Long-term rotation and tillage effects on soil structure and crop yield

► Positive effect of diverse rotation on soil structural quality. ► Diverse crop rotation needed for optimal performance of no tilled soil. ► Crop yield correlated significantly with the visual soil structure scores. Tillage and rotation are fundamental factors influencing soil quality and thus the...

Full description

Saved in:
Bibliographic Details
Published inSoil & tillage research Vol. 127; pp. 85 - 91
Main Authors Munkholm, Lars J., Heck, Richard J., Deen, Bill
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► Positive effect of diverse rotation on soil structural quality. ► Diverse crop rotation needed for optimal performance of no tilled soil. ► Crop yield correlated significantly with the visual soil structure scores. Tillage and rotation are fundamental factors influencing soil quality and thus the sustainability of cropping systems. Many studies have focused on the effects of either tillage or rotation, but few have quantified the long term integrated effects of both. We studied the issue using a 30-year old long-term rotation and tillage treatment experiment on a Canadian silt loam soil. Topsoil measurements were carried out for three different rotations: R1, (C–C–C–C) continuous corn (Zea mays L.), R6, (C–C–O(RC), B(RC)) corn, corn, oats (Avena fatua L.) and spring barley (Hordeum vulgare L.) and R8, (C–C–S–S) corn, corn, soybean (Glycine max L.), soybean. A red clover (Trifolium pretense L.) cover crop was under seeded in oats and spring barley in R6. In 2010, first year corn was grown in R6 and R8. The tillage treatments included no tillage, NT and mouldboard ploughing, MP. Topsoil structural quality was visually evaluated in early June and mid October. Minimal disturbed soil cores collected in early June were used for X-ray CT scanning and to quantify water content and porosity. Soil friability was determined on the soil samples using a drop shatter test. Crop yield was determined and correlated to the soil quality estimates. We found significant effect of both rotation and tillage on visual soil structure at both times of assessment. Poor soil structure was found for NT except when combined with a diverse crop rotation (R6). The soil core pore characteristics data also displayed a significant effect of tillage but only a weak insignificant effect of rotation. The drop shatter results were in accordance with the visual assessment data. Crop yield correlated significantly with the visual soil structure scores. We conclude that a diverse crop rotation was needed for an optimal performance of NT for the studied soil.
AbstractList Tillage and rotation are fundamental factors influencing soil quality and thus the sustainability of cropping systems. Many studies have focused on the effects of either tillage or rotation, but few have quantified the long term integrated effects of both. We studied the issue using a 30-year old long-term rotation and tillage treatment experiment on a Canadian silt loam soil. Topsoil measurements were carried out for three different rotations: R1, (C–C–C–C) continuous corn (Zea mays L.), R6, (C–C–O(RC), B(RC)) corn, corn, oats (Avena fatua L.) and spring barley (Hordeum vulgare L.) and R8, (C–C–S–S) corn, corn, soybean (Glycine max L.), soybean. A red clover (Trifolium pretense L.) cover crop was under seeded in oats and spring barley in R6. In 2010, first year corn was grown in R6 and R8. The tillage treatments included no tillage, NT and mouldboard ploughing, MP. Topsoil structural quality was visually evaluated in early June and mid October. Minimal disturbed soil cores collected in early June were used for X-ray CT scanning and to quantify water content and porosity. Soil friability was determined on the soil samples using a drop shatter test. Crop yield was determined and correlated to the soil quality estimates. We found significant effect of both rotation and tillage on visual soil structure at both times of assessment. Poor soil structure was found for NT except when combined with a diverse crop rotation (R6). The soil core pore characteristics data also displayed a significant effect of tillage but only a weak insignificant effect of rotation. The drop shatter results were in accordance with the visual assessment data. Crop yield correlated significantly with the visual soil structure scores. We conclude that a diverse crop rotation was needed for an optimal performance of NT for the studied soil.
► Positive effect of diverse rotation on soil structural quality. ► Diverse crop rotation needed for optimal performance of no tilled soil. ► Crop yield correlated significantly with the visual soil structure scores. Tillage and rotation are fundamental factors influencing soil quality and thus the sustainability of cropping systems. Many studies have focused on the effects of either tillage or rotation, but few have quantified the long term integrated effects of both. We studied the issue using a 30-year old long-term rotation and tillage treatment experiment on a Canadian silt loam soil. Topsoil measurements were carried out for three different rotations: R1, (C–C–C–C) continuous corn (Zea mays L.), R6, (C–C–O(RC), B(RC)) corn, corn, oats (Avena fatua L.) and spring barley (Hordeum vulgare L.) and R8, (C–C–S–S) corn, corn, soybean (Glycine max L.), soybean. A red clover (Trifolium pretense L.) cover crop was under seeded in oats and spring barley in R6. In 2010, first year corn was grown in R6 and R8. The tillage treatments included no tillage, NT and mouldboard ploughing, MP. Topsoil structural quality was visually evaluated in early June and mid October. Minimal disturbed soil cores collected in early June were used for X-ray CT scanning and to quantify water content and porosity. Soil friability was determined on the soil samples using a drop shatter test. Crop yield was determined and correlated to the soil quality estimates. We found significant effect of both rotation and tillage on visual soil structure at both times of assessment. Poor soil structure was found for NT except when combined with a diverse crop rotation (R6). The soil core pore characteristics data also displayed a significant effect of tillage but only a weak insignificant effect of rotation. The drop shatter results were in accordance with the visual assessment data. Crop yield correlated significantly with the visual soil structure scores. We conclude that a diverse crop rotation was needed for an optimal performance of NT for the studied soil.
Author Deen, Bill
Heck, Richard J.
Munkholm, Lars J.
Author_xml – sequence: 1
  givenname: Lars J.
  surname: Munkholm
  fullname: Munkholm, Lars J.
  email: lars.munkholm@agrsci.dk
  organization: Aarhus University, Department of. Agroecology, PO Box 50, DK-8830 Tjele, Denmark
– sequence: 2
  givenname: Richard J.
  surname: Heck
  fullname: Heck, Richard J.
  organization: University of Guelph, School of Environmental Sciences, Guelph, ON, Canada N1G 2W1
– sequence: 3
  givenname: Bill
  surname: Deen
  fullname: Deen, Bill
  organization: University of Guelph, Department of Plant Agriculture, Guelph, ON, Canada N1G 2W1
BookMark eNqFkEFLwzAUx4NMcJt-Ai89emlNmixpDh5k6BQKXvQc2uR1ZHTNTFJh395s9eRB4cGDx__35_FboNngBkDoluCCYMLvd0WItu-LEpOywGmwuEBzUgmZU8bYDM1TSuREVuIKLULYYYwZLas52tRu2OYR_D7zLjbRuiFrBpOd6potZNB1oGPI0jk422ch-lHH0cM5pb07ZEcLvblGl13TB7j52Uv08fz0vn7J67fN6_qxzjWlPOaMcqiw5IbLSuqyLAk0oiVMSuByRYUxvO0EIZJpTNqWSCKM0NWKt1J0nTZ0ie6m3oN3nyOEqPY2aEjPDuDGoAhLXauKS5qidIqmL0Pw0KmDt_vGHxXB6qRN7dRZmzppUzgNFomSvyhtJy_RN7b_h32YWEgGvix4FbSFQYOxPllUxtk_-W9BSIv_
CitedBy_id crossref_primary_10_1007_s11368_023_03596_7
crossref_primary_10_1007_s00374_014_0929_4
crossref_primary_10_3390_agronomy12051092
crossref_primary_10_1016_j_scitotenv_2024_173067
crossref_primary_10_20914_2310_1202_2023_1_118_126
crossref_primary_10_4236_ojss_2016_62004
crossref_primary_10_1016_j_still_2021_105310
crossref_primary_10_1002_ldr_3619
crossref_primary_10_1016_j_still_2017_01_013
crossref_primary_10_1016_j_geoderma_2021_115306
crossref_primary_10_1016_j_still_2015_01_010
crossref_primary_10_1111_sum_12300
crossref_primary_10_2478_ata_2023_0004
crossref_primary_10_1139_cjss_2021_0003
crossref_primary_10_1016_j_still_2012_11_003
crossref_primary_10_3390_soils1010005
crossref_primary_10_3390_plants7010016
crossref_primary_10_1002_saj2_20716
crossref_primary_10_1016_j_geoderma_2017_02_013
crossref_primary_10_1016_j_eja_2018_01_003
crossref_primary_10_1371_journal_pone_0113261
crossref_primary_10_1111_sum_13063
crossref_primary_10_1016_j_still_2017_01_016
crossref_primary_10_1002_agg2_20105
crossref_primary_10_3390_agronomy13092395
crossref_primary_10_3390_agronomy13020449
crossref_primary_10_3390_agronomy14091968
crossref_primary_10_2136_sssaj2013_07_0301
crossref_primary_10_1111_sum_12418
crossref_primary_10_18380_SZIE_COLUM_2022_9_2_145
crossref_primary_10_1016_j_agee_2023_108600
crossref_primary_10_1016_j_scitotenv_2024_171782
crossref_primary_10_1016_j_still_2019_05_003
crossref_primary_10_1016_j_still_2015_05_006
crossref_primary_10_3390_agronomy12030613
crossref_primary_10_1590_18069657rbcs20170408
crossref_primary_10_1016_j_eja_2024_127131
crossref_primary_10_2134_jeq2015_06_0331
crossref_primary_10_3390_su141811651
crossref_primary_10_1080_21683565_2021_2019167
crossref_primary_10_1016_j_agsy_2015_05_008
crossref_primary_10_3389_fenvs_2024_1404971
crossref_primary_10_1016_j_fcr_2015_11_005
crossref_primary_10_2136_sssaj2014_02_0069
crossref_primary_10_1016_j_geodrs_2022_e00597
crossref_primary_10_1007_s11104_016_3121_9
crossref_primary_10_1071_SR18210
crossref_primary_10_3390_agronomy13061567
crossref_primary_10_1155_2021_5113453
crossref_primary_10_1016_j_fcr_2021_108080
crossref_primary_10_1016_j_scitotenv_2021_145107
crossref_primary_10_1016_j_still_2014_03_006
crossref_primary_10_1016_j_soilbio_2022_108584
crossref_primary_10_1016_j_agrformet_2024_110370
crossref_primary_10_1016_j_jclepro_2022_135437
crossref_primary_10_1111_sum_12554
crossref_primary_10_1016_j_fcr_2024_109276
crossref_primary_10_1111_aab_12488
crossref_primary_10_3390_su10072213
crossref_primary_10_1016_j_geoderma_2015_11_001
crossref_primary_10_1016_j_geoderma_2017_11_003
crossref_primary_10_1016_j_still_2022_105592
crossref_primary_10_1007_s12155_014_9409_9
crossref_primary_10_1016_j_still_2016_10_014
crossref_primary_10_1002_ldr_2726
crossref_primary_10_1016_j_still_2023_105872
crossref_primary_10_1080_00380768_2020_1779571
crossref_primary_10_1371_journal_pone_0175934
crossref_primary_10_1016_j_eja_2018_07_009
crossref_primary_10_2134_age2019_03_0017
crossref_primary_10_1016_j_soilbio_2020_108057
crossref_primary_10_1016_j_still_2018_12_019
crossref_primary_10_5194_soil_2_523_2016
crossref_primary_10_1016_j_geoderma_2018_03_011
crossref_primary_10_1590_18069657rbcs20170270
crossref_primary_10_1002_saj2_20631
crossref_primary_10_4141_cjss2013_093
crossref_primary_10_4141_cjss2013_094
crossref_primary_10_1016_j_still_2016_07_006
crossref_primary_10_1016_j_eja_2023_126906
crossref_primary_10_1016_j_tjnut_2022_10_016
crossref_primary_10_3389_fmicb_2021_759374
crossref_primary_10_1016_j_still_2023_105988
crossref_primary_10_3390_agronomy12102340
crossref_primary_10_1002_agj2_20605
crossref_primary_10_1111_ejss_13479
crossref_primary_10_1002_bbb_1429
crossref_primary_10_3390_soilsystems7040090
crossref_primary_10_1007_s10980_019_00823_w
crossref_primary_10_1016_j_agee_2017_07_018
crossref_primary_10_1016_j_apgeog_2024_103484
crossref_primary_10_1016_j_still_2021_105295
crossref_primary_10_1016_j_still_2024_106347
crossref_primary_10_1017_S1742170520000320
crossref_primary_10_1016_j_agee_2024_109370
crossref_primary_10_1016_j_still_2018_12_002
crossref_primary_10_1017_S1742170525000055
crossref_primary_10_1016_j_still_2016_08_011
crossref_primary_10_1111_sum_12400
crossref_primary_10_1007_s42853_021_00117_7
crossref_primary_10_1016_j_scitotenv_2022_154316
crossref_primary_10_3390_agriculture14040643
crossref_primary_10_3389_fenvs_2018_00050
crossref_primary_10_1016_j_still_2016_03_006
crossref_primary_10_1016_j_geoderma_2013_08_037
crossref_primary_10_1016_j_rhisph_2025_101038
crossref_primary_10_1016_j_geodrs_2017_11_001
crossref_primary_10_13080_z_a_2018_105_001
crossref_primary_10_1016_j_still_2014_04_006
crossref_primary_10_1016_j_fcr_2024_109598
crossref_primary_10_1016_j_agee_2015_04_034
crossref_primary_10_1016_j_jclepro_2021_129768
crossref_primary_10_1016_j_still_2014_01_002
crossref_primary_10_1111_sum_70026
crossref_primary_10_1016_j_eja_2023_126817
crossref_primary_10_1016_j_still_2015_03_012
crossref_primary_10_1016_j_geoderma_2021_115383
crossref_primary_10_1002_saj2_20306
crossref_primary_10_1016_j_still_2021_104972
crossref_primary_10_1139_CJPS_2016_0401
crossref_primary_10_3389_fsufs_2023_1172405
crossref_primary_10_1002_agg2_20514
crossref_primary_10_2136_sssaj2017_03_0077
crossref_primary_10_1016_j_agee_2020_106996
crossref_primary_10_1525_elementa_2022_00043
crossref_primary_10_1016_j_scitotenv_2018_04_202
crossref_primary_10_1016_S2095_3119_14_60962_X
crossref_primary_10_1007_s11368_020_02655_7
crossref_primary_10_3390_rs70809753
crossref_primary_10_3390_agronomy13020289
crossref_primary_10_3390_plants13202885
crossref_primary_10_1590_S0103_90162014000200011
crossref_primary_10_1007_s11104_023_06322_x
crossref_primary_10_1007_s13593_022_00864_7
crossref_primary_10_1016_j_iswcr_2020_02_002
crossref_primary_10_1016_j_still_2023_105945
crossref_primary_10_1016_j_still_2023_105704
crossref_primary_10_1007_s42106_022_00198_0
crossref_primary_10_1080_23311932_2018_1429699
crossref_primary_10_1016_j_compag_2022_107107
crossref_primary_10_1016_j_still_2014_08_009
crossref_primary_10_2134_jeq2017_08_0317
crossref_primary_10_3390_agriculture11030218
crossref_primary_10_1038_s41598_023_30549_4
crossref_primary_10_2134_agronj2017_11_0633
crossref_primary_10_1016_j_still_2015_07_015
crossref_primary_10_17221_176_2018_SWR
crossref_primary_10_1016_j_geoderma_2022_116098
crossref_primary_10_13080_z_a_2016_103_031
crossref_primary_10_3389_fpls_2018_00231
crossref_primary_10_1016_j_still_2021_105135
crossref_primary_10_1002_saj2_20458
crossref_primary_10_1111_ejss_13264
crossref_primary_10_1016_j_still_2021_104968
crossref_primary_10_13080_z_a_2020_107_025
crossref_primary_10_1016_j_still_2019_104334
crossref_primary_10_1016_j_still_2021_105121
crossref_primary_10_1016_j_still_2022_105420
crossref_primary_10_1016_j_geoderma_2013_04_015
crossref_primary_10_1016_j_still_2022_105540
crossref_primary_10_1016_j_still_2021_104960
crossref_primary_10_1111_sum_12396
crossref_primary_10_1016_j_geodrs_2019_e00243
crossref_primary_10_1016_j_apgeochem_2014_10_001
crossref_primary_10_1016_j_fcr_2020_107934
crossref_primary_10_1016_j_still_2018_09_001
crossref_primary_10_3390_agronomy11050825
crossref_primary_10_1016_j_geoderma_2021_115222
crossref_primary_10_1016_j_geoderma_2014_07_014
crossref_primary_10_2136_sssaj2018_10_0365
crossref_primary_10_1016_j_agwat_2024_108689
crossref_primary_10_3390_su10040983
crossref_primary_10_1111_ejss_12679
crossref_primary_10_1016_j_still_2014_02_003
crossref_primary_10_1016_j_soilbio_2020_107917
crossref_primary_10_1080_03650340_2021_1884225
crossref_primary_10_1016_j_still_2023_105903
crossref_primary_10_2136_sssaj2015_12_0425
crossref_primary_10_1139_cjss_2021_0174
crossref_primary_10_1590_18069657rbcs20160503
crossref_primary_10_1016_j_still_2016_05_004
crossref_primary_10_1080_00103624_2022_2130931
crossref_primary_10_3923_ajps_2023_575_582
crossref_primary_10_1139_cjss_2015_0084
crossref_primary_10_1016_j_atech_2024_100511
crossref_primary_10_1016_j_geoderma_2019_02_026
crossref_primary_10_1590_1678_4324_solo_2020190498
crossref_primary_10_3390_su152215936
crossref_primary_10_1016_j_snb_2019_126857
crossref_primary_10_2134_agronj2015_0363
crossref_primary_10_2136_sssaj2016_06_0161
crossref_primary_10_1111_sum_12001
crossref_primary_10_1016_j_jenvman_2020_111388
crossref_primary_10_3390_land11020255
crossref_primary_10_1111_sum_12005
crossref_primary_10_1016_j_apsoil_2021_104241
crossref_primary_10_1071_SR19067
crossref_primary_10_17221_855_2014_PSE
crossref_primary_10_3390_agronomy6030043
crossref_primary_10_1007_s42106_019_00059_3
crossref_primary_10_1016_j_aeolia_2024_100925
crossref_primary_10_1016_j_geoderma_2016_01_005
crossref_primary_10_1016_j_fcr_2017_11_014
crossref_primary_10_3390_agronomy13051213
crossref_primary_10_1007_s42729_024_02064_6
crossref_primary_10_1016_j_still_2019_01_002
crossref_primary_10_1016_j_still_2012_03_004
crossref_primary_10_1016_j_scitotenv_2019_03_338
crossref_primary_10_3390_agronomy13030894
crossref_primary_10_3390_plants12193386
crossref_primary_10_1007_s10980_018_0658_4
crossref_primary_10_1016_j_fcr_2019_107659
crossref_primary_10_2134_jeq2014_11_0482
Cites_doi 10.1046/j.1469-8137.2000.00595.x
10.1111/j.1365-2818.2006.01706.x
10.1016/j.still.2012.03.004
10.1016/j.geoderma.2011.08.005
10.1016/j.bone.2010.08.023
10.2136/sssaj2010.0292
10.1016/0167-1987(94)90037-X
10.1016/j.still.2010.03.004
10.1007/BF00011330
10.1046/j.1469-8137.1997.00693.x
10.1016/j.still.2008.12.015
10.1111/j.1469-8137.1974.tb04604.x
10.1071/SR9960343
10.2134/agronj2005.0262
10.1016/0167-1987(84)90023-0
10.1016/0167-1987(83)90016-8
10.1016/j.geoderma.2007.05.001
10.1016/S0167-1987(03)00062-X
10.1016/S0167-8809(01)00161-X
10.1016/j.geoderma.2012.02.024
10.1016/0167-1987(91)90004-H
10.1016/0167-1987(94)90074-4
10.1111/j.1475-2743.2011.00354.x
10.1016/j.still.2008.09.010
10.1111/j.1475-2743.2007.00102.x
10.1111/j.1475-2743.2008.00179.x
10.1016/j.still.2009.10.008
10.1046/j.0016-8025.2001.00802.x
10.1016/0167-1987(92)90030-F
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Copyright_xml – notice: 2012 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.still.2012.02.007
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1879-3444
EndPage 91
ExternalDocumentID 10_1016_j_still_2012_02_007
S0167198712000554
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SES
SEW
SPC
SPCBC
SSA
SSR
SST
SSZ
T5K
TWZ
UNMZH
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c336t-436e8096d6989c2221ea7b1499e69537dd6bf71194c01bb1917d7c856b97ffcd3
IEDL.DBID .~1
ISSN 0167-1987
IngestDate Fri Jul 11 07:50:36 EDT 2025
Tue Jul 01 00:56:49 EDT 2025
Thu Apr 24 23:02:48 EDT 2025
Fri Feb 23 02:26:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Visual soil structure evaluation
Soil quality
X-ray CT
Yield
Rotation
Tillage
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-436e8096d6989c2221ea7b1499e69537dd6bf71194c01bb1917d7c856b97ffcd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1449958693
PQPubID 24069
PageCount 7
ParticipantIDs proquest_miscellaneous_1449958693
crossref_primary_10_1016_j_still_2012_02_007
crossref_citationtrail_10_1016_j_still_2012_02_007
elsevier_sciencedirect_doi_10_1016_j_still_2012_02_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2013
2013-03-00
20130301
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: March 2013
PublicationDecade 2010
PublicationTitle Soil & tillage research
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mueller, L., Schindler, U., Ball, B.C., Munkholm, L.J., Hennings, V., Smolentseva, E., Rukhovic, O., Lukin, S., Hu, C., Shepherd, G. Evaluation of soil structure in the framework of an overall soil quality rating. Soil Tillage Res., submitted for publication.
Doube, Kłosowski, Arganda-Carreras, Cordelières, Dougherty, Jackson, Schmid, Hutchinson, Shefelbine (bib0055) 2010; 47
WRB (bib0190) 2006
Munkholm, Hansen, Olesen (bib0160) 2008; 24
Morris, Miller, Orson, Froud-Williams (bib0125) 2010; 108
Macks, Murphy, Cresswell, Koen (bib0105) 1996; 34
Liesch, Krueger, Ochsner (bib0100) 2011; 75
CSSC (bib0050) 1998
Elliot, Heck (bib0065) 2007; 141
Hadas, Wolf (bib0090) 1984; 4
Rasband (bib0170) 2005
FAO, 2011. Conservation agriculture. Available at
Mueller, Kay, Hu, Li, Schindler, Behrendt, Shepherd, Ball (bib0130) 2009; 103
(accessed 31.08.11).
Guimarães, Ball, Tormena (bib0080) 2011; 27
Iijima, Griffiths, Bengough (bib0095) 2000; 145
Shepherd (bib0185) 2009; vol. 1
Ball, Lang, Robertson, Franklin (bib0005) 1994; 31
Braim, Chaney, Hodgson (bib0035) 1992; 22
Carter (bib0040) 1991; 21
Meteorological Services Canada (bib0115) 2011
Carter (bib0045) 1994; 31
Giarola, da Silva, Tormena, Guimaraes, Ball (bib0210) 2013; 127
Hadas, Wolf (bib0085) 1983; 3
Ball, Batey, Munkholm (bib0010) 2007; 23
Bingham, Bengough, Rees (bib0020) 2010; 106
Boeuf-Tremblay, Plantureux, Guckert (bib0025) 1995; 172
Mueller, Kay, Deen, Hu, Zhang, Wolff, Eulenstein, Schindler (bib0135) 2009; 103
Munkholm (bib0200) 2011; 167–168
Schjønning, Elmholt, Munkholm, Debosz (bib0180) 2002; 88
Bolte, Cordelières (bib0030) 2006; 224
Meyer-Aurich, Janovicek, Deen, Weersink (bib0120) 2006; 98
Barber, Gunn (bib0015) 1974; 73
Ehlers, Claupein (bib0060) 1994
Munkholm, Heck, Deen (bib0205) 2012
SAS Institute (bib0175) 2005
Manichon (bib0110) 1987
Passioura (bib0165) 2002; 25
Munkholm, Schjønning, Rasmussen, Tanderup (bib0155) 2003; 71
Young, Montagu, Conroy, Bengough (bib0195) 1997; 135
Ball (10.1016/j.still.2012.02.007_bib0010) 2007; 23
Barber (10.1016/j.still.2012.02.007_bib0015) 1974; 73
Munkholm (10.1016/j.still.2012.02.007_bib0160) 2008; 24
Ehlers (10.1016/j.still.2012.02.007_bib0060) 1994
WRB (10.1016/j.still.2012.02.007_bib0190) 2006
Schjønning (10.1016/j.still.2012.02.007_bib0180) 2002; 88
Young (10.1016/j.still.2012.02.007_bib0195) 1997; 135
Mueller (10.1016/j.still.2012.02.007_bib0135) 2009; 103
Giarola (10.1016/j.still.2012.02.007_bib0210) 2013; 127
Guimarães (10.1016/j.still.2012.02.007_bib0080) 2011; 27
Munkholm (10.1016/j.still.2012.02.007_bib0155) 2003; 71
Shepherd (10.1016/j.still.2012.02.007_bib0185) 2009; vol. 1
Elliot (10.1016/j.still.2012.02.007_bib0065) 2007; 141
Meyer-Aurich (10.1016/j.still.2012.02.007_bib0120) 2006; 98
Bolte (10.1016/j.still.2012.02.007_bib0030) 2006; 224
10.1016/j.still.2012.02.007_bib0140
Meteorological Services Canada (10.1016/j.still.2012.02.007_bib0115) 2011
Mueller (10.1016/j.still.2012.02.007_bib0130) 2009; 103
Munkholm (10.1016/j.still.2012.02.007_bib0200) 2011; 167–168
Bingham (10.1016/j.still.2012.02.007_bib0020) 2010; 106
Braim (10.1016/j.still.2012.02.007_bib0035) 1992; 22
Boeuf-Tremblay (10.1016/j.still.2012.02.007_bib0025) 1995; 172
Rasband (10.1016/j.still.2012.02.007_bib0170) 2005
Liesch (10.1016/j.still.2012.02.007_bib0100) 2011; 75
Hadas (10.1016/j.still.2012.02.007_bib0090) 1984; 4
Carter (10.1016/j.still.2012.02.007_bib0040) 1991; 21
Munkholm (10.1016/j.still.2012.02.007_bib0205) 2012
Morris (10.1016/j.still.2012.02.007_bib0125) 2010; 108
Carter (10.1016/j.still.2012.02.007_bib0045) 1994; 31
CSSC (10.1016/j.still.2012.02.007_bib0050) 1998
Hadas (10.1016/j.still.2012.02.007_bib0085) 1983; 3
Macks (10.1016/j.still.2012.02.007_bib0105) 1996; 34
Passioura (10.1016/j.still.2012.02.007_bib0165) 2002; 25
SAS Institute (10.1016/j.still.2012.02.007_bib0175) 2005
10.1016/j.still.2012.02.007_bib0070
Iijima (10.1016/j.still.2012.02.007_bib0095) 2000; 145
Manichon (10.1016/j.still.2012.02.007_bib0110) 1987
Doube (10.1016/j.still.2012.02.007_bib0055) 2010; 47
Ball (10.1016/j.still.2012.02.007_bib0005) 1994; 31
References_xml – reference: Mueller, L., Schindler, U., Ball, B.C., Munkholm, L.J., Hennings, V., Smolentseva, E., Rukhovic, O., Lukin, S., Hu, C., Shepherd, G. Evaluation of soil structure in the framework of an overall soil quality rating. Soil Tillage Res., submitted for publication.
– volume: 224
  start-page: 213
  year: 2006
  end-page: 232
  ident: bib0030
  article-title: A guided tour into subcellular colocalization analysis in light microscopy
  publication-title: J. Microsc.
– volume: 22
  start-page: 173
  year: 1992
  end-page: 187
  ident: bib0035
  article-title: Effects of simplified cultivation on the growth and yield of spring barley on a sandy loam soil. 2. Soil physical-properties and root-growth – root–shoot relationships, inflow rates of nitrogen-water-use
  publication-title: Soil Tillage Res.
– volume: 31
  start-page: 289
  year: 1994
  end-page: 301
  ident: bib0045
  article-title: A review of conservation tillage strategies for humid temperate regions
  publication-title: Soil Tillage Res.
– volume: 23
  start-page: 329
  year: 2007
  end-page: 337
  ident: bib0010
  article-title: Field assessment of soil structural quality – a development of the Peerlkamp test
  publication-title: Soil Use Manage.
– volume: 135
  start-page: 613
  year: 1997
  end-page: 619
  ident: bib0195
  article-title: Mechanical impedance of root growth directly reduces leaf elongation rates of cereals
  publication-title: New Phytol.
– volume: 24
  start-page: 392
  year: 2008
  end-page: 400
  ident: bib0160
  article-title: The effect of tillage intensity on soil structure and winter wheat root/shoot growth
  publication-title: Soil Use Manage.
– reference: (accessed 31.08.11).
– year: 2011
  ident: bib0115
  article-title: Canadian Climate Normals: 1971–2000
– year: 2005
  ident: bib0170
  article-title: ImageJ
– reference: FAO, 2011. Conservation agriculture. Available at
– year: 2012
  ident: bib0205
  article-title: Soil pore characteristics assessed from X-ray micro-CT derived images and correlations to soil friability
  publication-title: Geoderma
– volume: 4
  start-page: 237
  year: 1984
  end-page: 249
  ident: bib0090
  article-title: Refinement and re-evaluation of the drop-shatter soil fragmentation method
  publication-title: Soil Tillage Res.
– year: 1998
  ident: bib0050
  article-title: The Canadian System of Soil Classification
– volume: 47
  start-page: 1076
  year: 2010
  end-page: 1079
  ident: bib0055
  article-title: BoneJ: free and extensible bone image analysis in ImageJ
  publication-title: Bone
– volume: 75
  start-page: 1307
  year: 2011
  end-page: 1314
  ident: bib0100
  article-title: Soil structure and physical properties under rye-corn silage double-cropping systems
  publication-title: Soil Sci. Soc. Am. J.
– volume: 167–168
  start-page: 236
  year: 2011
  end-page: 246
  ident: bib0200
  article-title: Soil friability: a review of the concept, assessment and effects of soil properties and management
  publication-title: Geoderma
– volume: 145
  start-page: 477
  year: 2000
  end-page: 482
  ident: bib0095
  article-title: Sloughing of cap cells and carbon exudation from maize seedling roots in compacted sand
  publication-title: New Phytol.
– volume: 106
  start-page: 241
  year: 2010
  end-page: 246
  ident: bib0020
  article-title: Soil compaction-N interactions in barley: root growth and tissue composition
  publication-title: Soil Tillage Res.
– volume: 27
  start-page: 395
  year: 2011
  end-page: 403
  ident: bib0080
  article-title: Improvements in the visual evaluation of soil structure
  publication-title: Soil Use Manage.
– volume: 71
  start-page: 163
  year: 2003
  end-page: 173
  ident: bib0155
  article-title: Spatial and temporal effects of direct drilling on soil structure in the seedling environment
  publication-title: Soil Tillage Res.
– volume: 3
  start-page: 47
  year: 1983
  end-page: 59
  ident: bib0085
  article-title: Energy efficiency in tilling dry clod-forming soils
  publication-title: Soil Tillage Res.
– volume: 98
  start-page: 1204
  year: 2006
  end-page: 1212
  ident: bib0120
  article-title: Impact of tillage and rotation on yield and economic performance in corn-based cropping systems
  publication-title: Agron. J.
– volume: 34
  start-page: 343
  year: 1996
  end-page: 360
  ident: bib0105
  article-title: Soil friability in relation to management history and suitability for direct drilling
  publication-title: Aust. J. Soil Res.
– volume: 108
  start-page: 1
  year: 2010
  end-page: 15
  ident: bib0125
  article-title: The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment – a review
  publication-title: Soil Tillage Res.
– volume: 103
  start-page: 178
  year: 2009
  end-page: 187
  ident: bib0130
  article-title: Visual assessment of soil structure: evaluation of methodologies on sites in Canada, China and Germany: part I. comparing visual methods and linking them with soil physical data and grain yield of cereals
  publication-title: Soil Tillage Res.
– volume: 141
  start-page: 60
  year: 2007
  end-page: 70
  ident: bib0065
  article-title: A comparison of optical and X-ray CT technique for void analysis in soil thin section
  publication-title: Geoderma
– volume: 25
  start-page: 311
  year: 2002
  end-page: 318
  ident: bib0165
  article-title: Soil conditions and plant growth
  publication-title: Plant Cell Environ.
– volume: 31
  start-page: 97
  year: 1994
  end-page: 118
  ident: bib0005
  article-title: Crop performance and soil conditions on imperfectly drained loams after 20–25 years of conventional tillage or direct drilling
  publication-title: Soil Tillage Res.
– volume: 127
  start-page: 85
  year: 2013
  end-page: 91
  ident: bib0210
  article-title: On the visual evaluation of soil structure: the Brazilian experience in oxisols under no-tillage
  publication-title: Soil Tillage Res.
– volume: 73
  start-page: 39
  year: 1974
  end-page: 45
  ident: bib0015
  article-title: The effect of mechanical forces on the exudation of organic substances by the roots of cereal plants grown under sterile conditions
  publication-title: New Phytol.
– volume: 103
  start-page: 188
  year: 2009
  end-page: 196
  ident: bib0135
  article-title: Visual assessment of soil structure: part II. Implications of tillage, rotation and traffic on sites in Canada, China and Germany
  publication-title: Soil Tillage Res.
– year: 2005
  ident: bib0175
  article-title: SAS Institute, SAS/STAT™ Software: Language Reference and Concepts Release 9.1.3
– volume: vol. 1
  year: 2009
  ident: bib0185
  article-title: Visual Soil Assessment
  publication-title: Field Guide for Pastoral Grazing and Cropping on Flat and Rolling Country
– volume: 21
  start-page: 37
  year: 1991
  end-page: 52
  ident: bib0040
  article-title: Evaluation of shallow tillage for spring cereals on a fine sandy loam. 2. Soil physical, chemical and biological properties
  publication-title: Soil Tillage Res.
– start-page: 141
  year: 1994
  end-page: 165
  ident: bib0060
  article-title: Approaches toward conservation tillage in Germany
  publication-title: Conservation Tillage in Temperate Agroecosystems
– volume: 172
  start-page: 279
  year: 1995
  end-page: 287
  ident: bib0025
  article-title: Influence of mechanical impedance on root exudation of maize seedlings at two developmental stages
  publication-title: Plant Soil
– start-page: 35
  year: 1987
  end-page: 52
  ident: bib0110
  article-title: Observation morphologique de l’état structural et mise en evidence d’effects du compactage des horizons travaillés
  publication-title: Soil Compaction and Regeneration
– volume: 88
  start-page: 195
  year: 2002
  end-page: 214
  ident: bib0180
  article-title: Soil quality aspects of humid sandy loams as influenced by organic and conventional long-term management
  publication-title: Agric. Ecosyst. Environ.
– year: 2006
  ident: bib0190
  article-title: World Reference Base for Soil Resources 2006
– volume: 145
  start-page: 477
  year: 2000
  ident: 10.1016/j.still.2012.02.007_bib0095
  article-title: Sloughing of cap cells and carbon exudation from maize seedling roots in compacted sand
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.2000.00595.x
– volume: 224
  start-page: 213
  year: 2006
  ident: 10.1016/j.still.2012.02.007_bib0030
  article-title: A guided tour into subcellular colocalization analysis in light microscopy
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.2006.01706.x
– volume: 127
  start-page: 85
  year: 2013
  ident: 10.1016/j.still.2012.02.007_bib0210
  article-title: On the visual evaluation of soil structure: the Brazilian experience in oxisols under no-tillage
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2012.03.004
– volume: 167–168
  start-page: 236
  year: 2011
  ident: 10.1016/j.still.2012.02.007_bib0200
  article-title: Soil friability: a review of the concept, assessment and effects of soil properties and management
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.08.005
– volume: 47
  start-page: 1076
  year: 2010
  ident: 10.1016/j.still.2012.02.007_bib0055
  article-title: BoneJ: free and extensible bone image analysis in ImageJ
  publication-title: Bone
  doi: 10.1016/j.bone.2010.08.023
– volume: 75
  start-page: 1307
  year: 2011
  ident: 10.1016/j.still.2012.02.007_bib0100
  article-title: Soil structure and physical properties under rye-corn silage double-cropping systems
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2010.0292
– year: 1998
  ident: 10.1016/j.still.2012.02.007_bib0050
– volume: 31
  start-page: 289
  year: 1994
  ident: 10.1016/j.still.2012.02.007_bib0045
  article-title: A review of conservation tillage strategies for humid temperate regions
  publication-title: Soil Tillage Res.
  doi: 10.1016/0167-1987(94)90037-X
– year: 2005
  ident: 10.1016/j.still.2012.02.007_bib0170
– volume: 108
  start-page: 1
  year: 2010
  ident: 10.1016/j.still.2012.02.007_bib0125
  article-title: The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment – a review
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2010.03.004
– volume: 172
  start-page: 279
  year: 1995
  ident: 10.1016/j.still.2012.02.007_bib0025
  article-title: Influence of mechanical impedance on root exudation of maize seedlings at two developmental stages
  publication-title: Plant Soil
  doi: 10.1007/BF00011330
– volume: vol. 1
  year: 2009
  ident: 10.1016/j.still.2012.02.007_bib0185
  article-title: Visual Soil Assessment
– year: 2006
  ident: 10.1016/j.still.2012.02.007_bib0190
– volume: 135
  start-page: 613
  year: 1997
  ident: 10.1016/j.still.2012.02.007_bib0195
  article-title: Mechanical impedance of root growth directly reduces leaf elongation rates of cereals
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.1997.00693.x
– ident: 10.1016/j.still.2012.02.007_bib0140
– volume: 103
  start-page: 178
  year: 2009
  ident: 10.1016/j.still.2012.02.007_bib0130
  article-title: Visual assessment of soil structure: evaluation of methodologies on sites in Canada, China and Germany: part I. comparing visual methods and linking them with soil physical data and grain yield of cereals
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2008.12.015
– volume: 73
  start-page: 39
  year: 1974
  ident: 10.1016/j.still.2012.02.007_bib0015
  article-title: The effect of mechanical forces on the exudation of organic substances by the roots of cereal plants grown under sterile conditions
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1974.tb04604.x
– volume: 34
  start-page: 343
  year: 1996
  ident: 10.1016/j.still.2012.02.007_bib0105
  article-title: Soil friability in relation to management history and suitability for direct drilling
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR9960343
– start-page: 35
  year: 1987
  ident: 10.1016/j.still.2012.02.007_bib0110
  article-title: Observation morphologique de l’état structural et mise en evidence d’effects du compactage des horizons travaillés
– volume: 98
  start-page: 1204
  year: 2006
  ident: 10.1016/j.still.2012.02.007_bib0120
  article-title: Impact of tillage and rotation on yield and economic performance in corn-based cropping systems
  publication-title: Agron. J.
  doi: 10.2134/agronj2005.0262
– volume: 4
  start-page: 237
  year: 1984
  ident: 10.1016/j.still.2012.02.007_bib0090
  article-title: Refinement and re-evaluation of the drop-shatter soil fragmentation method
  publication-title: Soil Tillage Res.
  doi: 10.1016/0167-1987(84)90023-0
– volume: 3
  start-page: 47
  year: 1983
  ident: 10.1016/j.still.2012.02.007_bib0085
  article-title: Energy efficiency in tilling dry clod-forming soils
  publication-title: Soil Tillage Res.
  doi: 10.1016/0167-1987(83)90016-8
– volume: 141
  start-page: 60
  year: 2007
  ident: 10.1016/j.still.2012.02.007_bib0065
  article-title: A comparison of optical and X-ray CT technique for void analysis in soil thin section
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2007.05.001
– year: 2011
  ident: 10.1016/j.still.2012.02.007_bib0115
– volume: 71
  start-page: 163
  year: 2003
  ident: 10.1016/j.still.2012.02.007_bib0155
  article-title: Spatial and temporal effects of direct drilling on soil structure in the seedling environment
  publication-title: Soil Tillage Res.
  doi: 10.1016/S0167-1987(03)00062-X
– ident: 10.1016/j.still.2012.02.007_bib0070
– volume: 88
  start-page: 195
  year: 2002
  ident: 10.1016/j.still.2012.02.007_bib0180
  article-title: Soil quality aspects of humid sandy loams as influenced by organic and conventional long-term management
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/S0167-8809(01)00161-X
– year: 2012
  ident: 10.1016/j.still.2012.02.007_bib0205
  article-title: Soil pore characteristics assessed from X-ray micro-CT derived images and correlations to soil friability
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.02.024
– volume: 21
  start-page: 37
  year: 1991
  ident: 10.1016/j.still.2012.02.007_bib0040
  article-title: Evaluation of shallow tillage for spring cereals on a fine sandy loam. 2. Soil physical, chemical and biological properties
  publication-title: Soil Tillage Res.
  doi: 10.1016/0167-1987(91)90004-H
– volume: 31
  start-page: 97
  year: 1994
  ident: 10.1016/j.still.2012.02.007_bib0005
  article-title: Crop performance and soil conditions on imperfectly drained loams after 20–25 years of conventional tillage or direct drilling
  publication-title: Soil Tillage Res.
  doi: 10.1016/0167-1987(94)90074-4
– volume: 27
  start-page: 395
  year: 2011
  ident: 10.1016/j.still.2012.02.007_bib0080
  article-title: Improvements in the visual evaluation of soil structure
  publication-title: Soil Use Manage.
  doi: 10.1111/j.1475-2743.2011.00354.x
– year: 2005
  ident: 10.1016/j.still.2012.02.007_bib0175
– volume: 103
  start-page: 188
  year: 2009
  ident: 10.1016/j.still.2012.02.007_bib0135
  article-title: Visual assessment of soil structure: part II. Implications of tillage, rotation and traffic on sites in Canada, China and Germany
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2008.09.010
– volume: 23
  start-page: 329
  year: 2007
  ident: 10.1016/j.still.2012.02.007_bib0010
  article-title: Field assessment of soil structural quality – a development of the Peerlkamp test
  publication-title: Soil Use Manage.
  doi: 10.1111/j.1475-2743.2007.00102.x
– volume: 24
  start-page: 392
  year: 2008
  ident: 10.1016/j.still.2012.02.007_bib0160
  article-title: The effect of tillage intensity on soil structure and winter wheat root/shoot growth
  publication-title: Soil Use Manage.
  doi: 10.1111/j.1475-2743.2008.00179.x
– volume: 106
  start-page: 241
  year: 2010
  ident: 10.1016/j.still.2012.02.007_bib0020
  article-title: Soil compaction-N interactions in barley: root growth and tissue composition
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2009.10.008
– volume: 25
  start-page: 311
  year: 2002
  ident: 10.1016/j.still.2012.02.007_bib0165
  article-title: Soil conditions and plant growth
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.0016-8025.2001.00802.x
– start-page: 141
  year: 1994
  ident: 10.1016/j.still.2012.02.007_bib0060
  article-title: Approaches toward conservation tillage in Germany
– volume: 22
  start-page: 173
  year: 1992
  ident: 10.1016/j.still.2012.02.007_bib0035
  article-title: Effects of simplified cultivation on the growth and yield of spring barley on a sandy loam soil. 2. Soil physical-properties and root-growth – root–shoot relationships, inflow rates of nitrogen-water-use
  publication-title: Soil Tillage Res.
  doi: 10.1016/0167-1987(92)90030-F
SSID ssj0004328
Score 2.4171073
Snippet ► Positive effect of diverse rotation on soil structural quality. ► Diverse crop rotation needed for optimal performance of no tilled soil. ► Crop yield...
Tillage and rotation are fundamental factors influencing soil quality and thus the sustainability of cropping systems. Many studies have focused on the effects...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 85
SubjectTerms Avena fatua
corn
cover crops
crop rotation
crop yield
disturbed soils
Glycine max
Hordeum vulgare
long term effects
moldboard plows
oats
Rotation
silt loam soils
soil pore system
Soil quality
soil sampling
soybeans
spring barley
Tillage
Trifolium pratense
Visual soil structure evaluation
water content
X-ray CT
Yield
Zea mays
Title Long-term rotation and tillage effects on soil structure and crop yield
URI https://dx.doi.org/10.1016/j.still.2012.02.007
https://www.proquest.com/docview/1449958693
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqIzESGhSO3Y8VhWlPNQFKnWz4keqoiqp2jKw8NvxOQkIJDogZbLsJDrb3-Xi775D6ErEmhjCRMCIcQFK19Ag0SEN0jC0hmcxJPoA22LEhmP6MIknDdSvc2GAVllhf4npHq2rlk5lzc5iNus8A4EeQuYIsk2cV4QMdsphld98fNM8KPH1Vb2-N_SulYc8x8vtojmcP8APQRDu5H95p1847Z3PYA_tVl-NuFe-2D5q2PwA7fSmy0o5wx6iu6cinwYAtHhZlOfrOM0Nhmc7zMAVcQO75lUxm-NSONYN9b2gkBd-BzbbERoPbl_6w6CqkhBoQtg6oITZxAUiBkpBaufuI5ty5QIfYZmICTeGqYxHkaA6jJSC-MxwncRMCZ5l2pBj1MyL3J4gLAzjqYiNSnlMGQtTkRGaqERworTiooW6tXWkriTEoZLFXNZcsVfpTSrBpDJ0V8hb6Ppr0KJU0NjcndVmlz8WgnQYv3ngZT1J0m0ROPdIc1u8rVx044wRJ0yQ0__e_Axtd30dDCCfnaOmmyJ74b5G1qrtl1sbbfXuH4ejT6dY3e0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-DupBfOL6jODRuu0mTZqjiLrq6kUFb6F5dFlZWnH14MXf7kzaKgp6EHoKSVsmyTeZ5Mt8hByo1DLHhIoEcxCg9ByPMhvzKI9j72SR4kUfZFvciP49v3xIH6bISXsXBmmVDfbXmB7QuinpNtbsPo1G3Vsk0GPInOBtE_CK02SWw_RFGYOj9y-eB2dBYDUk-MbqbeqhQPKCaTTGAwjcEcTMnfI39_QDqIP3OVsii82ykR7Xf7ZMpny5QhaOh89N6gy_Ss4HVTmMEGnpc1UfsNO8dBS_DaBBG-YGheJJNRrTOnMsNA21UMmLviGdbY3cn53enfSjRiYhsoyJl4gz4TOIRBxqQVrw94nPpYHIR3mhUiadE6aQSaK4jRNjMEBz0mapMEoWhXVsncyUVek3CFVOyFylzuQy5ULEuSoYz0ymJDPWSNUhvdY62jY5xFHKYqxbstijDibVaFIdwxPLDjn8bPRUp9D4u7poza6_jQQNIP93w_22kzTMETz4yEtfvU4gvAFjpJlQbPO_L98jc_2764EeXNxcbZH5XhDFQCbaNpmB7vI7sDR5Mbth6H0A1b_few
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+rotation+and+tillage+effects+on+soil+structure+and+crop+yield&rft.jtitle=Soil+%26+tillage+research&rft.au=Munkholm%2C+Lars+J&rft.au=Heck%2C+Richard+J&rft.au=Deen%2C+Bill&rft.date=2013-03-01&rft.issn=0167-1987&rft.volume=127+p.85-91&rft.spage=85&rft.epage=91&rft_id=info:doi/10.1016%2Fj.still.2012.02.007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-1987&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-1987&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-1987&client=summon