCj6cxX4gu8kCAyYdrdtHDEGn5Xhfs-8P9t83n4vnL49Pm7rlAretUlLWsQa9rLFulQbZYVTWu26Zt-lLXtm-hASFQIyorelKVVVACVl1jETpq9YLdTnfz069HisnsXUQahpwz5zaqbqqqamWjs3Q9SfPvMQbqDbqcN8dMAdxgpDBn3mZnfvM2Z95m4p29-i_vIbg9hNN_XJ8mF2UCPx0FE9HRmbcLGZux3v3T_wYFoKAc |
CitedBy_id | crossref_primary_10_1016_j_biortech_2022_127906 crossref_primary_10_1021_acsestengg_4c00218 crossref_primary_10_1038_s44286_024_00090_w crossref_primary_10_1007_s13369_024_09601_6 crossref_primary_10_1021_acs_iecr_3c01921 crossref_primary_10_1039_D4RA02260B crossref_primary_10_1016_j_cej_2023_144296 crossref_primary_10_1186_s40643_023_00627_6 |
Cites_doi | 10.1038/s41929-019-0272-0 10.1016/j.biortech.2012.04.076 10.1016/j.biortech.2020.123322 10.1038/s41929-019-0264-0 10.1039/C5EE03088A 10.1038/s41579-019-0173-x 10.1016/j.biotechadv.2020.107675 10.1021/acs.accounts.9b00523 10.1007/s11814-014-0383-x 10.1128/mBio.00103-10 10.1039/C7GC01801K 10.1016/j.biortech.2017.02.128 10.1016/j.electacta.2016.09.063 10.1038/s42004-019-0145-0 10.1016/j.cej.2020.124584 10.1016/j.cej.2021.132093 10.1016/j.tibtech.2020.10.014 10.1016/j.jcou.2017.04.014 10.1126/science.1217412 10.1016/j.biortech.2018.08.103 10.1016/j.biortech.2019.121619 10.1021/acs.est.5b04431 10.3389/fmicb.2017.00756 10.1016/j.biortech.2014.03.046 10.1126/science.aaf5039 10.1021/es506149d 10.1016/j.biortech.2015.05.081 10.1016/j.ijhydene.2021.08.129 10.1016/j.copbio.2019.08.014 10.1021/acs.estlett.5b00212 10.1128/AEM.02642-10 10.1016/j.ijhydene.2013.01.151 10.1016/j.jcou.2020.101231 10.1021/acssuschemeng.0c01276 10.1016/j.jpowsour.2017.03.029 10.1021/acs.est.5b03821 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.biteb.2022.101073 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-014X |
ExternalDocumentID | 10_1016_j_biteb_2022_101073 S2589014X2200130X |
GroupedDBID | AABVA AACTN AAEDW AAHCO AAIAV AAKOC AALRI AATLK AAXUO ABGRD ABMAC ABYKQ ACDAQ ACRLP ADBBV AEBSH AFKWA AFTJW AFXIZ AGUBO AHPOS AIEXJ AIKHN AITUG AJBFU AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ AXJTR BELTK BKOJK EBS EFJIC EFLBG EJD FDB FYGXN KOM M41 ROL SPC SPCBC SSA SSG SSR SSZ T5K ~G- 0R~ AAHBH AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c336t-4616a396c4823a18c556c98787f436df8a7a00c3cc2d0fe25d2a4ac5b7dcabe83 |
IEDL.DBID | AIKHN |
ISSN | 2589-014X |
IngestDate | Fri Aug 22 20:25:08 EDT 2025 Tue Jul 01 02:20:09 EDT 2025 Thu Apr 24 23:06:43 EDT 2025 Fri Feb 23 02:37:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | PU particles Microbial electrosynthesis Acetate H2 mass transfer coefficient CO2 reduction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-4616a396c4823a18c556c98787f436df8a7a00c3cc2d0fe25d2a4ac5b7dcabe83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2675558173 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2675558173 crossref_citationtrail_10_1016_j_biteb_2022_101073 crossref_primary_10_1016_j_biteb_2022_101073 elsevier_sciencedirect_doi_10_1016_j_biteb_2022_101073 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 2022-06-00 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationTitle | Bioresource technology reports |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Song, Fu, Wan, Wu, Xie (bb0170) 2020; 41 Prevoteau, Carvajal-Arroyo, Ganigue, Rabaey (bb0150) 2020; 62 Guo, Prévoteau, Rabaey (bb0075) 2017; 356 Cai, Cui, Liu, Jin, Chen, Guo, Wang (bb0035) 2022; 428 Logan, Rossi, Ragab, Saikaly (bb0125) 2019; 17 Aryal, Ammam, Patil, Pant (bb0015) 2017; 19 Bajracharya, ter Heijne, Dominguez Benetton, Vanbroekhoven, Buisman, Strik, Pant (bb0025) 2015; 195 Aryal, Halder, Tremblay, Chi, Zhang (bb0010) 2016; 217 Dong, Wang, Tian, Yang, Yuan, Huang, Song, Xie (bb0055) 2018; 269 Blanchet, Duquenne, Rafrafi, Etcheverry, Erable, Bergel (bb0030) 2015; 8 Jourdin, Freguia, Flexer, Keller (bb0090) 2016; 50 Jourdin, Grieger, Monetti, Flexer, Freguia, Lu, Chen, Romano, Wallace, Keller (bb0085) 2015; 49 Carmo, Fritz, Merge, Stolten (bb0040) 2013; 38 Luo, Qi, Zhou, Liu, Lu, Zhang, Zeng (bb0130) 2020; 309 Kracke, Wong, Maegaard, Deutzmann, Hubert, Hahn, Jaramillo, Spormann (bb0100) 2019; 2 Feng, Wang, Wang, Zheng, Chu, Zhang, Chen, Kong, Xing (bb0060) 2012; 117 Jourdin, Burdyny (bb0080) 2021; 39 Lee, Mo, Choi, Hur, Kim, Oh, Lee (bb0110) 2015; 32 Rodrigues, Guan, Iñiguez, Estabrook, Chapman, Huang, Sletten, Liu (bb0155) 2019; 2 Arends, Patil, Roume, Rabaey (bb0005) 2017; 20 Patil, Arends, Vanwonterghem, van Meerbergen, Guo, Tyson, Rabaey (bb0145) 2015; 49 Zhao, Liu, Huang, Yang, Ji, Nghiem, Trinh, Tran (bb0185) 2019; 288 Logan, Rabaey (bb0120) 2012; 337 Flexer, Jourdin (bb0065) 2020; 53 Nevin, Hensley, Franks, Summers, Ou, Woodard, Snoeyenbos-West, Lovley (bb0140) 2011; 77 Claassens, Cotton, Kopljar, Bar-Even (bb0045) 2019; 2 Roy, Yadav, Chiranjeevi, Patil (bb0160) 2021; 320 Liu, Colon, Ziesack, Silver, Nocera (bb0115) 2016; 352 Salehizadeh, Yan, Farnood (bb0165) 2020; 390 Zhou, Huang, Wang, Huang, Song, Xie (bb0190) 2021; 46 Gildemyn, Verbeeck, Slabbinck, Andersen, Prevoteau, Rabaey (bb0070) 2015; 2 Nevin, Woodard, Franks, Summers, Lovley (bb0135) 2010; 1 LaBelle, May (bb0105) 2017; 8 Yasin, Jang, Lee, Kang, Aslam, Bazmi, Chang (bb0180) 2019; 7 Kim, Park, Lee, Yun (bb0095) 2014; 159 Tian, Yao, Song, Chu, Xie, Jin (bb0175) 2020; 8 Dessi, Rovira-Alsina, Sanchez, Dinesh, Tong, Chatterjee, Tedesco, Farras, Hamelers, Puig (bb0050) 2021; 46 Aryal, Tremblay, Lizak, Zhang (bb0020) 2017; 233 Zhao (10.1016/j.biteb.2022.101073_bb0185) 2019; 288 Salehizadeh (10.1016/j.biteb.2022.101073_bb0165) 2020; 390 Yasin (10.1016/j.biteb.2022.101073_bb0180) 2019; 7 Prevoteau (10.1016/j.biteb.2022.101073_bb0150) 2020; 62 Kracke (10.1016/j.biteb.2022.101073_bb0100) 2019; 2 Roy (10.1016/j.biteb.2022.101073_bb0160) 2021; 320 Song (10.1016/j.biteb.2022.101073_bb0170) 2020; 41 Gildemyn (10.1016/j.biteb.2022.101073_bb0070) 2015; 2 Logan (10.1016/j.biteb.2022.101073_bb0120) 2012; 337 Zhou (10.1016/j.biteb.2022.101073_bb0190) 2021; 46 Aryal (10.1016/j.biteb.2022.101073_bb0020) 2017; 233 Jourdin (10.1016/j.biteb.2022.101073_bb0090) 2016; 50 Nevin (10.1016/j.biteb.2022.101073_bb0140) 2011; 77 Tian (10.1016/j.biteb.2022.101073_bb0175) 2020; 8 Blanchet (10.1016/j.biteb.2022.101073_bb0030) 2015; 8 Arends (10.1016/j.biteb.2022.101073_bb0005) 2017; 20 Guo (10.1016/j.biteb.2022.101073_bb0075) 2017; 356 Feng (10.1016/j.biteb.2022.101073_bb0060) 2012; 117 Jourdin (10.1016/j.biteb.2022.101073_bb0080) 2021; 39 Lee (10.1016/j.biteb.2022.101073_bb0110) 2015; 32 Luo (10.1016/j.biteb.2022.101073_bb0130) 2020; 309 Dong (10.1016/j.biteb.2022.101073_bb0055) 2018; 269 Bajracharya (10.1016/j.biteb.2022.101073_bb0025) 2015; 195 Liu (10.1016/j.biteb.2022.101073_bb0115) 2016; 352 Kim (10.1016/j.biteb.2022.101073_bb0095) 2014; 159 Rodrigues (10.1016/j.biteb.2022.101073_bb0155) 2019; 2 Jourdin (10.1016/j.biteb.2022.101073_bb0085) 2015; 49 Nevin (10.1016/j.biteb.2022.101073_bb0135) 2010; 1 LaBelle (10.1016/j.biteb.2022.101073_bb0105) 2017; 8 Carmo (10.1016/j.biteb.2022.101073_bb0040) 2013; 38 Logan (10.1016/j.biteb.2022.101073_bb0125) 2019; 17 Patil (10.1016/j.biteb.2022.101073_bb0145) 2015; 49 Claassens (10.1016/j.biteb.2022.101073_bb0045) 2019; 2 Dessi (10.1016/j.biteb.2022.101073_bb0050) 2021; 46 Flexer (10.1016/j.biteb.2022.101073_bb0065) 2020; 53 Aryal (10.1016/j.biteb.2022.101073_bb0015) 2017; 19 Cai (10.1016/j.biteb.2022.101073_bb0035) 2022; 428 Aryal (10.1016/j.biteb.2022.101073_bb0010) 2016; 217 |
References_xml | – volume: 217 start-page: 117 year: 2016 end-page: 122 ident: bb0010 article-title: Enhanced microbial electrosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis publication-title: Electrochim. Acta – volume: 2 start-page: 325 year: 2015 end-page: 328 ident: bb0070 article-title: Integrated production, extraction, and concentration of acetic acid from CO2 through microbial electrosynthesis publication-title: Environ. Sci. Technol. Lett. – volume: 53 start-page: 311 year: 2020 end-page: 321 ident: bb0065 article-title: Purposely designed hierarchical porous electrodes for high rate microbial electrosynthesis of acetate from carbon dioxide publication-title: Acc. Chem. Res. – volume: 41 year: 2020 ident: bb0170 article-title: Hydrothermal synthesis of MoS2 nanoflowers for an efficient microbial electrosynthesis of acetate from CO2 publication-title: J. CO2 Util. – volume: 352 start-page: 1210 year: 2016 end-page: 1213 ident: bb0115 article-title: Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis publication-title: Science – volume: 7 year: 2019 ident: bb0180 article-title: Bioreactors, gas delivery systems and supporting technologies for microbial synthesis gas conversion process publication-title: Bioresour. Technol. Rep. – volume: 8 start-page: 756 year: 2017 ident: bb0105 article-title: Energy efficiency and productivity enhancement of microbial electrosynthesis of acetate publication-title: Front. Microbiol. – volume: 19 start-page: 5748 year: 2017 end-page: 5760 ident: bb0015 article-title: An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide publication-title: Green Chem. – volume: 38 start-page: 4901 year: 2013 end-page: 4934 ident: bb0040 article-title: A comprehensive review on PEM water electrolysis publication-title: Int. J. Hydrog. Energy – volume: 337 start-page: 686 year: 2012 end-page: 690 ident: bb0120 article-title: Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies publication-title: Science – volume: 2 start-page: 407 year: 2019 end-page: 414 ident: bb0155 article-title: Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction publication-title: Nat. Catal. – volume: 356 start-page: 484 year: 2017 end-page: 490 ident: bb0075 article-title: A novel tubular microbial electrolysis cell for high rate hydrogen production publication-title: J. Power Sources – volume: 2 start-page: 437 year: 2019 end-page: 447 ident: bb0045 article-title: Making quantitative sense of electromicrobial production publication-title: Nat. Catal. – volume: 49 start-page: 13566 year: 2015 end-page: 13574 ident: bb0085 article-title: High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide publication-title: Environ. Sci. Technol. – volume: 195 start-page: 14 year: 2015 end-page: 24 ident: bb0025 article-title: Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode publication-title: Bioresour. Technol. – volume: 320 year: 2021 ident: bb0160 article-title: Direct utilization of industrial carbon dioxide with low impurities for acetate production via microbial electrosynthesis publication-title: Bioresour. Technol. – volume: 32 start-page: 1744 year: 2015 end-page: 1748 ident: bb0110 article-title: Enhancement of CH4-water mass transfer using methyl-modified mesoporous silica nanoparticles publication-title: Korean J. Chem. Eng. – volume: 62 start-page: 48 year: 2020 end-page: 57 ident: bb0150 article-title: Microbial electrosynthesis from CO2: forever a promise? publication-title: Curr. Opin. Biotechnol. – volume: 2 start-page: 45 year: 2019 ident: bb0100 article-title: Robust and biocompatible catalysts for efficient hydrogen-driven microbial electrosynthesis publication-title: Commun. Chem. – volume: 1 year: 2010 ident: bb0135 article-title: Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds publication-title: mBio – volume: 20 start-page: 141 year: 2017 end-page: 149 ident: bb0005 article-title: Continuous long-term electricity-driven bioproduction of carboxylates and isopropanol from CO2 with a mixed microbial community publication-title: J. CO2 Util. – volume: 39 start-page: 359 year: 2021 end-page: 369 ident: bb0080 article-title: Microbial electrosynthesis: where do we go from here? publication-title: Trends Biotechnol. – volume: 50 start-page: 1982 year: 2016 end-page: 1989 ident: bb0090 article-title: Bringing high-rate, CO2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions publication-title: Environ. Sci. Technol. – volume: 390 start-page: 12458 year: 2020 ident: bb0165 article-title: Recent advances in microbial CO2 fixation and conversion to value-added products publication-title: Chem. Eng. J. – volume: 8 start-page: 3731 year: 2015 end-page: 3744 ident: bb0030 article-title: Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction publication-title: Energy Environ. Sci. – volume: 49 start-page: 8833 year: 2015 end-page: 8843 ident: bb0145 article-title: Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2 publication-title: Environ. Sci. Technol. – volume: 46 year: 2021 ident: bb0050 article-title: Microbial electrosynthesis: Towards sustainable biorefineries for production of green chemicals from CO2 emissions publication-title: Biotechnol. Adv. – volume: 428 year: 2022 ident: bb0035 article-title: An electrolytic-hydrogen-fed moving bed biofilm reactor for efficient microbial electrosynthesis of methane from CO2 publication-title: Chem. Eng. J. – volume: 233 start-page: 184 year: 2017 end-page: 190 ident: bb0020 article-title: Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide publication-title: Bioresour. Technol. – volume: 269 start-page: 203 year: 2018 end-page: 209 ident: bb0055 article-title: Fluidized granular activated carbon electrode for efficient microbial electrosynthesis of acetate from carbon dioxide publication-title: Bioresour. Technol. – volume: 159 start-page: 446 year: 2014 end-page: 450 ident: bb0095 article-title: Enhancement of bioethanol production in syngas fermentation with Clostridium ljungdahlii using nanoparticles publication-title: Bioresour. Technol. – volume: 17 start-page: 307 year: 2019 end-page: 319 ident: bb0125 article-title: Electroactive microorganisms in bioelectrochemical systems publication-title: Nat. Rev. Microbiol. – volume: 8 start-page: 6777 year: 2020 end-page: 6785 ident: bb0175 article-title: Artificial electron mediator with nanocubic architecture highly promotes microbial electrosynthesis from carbon dioxide publication-title: ACS Sustain. Chem. Eng. – volume: 288 year: 2019 ident: bb0185 article-title: Insights into biofilm carriers for biological wastewater treatment processes: current state-of-the-art, challenges, and opportunities publication-title: Bioresour. Technol. – volume: 46 start-page: 36103 year: 2021 end-page: 36112 ident: bb0190 article-title: Efficient microbial electrosynthesis through the barrier and shearing effect of fillers publication-title: Int. J. Hydrog. Energy – volume: 117 start-page: 201 year: 2012 end-page: 207 ident: bb0060 article-title: Effects of packing rates of cubic-shaped polyurethane foam carriers on the microbial community and the removal of organics and nitrogen in moving bed biofilm reactors publication-title: Bioresour. Technol. – volume: 77 start-page: 2882 year: 2011 end-page: 2886 ident: bb0140 article-title: Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms publication-title: Appl. Environ. Microbiol. – volume: 309 year: 2020 ident: bb0130 article-title: Enhanced electron transfer on microbial electrosynthesis biocathode by polypyrrole-coated acetogens publication-title: Bioresour. Technol. – volume: 2 start-page: 437 issue: 5 year: 2019 ident: 10.1016/j.biteb.2022.101073_bb0045 article-title: Making quantitative sense of electromicrobial production publication-title: Nat. Catal. doi: 10.1038/s41929-019-0272-0 – volume: 117 start-page: 201 year: 2012 ident: 10.1016/j.biteb.2022.101073_bb0060 article-title: Effects of packing rates of cubic-shaped polyurethane foam carriers on the microbial community and the removal of organics and nitrogen in moving bed biofilm reactors publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.04.076 – volume: 309 year: 2020 ident: 10.1016/j.biteb.2022.101073_bb0130 article-title: Enhanced electron transfer on microbial electrosynthesis biocathode by polypyrrole-coated acetogens publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.123322 – volume: 2 start-page: 407 issue: 5 year: 2019 ident: 10.1016/j.biteb.2022.101073_bb0155 article-title: Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction publication-title: Nat. Catal. doi: 10.1038/s41929-019-0264-0 – volume: 8 start-page: 3731 issue: 12 year: 2015 ident: 10.1016/j.biteb.2022.101073_bb0030 article-title: Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03088A – volume: 17 start-page: 307 issue: 5 year: 2019 ident: 10.1016/j.biteb.2022.101073_bb0125 article-title: Electroactive microorganisms in bioelectrochemical systems publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-019-0173-x – volume: 46 year: 2021 ident: 10.1016/j.biteb.2022.101073_bb0050 article-title: Microbial electrosynthesis: Towards sustainable biorefineries for production of green chemicals from CO2 emissions publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2020.107675 – volume: 53 start-page: 311 issue: 2 year: 2020 ident: 10.1016/j.biteb.2022.101073_bb0065 article-title: Purposely designed hierarchical porous electrodes for high rate microbial electrosynthesis of acetate from carbon dioxide publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00523 – volume: 32 start-page: 1744 issue: 9 year: 2015 ident: 10.1016/j.biteb.2022.101073_bb0110 article-title: Enhancement of CH4-water mass transfer using methyl-modified mesoporous silica nanoparticles publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-014-0383-x – volume: 1 issue: 2 year: 2010 ident: 10.1016/j.biteb.2022.101073_bb0135 article-title: Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds publication-title: mBio doi: 10.1128/mBio.00103-10 – volume: 19 start-page: 5748 issue: 24 year: 2017 ident: 10.1016/j.biteb.2022.101073_bb0015 article-title: An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide publication-title: Green Chem. doi: 10.1039/C7GC01801K – volume: 233 start-page: 184 year: 2017 ident: 10.1016/j.biteb.2022.101073_bb0020 article-title: Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.02.128 – volume: 217 start-page: 117 year: 2016 ident: 10.1016/j.biteb.2022.101073_bb0010 article-title: Enhanced microbial electrosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.09.063 – volume: 2 start-page: 45 year: 2019 ident: 10.1016/j.biteb.2022.101073_bb0100 article-title: Robust and biocompatible catalysts for efficient hydrogen-driven microbial electrosynthesis publication-title: Commun. Chem. doi: 10.1038/s42004-019-0145-0 – volume: 390 start-page: 12458 year: 2020 ident: 10.1016/j.biteb.2022.101073_bb0165 article-title: Recent advances in microbial CO2 fixation and conversion to value-added products publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124584 – volume: 428 year: 2022 ident: 10.1016/j.biteb.2022.101073_bb0035 article-title: An electrolytic-hydrogen-fed moving bed biofilm reactor for efficient microbial electrosynthesis of methane from CO2 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132093 – volume: 39 start-page: 359 issue: 4 year: 2021 ident: 10.1016/j.biteb.2022.101073_bb0080 article-title: Microbial electrosynthesis: where do we go from here? publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2020.10.014 – volume: 20 start-page: 141 year: 2017 ident: 10.1016/j.biteb.2022.101073_bb0005 article-title: Continuous long-term electricity-driven bioproduction of carboxylates and isopropanol from CO2 with a mixed microbial community publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2017.04.014 – volume: 337 start-page: 686 issue: 6095 year: 2012 ident: 10.1016/j.biteb.2022.101073_bb0120 article-title: Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies publication-title: Science doi: 10.1126/science.1217412 – volume: 269 start-page: 203 year: 2018 ident: 10.1016/j.biteb.2022.101073_bb0055 article-title: Fluidized granular activated carbon electrode for efficient microbial electrosynthesis of acetate from carbon dioxide publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.08.103 – volume: 288 year: 2019 ident: 10.1016/j.biteb.2022.101073_bb0185 article-title: Insights into biofilm carriers for biological wastewater treatment processes: current state-of-the-art, challenges, and opportunities publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121619 – volume: 50 start-page: 1982 issue: 4 year: 2016 ident: 10.1016/j.biteb.2022.101073_bb0090 article-title: Bringing high-rate, CO2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b04431 – volume: 8 start-page: 756 year: 2017 ident: 10.1016/j.biteb.2022.101073_bb0105 article-title: Energy efficiency and productivity enhancement of microbial electrosynthesis of acetate publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.00756 – volume: 320 issue: Pt A year: 2021 ident: 10.1016/j.biteb.2022.101073_bb0160 article-title: Direct utilization of industrial carbon dioxide with low impurities for acetate production via microbial electrosynthesis publication-title: Bioresour. Technol. – volume: 159 start-page: 446 year: 2014 ident: 10.1016/j.biteb.2022.101073_bb0095 article-title: Enhancement of bioethanol production in syngas fermentation with Clostridium ljungdahlii using nanoparticles publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.03.046 – volume: 352 start-page: 1210 issue: 6290 year: 2016 ident: 10.1016/j.biteb.2022.101073_bb0115 article-title: Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis publication-title: Science doi: 10.1126/science.aaf5039 – volume: 49 start-page: 8833 issue: 14 year: 2015 ident: 10.1016/j.biteb.2022.101073_bb0145 article-title: Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2 publication-title: Environ. Sci. Technol. doi: 10.1021/es506149d – volume: 195 start-page: 14 year: 2015 ident: 10.1016/j.biteb.2022.101073_bb0025 article-title: Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.05.081 – volume: 46 start-page: 36103 issue: 73 year: 2021 ident: 10.1016/j.biteb.2022.101073_bb0190 article-title: Efficient microbial electrosynthesis through the barrier and shearing effect of fillers publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2021.08.129 – volume: 7 year: 2019 ident: 10.1016/j.biteb.2022.101073_bb0180 article-title: Bioreactors, gas delivery systems and supporting technologies for microbial synthesis gas conversion process publication-title: Bioresour. Technol. Rep. – volume: 62 start-page: 48 year: 2020 ident: 10.1016/j.biteb.2022.101073_bb0150 article-title: Microbial electrosynthesis from CO2: forever a promise? publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2019.08.014 – volume: 2 start-page: 325 issue: 11 year: 2015 ident: 10.1016/j.biteb.2022.101073_bb0070 article-title: Integrated production, extraction, and concentration of acetic acid from CO2 through microbial electrosynthesis publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.5b00212 – volume: 77 start-page: 2882 issue: 9 year: 2011 ident: 10.1016/j.biteb.2022.101073_bb0140 article-title: Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02642-10 – volume: 38 start-page: 4901 issue: 12 year: 2013 ident: 10.1016/j.biteb.2022.101073_bb0040 article-title: A comprehensive review on PEM water electrolysis publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2013.01.151 – volume: 41 year: 2020 ident: 10.1016/j.biteb.2022.101073_bb0170 article-title: Hydrothermal synthesis of MoS2 nanoflowers for an efficient microbial electrosynthesis of acetate from CO2 publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2020.101231 – volume: 8 start-page: 6777 issue: 17 year: 2020 ident: 10.1016/j.biteb.2022.101073_bb0175 article-title: Artificial electron mediator with nanocubic architecture highly promotes microbial electrosynthesis from carbon dioxide publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c01276 – volume: 356 start-page: 484 year: 2017 ident: 10.1016/j.biteb.2022.101073_bb0075 article-title: A novel tubular microbial electrolysis cell for high rate hydrogen production publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.03.029 – volume: 49 start-page: 13566 issue: 22 year: 2015 ident: 10.1016/j.biteb.2022.101073_bb0085 article-title: High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b03821 |
SSID | ssj0002140722 |
Score | 2.2841458 |
Snippet | Microbial electrosynthesis (MES) is an electricity-driven microbial CO2 fixation process. It is challenging to achieve high coulombic efficiency (CE) in... Microbial electrosynthesis (MES) is an electricity-driven microbial CO₂ fixation process. It is challenging to achieve high coulombic efficiency (CE) in... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 101073 |
SubjectTerms | Acetate acetates bacterial communities biomass carbon dioxide CO2 reduction electrosynthesis H2 mass transfer coefficient hydrogen mass transfer Microbial electrosynthesis polyurethanes PU particles technology |
Title | Porous polyurethane particles enhanced the acetate production of a hydrogen-mediated microbial electrosynthesis reactor |
URI | https://dx.doi.org/10.1016/j.biteb.2022.101073 https://www.proquest.com/docview/2675558173 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66XryIouKbCB4N2-bdo4jLqiiCCnsLSZriirbLPpD99076EBT04LFpJw0zk8lkZvIFoTPvuWLOZqSwXhDuC0-0cwlxgXLGlFJ5HuMdd_dy-MxvRmK0gi67szCxrLK1_Y1Nr61129JvudmfjMf9Ryp0zAGOKK3Tb6NVtEZZJkG11y6ub4f3X6EWmkYUsJhPiCQk0nT4Q3WllwPnzsFWkdLYkij22xr1w1rXS9BgE220viO-aIa3hVZCuY0-Hqop7N7xpHpbLqYhRsIDnnT1bjiUL3WOH4Ojh62PxYXwuoF5BZHgqsAWvyzzaQWaROpzJOCD4vdxDdAEf2vvyZktS-hhNp5h8DJjoH8HPQ-uni6HpL1NgXjG5JxwmUoL_PFcU2ZT7YWQPtMwYQvOZF5oq2ySeOY9zZMiUJFTy0GATuXeuqDZLuqVVRn2EHapcxGqS1rluEuFzVzIpU6YyjRwuthHtOOf8S3UeLzx4s10NWWvpma6iUw3DdP30fkX0aRB2vj7c9kJxnxTGANrwd-Ep50YDUylmB8BwYCgDIXNkxA6Vezgv50fovX41NSSHaHefLoIx-C1zN1Jq5WfQJbuLg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEA_2fLAv0tJK_WibQh8bbjff-yiinFWPQhXuLSTZLF7R3ePuRO6_d2Y_BAv1oa_JTrLMTCaTmckvhHyPURoRfMEqHxWTsYrMhpCxkLgUwhhTlhjvuJrqyY38OVOzLXIy3IXBssre9nc2vbXWfcu45-Z4MZ-Pf3NlMQc447xNv83ekG1Ep1Ijsn18fjGZPodaeI4oYJhPQBKGNAP-UFvpFcC5C3BU5BxbMiP-tUf9Za3bLejsHdntfUd63P3ee7KV6g_k8VezhNM7XTR3m4dlwkh4oouh3o2m-rbN8VNw9KiPWFwI3R3MK4iENhX19HZTLhvQJNbeIwEflN7PW4AmmK1_J2e1qWGE1XxFwcvEQP9HcnN2en0yYf1rCiwKoddM6lx7UegoLRc-t1EpHQsLC7aSQpeV9cZnWRQx8jKrElcl9xIEGEwZfUhW7JFR3dTpE6EhDwGhurQ3QYZc-SKkUttMmMICp6t9wgf-udhDjeOLF3duqCn741qmO2S665i-T348Ey06pI3XP9eDYNwLhXGwF7xO-G0Qo4OlhPkREAwIynE4PCllcyMO_nfwr2Rncn116S7PpxeH5C32dHVlR2S0Xj6kz-DBrMOXXkOfAIC68RQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+polyurethane+particles+enhanced+the+acetate+production+of+a+hydrogen-mediated+microbial+electrosynthesis+reactor&rft.jtitle=Bioresource+technology+reports&rft.au=Xue%2C+Xiaoyuan&rft.au=Liu%2C+Zhuangzhuang&rft.au=Cai%2C+Wenfang&rft.au=Cui%2C+Kai&rft.date=2022-06-01&rft.pub=Elsevier+Ltd&rft.issn=2589-014X&rft.eissn=2589-014X&rft.volume=18&rft_id=info:doi/10.1016%2Fj.biteb.2022.101073&rft.externalDocID=S2589014X2200130X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-014X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-014X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-014X&client=summon |