Long-term rotation and tillage effects on soil structure and crop yield
► Positive effect of diverse rotation on soil structural quality. ► Diverse crop rotation needed for optimal performance of no tilled soil. ► Crop yield correlated significantly with the visual soil structure scores. Tillage and rotation are fundamental factors influencing soil quality and thus the...
Saved in:
Published in | Soil & tillage research Vol. 127; pp. 85 - 91 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► Positive effect of diverse rotation on soil structural quality. ► Diverse crop rotation needed for optimal performance of no tilled soil. ► Crop yield correlated significantly with the visual soil structure scores.
Tillage and rotation are fundamental factors influencing soil quality and thus the sustainability of cropping systems. Many studies have focused on the effects of either tillage or rotation, but few have quantified the long term integrated effects of both. We studied the issue using a 30-year old long-term rotation and tillage treatment experiment on a Canadian silt loam soil. Topsoil measurements were carried out for three different rotations: R1, (C–C–C–C) continuous corn (Zea mays L.), R6, (C–C–O(RC), B(RC)) corn, corn, oats (Avena fatua L.) and spring barley (Hordeum vulgare L.) and R8, (C–C–S–S) corn, corn, soybean (Glycine max L.), soybean. A red clover (Trifolium pretense L.) cover crop was under seeded in oats and spring barley in R6. In 2010, first year corn was grown in R6 and R8. The tillage treatments included no tillage, NT and mouldboard ploughing, MP. Topsoil structural quality was visually evaluated in early June and mid October. Minimal disturbed soil cores collected in early June were used for X-ray CT scanning and to quantify water content and porosity. Soil friability was determined on the soil samples using a drop shatter test. Crop yield was determined and correlated to the soil quality estimates. We found significant effect of both rotation and tillage on visual soil structure at both times of assessment. Poor soil structure was found for NT except when combined with a diverse crop rotation (R6). The soil core pore characteristics data also displayed a significant effect of tillage but only a weak insignificant effect of rotation. The drop shatter results were in accordance with the visual assessment data. Crop yield correlated significantly with the visual soil structure scores. We conclude that a diverse crop rotation was needed for an optimal performance of NT for the studied soil. |
---|---|
AbstractList | Tillage and rotation are fundamental factors influencing soil quality and thus the sustainability of cropping systems. Many studies have focused on the effects of either tillage or rotation, but few have quantified the long term integrated effects of both. We studied the issue using a 30-year old long-term rotation and tillage treatment experiment on a Canadian silt loam soil. Topsoil measurements were carried out for three different rotations: R1, (C–C–C–C) continuous corn (Zea mays L.), R6, (C–C–O(RC), B(RC)) corn, corn, oats (Avena fatua L.) and spring barley (Hordeum vulgare L.) and R8, (C–C–S–S) corn, corn, soybean (Glycine max L.), soybean. A red clover (Trifolium pretense L.) cover crop was under seeded in oats and spring barley in R6. In 2010, first year corn was grown in R6 and R8. The tillage treatments included no tillage, NT and mouldboard ploughing, MP. Topsoil structural quality was visually evaluated in early June and mid October. Minimal disturbed soil cores collected in early June were used for X-ray CT scanning and to quantify water content and porosity. Soil friability was determined on the soil samples using a drop shatter test. Crop yield was determined and correlated to the soil quality estimates. We found significant effect of both rotation and tillage on visual soil structure at both times of assessment. Poor soil structure was found for NT except when combined with a diverse crop rotation (R6). The soil core pore characteristics data also displayed a significant effect of tillage but only a weak insignificant effect of rotation. The drop shatter results were in accordance with the visual assessment data. Crop yield correlated significantly with the visual soil structure scores. We conclude that a diverse crop rotation was needed for an optimal performance of NT for the studied soil. ► Positive effect of diverse rotation on soil structural quality. ► Diverse crop rotation needed for optimal performance of no tilled soil. ► Crop yield correlated significantly with the visual soil structure scores. Tillage and rotation are fundamental factors influencing soil quality and thus the sustainability of cropping systems. Many studies have focused on the effects of either tillage or rotation, but few have quantified the long term integrated effects of both. We studied the issue using a 30-year old long-term rotation and tillage treatment experiment on a Canadian silt loam soil. Topsoil measurements were carried out for three different rotations: R1, (C–C–C–C) continuous corn (Zea mays L.), R6, (C–C–O(RC), B(RC)) corn, corn, oats (Avena fatua L.) and spring barley (Hordeum vulgare L.) and R8, (C–C–S–S) corn, corn, soybean (Glycine max L.), soybean. A red clover (Trifolium pretense L.) cover crop was under seeded in oats and spring barley in R6. In 2010, first year corn was grown in R6 and R8. The tillage treatments included no tillage, NT and mouldboard ploughing, MP. Topsoil structural quality was visually evaluated in early June and mid October. Minimal disturbed soil cores collected in early June were used for X-ray CT scanning and to quantify water content and porosity. Soil friability was determined on the soil samples using a drop shatter test. Crop yield was determined and correlated to the soil quality estimates. We found significant effect of both rotation and tillage on visual soil structure at both times of assessment. Poor soil structure was found for NT except when combined with a diverse crop rotation (R6). The soil core pore characteristics data also displayed a significant effect of tillage but only a weak insignificant effect of rotation. The drop shatter results were in accordance with the visual assessment data. Crop yield correlated significantly with the visual soil structure scores. We conclude that a diverse crop rotation was needed for an optimal performance of NT for the studied soil. |
Author | Deen, Bill Heck, Richard J. Munkholm, Lars J. |
Author_xml | – sequence: 1 givenname: Lars J. surname: Munkholm fullname: Munkholm, Lars J. email: lars.munkholm@agrsci.dk organization: Aarhus University, Department of. Agroecology, PO Box 50, DK-8830 Tjele, Denmark – sequence: 2 givenname: Richard J. surname: Heck fullname: Heck, Richard J. organization: University of Guelph, School of Environmental Sciences, Guelph, ON, Canada N1G 2W1 – sequence: 3 givenname: Bill surname: Deen fullname: Deen, Bill organization: University of Guelph, Department of Plant Agriculture, Guelph, ON, Canada N1G 2W1 |
BookMark | eNqFkEFLwzAUx4NMcJt-Ai89emlNmixpDh5k6BQKXvQc2uR1ZHTNTFJh395s9eRB4cGDx__35_FboNngBkDoluCCYMLvd0WItu-LEpOywGmwuEBzUgmZU8bYDM1TSuREVuIKLULYYYwZLas52tRu2OYR_D7zLjbRuiFrBpOd6potZNB1oGPI0jk422ch-lHH0cM5pb07ZEcLvblGl13TB7j52Uv08fz0vn7J67fN6_qxzjWlPOaMcqiw5IbLSuqyLAk0oiVMSuByRYUxvO0EIZJpTNqWSCKM0NWKt1J0nTZ0ie6m3oN3nyOEqPY2aEjPDuDGoAhLXauKS5qidIqmL0Pw0KmDt_vGHxXB6qRN7dRZmzppUzgNFomSvyhtJy_RN7b_h32YWEgGvix4FbSFQYOxPllUxtk_-W9BSIv_ |
CitedBy_id | crossref_primary_10_1007_s11368_023_03596_7 crossref_primary_10_1007_s00374_014_0929_4 crossref_primary_10_3390_agronomy12051092 crossref_primary_10_1016_j_scitotenv_2024_173067 crossref_primary_10_20914_2310_1202_2023_1_118_126 crossref_primary_10_4236_ojss_2016_62004 crossref_primary_10_1016_j_still_2021_105310 crossref_primary_10_1002_ldr_3619 crossref_primary_10_1016_j_still_2017_01_013 crossref_primary_10_1016_j_geoderma_2021_115306 crossref_primary_10_1016_j_still_2015_01_010 crossref_primary_10_1111_sum_12300 crossref_primary_10_2478_ata_2023_0004 crossref_primary_10_1139_cjss_2021_0003 crossref_primary_10_1016_j_still_2012_11_003 crossref_primary_10_3390_soils1010005 crossref_primary_10_3390_plants7010016 crossref_primary_10_1002_saj2_20716 crossref_primary_10_1016_j_geoderma_2017_02_013 crossref_primary_10_1016_j_eja_2018_01_003 crossref_primary_10_1371_journal_pone_0113261 crossref_primary_10_1111_sum_13063 crossref_primary_10_1016_j_still_2017_01_016 crossref_primary_10_1002_agg2_20105 crossref_primary_10_3390_agronomy13092395 crossref_primary_10_3390_agronomy13020449 crossref_primary_10_3390_agronomy14091968 crossref_primary_10_2136_sssaj2013_07_0301 crossref_primary_10_1111_sum_12418 crossref_primary_10_18380_SZIE_COLUM_2022_9_2_145 crossref_primary_10_1016_j_agee_2023_108600 crossref_primary_10_1016_j_scitotenv_2024_171782 crossref_primary_10_1016_j_still_2019_05_003 crossref_primary_10_1016_j_still_2015_05_006 crossref_primary_10_3390_agronomy12030613 crossref_primary_10_1590_18069657rbcs20170408 crossref_primary_10_1016_j_eja_2024_127131 crossref_primary_10_2134_jeq2015_06_0331 crossref_primary_10_3390_su141811651 crossref_primary_10_1080_21683565_2021_2019167 crossref_primary_10_1016_j_agsy_2015_05_008 crossref_primary_10_3389_fenvs_2024_1404971 crossref_primary_10_1016_j_fcr_2015_11_005 crossref_primary_10_2136_sssaj2014_02_0069 crossref_primary_10_1016_j_geodrs_2022_e00597 crossref_primary_10_1007_s11104_016_3121_9 crossref_primary_10_1071_SR18210 crossref_primary_10_3390_agronomy13061567 crossref_primary_10_1155_2021_5113453 crossref_primary_10_1016_j_fcr_2021_108080 crossref_primary_10_1016_j_scitotenv_2021_145107 crossref_primary_10_1016_j_still_2014_03_006 crossref_primary_10_1016_j_soilbio_2022_108584 crossref_primary_10_1016_j_agrformet_2024_110370 crossref_primary_10_1016_j_jclepro_2022_135437 crossref_primary_10_1111_sum_12554 crossref_primary_10_1016_j_fcr_2024_109276 crossref_primary_10_1111_aab_12488 crossref_primary_10_3390_su10072213 crossref_primary_10_1016_j_geoderma_2015_11_001 crossref_primary_10_1016_j_geoderma_2017_11_003 crossref_primary_10_1016_j_still_2022_105592 crossref_primary_10_1007_s12155_014_9409_9 crossref_primary_10_1016_j_still_2016_10_014 crossref_primary_10_1002_ldr_2726 crossref_primary_10_1016_j_still_2023_105872 crossref_primary_10_1080_00380768_2020_1779571 crossref_primary_10_1371_journal_pone_0175934 crossref_primary_10_1016_j_eja_2018_07_009 crossref_primary_10_2134_age2019_03_0017 crossref_primary_10_1016_j_soilbio_2020_108057 crossref_primary_10_1016_j_still_2018_12_019 crossref_primary_10_5194_soil_2_523_2016 crossref_primary_10_1016_j_geoderma_2018_03_011 crossref_primary_10_1590_18069657rbcs20170270 crossref_primary_10_1002_saj2_20631 crossref_primary_10_4141_cjss2013_093 crossref_primary_10_4141_cjss2013_094 crossref_primary_10_1016_j_still_2016_07_006 crossref_primary_10_1016_j_eja_2023_126906 crossref_primary_10_1016_j_tjnut_2022_10_016 crossref_primary_10_3389_fmicb_2021_759374 crossref_primary_10_1016_j_still_2023_105988 crossref_primary_10_3390_agronomy12102340 crossref_primary_10_1002_agj2_20605 crossref_primary_10_1111_ejss_13479 crossref_primary_10_1002_bbb_1429 crossref_primary_10_3390_soilsystems7040090 crossref_primary_10_1007_s10980_019_00823_w crossref_primary_10_1016_j_agee_2017_07_018 crossref_primary_10_1016_j_apgeog_2024_103484 crossref_primary_10_1016_j_still_2021_105295 crossref_primary_10_1016_j_still_2024_106347 crossref_primary_10_1017_S1742170520000320 crossref_primary_10_1016_j_agee_2024_109370 crossref_primary_10_1016_j_still_2018_12_002 crossref_primary_10_1017_S1742170525000055 crossref_primary_10_1016_j_still_2016_08_011 crossref_primary_10_1111_sum_12400 crossref_primary_10_1007_s42853_021_00117_7 crossref_primary_10_1016_j_scitotenv_2022_154316 crossref_primary_10_3390_agriculture14040643 crossref_primary_10_3389_fenvs_2018_00050 crossref_primary_10_1016_j_still_2016_03_006 crossref_primary_10_1016_j_geoderma_2013_08_037 crossref_primary_10_1016_j_rhisph_2025_101038 crossref_primary_10_1016_j_geodrs_2017_11_001 crossref_primary_10_13080_z_a_2018_105_001 crossref_primary_10_1016_j_still_2014_04_006 crossref_primary_10_1016_j_fcr_2024_109598 crossref_primary_10_1016_j_agee_2015_04_034 crossref_primary_10_1016_j_jclepro_2021_129768 crossref_primary_10_1016_j_still_2014_01_002 crossref_primary_10_1111_sum_70026 crossref_primary_10_1016_j_eja_2023_126817 crossref_primary_10_1016_j_still_2015_03_012 crossref_primary_10_1016_j_geoderma_2021_115383 crossref_primary_10_1002_saj2_20306 crossref_primary_10_1016_j_still_2021_104972 crossref_primary_10_1139_CJPS_2016_0401 crossref_primary_10_3389_fsufs_2023_1172405 crossref_primary_10_1002_agg2_20514 crossref_primary_10_2136_sssaj2017_03_0077 crossref_primary_10_1016_j_agee_2020_106996 crossref_primary_10_1525_elementa_2022_00043 crossref_primary_10_1016_j_scitotenv_2018_04_202 crossref_primary_10_1016_S2095_3119_14_60962_X crossref_primary_10_1007_s11368_020_02655_7 crossref_primary_10_3390_rs70809753 crossref_primary_10_3390_agronomy13020289 crossref_primary_10_3390_plants13202885 crossref_primary_10_1590_S0103_90162014000200011 crossref_primary_10_1007_s11104_023_06322_x crossref_primary_10_1007_s13593_022_00864_7 crossref_primary_10_1016_j_iswcr_2020_02_002 crossref_primary_10_1016_j_still_2023_105945 crossref_primary_10_1016_j_still_2023_105704 crossref_primary_10_1007_s42106_022_00198_0 crossref_primary_10_1080_23311932_2018_1429699 crossref_primary_10_1016_j_compag_2022_107107 crossref_primary_10_1016_j_still_2014_08_009 crossref_primary_10_2134_jeq2017_08_0317 crossref_primary_10_3390_agriculture11030218 crossref_primary_10_1038_s41598_023_30549_4 crossref_primary_10_2134_agronj2017_11_0633 crossref_primary_10_1016_j_still_2015_07_015 crossref_primary_10_17221_176_2018_SWR crossref_primary_10_1016_j_geoderma_2022_116098 crossref_primary_10_13080_z_a_2016_103_031 crossref_primary_10_3389_fpls_2018_00231 crossref_primary_10_1016_j_still_2021_105135 crossref_primary_10_1002_saj2_20458 crossref_primary_10_1111_ejss_13264 crossref_primary_10_1016_j_still_2021_104968 crossref_primary_10_13080_z_a_2020_107_025 crossref_primary_10_1016_j_still_2019_104334 crossref_primary_10_1016_j_still_2021_105121 crossref_primary_10_1016_j_still_2022_105420 crossref_primary_10_1016_j_geoderma_2013_04_015 crossref_primary_10_1016_j_still_2022_105540 crossref_primary_10_1016_j_still_2021_104960 crossref_primary_10_1111_sum_12396 crossref_primary_10_1016_j_geodrs_2019_e00243 crossref_primary_10_1016_j_apgeochem_2014_10_001 crossref_primary_10_1016_j_fcr_2020_107934 crossref_primary_10_1016_j_still_2018_09_001 crossref_primary_10_3390_agronomy11050825 crossref_primary_10_1016_j_geoderma_2021_115222 crossref_primary_10_1016_j_geoderma_2014_07_014 crossref_primary_10_2136_sssaj2018_10_0365 crossref_primary_10_1016_j_agwat_2024_108689 crossref_primary_10_3390_su10040983 crossref_primary_10_1111_ejss_12679 crossref_primary_10_1016_j_still_2014_02_003 crossref_primary_10_1016_j_soilbio_2020_107917 crossref_primary_10_1080_03650340_2021_1884225 crossref_primary_10_1016_j_still_2023_105903 crossref_primary_10_2136_sssaj2015_12_0425 crossref_primary_10_1139_cjss_2021_0174 crossref_primary_10_1590_18069657rbcs20160503 crossref_primary_10_1016_j_still_2016_05_004 crossref_primary_10_1080_00103624_2022_2130931 crossref_primary_10_3923_ajps_2023_575_582 crossref_primary_10_1139_cjss_2015_0084 crossref_primary_10_1016_j_atech_2024_100511 crossref_primary_10_1016_j_geoderma_2019_02_026 crossref_primary_10_1590_1678_4324_solo_2020190498 crossref_primary_10_3390_su152215936 crossref_primary_10_1016_j_snb_2019_126857 crossref_primary_10_2134_agronj2015_0363 crossref_primary_10_2136_sssaj2016_06_0161 crossref_primary_10_1111_sum_12001 crossref_primary_10_1016_j_jenvman_2020_111388 crossref_primary_10_3390_land11020255 crossref_primary_10_1111_sum_12005 crossref_primary_10_1016_j_apsoil_2021_104241 crossref_primary_10_1071_SR19067 crossref_primary_10_17221_855_2014_PSE crossref_primary_10_3390_agronomy6030043 crossref_primary_10_1007_s42106_019_00059_3 crossref_primary_10_1016_j_aeolia_2024_100925 crossref_primary_10_1016_j_geoderma_2016_01_005 crossref_primary_10_1016_j_fcr_2017_11_014 crossref_primary_10_3390_agronomy13051213 crossref_primary_10_1007_s42729_024_02064_6 crossref_primary_10_1016_j_still_2019_01_002 crossref_primary_10_1016_j_still_2012_03_004 crossref_primary_10_1016_j_scitotenv_2019_03_338 crossref_primary_10_3390_agronomy13030894 crossref_primary_10_3390_plants12193386 crossref_primary_10_1007_s10980_018_0658_4 crossref_primary_10_1016_j_fcr_2019_107659 crossref_primary_10_2134_jeq2014_11_0482 |
Cites_doi | 10.1046/j.1469-8137.2000.00595.x 10.1111/j.1365-2818.2006.01706.x 10.1016/j.still.2012.03.004 10.1016/j.geoderma.2011.08.005 10.1016/j.bone.2010.08.023 10.2136/sssaj2010.0292 10.1016/0167-1987(94)90037-X 10.1016/j.still.2010.03.004 10.1007/BF00011330 10.1046/j.1469-8137.1997.00693.x 10.1016/j.still.2008.12.015 10.1111/j.1469-8137.1974.tb04604.x 10.1071/SR9960343 10.2134/agronj2005.0262 10.1016/0167-1987(84)90023-0 10.1016/0167-1987(83)90016-8 10.1016/j.geoderma.2007.05.001 10.1016/S0167-1987(03)00062-X 10.1016/S0167-8809(01)00161-X 10.1016/j.geoderma.2012.02.024 10.1016/0167-1987(91)90004-H 10.1016/0167-1987(94)90074-4 10.1111/j.1475-2743.2011.00354.x 10.1016/j.still.2008.09.010 10.1111/j.1475-2743.2007.00102.x 10.1111/j.1475-2743.2008.00179.x 10.1016/j.still.2009.10.008 10.1046/j.0016-8025.2001.00802.x 10.1016/0167-1987(92)90030-F |
ContentType | Journal Article |
Copyright | 2012 Elsevier B.V. |
Copyright_xml | – notice: 2012 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.still.2012.02.007 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1879-3444 |
EndPage | 91 |
ExternalDocumentID | 10_1016_j_still_2012_02_007 S0167198712000554 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE JJJVA KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SES SEW SPC SPCBC SSA SSR SST SSZ T5K TWZ UNMZH WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c336t-436e8096d6989c2221ea7b1499e69537dd6bf71194c01bb1917d7c856b97ffcd3 |
IEDL.DBID | .~1 |
ISSN | 0167-1987 |
IngestDate | Fri Jul 11 07:50:36 EDT 2025 Tue Jul 01 00:56:49 EDT 2025 Thu Apr 24 23:02:48 EDT 2025 Fri Feb 23 02:26:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Visual soil structure evaluation Soil quality X-ray CT Yield Rotation Tillage |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-436e8096d6989c2221ea7b1499e69537dd6bf71194c01bb1917d7c856b97ffcd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1449958693 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1449958693 crossref_primary_10_1016_j_still_2012_02_007 crossref_citationtrail_10_1016_j_still_2012_02_007 elsevier_sciencedirect_doi_10_1016_j_still_2012_02_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2013 2013-03-00 20130301 |
PublicationDateYYYYMMDD | 2013-03-01 |
PublicationDate_xml | – month: 03 year: 2013 text: March 2013 |
PublicationDecade | 2010 |
PublicationTitle | Soil & tillage research |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Mueller, L., Schindler, U., Ball, B.C., Munkholm, L.J., Hennings, V., Smolentseva, E., Rukhovic, O., Lukin, S., Hu, C., Shepherd, G. Evaluation of soil structure in the framework of an overall soil quality rating. Soil Tillage Res., submitted for publication. Doube, Kłosowski, Arganda-Carreras, Cordelières, Dougherty, Jackson, Schmid, Hutchinson, Shefelbine (bib0055) 2010; 47 WRB (bib0190) 2006 Munkholm, Hansen, Olesen (bib0160) 2008; 24 Morris, Miller, Orson, Froud-Williams (bib0125) 2010; 108 Macks, Murphy, Cresswell, Koen (bib0105) 1996; 34 Liesch, Krueger, Ochsner (bib0100) 2011; 75 CSSC (bib0050) 1998 Elliot, Heck (bib0065) 2007; 141 Hadas, Wolf (bib0090) 1984; 4 Rasband (bib0170) 2005 FAO, 2011. Conservation agriculture. Available at Mueller, Kay, Hu, Li, Schindler, Behrendt, Shepherd, Ball (bib0130) 2009; 103 (accessed 31.08.11). Guimarães, Ball, Tormena (bib0080) 2011; 27 Iijima, Griffiths, Bengough (bib0095) 2000; 145 Shepherd (bib0185) 2009; vol. 1 Ball, Lang, Robertson, Franklin (bib0005) 1994; 31 Braim, Chaney, Hodgson (bib0035) 1992; 22 Carter (bib0040) 1991; 21 Meteorological Services Canada (bib0115) 2011 Carter (bib0045) 1994; 31 Giarola, da Silva, Tormena, Guimaraes, Ball (bib0210) 2013; 127 Hadas, Wolf (bib0085) 1983; 3 Ball, Batey, Munkholm (bib0010) 2007; 23 Bingham, Bengough, Rees (bib0020) 2010; 106 Boeuf-Tremblay, Plantureux, Guckert (bib0025) 1995; 172 Mueller, Kay, Deen, Hu, Zhang, Wolff, Eulenstein, Schindler (bib0135) 2009; 103 Munkholm (bib0200) 2011; 167–168 Schjønning, Elmholt, Munkholm, Debosz (bib0180) 2002; 88 Bolte, Cordelières (bib0030) 2006; 224 Meyer-Aurich, Janovicek, Deen, Weersink (bib0120) 2006; 98 Barber, Gunn (bib0015) 1974; 73 Ehlers, Claupein (bib0060) 1994 Munkholm, Heck, Deen (bib0205) 2012 SAS Institute (bib0175) 2005 Manichon (bib0110) 1987 Passioura (bib0165) 2002; 25 Munkholm, Schjønning, Rasmussen, Tanderup (bib0155) 2003; 71 Young, Montagu, Conroy, Bengough (bib0195) 1997; 135 Ball (10.1016/j.still.2012.02.007_bib0010) 2007; 23 Barber (10.1016/j.still.2012.02.007_bib0015) 1974; 73 Munkholm (10.1016/j.still.2012.02.007_bib0160) 2008; 24 Ehlers (10.1016/j.still.2012.02.007_bib0060) 1994 WRB (10.1016/j.still.2012.02.007_bib0190) 2006 Schjønning (10.1016/j.still.2012.02.007_bib0180) 2002; 88 Young (10.1016/j.still.2012.02.007_bib0195) 1997; 135 Mueller (10.1016/j.still.2012.02.007_bib0135) 2009; 103 Giarola (10.1016/j.still.2012.02.007_bib0210) 2013; 127 Guimarães (10.1016/j.still.2012.02.007_bib0080) 2011; 27 Munkholm (10.1016/j.still.2012.02.007_bib0155) 2003; 71 Shepherd (10.1016/j.still.2012.02.007_bib0185) 2009; vol. 1 Elliot (10.1016/j.still.2012.02.007_bib0065) 2007; 141 Meyer-Aurich (10.1016/j.still.2012.02.007_bib0120) 2006; 98 Bolte (10.1016/j.still.2012.02.007_bib0030) 2006; 224 10.1016/j.still.2012.02.007_bib0140 Meteorological Services Canada (10.1016/j.still.2012.02.007_bib0115) 2011 Mueller (10.1016/j.still.2012.02.007_bib0130) 2009; 103 Munkholm (10.1016/j.still.2012.02.007_bib0200) 2011; 167–168 Bingham (10.1016/j.still.2012.02.007_bib0020) 2010; 106 Braim (10.1016/j.still.2012.02.007_bib0035) 1992; 22 Boeuf-Tremblay (10.1016/j.still.2012.02.007_bib0025) 1995; 172 Rasband (10.1016/j.still.2012.02.007_bib0170) 2005 Liesch (10.1016/j.still.2012.02.007_bib0100) 2011; 75 Hadas (10.1016/j.still.2012.02.007_bib0090) 1984; 4 Carter (10.1016/j.still.2012.02.007_bib0040) 1991; 21 Munkholm (10.1016/j.still.2012.02.007_bib0205) 2012 Morris (10.1016/j.still.2012.02.007_bib0125) 2010; 108 Carter (10.1016/j.still.2012.02.007_bib0045) 1994; 31 CSSC (10.1016/j.still.2012.02.007_bib0050) 1998 Hadas (10.1016/j.still.2012.02.007_bib0085) 1983; 3 Macks (10.1016/j.still.2012.02.007_bib0105) 1996; 34 Passioura (10.1016/j.still.2012.02.007_bib0165) 2002; 25 SAS Institute (10.1016/j.still.2012.02.007_bib0175) 2005 10.1016/j.still.2012.02.007_bib0070 Iijima (10.1016/j.still.2012.02.007_bib0095) 2000; 145 Manichon (10.1016/j.still.2012.02.007_bib0110) 1987 Doube (10.1016/j.still.2012.02.007_bib0055) 2010; 47 Ball (10.1016/j.still.2012.02.007_bib0005) 1994; 31 |
References_xml | – reference: Mueller, L., Schindler, U., Ball, B.C., Munkholm, L.J., Hennings, V., Smolentseva, E., Rukhovic, O., Lukin, S., Hu, C., Shepherd, G. Evaluation of soil structure in the framework of an overall soil quality rating. Soil Tillage Res., submitted for publication. – volume: 224 start-page: 213 year: 2006 end-page: 232 ident: bib0030 article-title: A guided tour into subcellular colocalization analysis in light microscopy publication-title: J. Microsc. – volume: 22 start-page: 173 year: 1992 end-page: 187 ident: bib0035 article-title: Effects of simplified cultivation on the growth and yield of spring barley on a sandy loam soil. 2. Soil physical-properties and root-growth – root–shoot relationships, inflow rates of nitrogen-water-use publication-title: Soil Tillage Res. – volume: 31 start-page: 289 year: 1994 end-page: 301 ident: bib0045 article-title: A review of conservation tillage strategies for humid temperate regions publication-title: Soil Tillage Res. – volume: 23 start-page: 329 year: 2007 end-page: 337 ident: bib0010 article-title: Field assessment of soil structural quality – a development of the Peerlkamp test publication-title: Soil Use Manage. – volume: 135 start-page: 613 year: 1997 end-page: 619 ident: bib0195 article-title: Mechanical impedance of root growth directly reduces leaf elongation rates of cereals publication-title: New Phytol. – volume: 24 start-page: 392 year: 2008 end-page: 400 ident: bib0160 article-title: The effect of tillage intensity on soil structure and winter wheat root/shoot growth publication-title: Soil Use Manage. – reference: (accessed 31.08.11). – year: 2011 ident: bib0115 article-title: Canadian Climate Normals: 1971–2000 – year: 2005 ident: bib0170 article-title: ImageJ – reference: FAO, 2011. Conservation agriculture. Available at – year: 2012 ident: bib0205 article-title: Soil pore characteristics assessed from X-ray micro-CT derived images and correlations to soil friability publication-title: Geoderma – volume: 4 start-page: 237 year: 1984 end-page: 249 ident: bib0090 article-title: Refinement and re-evaluation of the drop-shatter soil fragmentation method publication-title: Soil Tillage Res. – year: 1998 ident: bib0050 article-title: The Canadian System of Soil Classification – volume: 47 start-page: 1076 year: 2010 end-page: 1079 ident: bib0055 article-title: BoneJ: free and extensible bone image analysis in ImageJ publication-title: Bone – volume: 75 start-page: 1307 year: 2011 end-page: 1314 ident: bib0100 article-title: Soil structure and physical properties under rye-corn silage double-cropping systems publication-title: Soil Sci. Soc. Am. J. – volume: 167–168 start-page: 236 year: 2011 end-page: 246 ident: bib0200 article-title: Soil friability: a review of the concept, assessment and effects of soil properties and management publication-title: Geoderma – volume: 145 start-page: 477 year: 2000 end-page: 482 ident: bib0095 article-title: Sloughing of cap cells and carbon exudation from maize seedling roots in compacted sand publication-title: New Phytol. – volume: 106 start-page: 241 year: 2010 end-page: 246 ident: bib0020 article-title: Soil compaction-N interactions in barley: root growth and tissue composition publication-title: Soil Tillage Res. – volume: 27 start-page: 395 year: 2011 end-page: 403 ident: bib0080 article-title: Improvements in the visual evaluation of soil structure publication-title: Soil Use Manage. – volume: 71 start-page: 163 year: 2003 end-page: 173 ident: bib0155 article-title: Spatial and temporal effects of direct drilling on soil structure in the seedling environment publication-title: Soil Tillage Res. – volume: 3 start-page: 47 year: 1983 end-page: 59 ident: bib0085 article-title: Energy efficiency in tilling dry clod-forming soils publication-title: Soil Tillage Res. – volume: 98 start-page: 1204 year: 2006 end-page: 1212 ident: bib0120 article-title: Impact of tillage and rotation on yield and economic performance in corn-based cropping systems publication-title: Agron. J. – volume: 34 start-page: 343 year: 1996 end-page: 360 ident: bib0105 article-title: Soil friability in relation to management history and suitability for direct drilling publication-title: Aust. J. Soil Res. – volume: 108 start-page: 1 year: 2010 end-page: 15 ident: bib0125 article-title: The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment – a review publication-title: Soil Tillage Res. – volume: 103 start-page: 178 year: 2009 end-page: 187 ident: bib0130 article-title: Visual assessment of soil structure: evaluation of methodologies on sites in Canada, China and Germany: part I. comparing visual methods and linking them with soil physical data and grain yield of cereals publication-title: Soil Tillage Res. – volume: 141 start-page: 60 year: 2007 end-page: 70 ident: bib0065 article-title: A comparison of optical and X-ray CT technique for void analysis in soil thin section publication-title: Geoderma – volume: 25 start-page: 311 year: 2002 end-page: 318 ident: bib0165 article-title: Soil conditions and plant growth publication-title: Plant Cell Environ. – volume: 31 start-page: 97 year: 1994 end-page: 118 ident: bib0005 article-title: Crop performance and soil conditions on imperfectly drained loams after 20–25 years of conventional tillage or direct drilling publication-title: Soil Tillage Res. – volume: 127 start-page: 85 year: 2013 end-page: 91 ident: bib0210 article-title: On the visual evaluation of soil structure: the Brazilian experience in oxisols under no-tillage publication-title: Soil Tillage Res. – volume: 73 start-page: 39 year: 1974 end-page: 45 ident: bib0015 article-title: The effect of mechanical forces on the exudation of organic substances by the roots of cereal plants grown under sterile conditions publication-title: New Phytol. – volume: 103 start-page: 188 year: 2009 end-page: 196 ident: bib0135 article-title: Visual assessment of soil structure: part II. Implications of tillage, rotation and traffic on sites in Canada, China and Germany publication-title: Soil Tillage Res. – year: 2005 ident: bib0175 article-title: SAS Institute, SAS/STAT™ Software: Language Reference and Concepts Release 9.1.3 – volume: vol. 1 year: 2009 ident: bib0185 article-title: Visual Soil Assessment publication-title: Field Guide for Pastoral Grazing and Cropping on Flat and Rolling Country – volume: 21 start-page: 37 year: 1991 end-page: 52 ident: bib0040 article-title: Evaluation of shallow tillage for spring cereals on a fine sandy loam. 2. Soil physical, chemical and biological properties publication-title: Soil Tillage Res. – start-page: 141 year: 1994 end-page: 165 ident: bib0060 article-title: Approaches toward conservation tillage in Germany publication-title: Conservation Tillage in Temperate Agroecosystems – volume: 172 start-page: 279 year: 1995 end-page: 287 ident: bib0025 article-title: Influence of mechanical impedance on root exudation of maize seedlings at two developmental stages publication-title: Plant Soil – start-page: 35 year: 1987 end-page: 52 ident: bib0110 article-title: Observation morphologique de l’état structural et mise en evidence d’effects du compactage des horizons travaillés publication-title: Soil Compaction and Regeneration – volume: 88 start-page: 195 year: 2002 end-page: 214 ident: bib0180 article-title: Soil quality aspects of humid sandy loams as influenced by organic and conventional long-term management publication-title: Agric. Ecosyst. Environ. – year: 2006 ident: bib0190 article-title: World Reference Base for Soil Resources 2006 – volume: 145 start-page: 477 year: 2000 ident: 10.1016/j.still.2012.02.007_bib0095 article-title: Sloughing of cap cells and carbon exudation from maize seedling roots in compacted sand publication-title: New Phytol. doi: 10.1046/j.1469-8137.2000.00595.x – volume: 224 start-page: 213 year: 2006 ident: 10.1016/j.still.2012.02.007_bib0030 article-title: A guided tour into subcellular colocalization analysis in light microscopy publication-title: J. Microsc. doi: 10.1111/j.1365-2818.2006.01706.x – volume: 127 start-page: 85 year: 2013 ident: 10.1016/j.still.2012.02.007_bib0210 article-title: On the visual evaluation of soil structure: the Brazilian experience in oxisols under no-tillage publication-title: Soil Tillage Res. doi: 10.1016/j.still.2012.03.004 – volume: 167–168 start-page: 236 year: 2011 ident: 10.1016/j.still.2012.02.007_bib0200 article-title: Soil friability: a review of the concept, assessment and effects of soil properties and management publication-title: Geoderma doi: 10.1016/j.geoderma.2011.08.005 – volume: 47 start-page: 1076 year: 2010 ident: 10.1016/j.still.2012.02.007_bib0055 article-title: BoneJ: free and extensible bone image analysis in ImageJ publication-title: Bone doi: 10.1016/j.bone.2010.08.023 – volume: 75 start-page: 1307 year: 2011 ident: 10.1016/j.still.2012.02.007_bib0100 article-title: Soil structure and physical properties under rye-corn silage double-cropping systems publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2010.0292 – year: 1998 ident: 10.1016/j.still.2012.02.007_bib0050 – volume: 31 start-page: 289 year: 1994 ident: 10.1016/j.still.2012.02.007_bib0045 article-title: A review of conservation tillage strategies for humid temperate regions publication-title: Soil Tillage Res. doi: 10.1016/0167-1987(94)90037-X – year: 2005 ident: 10.1016/j.still.2012.02.007_bib0170 – volume: 108 start-page: 1 year: 2010 ident: 10.1016/j.still.2012.02.007_bib0125 article-title: The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment – a review publication-title: Soil Tillage Res. doi: 10.1016/j.still.2010.03.004 – volume: 172 start-page: 279 year: 1995 ident: 10.1016/j.still.2012.02.007_bib0025 article-title: Influence of mechanical impedance on root exudation of maize seedlings at two developmental stages publication-title: Plant Soil doi: 10.1007/BF00011330 – volume: vol. 1 year: 2009 ident: 10.1016/j.still.2012.02.007_bib0185 article-title: Visual Soil Assessment – year: 2006 ident: 10.1016/j.still.2012.02.007_bib0190 – volume: 135 start-page: 613 year: 1997 ident: 10.1016/j.still.2012.02.007_bib0195 article-title: Mechanical impedance of root growth directly reduces leaf elongation rates of cereals publication-title: New Phytol. doi: 10.1046/j.1469-8137.1997.00693.x – ident: 10.1016/j.still.2012.02.007_bib0140 – volume: 103 start-page: 178 year: 2009 ident: 10.1016/j.still.2012.02.007_bib0130 article-title: Visual assessment of soil structure: evaluation of methodologies on sites in Canada, China and Germany: part I. comparing visual methods and linking them with soil physical data and grain yield of cereals publication-title: Soil Tillage Res. doi: 10.1016/j.still.2008.12.015 – volume: 73 start-page: 39 year: 1974 ident: 10.1016/j.still.2012.02.007_bib0015 article-title: The effect of mechanical forces on the exudation of organic substances by the roots of cereal plants grown under sterile conditions publication-title: New Phytol. doi: 10.1111/j.1469-8137.1974.tb04604.x – volume: 34 start-page: 343 year: 1996 ident: 10.1016/j.still.2012.02.007_bib0105 article-title: Soil friability in relation to management history and suitability for direct drilling publication-title: Aust. J. Soil Res. doi: 10.1071/SR9960343 – start-page: 35 year: 1987 ident: 10.1016/j.still.2012.02.007_bib0110 article-title: Observation morphologique de l’état structural et mise en evidence d’effects du compactage des horizons travaillés – volume: 98 start-page: 1204 year: 2006 ident: 10.1016/j.still.2012.02.007_bib0120 article-title: Impact of tillage and rotation on yield and economic performance in corn-based cropping systems publication-title: Agron. J. doi: 10.2134/agronj2005.0262 – volume: 4 start-page: 237 year: 1984 ident: 10.1016/j.still.2012.02.007_bib0090 article-title: Refinement and re-evaluation of the drop-shatter soil fragmentation method publication-title: Soil Tillage Res. doi: 10.1016/0167-1987(84)90023-0 – volume: 3 start-page: 47 year: 1983 ident: 10.1016/j.still.2012.02.007_bib0085 article-title: Energy efficiency in tilling dry clod-forming soils publication-title: Soil Tillage Res. doi: 10.1016/0167-1987(83)90016-8 – volume: 141 start-page: 60 year: 2007 ident: 10.1016/j.still.2012.02.007_bib0065 article-title: A comparison of optical and X-ray CT technique for void analysis in soil thin section publication-title: Geoderma doi: 10.1016/j.geoderma.2007.05.001 – year: 2011 ident: 10.1016/j.still.2012.02.007_bib0115 – volume: 71 start-page: 163 year: 2003 ident: 10.1016/j.still.2012.02.007_bib0155 article-title: Spatial and temporal effects of direct drilling on soil structure in the seedling environment publication-title: Soil Tillage Res. doi: 10.1016/S0167-1987(03)00062-X – ident: 10.1016/j.still.2012.02.007_bib0070 – volume: 88 start-page: 195 year: 2002 ident: 10.1016/j.still.2012.02.007_bib0180 article-title: Soil quality aspects of humid sandy loams as influenced by organic and conventional long-term management publication-title: Agric. Ecosyst. Environ. doi: 10.1016/S0167-8809(01)00161-X – year: 2012 ident: 10.1016/j.still.2012.02.007_bib0205 article-title: Soil pore characteristics assessed from X-ray micro-CT derived images and correlations to soil friability publication-title: Geoderma doi: 10.1016/j.geoderma.2012.02.024 – volume: 21 start-page: 37 year: 1991 ident: 10.1016/j.still.2012.02.007_bib0040 article-title: Evaluation of shallow tillage for spring cereals on a fine sandy loam. 2. Soil physical, chemical and biological properties publication-title: Soil Tillage Res. doi: 10.1016/0167-1987(91)90004-H – volume: 31 start-page: 97 year: 1994 ident: 10.1016/j.still.2012.02.007_bib0005 article-title: Crop performance and soil conditions on imperfectly drained loams after 20–25 years of conventional tillage or direct drilling publication-title: Soil Tillage Res. doi: 10.1016/0167-1987(94)90074-4 – volume: 27 start-page: 395 year: 2011 ident: 10.1016/j.still.2012.02.007_bib0080 article-title: Improvements in the visual evaluation of soil structure publication-title: Soil Use Manage. doi: 10.1111/j.1475-2743.2011.00354.x – year: 2005 ident: 10.1016/j.still.2012.02.007_bib0175 – volume: 103 start-page: 188 year: 2009 ident: 10.1016/j.still.2012.02.007_bib0135 article-title: Visual assessment of soil structure: part II. Implications of tillage, rotation and traffic on sites in Canada, China and Germany publication-title: Soil Tillage Res. doi: 10.1016/j.still.2008.09.010 – volume: 23 start-page: 329 year: 2007 ident: 10.1016/j.still.2012.02.007_bib0010 article-title: Field assessment of soil structural quality – a development of the Peerlkamp test publication-title: Soil Use Manage. doi: 10.1111/j.1475-2743.2007.00102.x – volume: 24 start-page: 392 year: 2008 ident: 10.1016/j.still.2012.02.007_bib0160 article-title: The effect of tillage intensity on soil structure and winter wheat root/shoot growth publication-title: Soil Use Manage. doi: 10.1111/j.1475-2743.2008.00179.x – volume: 106 start-page: 241 year: 2010 ident: 10.1016/j.still.2012.02.007_bib0020 article-title: Soil compaction-N interactions in barley: root growth and tissue composition publication-title: Soil Tillage Res. doi: 10.1016/j.still.2009.10.008 – volume: 25 start-page: 311 year: 2002 ident: 10.1016/j.still.2012.02.007_bib0165 article-title: Soil conditions and plant growth publication-title: Plant Cell Environ. doi: 10.1046/j.0016-8025.2001.00802.x – start-page: 141 year: 1994 ident: 10.1016/j.still.2012.02.007_bib0060 article-title: Approaches toward conservation tillage in Germany – volume: 22 start-page: 173 year: 1992 ident: 10.1016/j.still.2012.02.007_bib0035 article-title: Effects of simplified cultivation on the growth and yield of spring barley on a sandy loam soil. 2. Soil physical-properties and root-growth – root–shoot relationships, inflow rates of nitrogen-water-use publication-title: Soil Tillage Res. doi: 10.1016/0167-1987(92)90030-F |
SSID | ssj0004328 |
Score | 2.4171073 |
Snippet | ► Positive effect of diverse rotation on soil structural quality. ► Diverse crop rotation needed for optimal performance of no tilled soil. ► Crop yield... Tillage and rotation are fundamental factors influencing soil quality and thus the sustainability of cropping systems. Many studies have focused on the effects... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 85 |
SubjectTerms | Avena fatua corn cover crops crop rotation crop yield disturbed soils Glycine max Hordeum vulgare long term effects moldboard plows oats Rotation silt loam soils soil pore system Soil quality soil sampling soybeans spring barley Tillage Trifolium pratense Visual soil structure evaluation water content X-ray CT Yield Zea mays |
Title | Long-term rotation and tillage effects on soil structure and crop yield |
URI | https://dx.doi.org/10.1016/j.still.2012.02.007 https://www.proquest.com/docview/1449958693 |
Volume | 127 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqIzESGhSO3Y8VhWlPNQFKnWz4keqoiqp2jKw8NvxOQkIJDogZbLsJDrb3-Xi775D6ErEmhjCRMCIcQFK19Ag0SEN0jC0hmcxJPoA22LEhmP6MIknDdSvc2GAVllhf4npHq2rlk5lzc5iNus8A4EeQuYIsk2cV4QMdsphld98fNM8KPH1Vb2-N_SulYc8x8vtojmcP8APQRDu5H95p1847Z3PYA_tVl-NuFe-2D5q2PwA7fSmy0o5wx6iu6cinwYAtHhZlOfrOM0Nhmc7zMAVcQO75lUxm-NSONYN9b2gkBd-BzbbERoPbl_6w6CqkhBoQtg6oITZxAUiBkpBaufuI5ty5QIfYZmICTeGqYxHkaA6jJSC-MxwncRMCZ5l2pBj1MyL3J4gLAzjqYiNSnlMGQtTkRGaqERworTiooW6tXWkriTEoZLFXNZcsVfpTSrBpDJ0V8hb6Ppr0KJU0NjcndVmlz8WgnQYv3ngZT1J0m0ROPdIc1u8rVx044wRJ0yQ0__e_Axtd30dDCCfnaOmmyJ74b5G1qrtl1sbbfXuH4ejT6dY3e0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-DupBfOL6jODRuu0mTZqjiLrq6kUFb6F5dFlZWnH14MXf7kzaKgp6EHoKSVsmyTeZ5Mt8hByo1DLHhIoEcxCg9ByPMhvzKI9j72SR4kUfZFvciP49v3xIH6bISXsXBmmVDfbXmB7QuinpNtbsPo1G3Vsk0GPInOBtE_CK02SWw_RFGYOj9y-eB2dBYDUk-MbqbeqhQPKCaTTGAwjcEcTMnfI39_QDqIP3OVsii82ykR7Xf7ZMpny5QhaOh89N6gy_Ss4HVTmMEGnpc1UfsNO8dBS_DaBBG-YGheJJNRrTOnMsNA21UMmLviGdbY3cn53enfSjRiYhsoyJl4gz4TOIRBxqQVrw94nPpYHIR3mhUiadE6aQSaK4jRNjMEBz0mapMEoWhXVsncyUVek3CFVOyFylzuQy5ULEuSoYz0ymJDPWSNUhvdY62jY5xFHKYqxbstijDibVaFIdwxPLDjn8bPRUp9D4u7poza6_jQQNIP93w_22kzTMETz4yEtfvU4gvAFjpJlQbPO_L98jc_2764EeXNxcbZH5XhDFQCbaNpmB7vI7sDR5Mbth6H0A1b_few |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+rotation+and+tillage+effects+on+soil+structure+and+crop+yield&rft.jtitle=Soil+%26+tillage+research&rft.au=Munkholm%2C+Lars+J&rft.au=Heck%2C+Richard+J&rft.au=Deen%2C+Bill&rft.date=2013-03-01&rft.issn=0167-1987&rft.volume=127+p.85-91&rft.spage=85&rft.epage=91&rft_id=info:doi/10.1016%2Fj.still.2012.02.007&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-1987&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-1987&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-1987&client=summon |