A numerical approach for modeling crack closure and infiltrated flow in cracked soils
Soil cracks generated in natural fields will change soil structure and provide pathways for preferential flow. Although most simulations have focused on the influences of surface cracks or subsurface cracks in the fields, few studies are conducted on the deformable cracks extending from soil surface...
Saved in:
Published in | Soil & tillage research Vol. 233; p. 105794 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil cracks generated in natural fields will change soil structure and provide pathways for preferential flow. Although most simulations have focused on the influences of surface cracks or subsurface cracks in the fields, few studies are conducted on the deformable cracks extending from soil surface to deep soil layer. The present study addresses a fundamental issue and investigates the differences in water flow during infiltration processes of deformable and non-deformable cracked soils. Based on the discrete crack network model, a two-dimensional numerical approach is proposed to investigate the preferential flow in deformable cracked soil. Numerical simulations on water flow are implemented for matrix domain and cracks with the finite element method, which are discretized into solid elements and zero thickness elements, respectively. The proposed model is validated through explicit modeling and experimental observation and then compared with deformable crack approach. It is further employed to simulate the infiltration process of deformable cracked soil revealing significant differences in infiltration characteristics between deformable and non-deformable cracked soils, even if the cracks all act as preferential flow pathways. Although the saturation in crack closure of numerical model is variable during infiltration process, the effect of saturation is still affected by the number of cracks. Furthermore, cracks do not entirely close over a long period of infiltration, and thus they can become preferential flow pathways in subsequent infiltration events. These findings highlight the gap in simulations of water infiltration in cracked soil and the potential for erroneous simulations of water condition when cracks cannot be deformable during infiltration process.
•An approach for modeling water infiltration in deformable cracked soil is proposed.•Non-deformable cracked soil model overestimates the infiltration characteristics.•Crack closure weakens the effect of crack aperture on water infiltration.•The spatial heterogeneity of crack closure is related to that of water distribution. |
---|---|
AbstractList | Soil cracks generated in natural fields will change soil structure and provide pathways for preferential flow. Although most simulations have focused on the influences of surface cracks or subsurface cracks in the fields, few studies are conducted on the deformable cracks extending from soil surface to deep soil layer. The present study addresses a fundamental issue and investigates the differences in water flow during infiltration processes of deformable and non-deformable cracked soils. Based on the discrete crack network model, a two-dimensional numerical approach is proposed to investigate the preferential flow in deformable cracked soil. Numerical simulations on water flow are implemented for matrix domain and cracks with the finite element method, which are discretized into solid elements and zero thickness elements, respectively. The proposed model is validated through explicit modeling and experimental observation and then compared with deformable crack approach. It is further employed to simulate the infiltration process of deformable cracked soil revealing significant differences in infiltration characteristics between deformable and non-deformable cracked soils, even if the cracks all act as preferential flow pathways. Although the saturation in crack closure of numerical model is variable during infiltration process, the effect of saturation is still affected by the number of cracks. Furthermore, cracks do not entirely close over a long period of infiltration, and thus they can become preferential flow pathways in subsequent infiltration events. These findings highlight the gap in simulations of water infiltration in cracked soil and the potential for erroneous simulations of water condition when cracks cannot be deformable during infiltration process.
•An approach for modeling water infiltration in deformable cracked soil is proposed.•Non-deformable cracked soil model overestimates the infiltration characteristics.•Crack closure weakens the effect of crack aperture on water infiltration.•The spatial heterogeneity of crack closure is related to that of water distribution. Soil cracks generated in natural fields will change soil structure and provide pathways for preferential flow. Although most simulations have focused on the influences of surface cracks or subsurface cracks in the fields, few studies are conducted on the deformable cracks extending from soil surface to deep soil layer. The present study addresses a fundamental issue and investigates the differences in water flow during infiltration processes of deformable and non-deformable cracked soils. Based on the discrete crack network model, a two-dimensional numerical approach is proposed to investigate the preferential flow in deformable cracked soil. Numerical simulations on water flow are implemented for matrix domain and cracks with the finite element method, which are discretized into solid elements and zero thickness elements, respectively. The proposed model is validated through explicit modeling and experimental observation and then compared with deformable crack approach. It is further employed to simulate the infiltration process of deformable cracked soil revealing significant differences in infiltration characteristics between deformable and non-deformable cracked soils, even if the cracks all act as preferential flow pathways. Although the saturation in crack closure of numerical model is variable during infiltration process, the effect of saturation is still affected by the number of cracks. Furthermore, cracks do not entirely close over a long period of infiltration, and thus they can become preferential flow pathways in subsequent infiltration events. These findings highlight the gap in simulations of water infiltration in cracked soil and the potential for erroneous simulations of water condition when cracks cannot be deformable during infiltration process. |
ArticleNumber | 105794 |
Author | Zhao, Long Nie, Weibo Chang, Kai Li, Yibo Ma, Xiaoyi Xing, Xuguang |
Author_xml | – sequence: 1 givenname: Xuguang surname: Xing fullname: Xing, Xuguang organization: State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an, Shaanxi Province 710048 China – sequence: 2 givenname: Weibo surname: Nie fullname: Nie, Weibo email: nwbo2000@163.com organization: State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an, Shaanxi Province 710048 China – sequence: 3 givenname: Kai surname: Chang fullname: Chang, Kai organization: Key Laboratory for Agricultural Soil and Water Engineering in Arid Area of Ministry of Education, Northwest A&F University, Yangling, Shaanxi Province 712100 China – sequence: 4 givenname: Long surname: Zhao fullname: Zhao, Long organization: College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan Province 471000 China – sequence: 5 givenname: Yibo surname: Li fullname: Li, Yibo email: liyibo51_teresa@hotmail.com organization: State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an, Shaanxi Province 710048 China – sequence: 6 givenname: Xiaoyi surname: Ma fullname: Ma, Xiaoyi organization: Key Laboratory for Agricultural Soil and Water Engineering in Arid Area of Ministry of Education, Northwest A&F University, Yangling, Shaanxi Province 712100 China |
BookMark | eNqFkD1PAzEMhiMEEqXwC1gyslzJJWnvMjAgxJeExAJz5CYOpKRJSa4g_j2BY2KAybL1Ppb9HJDdmCISctyyWcvaxelqVgYfwowzLupk3im5QyZt36lGSCl3yaSmuqZVfbdPDkpZMcak4P2EPJ7TuF1j9gYChc0mJzDP1KVM18li8PGJmgzmhZqQyjYjhWipj86HIcOAlrqQ3utgTNW-JB_KIdlzEAoe_dQpeby6fLi4ae7ur28vzu8aI8RiaKRwcwliAQIlMCUY41bWtndWLpdm3jMOIIx1EqXCOe8FLDpureuWbqkUiCk5GffWu1-3WAa99sVgCBAxbYvmvVS96nh9dkrUGDU5lZLRaeMHGHyK9REfdMv0l0q90t8q9ZdKPaqsrPjFbrJfQ_74hzobKawG3jxmXYzHaND6jGbQNvk_-U9Q1ZHQ |
CitedBy_id | crossref_primary_10_1016_j_jhydrol_2025_133054 crossref_primary_10_1007_s11600_024_01375_7 crossref_primary_10_3390_buildings14072081 crossref_primary_10_1016_j_scitotenv_2024_174500 crossref_primary_10_1016_j_geoderma_2024_116977 crossref_primary_10_1002_saj2_20680 crossref_primary_10_5194_soil_10_587_2024 crossref_primary_10_48084_etasr_7178 |
Cites_doi | 10.1016/j.compgeo.2018.09.015 10.1007/s11119-008-9102-0 10.1016/j.jhydrol.2020.125640 10.1016/j.geoderma.2009.10.008 10.1007/s42729-022-00823-x 10.1016/j.still.2016.11.005 10.1016/j.compgeo.2020.103487 10.1016/j.enggeo.2018.03.004 10.1016/j.geoderma.2021.115111 10.1016/j.enggeo.2019.105465 10.1007/s00603-019-01957-8 10.2136/sssaj1980.03615995004400050002x 10.1029/1999RG000074 10.1016/0022-1694(87)90111-9 10.1016/j.compgeo.2016.12.024 10.1016/j.geoderma.2019.113978 10.1016/j.jhydrol.2018.02.041 10.1016/j.still.2017.02.005 10.1016/j.geoderma.2009.06.016 10.1016/j.jhydrol.2010.03.007 10.1016/j.geoderma.2019.03.018 10.1080/19648189.2021.1989051 10.1016/S0168-1923(99)00119-7 10.1016/j.jhydrol.2013.10.048 10.1016/j.still.2014.05.016 10.1007/s11440-021-01297-4 10.1016/j.compstruc.2012.11.006 10.1002/jpln.200521955 10.1016/j.jhydrol.2010.12.008 10.1016/j.scitotenv.2020.138760 10.1007/s10706-019-01026-5 10.1155/2018/7056858 10.1016/S0022-1694(02)00215-9 10.1016/j.enggeo.2022.106650 10.2136/sssaj2015.07.0273 10.1080/00103624.2022.2069801 10.1016/j.still.2020.104670 10.1016/j.compgeo.2019.103285 10.1016/j.geoderma.2020.114182 10.1016/j.engfracmech.2021.107882 10.1016/j.geoderma.2011.07.018 10.1016/j.geoderma.2013.07.026 10.1007/BF01030217 10.1111/ejss.12926 10.1002/nag.2889 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.still.2023.105794 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1879-3444 |
ExternalDocumentID | 10_1016_j_still_2023_105794 S0167198723001617 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE JJJVA KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SES SEW SPC SPCBC SSA SSR SST SSZ T5K TWZ UNMZH WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c336t-43f54a36a3e4a093002d436a8fd4bbc5802aa3cdf4e49e5283a672ddf7bfb99a3 |
IEDL.DBID | .~1 |
ISSN | 0167-1987 |
IngestDate | Wed Jul 02 04:50:48 EDT 2025 Tue Jul 01 00:57:10 EDT 2025 Thu Apr 24 22:59:33 EDT 2025 Fri Feb 23 02:35:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deformable/non-deformable cracked soil Water infiltration Crack closure Discrete crack network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-43f54a36a3e4a093002d436a8fd4bbc5802aa3cdf4e49e5283a672ddf7bfb99a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2849897204 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2849897204 crossref_citationtrail_10_1016_j_still_2023_105794 crossref_primary_10_1016_j_still_2023_105794 elsevier_sciencedirect_doi_10_1016_j_still_2023_105794 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Soil & tillage research |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | van Stiphout, van Lanen, Boersma, Bouma (bib30) 1987; 95 Qi, Zhang, Wang, Chen, Zhang (bib26) 2020; 358 Bonnet, Bour, Odling, Davy, Main, Cowie, Berkowitz (bib3) 2001; 39 Zhang, Zhu, Zhang (bib44) 2020; 117 Greve, Andersen, Acworth (bib13) 2010; 393 Lepore, Morgan, Norman, Molling (bib16) 2009; 152 Zhang, Gu, Li, Tang, Shen, Shi (bib45) 2020; 364 Wang, Hu, Sun, Li (bib36) 2019; 43 Zhang, Peng, Zhou, Lin, Sun (bib47) 2015; 146 Baer, Kent, Anderson (bib2) 2009; 154 van Genuchten (bib10) 1980; 44 Wang, Cai (bib37) 2020; 53 Tang, Cui, Shi, Tang, Liu (bib32) 2011; 166 Tian, Cheng, Tang, Zeng, Xu, Shi (bib33) 2022; 302 Yin, Chen (bib43) 2020; 121 Bordoloi, Ni, Ng (bib4) 2020; 729 Svensson, Löfgren, Trinchero, Selroos (bib31) 2018; 559 Zhu, Fan, Ma, Zhang, Zha (bib48) 2018; 2018 Liu, She (bib19) 2020; 203 Poulsen, Cai, Garg (bib25) 2020; 71 Einstein, Baecher (bib7) 1983; 16 Li (bib18) 2009 Xing, Jing, Zhao, Wang (bib40) 2022; 53 Diel, Vogel, Schlüter (bib6) 2019; 345 Gadi, Singh, Li, Song, Zhu, Garg, Sreedeep (bib9) 2020; 38 Al-Kufaishi, Sands, Andersen (bib1) 2009; 10 Sheng, Liu, Wang, Zhang, Tang (bib28) 2014; 508 Rezanezhad, Lajevardi, Karimpouli (bib27) 2021; 253 Hardie, Cotching, Doyle, Holz, Lisson, Mattern (bib14) 2011; 398 Song, Cui (bib29) 2020; 266 Wang, Zhang, Liu, Fan (bib34) 2017; 170 Fisher (bib8) 1993 Wang, Tang, Shi, Cui, Zhang, Hilary (bib35) 2018; 238 Yan, Wang, Ke, Wang (bib41) 2021; 16 Yang, Xing, Fu, Ma (bib42) 2022; 22 Greco (bib12) 2002; 269 Wang, Li, Li, Garg (bib38) 2023 Gerke (bib11) 2006; 169 Louati, Mabrouk, Trabelsi, Jamei, Zenzri (bib20) 2022; 26 Olesen, Poulsen (bib23) 2013; 117 Novák (bib22) 1999; 98–99 Luo, Zhang, Zhou, Shen, Chong, Victor (bib21) 2021; 400 Cheng, Tang, Xu, Zeng, Shi (bib5) 2021; 593 Peng, Zhang, Gan, Yoshida (bib24) 2016; 80 Lei, Latham, Tsang (bib15) 2017; 85 Levatti, Prat, Ledesma (bib17) 2019; 105 Xing, Kang, Ma (bib39) 2017; 167 Zhang, Zhou, Zhao, Lin, Peng (bib46) 2014; 228–229 Novák (10.1016/j.still.2023.105794_bib22) 1999; 98–99 Yang (10.1016/j.still.2023.105794_bib42) 2022; 22 Tian (10.1016/j.still.2023.105794_bib33) 2022; 302 Fisher (10.1016/j.still.2023.105794_bib8) 1993 Lei (10.1016/j.still.2023.105794_bib15) 2017; 85 Zhang (10.1016/j.still.2023.105794_bib45) 2020; 364 Al-Kufaishi (10.1016/j.still.2023.105794_bib1) 2009; 10 Levatti (10.1016/j.still.2023.105794_bib17) 2019; 105 Sheng (10.1016/j.still.2023.105794_bib28) 2014; 508 Wang (10.1016/j.still.2023.105794_bib34) 2017; 170 Greve (10.1016/j.still.2023.105794_bib13) 2010; 393 Zhang (10.1016/j.still.2023.105794_bib44) 2020; 117 Lepore (10.1016/j.still.2023.105794_bib16) 2009; 152 Liu (10.1016/j.still.2023.105794_bib19) 2020; 203 Rezanezhad (10.1016/j.still.2023.105794_bib27) 2021; 253 Wang (10.1016/j.still.2023.105794_bib36) 2019; 43 Yin (10.1016/j.still.2023.105794_bib43) 2020; 121 Greco (10.1016/j.still.2023.105794_bib12) 2002; 269 Bordoloi (10.1016/j.still.2023.105794_bib4) 2020; 729 Tang (10.1016/j.still.2023.105794_bib32) 2011; 166 Wang (10.1016/j.still.2023.105794_bib35) 2018; 238 Gerke (10.1016/j.still.2023.105794_bib11) 2006; 169 Svensson (10.1016/j.still.2023.105794_bib31) 2018; 559 Yan (10.1016/j.still.2023.105794_bib41) 2021; 16 Louati (10.1016/j.still.2023.105794_bib20) 2022; 26 Zhang (10.1016/j.still.2023.105794_bib46) 2014; 228–229 Hardie (10.1016/j.still.2023.105794_bib14) 2011; 398 Li (10.1016/j.still.2023.105794_bib18) 2009 Song (10.1016/j.still.2023.105794_bib29) 2020; 266 Zhu (10.1016/j.still.2023.105794_bib48) 2018; 2018 Diel (10.1016/j.still.2023.105794_bib6) 2019; 345 Bonnet (10.1016/j.still.2023.105794_bib3) 2001; 39 van Genuchten (10.1016/j.still.2023.105794_bib10) 1980; 44 Poulsen (10.1016/j.still.2023.105794_bib25) 2020; 71 Peng (10.1016/j.still.2023.105794_bib24) 2016; 80 Baer (10.1016/j.still.2023.105794_bib2) 2009; 154 Olesen (10.1016/j.still.2023.105794_bib23) 2013; 117 Xing (10.1016/j.still.2023.105794_bib40) 2022; 53 Zhang (10.1016/j.still.2023.105794_bib47) 2015; 146 Wang (10.1016/j.still.2023.105794_bib37) 2020; 53 Qi (10.1016/j.still.2023.105794_bib26) 2020; 358 Xing (10.1016/j.still.2023.105794_bib39) 2017; 167 Wang (10.1016/j.still.2023.105794_bib38) 2023 Luo (10.1016/j.still.2023.105794_bib21) 2021; 400 Cheng (10.1016/j.still.2023.105794_bib5) 2021; 593 Einstein (10.1016/j.still.2023.105794_bib7) 1983; 16 van Stiphout (10.1016/j.still.2023.105794_bib30) 1987; 95 Gadi (10.1016/j.still.2023.105794_bib9) 2020; 38 |
References_xml | – volume: 105 start-page: 155 year: 2019 end-page: 167 ident: bib17 article-title: Numerical and experimental study of initiation and propagation of desiccation cracks in clayey soils publication-title: Comput. Geotech. – volume: 203 year: 2020 ident: bib19 article-title: The effect of fracture properties on preferential flow in carbonate-derived laterite from karst mountainous agroforestry lands publication-title: Soil Tillage Res. – year: 2009 ident: bib18 article-title: Field experimental study and numerical simulation of seepage in saturated/unsaturated cracked soil publication-title: Diss. Theses – Gradworks – volume: 170 start-page: 1 year: 2017 end-page: 13 ident: bib34 article-title: Geometric and fractal analysis of dynamic cracking patterns subjected to wetting-drying cycles publication-title: Soil Tillage Res. – volume: 117 year: 2020 ident: bib44 article-title: Shallow slope stability evolution during rainwater infiltration considering soil cracking state publication-title: Comput. Geotech. – volume: 398 start-page: 191 year: 2011 end-page: 201 ident: bib14 article-title: Effect of antecedent soil moisture on preferential flow in a texture-contrast soil publication-title: J. Hydrol. – volume: 167 start-page: 61 year: 2017 end-page: 72 ident: bib39 article-title: Differences in loam water retention and shrinkage behavior: effects of various types and concentrations of salt ions publication-title: Soil Tillage Res. – volume: 2018 start-page: 7056858 year: 2018 ident: bib48 article-title: Experimental and numerical investigations of influence on overland flow and water infiltration by fracture networks in soil publication-title: Geofluids – volume: 16 start-page: 39 year: 1983 end-page: 72 ident: bib7 article-title: Probabilistic and statistical methods in engineering geology publication-title: Rock. Mech. Rock. Eng. – volume: 559 start-page: 182 year: 2018 end-page: 191 ident: bib31 article-title: Modelling the diffusion-available pore space of an unaltered granitic rock matrix using a micro-DFN approach publication-title: J. Hydrol. – volume: 302 year: 2022 ident: bib33 article-title: Effects of compaction state on desiccation cracking behaviour of a clayey soil subjected to wetting-drying cycles publication-title: Eng. Geol. – year: 2023 ident: bib38 article-title: Exploring the application of the MICP technique for the suppression of erosion in granite residual soil in Shantou using a rainfall erosion simulator publication-title: Acta Geotech. – volume: 26 start-page: 7383 year: 2022 end-page: 7399 ident: bib20 article-title: Flow exchange and unsaturated permeability of cracked clay: experimental and modelling publication-title: Eur. J. Environ. Civ. Eng. – volume: 593 year: 2021 ident: bib5 article-title: Water infiltration in a cracked soil considering effect of drying-wetting cycles publication-title: J. Hydrol. – volume: 44 start-page: 892 year: 1980 end-page: 898 ident: bib10 article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils publication-title: Soil Sci. Soc. Am. J. – volume: 393 start-page: 105 year: 2010 end-page: 113 ident: bib13 article-title: Investigations of soil cracking and preferential flow in a weighing lysimeter filled with cracking clay soil publication-title: J. Hydrol. – volume: 10 start-page: 16 year: 2009 end-page: 33 ident: bib1 article-title: The impact of various sprinkler irrigation patterns on spatial soil moisture variation in Vertisols publication-title: Precis. Agric. – volume: 39 start-page: 347 year: 2001 end-page: 383 ident: bib3 article-title: Scaling of fracture systems in geological media publication-title: Rev. Geophys. – volume: 152 start-page: 301 year: 2009 end-page: 313 ident: bib16 article-title: A mesopore and matrix infiltration model based on soil structure publication-title: Geoderma – volume: 169 start-page: 382 year: 2006 end-page: 400 ident: bib11 article-title: Preferential flow descriptions for structured soils publication-title: J. Plant Nutr. Soil Sci. – volume: 95 start-page: 1 year: 1987 end-page: 11 ident: bib30 article-title: The effect of bypass flow and internal catchment of rain on the water regime in a clay loam grassland soil publication-title: J. Hydrol. – volume: 16 start-page: 2609 year: 2021 end-page: 2628 ident: bib41 article-title: A 2d fdem-based moisture diffusion–fracture coupling model for simulating soil desiccation cracking publication-title: Acta Geotech. – volume: 253 year: 2021 ident: bib27 article-title: Application of equivalent circle and ellipse for pore shape modeling in crack growth problem: a numerical investigation in microscale publication-title: Eng. Fract. Mech. – volume: 400 year: 2021 ident: bib21 article-title: Investigation and prediction of water infiltration process in cracked soils based on a full-scale model test publication-title: Geoderma – volume: 508 start-page: 137 year: 2014 end-page: 146 ident: bib28 article-title: Investigation into preferential flow in natural unsaturated soils with field multiple-tracer infiltration experiments and the active region model publication-title: J. Hydrol. – volume: 166 start-page: 111 year: 2011 end-page: 118 ident: bib32 article-title: Desiccation and cracking behaviour of clay layer from slurry state under wetting-drying cycles publication-title: Geoderma – volume: 43 start-page: 1184 year: 2019 end-page: 1206 ident: bib36 article-title: 3D stability of unsaturated soil slopes with tension cracks under steady infiltrations publication-title: Int. J. Numer. Anal. Methods Geomech. – volume: 729 year: 2020 ident: bib4 article-title: Soil desiccation cracking and its characterization in vegetated soil: A perspective review publication-title: Sci. Total Environ. – volume: 80 start-page: 1145 year: 2016 end-page: 1156 ident: bib24 article-title: Linking soil shrinkage behavior and cracking in two paddy soils as affected by wetting and drying cycles publication-title: Soil Sci. Soc. Am. J. – volume: 53 start-page: 1053 year: 2020 end-page: 1077 ident: bib37 article-title: A DFN-DEM multi-scale modeling approach for simulating tunnel excavation response in jointed rock masses publication-title: Rock. Mech. Rock. Eng. – volume: 345 start-page: 63 year: 2019 end-page: 71 ident: bib6 article-title: Impact of wetting and drying cycles on soil structure dynamics publication-title: Geoderma – year: 1993 ident: bib8 article-title: Statistical analysis of circular data – volume: 266 year: 2020 ident: bib29 article-title: Modelling of water evaporation from cracked clayey soil publication-title: Eng. Geol. – volume: 228–229 start-page: 114 year: 2014 end-page: 121 ident: bib46 article-title: Characteristics of cracks in two paddy soils and their impacts on preferential flow publication-title: Geoderma – volume: 71 start-page: 627 year: 2020 end-page: 640 ident: bib25 article-title: Water evaporation from cracked soil under moist conditions as related to crack properties and near-surface wind speed publication-title: Eur. J. Soil Sci. – volume: 121 year: 2020 ident: bib43 article-title: Simulation-based investigation on the accuracy of discrete fracture network (DFN) representation publication-title: Comput. Geotech. – volume: 38 start-page: 935 year: 2020 end-page: 946 ident: bib9 article-title: Modeling soil-crack–water–atmospheric interactions: a novel root water uptake approach to simulate the evaporation through cracked soil and experimental validation publication-title: Geotech. Geol. Eng. – volume: 117 start-page: 1 year: 2013 end-page: 9 ident: bib23 article-title: An embedded crack in a constant strain triangle utilizing extended finite element concepts publication-title: Comput. Struct. – volume: 98–99 start-page: 501 year: 1999 end-page: 507 ident: bib22 article-title: Soil-crack characteristics-estimation methods applied to heavy soils in the NOPEX area publication-title: Agric. For. Meteorol. – volume: 154 start-page: 153 year: 2009 end-page: 163 ident: bib2 article-title: Image analysis and fractal geometry to characterize soil desiccation cracks publication-title: Geoderma – volume: 146 start-page: 53 year: 2015 end-page: 65 ident: bib47 article-title: Characterizing preferential flow in cracked paddy soils using computed tomography and breakthrough curve publication-title: Soil Tillage Res. – volume: 53 start-page: 1930 year: 2022 end-page: 1941 ident: bib40 article-title: Interactions between water evaporation and surface cracking in NaCl-induced homogeneous silt loam and sand publication-title: Commun. Soil Sci. Plant Anal. – volume: 269 start-page: 150 year: 2002 end-page: 168 ident: bib12 article-title: Preferential flow in macroporous swelling soil with internal catchment: model development and applications publication-title: J. Hydrol. – volume: 85 start-page: 151 year: 2017 end-page: 176 ident: bib15 article-title: The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks publication-title: Comput. Geotech. – volume: 364 year: 2020 ident: bib45 article-title: Effect of biochar on desiccation cracking characteristics of clayey soils publication-title: Geoderma – volume: 238 start-page: 27 year: 2018 end-page: 35 ident: bib35 article-title: Nucleation and propagation mechanisms of soil desiccation cracks publication-title: Eng. Geol. – volume: 358 year: 2020 ident: bib26 article-title: Crack closure and flow regimes in cracked clay loam subjected to different irrigation methods publication-title: Geoderma – volume: 22 start-page: 2503 year: 2022 end-page: 2519 ident: bib42 article-title: Performances of evaporation and desiccation cracking characteristics for attapulgite soils publication-title: J. Soil Sci. Plant Nutr. – volume: 105 start-page: 155 year: 2019 ident: 10.1016/j.still.2023.105794_bib17 article-title: Numerical and experimental study of initiation and propagation of desiccation cracks in clayey soils publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2018.09.015 – volume: 10 start-page: 16 issue: 1 year: 2009 ident: 10.1016/j.still.2023.105794_bib1 article-title: The impact of various sprinkler irrigation patterns on spatial soil moisture variation in Vertisols publication-title: Precis. Agric. doi: 10.1007/s11119-008-9102-0 – volume: 593 year: 2021 ident: 10.1016/j.still.2023.105794_bib5 article-title: Water infiltration in a cracked soil considering effect of drying-wetting cycles publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125640 – volume: 154 start-page: 153 issue: 1 year: 2009 ident: 10.1016/j.still.2023.105794_bib2 article-title: Image analysis and fractal geometry to characterize soil desiccation cracks publication-title: Geoderma doi: 10.1016/j.geoderma.2009.10.008 – volume: 22 start-page: 2503 issue: 2 year: 2022 ident: 10.1016/j.still.2023.105794_bib42 article-title: Performances of evaporation and desiccation cracking characteristics for attapulgite soils publication-title: J. Soil Sci. Plant Nutr. doi: 10.1007/s42729-022-00823-x – volume: 167 start-page: 61 year: 2017 ident: 10.1016/j.still.2023.105794_bib39 article-title: Differences in loam water retention and shrinkage behavior: effects of various types and concentrations of salt ions publication-title: Soil Tillage Res. doi: 10.1016/j.still.2016.11.005 – volume: 121 year: 2020 ident: 10.1016/j.still.2023.105794_bib43 article-title: Simulation-based investigation on the accuracy of discrete fracture network (DFN) representation publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2020.103487 – volume: 238 start-page: 27 year: 2018 ident: 10.1016/j.still.2023.105794_bib35 article-title: Nucleation and propagation mechanisms of soil desiccation cracks publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2018.03.004 – volume: 400 year: 2021 ident: 10.1016/j.still.2023.105794_bib21 article-title: Investigation and prediction of water infiltration process in cracked soils based on a full-scale model test publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115111 – volume: 266 year: 2020 ident: 10.1016/j.still.2023.105794_bib29 article-title: Modelling of water evaporation from cracked clayey soil publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2019.105465 – volume: 53 start-page: 1053 issue: 3 year: 2020 ident: 10.1016/j.still.2023.105794_bib37 article-title: A DFN-DEM multi-scale modeling approach for simulating tunnel excavation response in jointed rock masses publication-title: Rock. Mech. Rock. Eng. doi: 10.1007/s00603-019-01957-8 – volume: 44 start-page: 892 issue: 5 year: 1980 ident: 10.1016/j.still.2023.105794_bib10 article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1980.03615995004400050002x – volume: 39 start-page: 347 issue: 3 year: 2001 ident: 10.1016/j.still.2023.105794_bib3 article-title: Scaling of fracture systems in geological media publication-title: Rev. Geophys. doi: 10.1029/1999RG000074 – volume: 95 start-page: 1 issue: 1 year: 1987 ident: 10.1016/j.still.2023.105794_bib30 article-title: The effect of bypass flow and internal catchment of rain on the water regime in a clay loam grassland soil publication-title: J. Hydrol. doi: 10.1016/0022-1694(87)90111-9 – volume: 85 start-page: 151 year: 2017 ident: 10.1016/j.still.2023.105794_bib15 article-title: The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2016.12.024 – volume: 358 year: 2020 ident: 10.1016/j.still.2023.105794_bib26 article-title: Crack closure and flow regimes in cracked clay loam subjected to different irrigation methods publication-title: Geoderma doi: 10.1016/j.geoderma.2019.113978 – volume: 559 start-page: 182 year: 2018 ident: 10.1016/j.still.2023.105794_bib31 article-title: Modelling the diffusion-available pore space of an unaltered granitic rock matrix using a micro-DFN approach publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.02.041 – volume: 170 start-page: 1 year: 2017 ident: 10.1016/j.still.2023.105794_bib34 article-title: Geometric and fractal analysis of dynamic cracking patterns subjected to wetting-drying cycles publication-title: Soil Tillage Res. doi: 10.1016/j.still.2017.02.005 – volume: 152 start-page: 301 issue: 3 year: 2009 ident: 10.1016/j.still.2023.105794_bib16 article-title: A mesopore and matrix infiltration model based on soil structure publication-title: Geoderma doi: 10.1016/j.geoderma.2009.06.016 – volume: 393 start-page: 105 issue: 1 year: 2010 ident: 10.1016/j.still.2023.105794_bib13 article-title: Investigations of soil cracking and preferential flow in a weighing lysimeter filled with cracking clay soil publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.03.007 – volume: 345 start-page: 63 year: 2019 ident: 10.1016/j.still.2023.105794_bib6 article-title: Impact of wetting and drying cycles on soil structure dynamics publication-title: Geoderma doi: 10.1016/j.geoderma.2019.03.018 – year: 2009 ident: 10.1016/j.still.2023.105794_bib18 article-title: Field experimental study and numerical simulation of seepage in saturated/unsaturated cracked soil publication-title: Diss. Theses – Gradworks – volume: 26 start-page: 7383 issue: 15 year: 2022 ident: 10.1016/j.still.2023.105794_bib20 article-title: Flow exchange and unsaturated permeability of cracked clay: experimental and modelling publication-title: Eur. J. Environ. Civ. Eng. doi: 10.1080/19648189.2021.1989051 – volume: 98–99 start-page: 501 year: 1999 ident: 10.1016/j.still.2023.105794_bib22 article-title: Soil-crack characteristics-estimation methods applied to heavy soils in the NOPEX area publication-title: Agric. For. Meteorol. doi: 10.1016/S0168-1923(99)00119-7 – volume: 508 start-page: 137 year: 2014 ident: 10.1016/j.still.2023.105794_bib28 article-title: Investigation into preferential flow in natural unsaturated soils with field multiple-tracer infiltration experiments and the active region model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.10.048 – volume: 146 start-page: 53 year: 2015 ident: 10.1016/j.still.2023.105794_bib47 article-title: Characterizing preferential flow in cracked paddy soils using computed tomography and breakthrough curve publication-title: Soil Tillage Res. doi: 10.1016/j.still.2014.05.016 – volume: 16 start-page: 2609 issue: 8 year: 2021 ident: 10.1016/j.still.2023.105794_bib41 article-title: A 2d fdem-based moisture diffusion–fracture coupling model for simulating soil desiccation cracking publication-title: Acta Geotech. doi: 10.1007/s11440-021-01297-4 – volume: 117 start-page: 1 year: 2013 ident: 10.1016/j.still.2023.105794_bib23 article-title: An embedded crack in a constant strain triangle utilizing extended finite element concepts publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.11.006 – volume: 169 start-page: 382 issue: 3 year: 2006 ident: 10.1016/j.still.2023.105794_bib11 article-title: Preferential flow descriptions for structured soils publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.200521955 – volume: 398 start-page: 191 issue: 3 year: 2011 ident: 10.1016/j.still.2023.105794_bib14 article-title: Effect of antecedent soil moisture on preferential flow in a texture-contrast soil publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.12.008 – year: 2023 ident: 10.1016/j.still.2023.105794_bib38 article-title: Exploring the application of the MICP technique for the suppression of erosion in granite residual soil in Shantou using a rainfall erosion simulator publication-title: Acta Geotech. – volume: 729 year: 2020 ident: 10.1016/j.still.2023.105794_bib4 article-title: Soil desiccation cracking and its characterization in vegetated soil: A perspective review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138760 – volume: 38 start-page: 935 issue: 1 year: 2020 ident: 10.1016/j.still.2023.105794_bib9 article-title: Modeling soil-crack–water–atmospheric interactions: a novel root water uptake approach to simulate the evaporation through cracked soil and experimental validation publication-title: Geotech. Geol. Eng. doi: 10.1007/s10706-019-01026-5 – volume: 2018 start-page: 7056858 year: 2018 ident: 10.1016/j.still.2023.105794_bib48 article-title: Experimental and numerical investigations of influence on overland flow and water infiltration by fracture networks in soil publication-title: Geofluids doi: 10.1155/2018/7056858 – volume: 269 start-page: 150 issue: 3 year: 2002 ident: 10.1016/j.still.2023.105794_bib12 article-title: Preferential flow in macroporous swelling soil with internal catchment: model development and applications publication-title: J. Hydrol. doi: 10.1016/S0022-1694(02)00215-9 – volume: 302 year: 2022 ident: 10.1016/j.still.2023.105794_bib33 article-title: Effects of compaction state on desiccation cracking behaviour of a clayey soil subjected to wetting-drying cycles publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2022.106650 – volume: 80 start-page: 1145 issue: 5 year: 2016 ident: 10.1016/j.still.2023.105794_bib24 article-title: Linking soil shrinkage behavior and cracking in two paddy soils as affected by wetting and drying cycles publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2015.07.0273 – volume: 53 start-page: 1930 issue: 15 year: 2022 ident: 10.1016/j.still.2023.105794_bib40 article-title: Interactions between water evaporation and surface cracking in NaCl-induced homogeneous silt loam and sand publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103624.2022.2069801 – volume: 203 year: 2020 ident: 10.1016/j.still.2023.105794_bib19 article-title: The effect of fracture properties on preferential flow in carbonate-derived laterite from karst mountainous agroforestry lands publication-title: Soil Tillage Res. doi: 10.1016/j.still.2020.104670 – volume: 117 year: 2020 ident: 10.1016/j.still.2023.105794_bib44 article-title: Shallow slope stability evolution during rainwater infiltration considering soil cracking state publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2019.103285 – volume: 364 year: 2020 ident: 10.1016/j.still.2023.105794_bib45 article-title: Effect of biochar on desiccation cracking characteristics of clayey soils publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114182 – volume: 253 year: 2021 ident: 10.1016/j.still.2023.105794_bib27 article-title: Application of equivalent circle and ellipse for pore shape modeling in crack growth problem: a numerical investigation in microscale publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2021.107882 – volume: 166 start-page: 111 issue: 1 year: 2011 ident: 10.1016/j.still.2023.105794_bib32 article-title: Desiccation and cracking behaviour of clay layer from slurry state under wetting-drying cycles publication-title: Geoderma doi: 10.1016/j.geoderma.2011.07.018 – volume: 228–229 start-page: 114 year: 2014 ident: 10.1016/j.still.2023.105794_bib46 article-title: Characteristics of cracks in two paddy soils and their impacts on preferential flow publication-title: Geoderma doi: 10.1016/j.geoderma.2013.07.026 – year: 1993 ident: 10.1016/j.still.2023.105794_bib8 – volume: 16 start-page: 39 issue: 1 year: 1983 ident: 10.1016/j.still.2023.105794_bib7 article-title: Probabilistic and statistical methods in engineering geology publication-title: Rock. Mech. Rock. Eng. doi: 10.1007/BF01030217 – volume: 71 start-page: 627 issue: 4 year: 2020 ident: 10.1016/j.still.2023.105794_bib25 article-title: Water evaporation from cracked soil under moist conditions as related to crack properties and near-surface wind speed publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12926 – volume: 43 start-page: 1184 issue: 6 year: 2019 ident: 10.1016/j.still.2023.105794_bib36 article-title: 3D stability of unsaturated soil slopes with tension cracks under steady infiltrations publication-title: Int. J. Numer. Anal. Methods Geomech. doi: 10.1002/nag.2889 |
SSID | ssj0004328 |
Score | 2.4405596 |
Snippet | Soil cracks generated in natural fields will change soil structure and provide pathways for preferential flow. Although most simulations have focused on the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105794 |
SubjectTerms | Crack closure Deformable/non-deformable cracked soil Discrete crack network domain finite element analysis mathematical models preferential flow soil cracks soil structure tillage water flow Water infiltration |
Title | A numerical approach for modeling crack closure and infiltrated flow in cracked soils |
URI | https://dx.doi.org/10.1016/j.still.2023.105794 https://www.proquest.com/docview/2849897204 |
Volume | 233 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaqcmEPiMciyqMyEscNbezJw8eooiogeoFKvVl-rgpRUvUhbvvbd-wkIJDogaMt24rG45nPmfE3hLzjpZlnzJuEZSVeUBCyJxodV5KmOmUairx79f5lna828GmbbUdkMbyFCWmVve3vbHq01n3PrJfmbL_bzb6GBPpwZUYQHXBLeFEOuDjq9Pu732kewGN91cjvHUYPzEMxxwtPUR3iD4zHercC_uWd_rLT0fksH5NHPWqkVfdhT8jINU_JVXV76Jkz3DOyqWhz7sIvNR2YwilCUhqL3aCHouagzA9q6jb8FaSqsRTVa1dHflpLfd3-xI5uFLaP7a4-XpPN8sO3xSrpayYkhvP8lAD3GSieK-5AzQWKhlnAZuktaG2ycs6U4sZ6cCBcYHZRecGs9YX2WgjFn5Nx0zbuBaHgC89Sx0CJDDyzIteAvkwUFlFbAWpC2CAraXpC8VDXopZD5th3GQUsg4BlJ-AJufk1ad_xaVweng-bIP9QC4kW__LEt8OWSTwwIQqiGteejxL9sShFqM3z8n8Xf0UehlaXavaajE-Hs3uD2OSkp1H5puRB9fHzan0Pf1XipA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5dByQFBa8caVemy0u7bz8HGFQMtrL7ASN8vPaiFK0D7E32fsJEVFggNHO54oGtszn-OZbwB-s8IMUupNQtMCDygI2RONjisZDvWQap5nTdb7zSQbT_nlfXq_BqddLkwIq2xtf2PTo7Vue_qtNvtPs1n_NgTQhyMzguiAW_IvsB7YqdIerI8ursaT1_RIFkusRorvINCRD8UwL9xIZbiCoCyWvBX8PQf1xlRH_3O-BZstcCSj5tu2Yc1V32Fj9Hfekme4HZiOSLVqbmBK0pGFE0SlJNa7QSdFzFyZR2LKOvwYJKqyBFfYrIwUtZb4sn7GjmYUthf1rFz8gOn52d3pOGnLJiSGsWyZcOZTrlimmONqIFA71HJsFt5yrU1aDKhSzFjPHRcukLuoLKfW-lx7LYRiP6FX1ZXbBcJ97unQUa5Eyj21ItMc3ZnILQK3nKs9oJ2upGk5xUNpi1J2wWMPMipYBgXLRsF78Oef0FNDqfHx8KybBPnfypBo9D8W_NVNmcQ9Ey5CVOXq1UKiSxaFCOV59j_78hP4Or67uZbXF5OrA_gWnjSRZ4fQW85X7gihylIft0vxBUo75VU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+approach+for+modeling+crack+closure+and+infiltrated+flow+in+cracked+soils&rft.jtitle=Soil+%26+tillage+research&rft.au=Xing%2C+Xuguang&rft.au=Nie%2C+Weibo&rft.au=Chang%2C+Kai&rft.au=Zhao%2C+Long&rft.date=2023-09-01&rft.pub=Elsevier+B.V&rft.issn=0167-1987&rft.eissn=1879-3444&rft.volume=233&rft_id=info:doi/10.1016%2Fj.still.2023.105794&rft.externalDocID=S0167198723001617 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-1987&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-1987&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-1987&client=summon |