A numerical approach for modeling crack closure and infiltrated flow in cracked soils

Soil cracks generated in natural fields will change soil structure and provide pathways for preferential flow. Although most simulations have focused on the influences of surface cracks or subsurface cracks in the fields, few studies are conducted on the deformable cracks extending from soil surface...

Full description

Saved in:
Bibliographic Details
Published inSoil & tillage research Vol. 233; p. 105794
Main Authors Xing, Xuguang, Nie, Weibo, Chang, Kai, Zhao, Long, Li, Yibo, Ma, Xiaoyi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soil cracks generated in natural fields will change soil structure and provide pathways for preferential flow. Although most simulations have focused on the influences of surface cracks or subsurface cracks in the fields, few studies are conducted on the deformable cracks extending from soil surface to deep soil layer. The present study addresses a fundamental issue and investigates the differences in water flow during infiltration processes of deformable and non-deformable cracked soils. Based on the discrete crack network model, a two-dimensional numerical approach is proposed to investigate the preferential flow in deformable cracked soil. Numerical simulations on water flow are implemented for matrix domain and cracks with the finite element method, which are discretized into solid elements and zero thickness elements, respectively. The proposed model is validated through explicit modeling and experimental observation and then compared with deformable crack approach. It is further employed to simulate the infiltration process of deformable cracked soil revealing significant differences in infiltration characteristics between deformable and non-deformable cracked soils, even if the cracks all act as preferential flow pathways. Although the saturation in crack closure of numerical model is variable during infiltration process, the effect of saturation is still affected by the number of cracks. Furthermore, cracks do not entirely close over a long period of infiltration, and thus they can become preferential flow pathways in subsequent infiltration events. These findings highlight the gap in simulations of water infiltration in cracked soil and the potential for erroneous simulations of water condition when cracks cannot be deformable during infiltration process. •An approach for modeling water infiltration in deformable cracked soil is proposed.•Non-deformable cracked soil model overestimates the infiltration characteristics.•Crack closure weakens the effect of crack aperture on water infiltration.•The spatial heterogeneity of crack closure is related to that of water distribution.
AbstractList Soil cracks generated in natural fields will change soil structure and provide pathways for preferential flow. Although most simulations have focused on the influences of surface cracks or subsurface cracks in the fields, few studies are conducted on the deformable cracks extending from soil surface to deep soil layer. The present study addresses a fundamental issue and investigates the differences in water flow during infiltration processes of deformable and non-deformable cracked soils. Based on the discrete crack network model, a two-dimensional numerical approach is proposed to investigate the preferential flow in deformable cracked soil. Numerical simulations on water flow are implemented for matrix domain and cracks with the finite element method, which are discretized into solid elements and zero thickness elements, respectively. The proposed model is validated through explicit modeling and experimental observation and then compared with deformable crack approach. It is further employed to simulate the infiltration process of deformable cracked soil revealing significant differences in infiltration characteristics between deformable and non-deformable cracked soils, even if the cracks all act as preferential flow pathways. Although the saturation in crack closure of numerical model is variable during infiltration process, the effect of saturation is still affected by the number of cracks. Furthermore, cracks do not entirely close over a long period of infiltration, and thus they can become preferential flow pathways in subsequent infiltration events. These findings highlight the gap in simulations of water infiltration in cracked soil and the potential for erroneous simulations of water condition when cracks cannot be deformable during infiltration process. •An approach for modeling water infiltration in deformable cracked soil is proposed.•Non-deformable cracked soil model overestimates the infiltration characteristics.•Crack closure weakens the effect of crack aperture on water infiltration.•The spatial heterogeneity of crack closure is related to that of water distribution.
Soil cracks generated in natural fields will change soil structure and provide pathways for preferential flow. Although most simulations have focused on the influences of surface cracks or subsurface cracks in the fields, few studies are conducted on the deformable cracks extending from soil surface to deep soil layer. The present study addresses a fundamental issue and investigates the differences in water flow during infiltration processes of deformable and non-deformable cracked soils. Based on the discrete crack network model, a two-dimensional numerical approach is proposed to investigate the preferential flow in deformable cracked soil. Numerical simulations on water flow are implemented for matrix domain and cracks with the finite element method, which are discretized into solid elements and zero thickness elements, respectively. The proposed model is validated through explicit modeling and experimental observation and then compared with deformable crack approach. It is further employed to simulate the infiltration process of deformable cracked soil revealing significant differences in infiltration characteristics between deformable and non-deformable cracked soils, even if the cracks all act as preferential flow pathways. Although the saturation in crack closure of numerical model is variable during infiltration process, the effect of saturation is still affected by the number of cracks. Furthermore, cracks do not entirely close over a long period of infiltration, and thus they can become preferential flow pathways in subsequent infiltration events. These findings highlight the gap in simulations of water infiltration in cracked soil and the potential for erroneous simulations of water condition when cracks cannot be deformable during infiltration process.
ArticleNumber 105794
Author Zhao, Long
Nie, Weibo
Chang, Kai
Li, Yibo
Ma, Xiaoyi
Xing, Xuguang
Author_xml – sequence: 1
  givenname: Xuguang
  surname: Xing
  fullname: Xing, Xuguang
  organization: State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an, Shaanxi Province 710048 China
– sequence: 2
  givenname: Weibo
  surname: Nie
  fullname: Nie, Weibo
  email: nwbo2000@163.com
  organization: State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an, Shaanxi Province 710048 China
– sequence: 3
  givenname: Kai
  surname: Chang
  fullname: Chang, Kai
  organization: Key Laboratory for Agricultural Soil and Water Engineering in Arid Area of Ministry of Education, Northwest A&F University, Yangling, Shaanxi Province 712100 China
– sequence: 4
  givenname: Long
  surname: Zhao
  fullname: Zhao, Long
  organization: College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan Province 471000 China
– sequence: 5
  givenname: Yibo
  surname: Li
  fullname: Li, Yibo
  email: liyibo51_teresa@hotmail.com
  organization: State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an, Shaanxi Province 710048 China
– sequence: 6
  givenname: Xiaoyi
  surname: Ma
  fullname: Ma, Xiaoyi
  organization: Key Laboratory for Agricultural Soil and Water Engineering in Arid Area of Ministry of Education, Northwest A&F University, Yangling, Shaanxi Province 712100 China
BookMark eNqFkD1PAzEMhiMEEqXwC1gyslzJJWnvMjAgxJeExAJz5CYOpKRJSa4g_j2BY2KAybL1Ppb9HJDdmCISctyyWcvaxelqVgYfwowzLupk3im5QyZt36lGSCl3yaSmuqZVfbdPDkpZMcak4P2EPJ7TuF1j9gYChc0mJzDP1KVM18li8PGJmgzmhZqQyjYjhWipj86HIcOAlrqQ3utgTNW-JB_KIdlzEAoe_dQpeby6fLi4ae7ur28vzu8aI8RiaKRwcwliAQIlMCUY41bWtndWLpdm3jMOIIx1EqXCOe8FLDpureuWbqkUiCk5GffWu1-3WAa99sVgCBAxbYvmvVS96nh9dkrUGDU5lZLRaeMHGHyK9REfdMv0l0q90t8q9ZdKPaqsrPjFbrJfQ_74hzobKawG3jxmXYzHaND6jGbQNvk_-U9Q1ZHQ
CitedBy_id crossref_primary_10_1016_j_jhydrol_2025_133054
crossref_primary_10_1007_s11600_024_01375_7
crossref_primary_10_3390_buildings14072081
crossref_primary_10_1016_j_scitotenv_2024_174500
crossref_primary_10_1016_j_geoderma_2024_116977
crossref_primary_10_1002_saj2_20680
crossref_primary_10_5194_soil_10_587_2024
crossref_primary_10_48084_etasr_7178
Cites_doi 10.1016/j.compgeo.2018.09.015
10.1007/s11119-008-9102-0
10.1016/j.jhydrol.2020.125640
10.1016/j.geoderma.2009.10.008
10.1007/s42729-022-00823-x
10.1016/j.still.2016.11.005
10.1016/j.compgeo.2020.103487
10.1016/j.enggeo.2018.03.004
10.1016/j.geoderma.2021.115111
10.1016/j.enggeo.2019.105465
10.1007/s00603-019-01957-8
10.2136/sssaj1980.03615995004400050002x
10.1029/1999RG000074
10.1016/0022-1694(87)90111-9
10.1016/j.compgeo.2016.12.024
10.1016/j.geoderma.2019.113978
10.1016/j.jhydrol.2018.02.041
10.1016/j.still.2017.02.005
10.1016/j.geoderma.2009.06.016
10.1016/j.jhydrol.2010.03.007
10.1016/j.geoderma.2019.03.018
10.1080/19648189.2021.1989051
10.1016/S0168-1923(99)00119-7
10.1016/j.jhydrol.2013.10.048
10.1016/j.still.2014.05.016
10.1007/s11440-021-01297-4
10.1016/j.compstruc.2012.11.006
10.1002/jpln.200521955
10.1016/j.jhydrol.2010.12.008
10.1016/j.scitotenv.2020.138760
10.1007/s10706-019-01026-5
10.1155/2018/7056858
10.1016/S0022-1694(02)00215-9
10.1016/j.enggeo.2022.106650
10.2136/sssaj2015.07.0273
10.1080/00103624.2022.2069801
10.1016/j.still.2020.104670
10.1016/j.compgeo.2019.103285
10.1016/j.geoderma.2020.114182
10.1016/j.engfracmech.2021.107882
10.1016/j.geoderma.2011.07.018
10.1016/j.geoderma.2013.07.026
10.1007/BF01030217
10.1111/ejss.12926
10.1002/nag.2889
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.still.2023.105794
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1879-3444
ExternalDocumentID 10_1016_j_still_2023_105794
S0167198723001617
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SES
SEW
SPC
SPCBC
SSA
SSR
SST
SSZ
T5K
TWZ
UNMZH
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c336t-43f54a36a3e4a093002d436a8fd4bbc5802aa3cdf4e49e5283a672ddf7bfb99a3
IEDL.DBID .~1
ISSN 0167-1987
IngestDate Wed Jul 02 04:50:48 EDT 2025
Tue Jul 01 00:57:10 EDT 2025
Thu Apr 24 22:59:33 EDT 2025
Fri Feb 23 02:35:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deformable/non-deformable cracked soil
Water infiltration
Crack closure
Discrete crack network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-43f54a36a3e4a093002d436a8fd4bbc5802aa3cdf4e49e5283a672ddf7bfb99a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2849897204
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2849897204
crossref_citationtrail_10_1016_j_still_2023_105794
crossref_primary_10_1016_j_still_2023_105794
elsevier_sciencedirect_doi_10_1016_j_still_2023_105794
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Soil & tillage research
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References van Stiphout, van Lanen, Boersma, Bouma (bib30) 1987; 95
Qi, Zhang, Wang, Chen, Zhang (bib26) 2020; 358
Bonnet, Bour, Odling, Davy, Main, Cowie, Berkowitz (bib3) 2001; 39
Zhang, Zhu, Zhang (bib44) 2020; 117
Greve, Andersen, Acworth (bib13) 2010; 393
Lepore, Morgan, Norman, Molling (bib16) 2009; 152
Zhang, Gu, Li, Tang, Shen, Shi (bib45) 2020; 364
Wang, Hu, Sun, Li (bib36) 2019; 43
Zhang, Peng, Zhou, Lin, Sun (bib47) 2015; 146
Baer, Kent, Anderson (bib2) 2009; 154
van Genuchten (bib10) 1980; 44
Wang, Cai (bib37) 2020; 53
Tang, Cui, Shi, Tang, Liu (bib32) 2011; 166
Tian, Cheng, Tang, Zeng, Xu, Shi (bib33) 2022; 302
Yin, Chen (bib43) 2020; 121
Bordoloi, Ni, Ng (bib4) 2020; 729
Svensson, Löfgren, Trinchero, Selroos (bib31) 2018; 559
Zhu, Fan, Ma, Zhang, Zha (bib48) 2018; 2018
Liu, She (bib19) 2020; 203
Poulsen, Cai, Garg (bib25) 2020; 71
Einstein, Baecher (bib7) 1983; 16
Li (bib18) 2009
Xing, Jing, Zhao, Wang (bib40) 2022; 53
Diel, Vogel, Schlüter (bib6) 2019; 345
Gadi, Singh, Li, Song, Zhu, Garg, Sreedeep (bib9) 2020; 38
Al-Kufaishi, Sands, Andersen (bib1) 2009; 10
Sheng, Liu, Wang, Zhang, Tang (bib28) 2014; 508
Rezanezhad, Lajevardi, Karimpouli (bib27) 2021; 253
Hardie, Cotching, Doyle, Holz, Lisson, Mattern (bib14) 2011; 398
Song, Cui (bib29) 2020; 266
Wang, Zhang, Liu, Fan (bib34) 2017; 170
Fisher (bib8) 1993
Wang, Tang, Shi, Cui, Zhang, Hilary (bib35) 2018; 238
Yan, Wang, Ke, Wang (bib41) 2021; 16
Yang, Xing, Fu, Ma (bib42) 2022; 22
Greco (bib12) 2002; 269
Wang, Li, Li, Garg (bib38) 2023
Gerke (bib11) 2006; 169
Louati, Mabrouk, Trabelsi, Jamei, Zenzri (bib20) 2022; 26
Olesen, Poulsen (bib23) 2013; 117
Novák (bib22) 1999; 98–99
Luo, Zhang, Zhou, Shen, Chong, Victor (bib21) 2021; 400
Cheng, Tang, Xu, Zeng, Shi (bib5) 2021; 593
Peng, Zhang, Gan, Yoshida (bib24) 2016; 80
Lei, Latham, Tsang (bib15) 2017; 85
Levatti, Prat, Ledesma (bib17) 2019; 105
Xing, Kang, Ma (bib39) 2017; 167
Zhang, Zhou, Zhao, Lin, Peng (bib46) 2014; 228–229
Novák (10.1016/j.still.2023.105794_bib22) 1999; 98–99
Yang (10.1016/j.still.2023.105794_bib42) 2022; 22
Tian (10.1016/j.still.2023.105794_bib33) 2022; 302
Fisher (10.1016/j.still.2023.105794_bib8) 1993
Lei (10.1016/j.still.2023.105794_bib15) 2017; 85
Zhang (10.1016/j.still.2023.105794_bib45) 2020; 364
Al-Kufaishi (10.1016/j.still.2023.105794_bib1) 2009; 10
Levatti (10.1016/j.still.2023.105794_bib17) 2019; 105
Sheng (10.1016/j.still.2023.105794_bib28) 2014; 508
Wang (10.1016/j.still.2023.105794_bib34) 2017; 170
Greve (10.1016/j.still.2023.105794_bib13) 2010; 393
Zhang (10.1016/j.still.2023.105794_bib44) 2020; 117
Lepore (10.1016/j.still.2023.105794_bib16) 2009; 152
Liu (10.1016/j.still.2023.105794_bib19) 2020; 203
Rezanezhad (10.1016/j.still.2023.105794_bib27) 2021; 253
Wang (10.1016/j.still.2023.105794_bib36) 2019; 43
Yin (10.1016/j.still.2023.105794_bib43) 2020; 121
Greco (10.1016/j.still.2023.105794_bib12) 2002; 269
Bordoloi (10.1016/j.still.2023.105794_bib4) 2020; 729
Tang (10.1016/j.still.2023.105794_bib32) 2011; 166
Wang (10.1016/j.still.2023.105794_bib35) 2018; 238
Gerke (10.1016/j.still.2023.105794_bib11) 2006; 169
Svensson (10.1016/j.still.2023.105794_bib31) 2018; 559
Yan (10.1016/j.still.2023.105794_bib41) 2021; 16
Louati (10.1016/j.still.2023.105794_bib20) 2022; 26
Zhang (10.1016/j.still.2023.105794_bib46) 2014; 228–229
Hardie (10.1016/j.still.2023.105794_bib14) 2011; 398
Li (10.1016/j.still.2023.105794_bib18) 2009
Song (10.1016/j.still.2023.105794_bib29) 2020; 266
Zhu (10.1016/j.still.2023.105794_bib48) 2018; 2018
Diel (10.1016/j.still.2023.105794_bib6) 2019; 345
Bonnet (10.1016/j.still.2023.105794_bib3) 2001; 39
van Genuchten (10.1016/j.still.2023.105794_bib10) 1980; 44
Poulsen (10.1016/j.still.2023.105794_bib25) 2020; 71
Peng (10.1016/j.still.2023.105794_bib24) 2016; 80
Baer (10.1016/j.still.2023.105794_bib2) 2009; 154
Olesen (10.1016/j.still.2023.105794_bib23) 2013; 117
Xing (10.1016/j.still.2023.105794_bib40) 2022; 53
Zhang (10.1016/j.still.2023.105794_bib47) 2015; 146
Wang (10.1016/j.still.2023.105794_bib37) 2020; 53
Qi (10.1016/j.still.2023.105794_bib26) 2020; 358
Xing (10.1016/j.still.2023.105794_bib39) 2017; 167
Wang (10.1016/j.still.2023.105794_bib38) 2023
Luo (10.1016/j.still.2023.105794_bib21) 2021; 400
Cheng (10.1016/j.still.2023.105794_bib5) 2021; 593
Einstein (10.1016/j.still.2023.105794_bib7) 1983; 16
van Stiphout (10.1016/j.still.2023.105794_bib30) 1987; 95
Gadi (10.1016/j.still.2023.105794_bib9) 2020; 38
References_xml – volume: 105
  start-page: 155
  year: 2019
  end-page: 167
  ident: bib17
  article-title: Numerical and experimental study of initiation and propagation of desiccation cracks in clayey soils
  publication-title: Comput. Geotech.
– volume: 203
  year: 2020
  ident: bib19
  article-title: The effect of fracture properties on preferential flow in carbonate-derived laterite from karst mountainous agroforestry lands
  publication-title: Soil Tillage Res.
– year: 2009
  ident: bib18
  article-title: Field experimental study and numerical simulation of seepage in saturated/unsaturated cracked soil
  publication-title: Diss. Theses – Gradworks
– volume: 170
  start-page: 1
  year: 2017
  end-page: 13
  ident: bib34
  article-title: Geometric and fractal analysis of dynamic cracking patterns subjected to wetting-drying cycles
  publication-title: Soil Tillage Res.
– volume: 117
  year: 2020
  ident: bib44
  article-title: Shallow slope stability evolution during rainwater infiltration considering soil cracking state
  publication-title: Comput. Geotech.
– volume: 398
  start-page: 191
  year: 2011
  end-page: 201
  ident: bib14
  article-title: Effect of antecedent soil moisture on preferential flow in a texture-contrast soil
  publication-title: J. Hydrol.
– volume: 167
  start-page: 61
  year: 2017
  end-page: 72
  ident: bib39
  article-title: Differences in loam water retention and shrinkage behavior: effects of various types and concentrations of salt ions
  publication-title: Soil Tillage Res.
– volume: 2018
  start-page: 7056858
  year: 2018
  ident: bib48
  article-title: Experimental and numerical investigations of influence on overland flow and water infiltration by fracture networks in soil
  publication-title: Geofluids
– volume: 16
  start-page: 39
  year: 1983
  end-page: 72
  ident: bib7
  article-title: Probabilistic and statistical methods in engineering geology
  publication-title: Rock. Mech. Rock. Eng.
– volume: 559
  start-page: 182
  year: 2018
  end-page: 191
  ident: bib31
  article-title: Modelling the diffusion-available pore space of an unaltered granitic rock matrix using a micro-DFN approach
  publication-title: J. Hydrol.
– volume: 302
  year: 2022
  ident: bib33
  article-title: Effects of compaction state on desiccation cracking behaviour of a clayey soil subjected to wetting-drying cycles
  publication-title: Eng. Geol.
– year: 2023
  ident: bib38
  article-title: Exploring the application of the MICP technique for the suppression of erosion in granite residual soil in Shantou using a rainfall erosion simulator
  publication-title: Acta Geotech.
– volume: 26
  start-page: 7383
  year: 2022
  end-page: 7399
  ident: bib20
  article-title: Flow exchange and unsaturated permeability of cracked clay: experimental and modelling
  publication-title: Eur. J. Environ. Civ. Eng.
– volume: 593
  year: 2021
  ident: bib5
  article-title: Water infiltration in a cracked soil considering effect of drying-wetting cycles
  publication-title: J. Hydrol.
– volume: 44
  start-page: 892
  year: 1980
  end-page: 898
  ident: bib10
  article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 393
  start-page: 105
  year: 2010
  end-page: 113
  ident: bib13
  article-title: Investigations of soil cracking and preferential flow in a weighing lysimeter filled with cracking clay soil
  publication-title: J. Hydrol.
– volume: 10
  start-page: 16
  year: 2009
  end-page: 33
  ident: bib1
  article-title: The impact of various sprinkler irrigation patterns on spatial soil moisture variation in Vertisols
  publication-title: Precis. Agric.
– volume: 39
  start-page: 347
  year: 2001
  end-page: 383
  ident: bib3
  article-title: Scaling of fracture systems in geological media
  publication-title: Rev. Geophys.
– volume: 152
  start-page: 301
  year: 2009
  end-page: 313
  ident: bib16
  article-title: A mesopore and matrix infiltration model based on soil structure
  publication-title: Geoderma
– volume: 169
  start-page: 382
  year: 2006
  end-page: 400
  ident: bib11
  article-title: Preferential flow descriptions for structured soils
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 95
  start-page: 1
  year: 1987
  end-page: 11
  ident: bib30
  article-title: The effect of bypass flow and internal catchment of rain on the water regime in a clay loam grassland soil
  publication-title: J. Hydrol.
– volume: 16
  start-page: 2609
  year: 2021
  end-page: 2628
  ident: bib41
  article-title: A 2d fdem-based moisture diffusion–fracture coupling model for simulating soil desiccation cracking
  publication-title: Acta Geotech.
– volume: 253
  year: 2021
  ident: bib27
  article-title: Application of equivalent circle and ellipse for pore shape modeling in crack growth problem: a numerical investigation in microscale
  publication-title: Eng. Fract. Mech.
– volume: 400
  year: 2021
  ident: bib21
  article-title: Investigation and prediction of water infiltration process in cracked soils based on a full-scale model test
  publication-title: Geoderma
– volume: 508
  start-page: 137
  year: 2014
  end-page: 146
  ident: bib28
  article-title: Investigation into preferential flow in natural unsaturated soils with field multiple-tracer infiltration experiments and the active region model
  publication-title: J. Hydrol.
– volume: 166
  start-page: 111
  year: 2011
  end-page: 118
  ident: bib32
  article-title: Desiccation and cracking behaviour of clay layer from slurry state under wetting-drying cycles
  publication-title: Geoderma
– volume: 43
  start-page: 1184
  year: 2019
  end-page: 1206
  ident: bib36
  article-title: 3D stability of unsaturated soil slopes with tension cracks under steady infiltrations
  publication-title: Int. J. Numer. Anal. Methods Geomech.
– volume: 729
  year: 2020
  ident: bib4
  article-title: Soil desiccation cracking and its characterization in vegetated soil: A perspective review
  publication-title: Sci. Total Environ.
– volume: 80
  start-page: 1145
  year: 2016
  end-page: 1156
  ident: bib24
  article-title: Linking soil shrinkage behavior and cracking in two paddy soils as affected by wetting and drying cycles
  publication-title: Soil Sci. Soc. Am. J.
– volume: 53
  start-page: 1053
  year: 2020
  end-page: 1077
  ident: bib37
  article-title: A DFN-DEM multi-scale modeling approach for simulating tunnel excavation response in jointed rock masses
  publication-title: Rock. Mech. Rock. Eng.
– volume: 345
  start-page: 63
  year: 2019
  end-page: 71
  ident: bib6
  article-title: Impact of wetting and drying cycles on soil structure dynamics
  publication-title: Geoderma
– year: 1993
  ident: bib8
  article-title: Statistical analysis of circular data
– volume: 266
  year: 2020
  ident: bib29
  article-title: Modelling of water evaporation from cracked clayey soil
  publication-title: Eng. Geol.
– volume: 228–229
  start-page: 114
  year: 2014
  end-page: 121
  ident: bib46
  article-title: Characteristics of cracks in two paddy soils and their impacts on preferential flow
  publication-title: Geoderma
– volume: 71
  start-page: 627
  year: 2020
  end-page: 640
  ident: bib25
  article-title: Water evaporation from cracked soil under moist conditions as related to crack properties and near-surface wind speed
  publication-title: Eur. J. Soil Sci.
– volume: 121
  year: 2020
  ident: bib43
  article-title: Simulation-based investigation on the accuracy of discrete fracture network (DFN) representation
  publication-title: Comput. Geotech.
– volume: 38
  start-page: 935
  year: 2020
  end-page: 946
  ident: bib9
  article-title: Modeling soil-crack–water–atmospheric interactions: a novel root water uptake approach to simulate the evaporation through cracked soil and experimental validation
  publication-title: Geotech. Geol. Eng.
– volume: 117
  start-page: 1
  year: 2013
  end-page: 9
  ident: bib23
  article-title: An embedded crack in a constant strain triangle utilizing extended finite element concepts
  publication-title: Comput. Struct.
– volume: 98–99
  start-page: 501
  year: 1999
  end-page: 507
  ident: bib22
  article-title: Soil-crack characteristics-estimation methods applied to heavy soils in the NOPEX area
  publication-title: Agric. For. Meteorol.
– volume: 154
  start-page: 153
  year: 2009
  end-page: 163
  ident: bib2
  article-title: Image analysis and fractal geometry to characterize soil desiccation cracks
  publication-title: Geoderma
– volume: 146
  start-page: 53
  year: 2015
  end-page: 65
  ident: bib47
  article-title: Characterizing preferential flow in cracked paddy soils using computed tomography and breakthrough curve
  publication-title: Soil Tillage Res.
– volume: 53
  start-page: 1930
  year: 2022
  end-page: 1941
  ident: bib40
  article-title: Interactions between water evaporation and surface cracking in NaCl-induced homogeneous silt loam and sand
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 269
  start-page: 150
  year: 2002
  end-page: 168
  ident: bib12
  article-title: Preferential flow in macroporous swelling soil with internal catchment: model development and applications
  publication-title: J. Hydrol.
– volume: 85
  start-page: 151
  year: 2017
  end-page: 176
  ident: bib15
  article-title: The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks
  publication-title: Comput. Geotech.
– volume: 364
  year: 2020
  ident: bib45
  article-title: Effect of biochar on desiccation cracking characteristics of clayey soils
  publication-title: Geoderma
– volume: 238
  start-page: 27
  year: 2018
  end-page: 35
  ident: bib35
  article-title: Nucleation and propagation mechanisms of soil desiccation cracks
  publication-title: Eng. Geol.
– volume: 358
  year: 2020
  ident: bib26
  article-title: Crack closure and flow regimes in cracked clay loam subjected to different irrigation methods
  publication-title: Geoderma
– volume: 22
  start-page: 2503
  year: 2022
  end-page: 2519
  ident: bib42
  article-title: Performances of evaporation and desiccation cracking characteristics for attapulgite soils
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 105
  start-page: 155
  year: 2019
  ident: 10.1016/j.still.2023.105794_bib17
  article-title: Numerical and experimental study of initiation and propagation of desiccation cracks in clayey soils
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2018.09.015
– volume: 10
  start-page: 16
  issue: 1
  year: 2009
  ident: 10.1016/j.still.2023.105794_bib1
  article-title: The impact of various sprinkler irrigation patterns on spatial soil moisture variation in Vertisols
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-008-9102-0
– volume: 593
  year: 2021
  ident: 10.1016/j.still.2023.105794_bib5
  article-title: Water infiltration in a cracked soil considering effect of drying-wetting cycles
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125640
– volume: 154
  start-page: 153
  issue: 1
  year: 2009
  ident: 10.1016/j.still.2023.105794_bib2
  article-title: Image analysis and fractal geometry to characterize soil desiccation cracks
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.10.008
– volume: 22
  start-page: 2503
  issue: 2
  year: 2022
  ident: 10.1016/j.still.2023.105794_bib42
  article-title: Performances of evaporation and desiccation cracking characteristics for attapulgite soils
  publication-title: J. Soil Sci. Plant Nutr.
  doi: 10.1007/s42729-022-00823-x
– volume: 167
  start-page: 61
  year: 2017
  ident: 10.1016/j.still.2023.105794_bib39
  article-title: Differences in loam water retention and shrinkage behavior: effects of various types and concentrations of salt ions
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2016.11.005
– volume: 121
  year: 2020
  ident: 10.1016/j.still.2023.105794_bib43
  article-title: Simulation-based investigation on the accuracy of discrete fracture network (DFN) representation
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2020.103487
– volume: 238
  start-page: 27
  year: 2018
  ident: 10.1016/j.still.2023.105794_bib35
  article-title: Nucleation and propagation mechanisms of soil desiccation cracks
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2018.03.004
– volume: 400
  year: 2021
  ident: 10.1016/j.still.2023.105794_bib21
  article-title: Investigation and prediction of water infiltration process in cracked soils based on a full-scale model test
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115111
– volume: 266
  year: 2020
  ident: 10.1016/j.still.2023.105794_bib29
  article-title: Modelling of water evaporation from cracked clayey soil
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2019.105465
– volume: 53
  start-page: 1053
  issue: 3
  year: 2020
  ident: 10.1016/j.still.2023.105794_bib37
  article-title: A DFN-DEM multi-scale modeling approach for simulating tunnel excavation response in jointed rock masses
  publication-title: Rock. Mech. Rock. Eng.
  doi: 10.1007/s00603-019-01957-8
– volume: 44
  start-page: 892
  issue: 5
  year: 1980
  ident: 10.1016/j.still.2023.105794_bib10
  article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1980.03615995004400050002x
– volume: 39
  start-page: 347
  issue: 3
  year: 2001
  ident: 10.1016/j.still.2023.105794_bib3
  article-title: Scaling of fracture systems in geological media
  publication-title: Rev. Geophys.
  doi: 10.1029/1999RG000074
– volume: 95
  start-page: 1
  issue: 1
  year: 1987
  ident: 10.1016/j.still.2023.105794_bib30
  article-title: The effect of bypass flow and internal catchment of rain on the water regime in a clay loam grassland soil
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(87)90111-9
– volume: 85
  start-page: 151
  year: 2017
  ident: 10.1016/j.still.2023.105794_bib15
  article-title: The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2016.12.024
– volume: 358
  year: 2020
  ident: 10.1016/j.still.2023.105794_bib26
  article-title: Crack closure and flow regimes in cracked clay loam subjected to different irrigation methods
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.113978
– volume: 559
  start-page: 182
  year: 2018
  ident: 10.1016/j.still.2023.105794_bib31
  article-title: Modelling the diffusion-available pore space of an unaltered granitic rock matrix using a micro-DFN approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.02.041
– volume: 170
  start-page: 1
  year: 2017
  ident: 10.1016/j.still.2023.105794_bib34
  article-title: Geometric and fractal analysis of dynamic cracking patterns subjected to wetting-drying cycles
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2017.02.005
– volume: 152
  start-page: 301
  issue: 3
  year: 2009
  ident: 10.1016/j.still.2023.105794_bib16
  article-title: A mesopore and matrix infiltration model based on soil structure
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.06.016
– volume: 393
  start-page: 105
  issue: 1
  year: 2010
  ident: 10.1016/j.still.2023.105794_bib13
  article-title: Investigations of soil cracking and preferential flow in a weighing lysimeter filled with cracking clay soil
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.03.007
– volume: 345
  start-page: 63
  year: 2019
  ident: 10.1016/j.still.2023.105794_bib6
  article-title: Impact of wetting and drying cycles on soil structure dynamics
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.03.018
– year: 2009
  ident: 10.1016/j.still.2023.105794_bib18
  article-title: Field experimental study and numerical simulation of seepage in saturated/unsaturated cracked soil
  publication-title: Diss. Theses – Gradworks
– volume: 26
  start-page: 7383
  issue: 15
  year: 2022
  ident: 10.1016/j.still.2023.105794_bib20
  article-title: Flow exchange and unsaturated permeability of cracked clay: experimental and modelling
  publication-title: Eur. J. Environ. Civ. Eng.
  doi: 10.1080/19648189.2021.1989051
– volume: 98–99
  start-page: 501
  year: 1999
  ident: 10.1016/j.still.2023.105794_bib22
  article-title: Soil-crack characteristics-estimation methods applied to heavy soils in the NOPEX area
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(99)00119-7
– volume: 508
  start-page: 137
  year: 2014
  ident: 10.1016/j.still.2023.105794_bib28
  article-title: Investigation into preferential flow in natural unsaturated soils with field multiple-tracer infiltration experiments and the active region model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.10.048
– volume: 146
  start-page: 53
  year: 2015
  ident: 10.1016/j.still.2023.105794_bib47
  article-title: Characterizing preferential flow in cracked paddy soils using computed tomography and breakthrough curve
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2014.05.016
– volume: 16
  start-page: 2609
  issue: 8
  year: 2021
  ident: 10.1016/j.still.2023.105794_bib41
  article-title: A 2d fdem-based moisture diffusion–fracture coupling model for simulating soil desiccation cracking
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-021-01297-4
– volume: 117
  start-page: 1
  year: 2013
  ident: 10.1016/j.still.2023.105794_bib23
  article-title: An embedded crack in a constant strain triangle utilizing extended finite element concepts
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.11.006
– volume: 169
  start-page: 382
  issue: 3
  year: 2006
  ident: 10.1016/j.still.2023.105794_bib11
  article-title: Preferential flow descriptions for structured soils
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.200521955
– volume: 398
  start-page: 191
  issue: 3
  year: 2011
  ident: 10.1016/j.still.2023.105794_bib14
  article-title: Effect of antecedent soil moisture on preferential flow in a texture-contrast soil
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.12.008
– year: 2023
  ident: 10.1016/j.still.2023.105794_bib38
  article-title: Exploring the application of the MICP technique for the suppression of erosion in granite residual soil in Shantou using a rainfall erosion simulator
  publication-title: Acta Geotech.
– volume: 729
  year: 2020
  ident: 10.1016/j.still.2023.105794_bib4
  article-title: Soil desiccation cracking and its characterization in vegetated soil: A perspective review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138760
– volume: 38
  start-page: 935
  issue: 1
  year: 2020
  ident: 10.1016/j.still.2023.105794_bib9
  article-title: Modeling soil-crack–water–atmospheric interactions: a novel root water uptake approach to simulate the evaporation through cracked soil and experimental validation
  publication-title: Geotech. Geol. Eng.
  doi: 10.1007/s10706-019-01026-5
– volume: 2018
  start-page: 7056858
  year: 2018
  ident: 10.1016/j.still.2023.105794_bib48
  article-title: Experimental and numerical investigations of influence on overland flow and water infiltration by fracture networks in soil
  publication-title: Geofluids
  doi: 10.1155/2018/7056858
– volume: 269
  start-page: 150
  issue: 3
  year: 2002
  ident: 10.1016/j.still.2023.105794_bib12
  article-title: Preferential flow in macroporous swelling soil with internal catchment: model development and applications
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(02)00215-9
– volume: 302
  year: 2022
  ident: 10.1016/j.still.2023.105794_bib33
  article-title: Effects of compaction state on desiccation cracking behaviour of a clayey soil subjected to wetting-drying cycles
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2022.106650
– volume: 80
  start-page: 1145
  issue: 5
  year: 2016
  ident: 10.1016/j.still.2023.105794_bib24
  article-title: Linking soil shrinkage behavior and cracking in two paddy soils as affected by wetting and drying cycles
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2015.07.0273
– volume: 53
  start-page: 1930
  issue: 15
  year: 2022
  ident: 10.1016/j.still.2023.105794_bib40
  article-title: Interactions between water evaporation and surface cracking in NaCl-induced homogeneous silt loam and sand
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103624.2022.2069801
– volume: 203
  year: 2020
  ident: 10.1016/j.still.2023.105794_bib19
  article-title: The effect of fracture properties on preferential flow in carbonate-derived laterite from karst mountainous agroforestry lands
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2020.104670
– volume: 117
  year: 2020
  ident: 10.1016/j.still.2023.105794_bib44
  article-title: Shallow slope stability evolution during rainwater infiltration considering soil cracking state
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2019.103285
– volume: 364
  year: 2020
  ident: 10.1016/j.still.2023.105794_bib45
  article-title: Effect of biochar on desiccation cracking characteristics of clayey soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114182
– volume: 253
  year: 2021
  ident: 10.1016/j.still.2023.105794_bib27
  article-title: Application of equivalent circle and ellipse for pore shape modeling in crack growth problem: a numerical investigation in microscale
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2021.107882
– volume: 166
  start-page: 111
  issue: 1
  year: 2011
  ident: 10.1016/j.still.2023.105794_bib32
  article-title: Desiccation and cracking behaviour of clay layer from slurry state under wetting-drying cycles
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.07.018
– volume: 228–229
  start-page: 114
  year: 2014
  ident: 10.1016/j.still.2023.105794_bib46
  article-title: Characteristics of cracks in two paddy soils and their impacts on preferential flow
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.07.026
– year: 1993
  ident: 10.1016/j.still.2023.105794_bib8
– volume: 16
  start-page: 39
  issue: 1
  year: 1983
  ident: 10.1016/j.still.2023.105794_bib7
  article-title: Probabilistic and statistical methods in engineering geology
  publication-title: Rock. Mech. Rock. Eng.
  doi: 10.1007/BF01030217
– volume: 71
  start-page: 627
  issue: 4
  year: 2020
  ident: 10.1016/j.still.2023.105794_bib25
  article-title: Water evaporation from cracked soil under moist conditions as related to crack properties and near-surface wind speed
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12926
– volume: 43
  start-page: 1184
  issue: 6
  year: 2019
  ident: 10.1016/j.still.2023.105794_bib36
  article-title: 3D stability of unsaturated soil slopes with tension cracks under steady infiltrations
  publication-title: Int. J. Numer. Anal. Methods Geomech.
  doi: 10.1002/nag.2889
SSID ssj0004328
Score 2.4405596
Snippet Soil cracks generated in natural fields will change soil structure and provide pathways for preferential flow. Although most simulations have focused on the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105794
SubjectTerms Crack closure
Deformable/non-deformable cracked soil
Discrete crack network
domain
finite element analysis
mathematical models
preferential flow
soil cracks
soil structure
tillage
water flow
Water infiltration
Title A numerical approach for modeling crack closure and infiltrated flow in cracked soils
URI https://dx.doi.org/10.1016/j.still.2023.105794
https://www.proquest.com/docview/2849897204
Volume 233
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaqcmEPiMciyqMyEscNbezJw8eooiogeoFKvVl-rgpRUvUhbvvbd-wkIJDogaMt24rG45nPmfE3hLzjpZlnzJuEZSVeUBCyJxodV5KmOmUairx79f5lna828GmbbUdkMbyFCWmVve3vbHq01n3PrJfmbL_bzb6GBPpwZUYQHXBLeFEOuDjq9Pu732kewGN91cjvHUYPzEMxxwtPUR3iD4zHercC_uWd_rLT0fksH5NHPWqkVfdhT8jINU_JVXV76Jkz3DOyqWhz7sIvNR2YwilCUhqL3aCHouagzA9q6jb8FaSqsRTVa1dHflpLfd3-xI5uFLaP7a4-XpPN8sO3xSrpayYkhvP8lAD3GSieK-5AzQWKhlnAZuktaG2ycs6U4sZ6cCBcYHZRecGs9YX2WgjFn5Nx0zbuBaHgC89Sx0CJDDyzIteAvkwUFlFbAWpC2CAraXpC8VDXopZD5th3GQUsg4BlJ-AJufk1ad_xaVweng-bIP9QC4kW__LEt8OWSTwwIQqiGteejxL9sShFqM3z8n8Xf0UehlaXavaajE-Hs3uD2OSkp1H5puRB9fHzan0Pf1XipA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5dByQFBa8caVemy0u7bz8HGFQMtrL7ASN8vPaiFK0D7E32fsJEVFggNHO54oGtszn-OZbwB-s8IMUupNQtMCDygI2RONjisZDvWQap5nTdb7zSQbT_nlfXq_BqddLkwIq2xtf2PTo7Vue_qtNvtPs1n_NgTQhyMzguiAW_IvsB7YqdIerI8ursaT1_RIFkusRorvINCRD8UwL9xIZbiCoCyWvBX8PQf1xlRH_3O-BZstcCSj5tu2Yc1V32Fj9Hfekme4HZiOSLVqbmBK0pGFE0SlJNa7QSdFzFyZR2LKOvwYJKqyBFfYrIwUtZb4sn7GjmYUthf1rFz8gOn52d3pOGnLJiSGsWyZcOZTrlimmONqIFA71HJsFt5yrU1aDKhSzFjPHRcukLuoLKfW-lx7LYRiP6FX1ZXbBcJ97unQUa5Eyj21ItMc3ZnILQK3nKs9oJ2upGk5xUNpi1J2wWMPMipYBgXLRsF78Oef0FNDqfHx8KybBPnfypBo9D8W_NVNmcQ9Ey5CVOXq1UKiSxaFCOV59j_78hP4Or67uZbXF5OrA_gWnjSRZ4fQW85X7gihylIft0vxBUo75VU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+approach+for+modeling+crack+closure+and+infiltrated+flow+in+cracked+soils&rft.jtitle=Soil+%26+tillage+research&rft.au=Xing%2C+Xuguang&rft.au=Nie%2C+Weibo&rft.au=Chang%2C+Kai&rft.au=Zhao%2C+Long&rft.date=2023-09-01&rft.pub=Elsevier+B.V&rft.issn=0167-1987&rft.eissn=1879-3444&rft.volume=233&rft_id=info:doi/10.1016%2Fj.still.2023.105794&rft.externalDocID=S0167198723001617
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-1987&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-1987&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-1987&client=summon