Porous polyurethane particles enhanced the acetate production of a hydrogen-mediated microbial electrosynthesis reactor

Microbial electrosynthesis (MES) is an electricity-driven microbial CO2 fixation process. It is challenging to achieve high coulombic efficiency (CE) in hydrogen-mediated MES reactors due to the poor hydrogen mass transfer. Here, we report that the addition of porous polyurethane (PU) particles coul...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology reports Vol. 18; p. 101073
Main Authors Xue, Xiaoyuan, Liu, Zhuangzhuang, Cai, Wenfang, Cui, Kai, Guo, Kun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microbial electrosynthesis (MES) is an electricity-driven microbial CO2 fixation process. It is challenging to achieve high coulombic efficiency (CE) in hydrogen-mediated MES reactors due to the poor hydrogen mass transfer. Here, we report that the addition of porous polyurethane (PU) particles could promote the kLa of H2 by 102%, and thereby enhancing the acetate production rate and CE of a hydrogen-mediated MES reactor by 59% and 11%, respectively. The enhanced performance could be attributed to the promotion of the suspended biomass growth. The maximum acetate production rate (1.48 g·L−1·d−1) and the acetate titer (17.22 g·L−1) achieved in the reactor with PU particles were higher than those of the most reported MES reactors. Microbial community analysis indicated that the impact of PU particles on the bacterial community was negligible. These results demonstrated the addition of PU particles is an efficient way to enhance the performance of hydrogen-mediated MES reactors. [Display omitted] •Addition of prorous PU particles enhanced the hydrogen mass transfer by 102%.•PU particles boosted biomass growth by 72% and acetate production rate by 59%.•1.65 g·L−1·d−1 acetate production rate and 17.22 g·L−1 acetate titer were achieved.•Porous PU particles are biocompatible and easy to maintain in the reactor.
AbstractList Microbial electrosynthesis (MES) is an electricity-driven microbial CO₂ fixation process. It is challenging to achieve high coulombic efficiency (CE) in hydrogen-mediated MES reactors due to the poor hydrogen mass transfer. Here, we report that the addition of porous polyurethane (PU) particles could promote the kLa of H₂ by 102%, and thereby enhancing the acetate production rate and CE of a hydrogen-mediated MES reactor by 59% and 11%, respectively. The enhanced performance could be attributed to the promotion of the suspended biomass growth. The maximum acetate production rate (1.48 g·L⁻¹·d⁻¹) and the acetate titer (17.22 g·L⁻¹) achieved in the reactor with PU particles were higher than those of the most reported MES reactors. Microbial community analysis indicated that the impact of PU particles on the bacterial community was negligible. These results demonstrated the addition of PU particles is an efficient way to enhance the performance of hydrogen-mediated MES reactors.
Microbial electrosynthesis (MES) is an electricity-driven microbial CO2 fixation process. It is challenging to achieve high coulombic efficiency (CE) in hydrogen-mediated MES reactors due to the poor hydrogen mass transfer. Here, we report that the addition of porous polyurethane (PU) particles could promote the kLa of H2 by 102%, and thereby enhancing the acetate production rate and CE of a hydrogen-mediated MES reactor by 59% and 11%, respectively. The enhanced performance could be attributed to the promotion of the suspended biomass growth. The maximum acetate production rate (1.48 g·L−1·d−1) and the acetate titer (17.22 g·L−1) achieved in the reactor with PU particles were higher than those of the most reported MES reactors. Microbial community analysis indicated that the impact of PU particles on the bacterial community was negligible. These results demonstrated the addition of PU particles is an efficient way to enhance the performance of hydrogen-mediated MES reactors. [Display omitted] •Addition of prorous PU particles enhanced the hydrogen mass transfer by 102%.•PU particles boosted biomass growth by 72% and acetate production rate by 59%.•1.65 g·L−1·d−1 acetate production rate and 17.22 g·L−1 acetate titer were achieved.•Porous PU particles are biocompatible and easy to maintain in the reactor.
ArticleNumber 101073
Author Cui, Kai
Liu, Zhuangzhuang
Guo, Kun
Cai, Wenfang
Xue, Xiaoyuan
Author_xml – sequence: 1
  givenname: Xiaoyuan
  surname: Xue
  fullname: Xue, Xiaoyuan
  organization: School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 2
  givenname: Zhuangzhuang
  surname: Liu
  fullname: Liu, Zhuangzhuang
  organization: School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 3
  givenname: Wenfang
  surname: Cai
  fullname: Cai, Wenfang
  organization: School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 4
  givenname: Kai
  surname: Cui
  fullname: Cui, Kai
  organization: School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 5
  givenname: Kun
  surname: Guo
  fullname: Guo, Kun
  email: kun.guo@xjtu.edu.cn
  organization: School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
BookMark eNqFkD1vGzEMhoXCAeI4_gVZNGY5Vx_35aFDYCRpgADt0ALZBB7Fq2WcT44kt_C_j9zLUHRoJxLk-xJ8nys2G_1IjN1IsZJC1h93q84l6lZKKHWeiEZ_YHNVtetCyPJl9kd_yZYx7oQQSpaiUWrOfn31wR8jP_jhdAyUtjASP0BIDgeKnMY8QLI8bYkDUoKU18HbIybnR-57Dnx7ssH_oLHYk3VZYPneYfCdg4HTQJiCj6cxX4gu8kCAyYdrdtHDEGn5Xhfs-8P9t83n4vnL49Pm7rlAretUlLWsQa9rLFulQbZYVTWu26Zt-lLXtm-hASFQIyorelKVVVACVl1jETpq9YLdTnfz069HisnsXUQahpwz5zaqbqqqamWjs3Q9SfPvMQbqDbqcN8dMAdxgpDBn3mZnfvM2Z95m4p29-i_vIbg9hNN_XJ8mF2UCPx0FE9HRmbcLGZux3v3T_wYFoKAc
CitedBy_id crossref_primary_10_1016_j_biortech_2022_127906
crossref_primary_10_1021_acsestengg_4c00218
crossref_primary_10_1038_s44286_024_00090_w
crossref_primary_10_1007_s13369_024_09601_6
crossref_primary_10_1021_acs_iecr_3c01921
crossref_primary_10_1039_D4RA02260B
crossref_primary_10_1016_j_cej_2023_144296
crossref_primary_10_1186_s40643_023_00627_6
Cites_doi 10.1038/s41929-019-0272-0
10.1016/j.biortech.2012.04.076
10.1016/j.biortech.2020.123322
10.1038/s41929-019-0264-0
10.1039/C5EE03088A
10.1038/s41579-019-0173-x
10.1016/j.biotechadv.2020.107675
10.1021/acs.accounts.9b00523
10.1007/s11814-014-0383-x
10.1128/mBio.00103-10
10.1039/C7GC01801K
10.1016/j.biortech.2017.02.128
10.1016/j.electacta.2016.09.063
10.1038/s42004-019-0145-0
10.1016/j.cej.2020.124584
10.1016/j.cej.2021.132093
10.1016/j.tibtech.2020.10.014
10.1016/j.jcou.2017.04.014
10.1126/science.1217412
10.1016/j.biortech.2018.08.103
10.1016/j.biortech.2019.121619
10.1021/acs.est.5b04431
10.3389/fmicb.2017.00756
10.1016/j.biortech.2014.03.046
10.1126/science.aaf5039
10.1021/es506149d
10.1016/j.biortech.2015.05.081
10.1016/j.ijhydene.2021.08.129
10.1016/j.copbio.2019.08.014
10.1021/acs.estlett.5b00212
10.1128/AEM.02642-10
10.1016/j.ijhydene.2013.01.151
10.1016/j.jcou.2020.101231
10.1021/acssuschemeng.0c01276
10.1016/j.jpowsour.2017.03.029
10.1021/acs.est.5b03821
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.biteb.2022.101073
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
EISSN 2589-014X
ExternalDocumentID 10_1016_j_biteb_2022_101073
S2589014X2200130X
GroupedDBID AABVA
AACTN
AAEDW
AAHCO
AAIAV
AAKOC
AALRI
AATLK
AAXUO
ABGRD
ABMAC
ABYKQ
ACDAQ
ACRLP
ADBBV
AEBSH
AFKWA
AFTJW
AFXIZ
AGUBO
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AXJTR
BELTK
BKOJK
EBS
EFJIC
EFLBG
EJD
FDB
FYGXN
KOM
M41
ROL
SPC
SPCBC
SSA
SSG
SSR
SSZ
T5K
~G-
0R~
AAHBH
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c336t-4616a396c4823a18c556c98787f436df8a7a00c3cc2d0fe25d2a4ac5b7dcabe83
IEDL.DBID AIKHN
ISSN 2589-014X
IngestDate Fri Aug 22 20:25:08 EDT 2025
Tue Jul 01 02:20:09 EDT 2025
Thu Apr 24 23:06:43 EDT 2025
Fri Feb 23 02:37:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords PU particles
Microbial electrosynthesis
Acetate
H2 mass transfer coefficient
CO2 reduction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-4616a396c4823a18c556c98787f436df8a7a00c3cc2d0fe25d2a4ac5b7dcabe83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2675558173
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2675558173
crossref_citationtrail_10_1016_j_biteb_2022_101073
crossref_primary_10_1016_j_biteb_2022_101073
elsevier_sciencedirect_doi_10_1016_j_biteb_2022_101073
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationTitle Bioresource technology reports
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Song, Fu, Wan, Wu, Xie (bb0170) 2020; 41
Prevoteau, Carvajal-Arroyo, Ganigue, Rabaey (bb0150) 2020; 62
Guo, Prévoteau, Rabaey (bb0075) 2017; 356
Cai, Cui, Liu, Jin, Chen, Guo, Wang (bb0035) 2022; 428
Logan, Rossi, Ragab, Saikaly (bb0125) 2019; 17
Aryal, Ammam, Patil, Pant (bb0015) 2017; 19
Bajracharya, ter Heijne, Dominguez Benetton, Vanbroekhoven, Buisman, Strik, Pant (bb0025) 2015; 195
Aryal, Halder, Tremblay, Chi, Zhang (bb0010) 2016; 217
Dong, Wang, Tian, Yang, Yuan, Huang, Song, Xie (bb0055) 2018; 269
Blanchet, Duquenne, Rafrafi, Etcheverry, Erable, Bergel (bb0030) 2015; 8
Jourdin, Freguia, Flexer, Keller (bb0090) 2016; 50
Jourdin, Grieger, Monetti, Flexer, Freguia, Lu, Chen, Romano, Wallace, Keller (bb0085) 2015; 49
Carmo, Fritz, Merge, Stolten (bb0040) 2013; 38
Luo, Qi, Zhou, Liu, Lu, Zhang, Zeng (bb0130) 2020; 309
Kracke, Wong, Maegaard, Deutzmann, Hubert, Hahn, Jaramillo, Spormann (bb0100) 2019; 2
Feng, Wang, Wang, Zheng, Chu, Zhang, Chen, Kong, Xing (bb0060) 2012; 117
Jourdin, Burdyny (bb0080) 2021; 39
Lee, Mo, Choi, Hur, Kim, Oh, Lee (bb0110) 2015; 32
Rodrigues, Guan, Iñiguez, Estabrook, Chapman, Huang, Sletten, Liu (bb0155) 2019; 2
Arends, Patil, Roume, Rabaey (bb0005) 2017; 20
Patil, Arends, Vanwonterghem, van Meerbergen, Guo, Tyson, Rabaey (bb0145) 2015; 49
Zhao, Liu, Huang, Yang, Ji, Nghiem, Trinh, Tran (bb0185) 2019; 288
Logan, Rabaey (bb0120) 2012; 337
Flexer, Jourdin (bb0065) 2020; 53
Nevin, Hensley, Franks, Summers, Ou, Woodard, Snoeyenbos-West, Lovley (bb0140) 2011; 77
Claassens, Cotton, Kopljar, Bar-Even (bb0045) 2019; 2
Roy, Yadav, Chiranjeevi, Patil (bb0160) 2021; 320
Liu, Colon, Ziesack, Silver, Nocera (bb0115) 2016; 352
Salehizadeh, Yan, Farnood (bb0165) 2020; 390
Zhou, Huang, Wang, Huang, Song, Xie (bb0190) 2021; 46
Gildemyn, Verbeeck, Slabbinck, Andersen, Prevoteau, Rabaey (bb0070) 2015; 2
Nevin, Woodard, Franks, Summers, Lovley (bb0135) 2010; 1
LaBelle, May (bb0105) 2017; 8
Yasin, Jang, Lee, Kang, Aslam, Bazmi, Chang (bb0180) 2019; 7
Kim, Park, Lee, Yun (bb0095) 2014; 159
Tian, Yao, Song, Chu, Xie, Jin (bb0175) 2020; 8
Dessi, Rovira-Alsina, Sanchez, Dinesh, Tong, Chatterjee, Tedesco, Farras, Hamelers, Puig (bb0050) 2021; 46
Aryal, Tremblay, Lizak, Zhang (bb0020) 2017; 233
Zhao (10.1016/j.biteb.2022.101073_bb0185) 2019; 288
Salehizadeh (10.1016/j.biteb.2022.101073_bb0165) 2020; 390
Yasin (10.1016/j.biteb.2022.101073_bb0180) 2019; 7
Prevoteau (10.1016/j.biteb.2022.101073_bb0150) 2020; 62
Kracke (10.1016/j.biteb.2022.101073_bb0100) 2019; 2
Roy (10.1016/j.biteb.2022.101073_bb0160) 2021; 320
Song (10.1016/j.biteb.2022.101073_bb0170) 2020; 41
Gildemyn (10.1016/j.biteb.2022.101073_bb0070) 2015; 2
Logan (10.1016/j.biteb.2022.101073_bb0120) 2012; 337
Zhou (10.1016/j.biteb.2022.101073_bb0190) 2021; 46
Aryal (10.1016/j.biteb.2022.101073_bb0020) 2017; 233
Jourdin (10.1016/j.biteb.2022.101073_bb0090) 2016; 50
Nevin (10.1016/j.biteb.2022.101073_bb0140) 2011; 77
Tian (10.1016/j.biteb.2022.101073_bb0175) 2020; 8
Blanchet (10.1016/j.biteb.2022.101073_bb0030) 2015; 8
Arends (10.1016/j.biteb.2022.101073_bb0005) 2017; 20
Guo (10.1016/j.biteb.2022.101073_bb0075) 2017; 356
Feng (10.1016/j.biteb.2022.101073_bb0060) 2012; 117
Jourdin (10.1016/j.biteb.2022.101073_bb0080) 2021; 39
Lee (10.1016/j.biteb.2022.101073_bb0110) 2015; 32
Luo (10.1016/j.biteb.2022.101073_bb0130) 2020; 309
Dong (10.1016/j.biteb.2022.101073_bb0055) 2018; 269
Bajracharya (10.1016/j.biteb.2022.101073_bb0025) 2015; 195
Liu (10.1016/j.biteb.2022.101073_bb0115) 2016; 352
Kim (10.1016/j.biteb.2022.101073_bb0095) 2014; 159
Rodrigues (10.1016/j.biteb.2022.101073_bb0155) 2019; 2
Jourdin (10.1016/j.biteb.2022.101073_bb0085) 2015; 49
Nevin (10.1016/j.biteb.2022.101073_bb0135) 2010; 1
LaBelle (10.1016/j.biteb.2022.101073_bb0105) 2017; 8
Carmo (10.1016/j.biteb.2022.101073_bb0040) 2013; 38
Logan (10.1016/j.biteb.2022.101073_bb0125) 2019; 17
Patil (10.1016/j.biteb.2022.101073_bb0145) 2015; 49
Claassens (10.1016/j.biteb.2022.101073_bb0045) 2019; 2
Dessi (10.1016/j.biteb.2022.101073_bb0050) 2021; 46
Flexer (10.1016/j.biteb.2022.101073_bb0065) 2020; 53
Aryal (10.1016/j.biteb.2022.101073_bb0015) 2017; 19
Cai (10.1016/j.biteb.2022.101073_bb0035) 2022; 428
Aryal (10.1016/j.biteb.2022.101073_bb0010) 2016; 217
References_xml – volume: 217
  start-page: 117
  year: 2016
  end-page: 122
  ident: bb0010
  article-title: Enhanced microbial electrosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis
  publication-title: Electrochim. Acta
– volume: 2
  start-page: 325
  year: 2015
  end-page: 328
  ident: bb0070
  article-title: Integrated production, extraction, and concentration of acetic acid from CO2 through microbial electrosynthesis
  publication-title: Environ. Sci. Technol. Lett.
– volume: 53
  start-page: 311
  year: 2020
  end-page: 321
  ident: bb0065
  article-title: Purposely designed hierarchical porous electrodes for high rate microbial electrosynthesis of acetate from carbon dioxide
  publication-title: Acc. Chem. Res.
– volume: 41
  year: 2020
  ident: bb0170
  article-title: Hydrothermal synthesis of MoS2 nanoflowers for an efficient microbial electrosynthesis of acetate from CO2
  publication-title: J. CO2 Util.
– volume: 352
  start-page: 1210
  year: 2016
  end-page: 1213
  ident: bb0115
  article-title: Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis
  publication-title: Science
– volume: 7
  year: 2019
  ident: bb0180
  article-title: Bioreactors, gas delivery systems and supporting technologies for microbial synthesis gas conversion process
  publication-title: Bioresour. Technol. Rep.
– volume: 8
  start-page: 756
  year: 2017
  ident: bb0105
  article-title: Energy efficiency and productivity enhancement of microbial electrosynthesis of acetate
  publication-title: Front. Microbiol.
– volume: 19
  start-page: 5748
  year: 2017
  end-page: 5760
  ident: bb0015
  article-title: An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide
  publication-title: Green Chem.
– volume: 38
  start-page: 4901
  year: 2013
  end-page: 4934
  ident: bb0040
  article-title: A comprehensive review on PEM water electrolysis
  publication-title: Int. J. Hydrog. Energy
– volume: 337
  start-page: 686
  year: 2012
  end-page: 690
  ident: bb0120
  article-title: Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies
  publication-title: Science
– volume: 2
  start-page: 407
  year: 2019
  end-page: 414
  ident: bb0155
  article-title: Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction
  publication-title: Nat. Catal.
– volume: 356
  start-page: 484
  year: 2017
  end-page: 490
  ident: bb0075
  article-title: A novel tubular microbial electrolysis cell for high rate hydrogen production
  publication-title: J. Power Sources
– volume: 2
  start-page: 437
  year: 2019
  end-page: 447
  ident: bb0045
  article-title: Making quantitative sense of electromicrobial production
  publication-title: Nat. Catal.
– volume: 49
  start-page: 13566
  year: 2015
  end-page: 13574
  ident: bb0085
  article-title: High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide
  publication-title: Environ. Sci. Technol.
– volume: 195
  start-page: 14
  year: 2015
  end-page: 24
  ident: bb0025
  article-title: Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode
  publication-title: Bioresour. Technol.
– volume: 320
  year: 2021
  ident: bb0160
  article-title: Direct utilization of industrial carbon dioxide with low impurities for acetate production via microbial electrosynthesis
  publication-title: Bioresour. Technol.
– volume: 32
  start-page: 1744
  year: 2015
  end-page: 1748
  ident: bb0110
  article-title: Enhancement of CH4-water mass transfer using methyl-modified mesoporous silica nanoparticles
  publication-title: Korean J. Chem. Eng.
– volume: 62
  start-page: 48
  year: 2020
  end-page: 57
  ident: bb0150
  article-title: Microbial electrosynthesis from CO2: forever a promise?
  publication-title: Curr. Opin. Biotechnol.
– volume: 2
  start-page: 45
  year: 2019
  ident: bb0100
  article-title: Robust and biocompatible catalysts for efficient hydrogen-driven microbial electrosynthesis
  publication-title: Commun. Chem.
– volume: 1
  year: 2010
  ident: bb0135
  article-title: Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
  publication-title: mBio
– volume: 20
  start-page: 141
  year: 2017
  end-page: 149
  ident: bb0005
  article-title: Continuous long-term electricity-driven bioproduction of carboxylates and isopropanol from CO2 with a mixed microbial community
  publication-title: J. CO2 Util.
– volume: 39
  start-page: 359
  year: 2021
  end-page: 369
  ident: bb0080
  article-title: Microbial electrosynthesis: where do we go from here?
  publication-title: Trends Biotechnol.
– volume: 50
  start-page: 1982
  year: 2016
  end-page: 1989
  ident: bb0090
  article-title: Bringing high-rate, CO2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions
  publication-title: Environ. Sci. Technol.
– volume: 390
  start-page: 12458
  year: 2020
  ident: bb0165
  article-title: Recent advances in microbial CO2 fixation and conversion to value-added products
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 3731
  year: 2015
  end-page: 3744
  ident: bb0030
  article-title: Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction
  publication-title: Energy Environ. Sci.
– volume: 49
  start-page: 8833
  year: 2015
  end-page: 8843
  ident: bb0145
  article-title: Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2
  publication-title: Environ. Sci. Technol.
– volume: 46
  year: 2021
  ident: bb0050
  article-title: Microbial electrosynthesis: Towards sustainable biorefineries for production of green chemicals from CO2 emissions
  publication-title: Biotechnol. Adv.
– volume: 428
  year: 2022
  ident: bb0035
  article-title: An electrolytic-hydrogen-fed moving bed biofilm reactor for efficient microbial electrosynthesis of methane from CO2
  publication-title: Chem. Eng. J.
– volume: 233
  start-page: 184
  year: 2017
  end-page: 190
  ident: bb0020
  article-title: Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide
  publication-title: Bioresour. Technol.
– volume: 269
  start-page: 203
  year: 2018
  end-page: 209
  ident: bb0055
  article-title: Fluidized granular activated carbon electrode for efficient microbial electrosynthesis of acetate from carbon dioxide
  publication-title: Bioresour. Technol.
– volume: 159
  start-page: 446
  year: 2014
  end-page: 450
  ident: bb0095
  article-title: Enhancement of bioethanol production in syngas fermentation with Clostridium ljungdahlii using nanoparticles
  publication-title: Bioresour. Technol.
– volume: 17
  start-page: 307
  year: 2019
  end-page: 319
  ident: bb0125
  article-title: Electroactive microorganisms in bioelectrochemical systems
  publication-title: Nat. Rev. Microbiol.
– volume: 8
  start-page: 6777
  year: 2020
  end-page: 6785
  ident: bb0175
  article-title: Artificial electron mediator with nanocubic architecture highly promotes microbial electrosynthesis from carbon dioxide
  publication-title: ACS Sustain. Chem. Eng.
– volume: 288
  year: 2019
  ident: bb0185
  article-title: Insights into biofilm carriers for biological wastewater treatment processes: current state-of-the-art, challenges, and opportunities
  publication-title: Bioresour. Technol.
– volume: 46
  start-page: 36103
  year: 2021
  end-page: 36112
  ident: bb0190
  article-title: Efficient microbial electrosynthesis through the barrier and shearing effect of fillers
  publication-title: Int. J. Hydrog. Energy
– volume: 117
  start-page: 201
  year: 2012
  end-page: 207
  ident: bb0060
  article-title: Effects of packing rates of cubic-shaped polyurethane foam carriers on the microbial community and the removal of organics and nitrogen in moving bed biofilm reactors
  publication-title: Bioresour. Technol.
– volume: 77
  start-page: 2882
  year: 2011
  end-page: 2886
  ident: bb0140
  article-title: Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
  publication-title: Appl. Environ. Microbiol.
– volume: 309
  year: 2020
  ident: bb0130
  article-title: Enhanced electron transfer on microbial electrosynthesis biocathode by polypyrrole-coated acetogens
  publication-title: Bioresour. Technol.
– volume: 2
  start-page: 437
  issue: 5
  year: 2019
  ident: 10.1016/j.biteb.2022.101073_bb0045
  article-title: Making quantitative sense of electromicrobial production
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0272-0
– volume: 117
  start-page: 201
  year: 2012
  ident: 10.1016/j.biteb.2022.101073_bb0060
  article-title: Effects of packing rates of cubic-shaped polyurethane foam carriers on the microbial community and the removal of organics and nitrogen in moving bed biofilm reactors
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.04.076
– volume: 309
  year: 2020
  ident: 10.1016/j.biteb.2022.101073_bb0130
  article-title: Enhanced electron transfer on microbial electrosynthesis biocathode by polypyrrole-coated acetogens
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.123322
– volume: 2
  start-page: 407
  issue: 5
  year: 2019
  ident: 10.1016/j.biteb.2022.101073_bb0155
  article-title: Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0264-0
– volume: 8
  start-page: 3731
  issue: 12
  year: 2015
  ident: 10.1016/j.biteb.2022.101073_bb0030
  article-title: Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03088A
– volume: 17
  start-page: 307
  issue: 5
  year: 2019
  ident: 10.1016/j.biteb.2022.101073_bb0125
  article-title: Electroactive microorganisms in bioelectrochemical systems
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-019-0173-x
– volume: 46
  year: 2021
  ident: 10.1016/j.biteb.2022.101073_bb0050
  article-title: Microbial electrosynthesis: Towards sustainable biorefineries for production of green chemicals from CO2 emissions
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2020.107675
– volume: 53
  start-page: 311
  issue: 2
  year: 2020
  ident: 10.1016/j.biteb.2022.101073_bb0065
  article-title: Purposely designed hierarchical porous electrodes for high rate microbial electrosynthesis of acetate from carbon dioxide
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00523
– volume: 32
  start-page: 1744
  issue: 9
  year: 2015
  ident: 10.1016/j.biteb.2022.101073_bb0110
  article-title: Enhancement of CH4-water mass transfer using methyl-modified mesoporous silica nanoparticles
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-014-0383-x
– volume: 1
  issue: 2
  year: 2010
  ident: 10.1016/j.biteb.2022.101073_bb0135
  article-title: Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
  publication-title: mBio
  doi: 10.1128/mBio.00103-10
– volume: 19
  start-page: 5748
  issue: 24
  year: 2017
  ident: 10.1016/j.biteb.2022.101073_bb0015
  article-title: An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide
  publication-title: Green Chem.
  doi: 10.1039/C7GC01801K
– volume: 233
  start-page: 184
  year: 2017
  ident: 10.1016/j.biteb.2022.101073_bb0020
  article-title: Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.02.128
– volume: 217
  start-page: 117
  year: 2016
  ident: 10.1016/j.biteb.2022.101073_bb0010
  article-title: Enhanced microbial electrosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.09.063
– volume: 2
  start-page: 45
  year: 2019
  ident: 10.1016/j.biteb.2022.101073_bb0100
  article-title: Robust and biocompatible catalysts for efficient hydrogen-driven microbial electrosynthesis
  publication-title: Commun. Chem.
  doi: 10.1038/s42004-019-0145-0
– volume: 390
  start-page: 12458
  year: 2020
  ident: 10.1016/j.biteb.2022.101073_bb0165
  article-title: Recent advances in microbial CO2 fixation and conversion to value-added products
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124584
– volume: 428
  year: 2022
  ident: 10.1016/j.biteb.2022.101073_bb0035
  article-title: An electrolytic-hydrogen-fed moving bed biofilm reactor for efficient microbial electrosynthesis of methane from CO2
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132093
– volume: 39
  start-page: 359
  issue: 4
  year: 2021
  ident: 10.1016/j.biteb.2022.101073_bb0080
  article-title: Microbial electrosynthesis: where do we go from here?
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2020.10.014
– volume: 20
  start-page: 141
  year: 2017
  ident: 10.1016/j.biteb.2022.101073_bb0005
  article-title: Continuous long-term electricity-driven bioproduction of carboxylates and isopropanol from CO2 with a mixed microbial community
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2017.04.014
– volume: 337
  start-page: 686
  issue: 6095
  year: 2012
  ident: 10.1016/j.biteb.2022.101073_bb0120
  article-title: Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies
  publication-title: Science
  doi: 10.1126/science.1217412
– volume: 269
  start-page: 203
  year: 2018
  ident: 10.1016/j.biteb.2022.101073_bb0055
  article-title: Fluidized granular activated carbon electrode for efficient microbial electrosynthesis of acetate from carbon dioxide
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.08.103
– volume: 288
  year: 2019
  ident: 10.1016/j.biteb.2022.101073_bb0185
  article-title: Insights into biofilm carriers for biological wastewater treatment processes: current state-of-the-art, challenges, and opportunities
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.121619
– volume: 50
  start-page: 1982
  issue: 4
  year: 2016
  ident: 10.1016/j.biteb.2022.101073_bb0090
  article-title: Bringing high-rate, CO2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b04431
– volume: 8
  start-page: 756
  year: 2017
  ident: 10.1016/j.biteb.2022.101073_bb0105
  article-title: Energy efficiency and productivity enhancement of microbial electrosynthesis of acetate
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.00756
– volume: 320
  issue: Pt A
  year: 2021
  ident: 10.1016/j.biteb.2022.101073_bb0160
  article-title: Direct utilization of industrial carbon dioxide with low impurities for acetate production via microbial electrosynthesis
  publication-title: Bioresour. Technol.
– volume: 159
  start-page: 446
  year: 2014
  ident: 10.1016/j.biteb.2022.101073_bb0095
  article-title: Enhancement of bioethanol production in syngas fermentation with Clostridium ljungdahlii using nanoparticles
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.03.046
– volume: 352
  start-page: 1210
  issue: 6290
  year: 2016
  ident: 10.1016/j.biteb.2022.101073_bb0115
  article-title: Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis
  publication-title: Science
  doi: 10.1126/science.aaf5039
– volume: 49
  start-page: 8833
  issue: 14
  year: 2015
  ident: 10.1016/j.biteb.2022.101073_bb0145
  article-title: Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es506149d
– volume: 195
  start-page: 14
  year: 2015
  ident: 10.1016/j.biteb.2022.101073_bb0025
  article-title: Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.05.081
– volume: 46
  start-page: 36103
  issue: 73
  year: 2021
  ident: 10.1016/j.biteb.2022.101073_bb0190
  article-title: Efficient microbial electrosynthesis through the barrier and shearing effect of fillers
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2021.08.129
– volume: 7
  year: 2019
  ident: 10.1016/j.biteb.2022.101073_bb0180
  article-title: Bioreactors, gas delivery systems and supporting technologies for microbial synthesis gas conversion process
  publication-title: Bioresour. Technol. Rep.
– volume: 62
  start-page: 48
  year: 2020
  ident: 10.1016/j.biteb.2022.101073_bb0150
  article-title: Microbial electrosynthesis from CO2: forever a promise?
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2019.08.014
– volume: 2
  start-page: 325
  issue: 11
  year: 2015
  ident: 10.1016/j.biteb.2022.101073_bb0070
  article-title: Integrated production, extraction, and concentration of acetic acid from CO2 through microbial electrosynthesis
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.5b00212
– volume: 77
  start-page: 2882
  issue: 9
  year: 2011
  ident: 10.1016/j.biteb.2022.101073_bb0140
  article-title: Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02642-10
– volume: 38
  start-page: 4901
  issue: 12
  year: 2013
  ident: 10.1016/j.biteb.2022.101073_bb0040
  article-title: A comprehensive review on PEM water electrolysis
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2013.01.151
– volume: 41
  year: 2020
  ident: 10.1016/j.biteb.2022.101073_bb0170
  article-title: Hydrothermal synthesis of MoS2 nanoflowers for an efficient microbial electrosynthesis of acetate from CO2
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2020.101231
– volume: 8
  start-page: 6777
  issue: 17
  year: 2020
  ident: 10.1016/j.biteb.2022.101073_bb0175
  article-title: Artificial electron mediator with nanocubic architecture highly promotes microbial electrosynthesis from carbon dioxide
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c01276
– volume: 356
  start-page: 484
  year: 2017
  ident: 10.1016/j.biteb.2022.101073_bb0075
  article-title: A novel tubular microbial electrolysis cell for high rate hydrogen production
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.03.029
– volume: 49
  start-page: 13566
  issue: 22
  year: 2015
  ident: 10.1016/j.biteb.2022.101073_bb0085
  article-title: High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b03821
SSID ssj0002140722
Score 2.2841458
Snippet Microbial electrosynthesis (MES) is an electricity-driven microbial CO2 fixation process. It is challenging to achieve high coulombic efficiency (CE) in...
Microbial electrosynthesis (MES) is an electricity-driven microbial CO₂ fixation process. It is challenging to achieve high coulombic efficiency (CE) in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101073
SubjectTerms Acetate
acetates
bacterial communities
biomass
carbon dioxide
CO2 reduction
electrosynthesis
H2 mass transfer coefficient
hydrogen
mass transfer
Microbial electrosynthesis
polyurethanes
PU particles
technology
Title Porous polyurethane particles enhanced the acetate production of a hydrogen-mediated microbial electrosynthesis reactor
URI https://dx.doi.org/10.1016/j.biteb.2022.101073
https://www.proquest.com/docview/2675558173
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66XryIouKbCB4N2-bdo4jLqiiCCnsLSZriirbLPpD99076EBT04LFpJw0zk8lkZvIFoTPvuWLOZqSwXhDuC0-0cwlxgXLGlFJ5HuMdd_dy-MxvRmK0gi67szCxrLK1_Y1Nr61129JvudmfjMf9Ryp0zAGOKK3Tb6NVtEZZJkG11y6ub4f3X6EWmkYUsJhPiCQk0nT4Q3WllwPnzsFWkdLYkij22xr1w1rXS9BgE220viO-aIa3hVZCuY0-Hqop7N7xpHpbLqYhRsIDnnT1bjiUL3WOH4Ojh62PxYXwuoF5BZHgqsAWvyzzaQWaROpzJOCD4vdxDdAEf2vvyZktS-hhNp5h8DJjoH8HPQ-uni6HpL1NgXjG5JxwmUoL_PFcU2ZT7YWQPtMwYQvOZF5oq2ySeOY9zZMiUJFTy0GATuXeuqDZLuqVVRn2EHapcxGqS1rluEuFzVzIpU6YyjRwuthHtOOf8S3UeLzx4s10NWWvpma6iUw3DdP30fkX0aRB2vj7c9kJxnxTGANrwd-Ep50YDUylmB8BwYCgDIXNkxA6Vezgv50fovX41NSSHaHefLoIx-C1zN1Jq5WfQJbuLg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEA_2fLAv0tJK_WibQh8bbjff-yiinFWPQhXuLSTZLF7R3ePuRO6_d2Y_BAv1oa_JTrLMTCaTmckvhHyPURoRfMEqHxWTsYrMhpCxkLgUwhhTlhjvuJrqyY38OVOzLXIy3IXBssre9nc2vbXWfcu45-Z4MZ-Pf3NlMQc447xNv83ekG1Ep1Ijsn18fjGZPodaeI4oYJhPQBKGNAP-UFvpFcC5C3BU5BxbMiP-tUf9Za3bLejsHdntfUd63P3ee7KV6g_k8VezhNM7XTR3m4dlwkh4oouh3o2m-rbN8VNw9KiPWFwI3R3MK4iENhX19HZTLhvQJNbeIwEflN7PW4AmmK1_J2e1qWGE1XxFwcvEQP9HcnN2en0yYf1rCiwKoddM6lx7UegoLRc-t1EpHQsLC7aSQpeV9cZnWRQx8jKrElcl9xIEGEwZfUhW7JFR3dTpE6EhDwGhurQ3QYZc-SKkUttMmMICp6t9wgf-udhDjeOLF3duqCn741qmO2S665i-T348Ey06pI3XP9eDYNwLhXGwF7xO-G0Qo4OlhPkREAwIynE4PCllcyMO_nfwr2Rncn116S7PpxeH5C32dHVlR2S0Xj6kz-DBrMOXXkOfAIC68RQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+polyurethane+particles+enhanced+the+acetate+production+of+a+hydrogen-mediated+microbial+electrosynthesis+reactor&rft.jtitle=Bioresource+technology+reports&rft.au=Xue%2C+Xiaoyuan&rft.au=Liu%2C+Zhuangzhuang&rft.au=Cai%2C+Wenfang&rft.au=Cui%2C+Kai&rft.date=2022-06-01&rft.pub=Elsevier+Ltd&rft.issn=2589-014X&rft.eissn=2589-014X&rft.volume=18&rft_id=info:doi/10.1016%2Fj.biteb.2022.101073&rft.externalDocID=S2589014X2200130X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-014X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-014X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-014X&client=summon