Hydrodesulfurization of JP-8 fuel and its microchannel distillate using steam reformate
A field-deployable process for generation of clean desulfurized fuel from JP-8 feedstock is described. The process employs a compact hydrodesulfurization unit, operated in the vapor phase using steam reformate provided by an integrated steam reformer, as a replacement for hydrogen co-feed gas. The p...
Saved in:
Published in | Catalysis today Vol. 136; no. 3; pp. 291 - 300 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Amsterdam
Elsevier B.V
31.07.2008
Elsevier Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A field-deployable process for generation of clean desulfurized fuel from JP-8 feedstock is described. The process employs a compact hydrodesulfurization unit, operated in the vapor phase using steam reformate provided by an integrated steam reformer, as a replacement for hydrogen co-feed gas. The process includes a microchannel distillation unit upstream of the hydrodesulfurizer unit, which allows use of a lighter feed fraction to be processed in place of the full JP-8. The novel microchannel distillation concept is described and performance data for the unit, operating as a rectifier, are provided. Since the generated light fraction fuel from microchannel distillation contains fewer refractory sulfur components, the subsequent HDS process can readily achieve a significant sulfur reduction. The overall process can generate an ultra-clean JP-8 light fraction fuel with approximately 300
ppb sulfur residual. Hydrodesulfurization of full JP-8 fuel without the microchannel distillation unit was also studied. The effect of various operating parameters on the overall hydrodesulfurization performance, as well as the conversion of some individual sulfur components such as 2,3-dimethyl-benzothiophene, 2,3,5-trimethyl-benzothiophene and 2,3,7-trimethyl-benzothiophene, were investigated. Steam content in reformate at 30
mol% or less was found to improve HDS performance compared with dry reformate, despite a decrease in hydrogen partial pressure. However, at even higher concentrations of steam, hydrodesulfurization performance decreased. |
---|---|
AbstractList | A field-deployable process for generation of clean desulfurized fuel from JP-8 feedstock is described. The process employs a compact hydrodesulfurization unit, operated in the vapor phase using steam reformate provided by an integrated steam reformer, as a replacement for hydrogen co-feed gas. The process includes a microchannel distillation unit upstream of the hydrodesulfurizer unit, which allows use of a lighter feed fraction to be processed in place of the full JP-8. The novel microchannel distillation concept is described and performance data for the unit, operating as a rectifier, are provided. Since the generated light fraction fuel from microchannel distillation contains fewer refractory sulfur components, the subsequent HDS process can readily achieve a significant sulfur reduction. The overall process can generate an ultra-clean JP-8 light fraction fuel with approximately 300
ppb sulfur residual. Hydrodesulfurization of full JP-8 fuel without the microchannel distillation unit was also studied. The effect of various operating parameters on the overall hydrodesulfurization performance, as well as the conversion of some individual sulfur components such as 2,3-dimethyl-benzothiophene, 2,3,5-trimethyl-benzothiophene and 2,3,7-trimethyl-benzothiophene, were investigated. Steam content in reformate at 30
mol% or less was found to improve HDS performance compared with dry reformate, despite a decrease in hydrogen partial pressure. However, at even higher concentrations of steam, hydrodesulfurization performance decreased. |
Author | King, David L. Roberts, Benjamin Q. Zheng, Feng Huang, Xiwen King, Dale A. TeGrotenhuis, Ward E. Stenkamp, Victoria S. |
Author_xml | – sequence: 1 givenname: Xiwen surname: Huang fullname: Huang, Xiwen – sequence: 2 givenname: Dale A. surname: King fullname: King, Dale A. – sequence: 3 givenname: Feng surname: Zheng fullname: Zheng, Feng – sequence: 4 givenname: Victoria S. surname: Stenkamp fullname: Stenkamp, Victoria S. – sequence: 5 givenname: Ward E. surname: TeGrotenhuis fullname: TeGrotenhuis, Ward E. – sequence: 6 givenname: Benjamin Q. surname: Roberts fullname: Roberts, Benjamin Q. – sequence: 7 givenname: David L. surname: King fullname: King, David L. email: david.king@pnl.gov |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20460318$$DView record in Pascal Francis |
BookMark | eNqFUMFKAzEUDFLBtvoHHnLxuPUlm02zHgQpapWCHhSPIc0mmrLNliQr1K83tXrxoDDwYJgZ3swIDXznDUKnBCYECD9fTbRKqWsmFEBMgGSQAzQkYloWrAQxQEOoKRSV4OQIjWJcQRYKRofoZb5tQteY2Le2D-5DJdd53Fl8_1gIbHvTYuUb7FLEa6dDp9-U95lsXEyubVUyuI_Ov-KYjFrjYGwX1pk9RodWtdGcfN8xer65fprNi8XD7d3salHosuSpYJwwC6DqaWWB6KkyRANo4DWvassY0aUQZAl0WfJpA6KizIoKqqrmQKml5Rid7XM3KmrV2qC8dlFuglursJUUGIeSiKy72Otyhxjzm1K79FU2BeVaSUDuppQruZ9S7qaUQDJINrNf5p_8f2yXe5vJA7w7E2TUznhtGheMTrLp3N8Bn3-ykSo |
CODEN | CATTEA |
CitedBy_id | crossref_primary_10_1016_j_cej_2016_11_041 crossref_primary_10_1016_j_fuel_2009_09_031 crossref_primary_10_1080_01496395_2023_2192385 crossref_primary_10_1039_C7RA12784G crossref_primary_10_1016_j_seppur_2013_09_028 crossref_primary_10_1134_S1070363212120286 crossref_primary_10_1002_apj_367 crossref_primary_10_1016_j_fuel_2010_12_040 crossref_primary_10_1002_ente_202400008 crossref_primary_10_1002_amp2_10139 crossref_primary_10_1016_j_cherd_2013_07_031 crossref_primary_10_3390_mi9040153 crossref_primary_10_1021_ac200300t crossref_primary_10_1002_aic_16325 crossref_primary_10_1039_C7RE00021A |
ContentType | Journal Article Conference Proceeding |
Copyright | 2008 Elsevier B.V. 2008 INIST-CNRS |
Copyright_xml | – notice: 2008 Elsevier B.V. – notice: 2008 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1016/j.cattod.2008.01.011 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Applied Sciences |
EISSN | 1873-4308 |
EndPage | 300 |
ExternalDocumentID | 20460318 10_1016_j_cattod_2008_01_011 S0920586108000291 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSZ T5K VH1 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIIUN AKBMS AKRWK AKYEP ANKPU CITATION SSH AFJKZ AGQPQ AIGII APXCP BNPGV EFKBS IQODW |
ID | FETCH-LOGICAL-c336t-4614f00a975f01c7ae1c00c069659f441c3881b02b367d08524f8505596022f23 |
IEDL.DBID | .~1 |
ISSN | 0920-5861 |
IngestDate | Mon Jul 21 09:15:22 EDT 2025 Tue Jul 01 01:49:50 EDT 2025 Thu Apr 24 23:13:02 EDT 2025 Fri Feb 23 02:34:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Microchannel distillation Steam reformate JP-8 fuel Hydrodesulfurization Distillation Heterogeneous catalysis Liquid fuel Hydrocarbon Reforming Water vapor Fuel cell |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MeetingName | Reforming of Liquid Hydrocarbon Fuels for Fuel Cell Applications |
MergedId | FETCHMERGED-LOGICAL-c336t-4614f00a975f01c7ae1c00c069659f441c3881b02b367d08524f8505596022f23 |
PageCount | 10 |
ParticipantIDs | pascalfrancis_primary_20460318 crossref_citationtrail_10_1016_j_cattod_2008_01_011 crossref_primary_10_1016_j_cattod_2008_01_011 elsevier_sciencedirect_doi_10_1016_j_cattod_2008_01_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-07-31 |
PublicationDateYYYYMMDD | 2008-07-31 |
PublicationDate_xml | – month: 07 year: 2008 text: 2008-07-31 day: 31 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Catalysis today |
PublicationYear | 2008 |
Publisher | Elsevier B.V Elsevier Science |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science |
References | Dinka, Mukasyan (bib8) 2007; 167 Takemura, Itoh, Ouchi (bib24) 1981; 24 Darwish, Hilal, Versteeg, Heesink (bib3) 2004; 83 Matsuzaki, Yasuda (bib4) 2000; 132 Kumar, Akgerman, Anthony (bib22) 1984; 23 Vanrysselberghe, Froment (bib13) 2003; vol. 3 Song (bib6) 2002; 77 Yang (bib11) 2004; 46 W.E. TeGrotenhuis, V.S. Stenkamp, Improved conditions for fluid separations in microchannels, capillary-driven fluid separations, and laminated devices capable of separating fluid, US Patent 6,875,247 (2005). Hydrogen fuel product specification. Part 2. PEM fuel cell applications for road vehicles. ISO/TC 197/WG 12 Lee, Ng (bib21) 2006; 116 Whitehurst, Farag, Nagamatsu, Sakanishi, Mochida (bib15) 1998; 45 Brown (bib2) 2001; 26 Velu, Ma, Song (bib10) 2003; 42 Topsøe, Clausen, Massoth (bib12) 1996; vol. 11 Huang, King (bib19) 2006; 45 W.E. TeGrotenhuis, R.S. Wegeng, G.A. Whyatt, V.S. Stenkamp, P.A. Gaulitz, Microsystem capillary separations, US Patent 6,666,909 (2003). Kabe, Akamatsu, Ishihara, Otsuki, Godo, Zhang, Qian (bib14) 1997; 36 Wang, Murata, Inaba (bib7) 2004; 257 Cheekatamarla, Lane (bib1) 2005; 152 ISO/D PDTS 14687-2; available on the web at Velu, Ma, Song, Namazian, Sethuraman, Venkataraman (bib20) 2005; 19 N 38 R 1 Cheekatamarla, Lane (bib9) 2006; 153 Fu, Ishikuro, Fueta (bib23) 1995; 9 W.E. TeGrotenhuis, V.S. Stenkamp, Methods for fluid separations, and devices capable of separating fluids, US Patent 7,051,540 (2006). = |
References_xml | – reference: W.E. TeGrotenhuis, R.S. Wegeng, G.A. Whyatt, V.S. Stenkamp, P.A. Gaulitz, Microsystem capillary separations, US Patent 6,666,909 (2003). – volume: 23 start-page: 88 year: 1984 end-page: 93 ident: bib22 article-title: Desulfurization by in situ hydrogen generation through water gas shift reaction publication-title: Ind. Eng. Chem. Res. – volume: 257 start-page: 43 year: 2004 end-page: 47 ident: bib7 article-title: Development of novel highly active and sulphur-tolerant catalysts for steam reforming of liquid hydrocarbons to produce hydrogen publication-title: Appl. Catal. A: Gen. – volume: 19 start-page: 1116 year: 2005 end-page: 1125 ident: bib20 article-title: Desulfurization of JP-8 jet fuel by selective adsorption over a Ni-based adsorbent for micro solid oxide fuel cells publication-title: Energy Fuels – volume: 46 start-page: 111 year: 2004 end-page: 150 ident: bib11 article-title: Desulfurization of transportation fuels by adsorption publication-title: Catal. Rev. – volume: 132 start-page: 261 year: 2000 end-page: 269 ident: bib4 article-title: The poisoning effect of sulfur-containing impurity gas on a SOFC anode. Part I. Dependence on temperature, time, and impurity concentration publication-title: Solid State Ionics – volume: 42 start-page: 5293 year: 2003 end-page: 5304 ident: bib10 article-title: Selective adsorption for removing sulfur from jet fuel over zeolite-based adsorbents publication-title: Ind. Eng. Chem. Res. – reference: PDTS 14687-2; available on the web at – volume: 77 start-page: 17 year: 2002 end-page: 49 ident: bib6 article-title: Fuel processing for low-temperature and high-temperature fuel cells—challenges, and opportunities for sustainable development in the 21st century publication-title: Catal. Today – volume: 152 start-page: 256 year: 2005 end-page: 263 ident: bib1 article-title: Catalytic autothermal reforming of diesel fuel for hydrogen generation in fuel cells. I. Activity tests and sulfur poisoning publication-title: J. Power Sources – volume: 83 start-page: 409 year: 2004 end-page: 417 ident: bib3 article-title: Feasibility of the direct generation of hydrogen for fuel-cell-powered vehicles by on-board steam reforming of naphtha publication-title: Fuel – volume: vol. 3 start-page: 667 year: 2003 end-page: 733 ident: bib13 publication-title: Hydrodesulfurization-heterogeneous. Encyclopedia of Catalysis – volume: 45 start-page: 299 year: 1998 end-page: 305 ident: bib15 article-title: Assessment of limitations and potentials for improvement in deep desulfurization through detailed kinetic analysis of mechanistic pathways publication-title: Catal. Today – reference: W.E. TeGrotenhuis, V.S. Stenkamp, Methods for fluid separations, and devices capable of separating fluids, US Patent 7,051,540 (2006). – volume: 153 start-page: 157 year: 2006 end-page: 164 ident: bib9 article-title: Efficient sulfur-tolerant bimetallic catalysts for hydrogen generation from diesel fuel publication-title: J. Power Sources – volume: vol. 11 year: 1996 ident: bib12 article-title: Hydrotreating catalysis publication-title: Catalysis Science and Technology – reference: ISO/D – volume: 116 start-page: 505 year: 2006 end-page: 511 ident: bib21 article-title: Effect of water on HDS of DBT over a dispersed Mo catalyst using in situ generated hydrogen publication-title: Catal. Today – volume: 167 start-page: 472 year: 2007 end-page: 481 ident: bib8 article-title: Perovskite catalysts for the auto-reforming of sulfur containing fuels publication-title: J. Power Sources – volume: 45 start-page: 7050 year: 2006 end-page: 7056 ident: bib19 article-title: Gas-phase hydrodesulfurization of JP-8 light fraction using steam reformate publication-title: Ind. Eng. Chem. Res. – volume: 24 start-page: 357 year: 1981 ident: bib24 publication-title: J. Jpn. Petrol. Inst. – reference: W.E. TeGrotenhuis, V.S. Stenkamp, Improved conditions for fluid separations in microchannels, capillary-driven fluid separations, and laminated devices capable of separating fluid, US Patent 6,875,247 (2005). – reference: N 38 R 1 – reference: = – volume: 26 start-page: 381 year: 2001 end-page: 397 ident: bib2 article-title: A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles publication-title: Int. J. Hydrogen Energy – volume: 36 start-page: 5146 year: 1997 end-page: 5152 ident: bib14 article-title: Deep hydrodesulfurization of light gas oil. Kinetics and mechanism of dibenzothiophene hydrodesulfurization publication-title: Ind. Eng. Chem. Res. – volume: 9 start-page: 406 year: 1995 end-page: 412 ident: bib23 article-title: Hydrogenation of model compounds in syngas–D publication-title: Energy Fuels – reference: Hydrogen fuel product specification. Part 2. PEM fuel cell applications for road vehicles. ISO/TC 197/WG 12 |
SSID | ssj0008842 |
Score | 2.0066087 |
Snippet | A field-deployable process for generation of clean desulfurized fuel from JP-8 feedstock is described. The process employs a compact hydrodesulfurization unit,... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 291 |
SubjectTerms | Applied sciences Catalysis Chemistry Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells General and physical chemistry Hydrodesulfurization JP-8 fuel Microchannel distillation Steam reformate Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
Title | Hydrodesulfurization of JP-8 fuel and its microchannel distillate using steam reformate |
URI | https://dx.doi.org/10.1016/j.cattod.2008.01.011 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iBxURn_hccvAaN23aJj3KoqzrA1EXvZU2TWRl7S5u9-DF3-5Mm-ruQQQhUChJGybTmS_NNzOEnKSBzrXAsI9QSgYIXLJMm5jl2rc65UIYhdHIN7dRtx_0nsPnBdJpYmGQVulsf23TK2vt7rSdNNvjwaD9wGOfhypCkhyeLVUR7IFELT_9_KF5KFUV0MHODHs34XMVx0unZTnKHaPSg-b95p7WxukEhGbrahczLuhig6w77EjP6ultkgVTbJHlTlOybYuszmQX3CZP3Y8czKOZTId2-u7iLenI0t4dU9ROzZCmRU4H5YS-IS0PY4ALuJnjZw_aURqKrPgXiorwRmGuFb41O6R_cf7Y6TJXR4FpIaKSBeCCLedpLEPLPS1T42nONY8wmaAFPKSFAvTK_UxEMgcM5gdWATIKYXfj-9YXu2SxGBVmj1ATx2GawapnKgqM4RnsXrTSOSaxstKz-0Q04ku0SzKOtS6GScMme01qobv6lx40b5-w71HjOsnGH_1lszLJnLIk4Af-GNmaW8jv1_l4QAz27eDfjz4kKzWXBP_7HpHF8n1qjgGwlFmr0sgWWTrr3F_f4fXyqnv7BaS17G0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hONAKoUKpukCpD-Vo1nFezqEHtBQtT1UCBLeQOHa1aMmu2KzQXvhT_YPMJA6FQ4WEhOSTFSfWzGTmS_zNDMCPLNCF9intI4xjjgg85rk2CS-0tDoTvm8UZSOfnEb9i-DwKryag79tLgzRKp3vb3x67a3dTNdJszseDLpnIpEiVBGR5OhsyXPMyiMzu8fvtsnPgz1U8raU-7_Oe33uWgtw7ftRxQOMSlaILIlDKzwdZ8bTQmgRUX09ixBB-woBnZC5H8UFwhIZWIVgIUTAL6Wlagfo9xcCdBfUNmHn4R-vRKm6Yw_tjtP22ny9mlSms6oaFY7C6eHw_hcPl8bZBLVkm_Yaz2Le_idYdmCV7TbyWIE5U67CYq_tEbcKH5-VM_wMl_1Zgf7YTKZDO71zCZ5sZNnhb66YnZohy8qCDaoJuyUeICUdlzhZkJ9Bc6wMIxr-H0aWd8twrzWgNmtw8S7S_QLz5ag0X4GZJAmzHM0sV1FgjMjxc0krXVDVLBt7tgN-K75Uu6rm1FxjmLb0tZu0EbpruOnh8DrAn1aNm6oer1wft5pJX1hnioHnlZVbLxT59DhJJ9LoUNfffOvvsNg_PzlOjw9OjzbgQ0NkoZ_OmzBf3U3NN0RLVb5VWyeD6_d-HR4Bhagi0Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Catalysis+today&rft.atitle=Hydrodesulfurization+of+JP-8+fuel+and+its+microchannel+distillate+using+steam+reformate&rft.au=XIWEN+HUANG&rft.au=KING%2C+Dale+A&rft.au=FENG+ZHENG&rft.au=STENKAMP%2C+Victoria+S&rft.date=2008-07-31&rft.pub=Elsevier+Science&rft.issn=0920-5861&rft.volume=136&rft.issue=3-4&rft.spage=291&rft.epage=300&rft_id=info:doi/10.1016%2Fj.cattod.2008.01.011&rft.externalDBID=n%2Fa&rft.externalDocID=20460318 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5861&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5861&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5861&client=summon |