PHI-SMFE: spatial multi-scale feature extract neural network based on physical heterogeneous interaction for solving passive scalar advection in a 2-D unsteady flow
Fluid dynamic calculations play a crucial role in understanding marine biochemical dynamic processes, impacting the behavior, interactions, and distribution of biochemical components in aquatic environments. The numerical simulation of fluid dynamics is a challenging task, particularly in real-world...
Saved in:
Published in | Frontiers in Marine Science Vol. 10 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Frontiers Research Foundation
06.11.2023
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 2296-7745 2296-7745 |
DOI | 10.3389/fmars.2023.1276869 |
Cover
Loading…
Abstract | Fluid dynamic calculations play a crucial role in understanding marine biochemical dynamic processes, impacting the behavior, interactions, and distribution of biochemical components in aquatic environments. The numerical simulation of fluid dynamics is a challenging task, particularly in real-world scenarios where fluid motion is highly complex. Traditional numerical simulation methods enhance accuracy by increasing the resolution of the computational grid. However, this approach comes with a higher computational demand. Recent advancements have introduced an alternative by leveraging deep learning techniques for fluid dynamic simulations. These methods utilize discretized learned coefficients to achieve high-precision solutions on low-resolution grids, effectively reducing the computational burden while maintaining accuracy. Yet, existing fluid numerical simulation methods based on deep learning are limited by their single-scale analysis of spatially correlated physical fields, which fails to capture the diverse scale characteristics inherent in flow fields governed by complex laws in different physical space. Additionally, these models lack an effective approach to enhance correlation interactions among dynamic fields within the same system. To tackle these challenges, we propose the Spatial Multi-Scale Feature Extract Neural Network based on Physical Heterogeneous Interaction (PHI-SMFE). The PHI module is designed to extract heterogeneity and interaction information from diverse dynamic fields, while the SMFE module focuses on capturing multi-scale features in fluid dynamic fields. We utilize channel-biased convolution to implement a separation strategy, reducing the processing of redundant feature information. Furthermore, the traditional solution module based on the finite volume method is integrated into the network to facilitate the numerical solution of the discretized dynamic field in subsequent time steps. Comparative analysis with the current state-of-the-art model reveals that our proposed method offers a 41% increase in simulation accuracy and a 12.7% decrease in inference time during the iterative evolution of unsteady flow. These results underscore the superior performance of our model in terms of both simulation accuracy and computational speedup, establishing it as a state-of-the-art solution. |
---|---|
AbstractList | Fluid dynamic calculations have a profound impact on marine biochemical dynamic processes, influencing the behavior, interactions, and distribution of biochemical components within aquatic environments. The high precision numerical simulation of fluid dynamics poses a significant challenge due to the inherent complexity of fluid motion in real-world scenarios. Traditional numerical simulation methods typically achieve higher accuracy by increasing the resolution of the computational grid. However, this increase in grid resolution also introduces a higher computational demand. Recently, the advancement in machine learning has paved the way for overcoming aforementioned bottleneck issue by harnessing the power of deep learning techniques in numerical simulation. Numerical simulation methods that incorporate deep learning leverage discretized learned coefficients to attain high-precision solutions on low-resolution grids, which means that these methods can effectively alleviate the computational burden while maintaining simulation accuracy. Nevertheless, current fluid numerical simulation methods based on deep learning are constrained by their reliance on a single scale analysis of spatially correlated physical fields. This limitation prevents them from effectively capturing the diverse scale characteristics inherent in flow fields governed by complex motion laws in different physical spaces. Furthermore, different dynamic fields within the same system are subject to physical interactions, yet existing models lack an effective approach to enhance the correlation interactions among these dynamic fields. To tackle these challenges, we present spatial multi-scale featrue extract neural network based on physical heterogeneous interaction (PHI-SMFE). Specifically, the PHI module is designed to extract heterogeneity and interaction information from diverse dynamic fields. In addition, we propose the SMFE module that focuses on capturing multi-scale features in fluid dynamic fields. Notably, we utilize channel-biased convolution based on Partial Convolution to implement a separation strategy, effectively reducing the processing of redundant feature information. Compared to the current state-of-the-art model, our method exhibits a 41% increase in simulation accuracy and a 12.7% decrease in inference time during the iterative evolution of the unsteady flow field. These results demonstrate that our proposed model achieves SOTA-level performance in terms of both simulation accuracy and computational speedup. Fluid dynamic calculations play a crucial role in understanding marine biochemical dynamic processes, impacting the behavior, interactions, and distribution of biochemical components in aquatic environments. The numerical simulation of fluid dynamics is a challenging task, particularly in real-world scenarios where fluid motion is highly complex. Traditional numerical simulation methods enhance accuracy by increasing the resolution of the computational grid. However, this approach comes with a higher computational demand. Recent advancements have introduced an alternative by leveraging deep learning techniques for fluid dynamic simulations. These methods utilize discretized learned coefficients to achieve high-precision solutions on low-resolution grids, effectively reducing the computational burden while maintaining accuracy. Yet, existing fluid numerical simulation methods based on deep learning are limited by their single-scale analysis of spatially correlated physical fields, which fails to capture the diverse scale characteristics inherent in flow fields governed by complex laws in different physical space. Additionally, these models lack an effective approach to enhance correlation interactions among dynamic fields within the same system. To tackle these challenges, we propose the Spatial Multi-Scale Feature Extract Neural Network based on Physical Heterogeneous Interaction (PHI-SMFE). The PHI module is designed to extract heterogeneity and interaction information from diverse dynamic fields, while the SMFE module focuses on capturing multi-scale features in fluid dynamic fields. We utilize channel-biased convolution to implement a separation strategy, reducing the processing of redundant feature information. Furthermore, the traditional solution module based on the finite volume method is integrated into the network to facilitate the numerical solution of the discretized dynamic field in subsequent time steps. Comparative analysis with the current state-of-the-art model reveals that our proposed method offers a 41% increase in simulation accuracy and a 12.7% decrease in inference time during the iterative evolution of unsteady flow. These results underscore the superior performance of our model in terms of both simulation accuracy and computational speedup, establishing it as a state-of-the-art solution. |
Author | Chen, Jingjian Song, Ning Shi, Xiaomeng Wen, Qi Wei, Zhiqiang Nie, Jie Yuan, Yuchen |
Author_xml | – sequence: 1 givenname: Yuchen surname: Yuan fullname: Yuan, Yuchen – sequence: 2 givenname: Ning surname: Song fullname: Song, Ning – sequence: 3 givenname: Jie surname: Nie fullname: Nie, Jie – sequence: 4 givenname: Xiaomeng surname: Shi fullname: Shi, Xiaomeng – sequence: 5 givenname: Jingjian surname: Chen fullname: Chen, Jingjian – sequence: 6 givenname: Qi surname: Wen fullname: Wen, Qi – sequence: 7 givenname: Zhiqiang surname: Wei fullname: Wei, Zhiqiang |
BookMark | eNpNUctu1DAUjVCRKEN_gJUl1hn8SGKHHSotHakIJGBt3djXUw-pHWxn2vkfPpRMp0Ks7kPncXXP6-osxIBV9ZbRtRCqf-_uIeU1p1ysGZed6voX1TnnfVdL2bRn__Wvqoucd5RSJhraNv159efbzab-_uX66gPJExQPI7mfx-LrbGBE4hDKnJDgY0lgCgk4pwUSsDzE9IsMkNGSGMh0d8h-YZA7LJjiFgPGORMflmnh-QXiYiI5jnsftmSCnP0eydEEEgG7xxPIBwKE15_IHHJBsAfixvjwpnrpYMx48VxX1c_rqx-XN_Xt18-by4-3tRGiK3XDEJXFXshhoFRQ42BohVJGmk4KBT0FoRiIobdOMqEsMCM6Jrqhsa20rVhVm5OujbDTU_LLYw86gtdPi5i2GlLxZkRtJUhh3KAa4RqgsleGOzlwoyj2fLFbVe9OWlOKv2fMRe_inMJyvuZKdU3LO3Z05CeUSTHnhO6fK6P6GK5-Clcfw9XP4Yq_wTSdBA |
Cites_doi | 10.1016/j.cageo.2021.104842 10.1063/1.4927765 10.1243/PIMEPROC198720108702 10.1016/0021-9991(84)90073-1 10.1016/S0377-0427(96)00156-2 10.1016/j.cja.2014.12.007 10.48550/arXiv.2009.04544 10.1098/rsbm.2009.0013 10.1146/annurev-fluid-120710-101240 10.1016/0021-9991(82)90091-2 10.1007/s10494-019-00026-y 10.2514/6.1992-439 10.3390/w13040423 10.1016/0021-9991(82)90058-4 10.1002/fld.1650201003 10.1063/1.1692799 10.1088/0741-3335/47/2/R01 10.3390/atmos13111753 10.1006/jcph.1996.5572 10.1137/0902035 10.3389/fmars.2023.1132640 10.1016/j.ombustflame.2017.02.035 10.1016/j.jcp.2018.10.045 10.1002/sapm1972513253 10.1016/B978-008043328-8/50064-3 10.1073/pnas.1814058116 10.33737/gpps19-bj-126 10.1073/pnas.2101784118 10.1126/science.aaw4741 10.1016/0021-9991(84)90128-1 10.1175/1520-0493(1974)102⟨0056:FSOS⟩2.0.CO;2 10.1137/S1064827596305738 10.1175/JAMC-D-15-0115.1 10.48550/arXiv.1906.01200 10.1137/S0036142997326203 10.1029/2011JD016603 10.1016/j.jocs.2020.101237 10.1146/annurev.fl.28.010196.000401 10.1016/j.jcp.2010.05.003 10.1175/1520-0493(1994)122\%3C1575:ACOTVL\%3E2.0.CO;2 10.1103/PhysRevFluids.6.064605 10.1016/j.fuel.2021.121384 10.1016/j.automatica.2010.06.048 10.1007/s13351-020-9128-4 10.1115/1.3124648 10.1016/j.enganabound.2004.01.004 10.1007/s10546-016-0217-y 10.1016/j.jweia.2011.01.013 10.5194/gmd-16-199-2023 10.1137/19M1274067 10.1016/j.crme.2004.09.016 10.1038/nature14539 |
ContentType | Journal Article |
Copyright | 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7TN 7XB 88I 8FE 8FH 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI BKSAR CCPQU DWQXO F1W GNUQQ HCIFZ LK8 M2P M7P PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.3389/fmars.2023.1276869 |
DatabaseName | CrossRef ProQuest Central (Corporate) Oceanic Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database ProQuest Biological Science Database (NC LIVE) Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Oceanic Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Oceanography Engineering |
EISSN | 2296-7745 |
ExternalDocumentID | oai_doaj_org_article_d7a73cfb843f4a0798c2f7b2c80e9267 10_3389_fmars_2023_1276869 |
GroupedDBID | 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFS ACXDI ADBBV AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BCNDV BENPR BHPHI BKSAR BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ HCIFZ KQ8 LK8 M2P M7P M~E OK1 PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC 3V. 7TN 7XB 8FK F1W PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c336t-41ee8de937bb0030cfab5388c7c6738a90a381a3b9df7138da1c36136b4d57d53 |
IEDL.DBID | DOA |
ISSN | 2296-7745 |
IngestDate | Wed Aug 27 01:28:30 EDT 2025 Fri Jul 25 11:49:23 EDT 2025 Tue Jul 01 02:48:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-41ee8de937bb0030cfab5388c7c6738a90a381a3b9df7138da1c36136b4d57d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/d7a73cfb843f4a0798c2f7b2c80e9267 |
PQID | 2886452615 |
PQPubID | 2049538 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d7a73cfb843f4a0798c2f7b2c80e9267 proquest_journals_2886452615 crossref_primary_10_3389_fmars_2023_1276869 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-06 |
PublicationDateYYYYMMDD | 2023-11-06 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Frontiers in Marine Science |
PublicationYear | 2023 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Berger (B9) 1984; 53 Hiptmair (B18) 1998; 36 Jameson (B21) 1981 Esclapez (B14) 2017; 181 Liu (B32) 2011; 99 McClenny (B35) 2020 Raissi (B41) 2019; 378 Vanella (B50) 2010; 229 Liu (B31) 1998; 20 Cheng (B12) 2021; 13 Ling (B30) 2015; 27 Kraichnan (B24) 1970; 13 Kansa (B22) 2004; 28 Wang (B51) 2021; 155 Lin (B29) 1994; 122 Shur (B43) 1999 Spalart (B46) 1992 Orszag (B37) 1972; 51 Stuart (B47) 2009 Malé (B34) 2019; 103 Bassi (B6) 1997; 131 Ghia (B17) 1982; 48 Feit (B15) 1982; 47 Lesieur (B27) 1996; 28 Benmoshe (B8) 2012; 117 Li (B28) 1995; 20 Hsieh (B19) 2019 Wei (B52) 2020; 34 Arcoumanis (B3) 1987; 201 Zhong (B55) 2023; 16 Zhiyin (B54) 2015; 28 Xue (B53) 2016; 55 Belbute-Peres (B7) 2020 Garg (B16) 2010; 46 Patera (B39) 1984; 54 Jameson (B20) 1993 Song (B45) 2023; 10 Alfonsi (B2) 2009; 62 Raissi (B42) 2020; 367 Mi (B36) 2022; 13 Um (B49) 2020; 33 Lu (B33) 2021; 63 Boffetta (B10) 2012; 44 Doan (B13) 2020; 47 Orszag (B38) 1974; 102 Tang (B48) 2005; 47 Alcouffe (B1) 1981; 2 Simos (B44) 1997; 79 Zhou (B56) 2021; 304 LeCun (B26) 2015; 521 Kochkov (B23) 2021; 118 Arroyo (B4) 2019 Krastev (B25) 2005; 333 Rai (B40) 2017; 163 Bar-Sinai (B5) 2019; 116 Zhuang (B57) 2021; 6 Chen (B11) 2023 |
References_xml | – volume: 155 year: 2021 ident: B51 article-title: Random-forest based adjusting method for wind forecast of wrf model publication-title: Comput. Geosciences doi: 10.1016/j.cageo.2021.104842 – volume: 27 start-page: 085103 year: 2015 ident: B30 article-title: Evaluation of machine learning algorithms for prediction of regions of high reynolds averaged navier stokes uncertainty publication-title: Phys. Fluids doi: 10.1063/1.4927765 – volume: 201 start-page: 57 year: 1987 ident: B3 article-title: Fluid mechanics of internal combustion engines—a review publication-title: Proc. Institution Mechanical Engineers Part C: J. Mechanical Eng. Sci. doi: 10.1243/PIMEPROC198720108702 – volume: 53 start-page: 484 year: 1984 ident: B9 article-title: Adaptive mesh refinement for hyperbolic partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(84)90073-1 – volume: 79 start-page: 189 year: 1997 ident: B44 article-title: A finite-difference method for the numerical solution of the schrodinger¨ equation publication-title: J. Comput. Appl. Mathematics doi: 10.1016/S0377-0427(96)00156-2 – volume: 28 start-page: 11 year: 2015 ident: B54 article-title: Large-eddy simulation: Past, present and the future publication-title: Chin. J. Aeronautics doi: 10.1016/j.cja.2014.12.007 – year: 2020 ident: B35 article-title: Self-adaptive physics-informed neural networks using a soft attention mechanism publication-title: arXiv doi: 10.48550/arXiv.2009.04544 – volume-title: Leslie howarth obe. 23 may 1911—22 september 2001 year: 2009 ident: B47 doi: 10.1098/rsbm.2009.0013 – volume: 44 start-page: 427 year: 2012 ident: B10 article-title: Two-dimensional turbulence publication-title: Annu. Rev. Fluid Mechanics doi: 10.1146/annurev-fluid-120710-101240 – start-page: 12021 year: 2023 ident: B11 article-title: Run, don’t walk: Chasing higher flops for faster neural networks – start-page: 3359 year: 1993 ident: B20 article-title: Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence in transonic and hypersonic flows – start-page: 2402 volume-title: international conference on machine learning (PMLR) year: 2020 ident: B7 article-title: Combining differentiable pde solvers and graph neural networks for fluid flow prediction – volume: 47 start-page: 412 year: 1982 ident: B15 article-title: Solution of the schrodinger¨ equation by a spectral method publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(82)90091-2 – volume: 103 start-page: 465 year: 2019 ident: B34 article-title: Large eddy simulation of pre-chamber ignition in an internal combustion engine publication-title: Flow Turbulence Combustion doi: 10.1007/s10494-019-00026-y – start-page: 439 volume-title: 30th aerospace sciences meeting and exhibit year: 1992 ident: B46 article-title: A one-equation turbulence model for aerodynamic flows doi: 10.2514/6.1992-439 – volume: 13 year: 2021 ident: B12 article-title: Deep learning method based on physics informed neural network with resnet block for solving fluid flow problems publication-title: Water doi: 10.3390/w13040423 – volume: 48 start-page: 387 year: 1982 ident: B17 article-title: High-re solutions for incompressible flow using the navierstokes equations and a multigrid method publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(82)90058-4 – volume: 20 start-page: 1137 year: 1995 ident: B28 article-title: A compact fourth-order finite difference scheme for the steady incompressible navier-stokes equations publication-title: Int. J. Numerical Methods Fluids doi: 10.1002/fld.1650201003 – volume: 13 start-page: 22 year: 1970 ident: B24 article-title: Diffusion by a random velocity field publication-title: Phys. Fluids doi: 10.1063/1.1692799 – volume: 47 start-page: R1 year: 2005 ident: B48 article-title: Advances and challenges in computational plasma science publication-title: Plasma Phys. Controlled Fusion doi: 10.1088/0741-3335/47/2/R01 – volume: 13 start-page: 1753 year: 2022 ident: B36 article-title: Multi-scale numerical assessments of urban wind resource using coupled wrf-bep and rans simulation: A case study publication-title: Atmosphere doi: 10.3390/atmos13111753 – volume: 131 start-page: 267 year: 1997 ident: B6 article-title: A high-order accurate discontinuous finite element method for the numerical solution of the compressible navier–stokes equations publication-title: J. Comput. Phys. doi: 10.1006/jcph.1996.5572 – volume: 2 start-page: 430 year: 1981 ident: B1 article-title: The multi-grid method for the diffusion equation with strongly discontinuous coefficients publication-title: SIAM J. Sci. Stat. Computing doi: 10.1137/0902035 – volume: 10 year: 2023 ident: B45 article-title: Tsi-sd: A time-sequence-involved space discretization neural network for passive scalar advection in a two-dimensional unsteady flow publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2023.1132640 – volume: 181 start-page: 82 year: 2017 ident: B14 article-title: Fuel effects on lean blow-out in a realistic gas turbine combustor publication-title: Combustion Flame doi: 10.1016/j.ombustflame.2017.02.035 – volume: 378 start-page: 686 year: 2019 ident: B41 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 51 start-page: 253 year: 1972 ident: B37 article-title: Comparison of pseudospectral and spectral approximation publication-title: Stud. Appl. Mathematics doi: 10.1002/sapm1972513253 – start-page: 1259 year: 1981 ident: B21 article-title: Numerical solution of the euler equations by finite volume methods using runge kutta time stepping schemes – start-page: 669 volume-title: Engineering turbulence modelling and experiments 4 year: 1999 ident: B43 article-title: Detached-eddy simulation of an airfoil at high angle of attack doi: 10.1016/B978-008043328-8/50064-3 – volume: 116 start-page: 15344 year: 2019 ident: B5 article-title: Learning data-driven discretizations for partial differential equations publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1814058116 – start-page: GPPS-BJ-2019-0013 year: 2019 ident: B4 article-title: Cfd modeling of a realistic turbofan blade for noise prediction. part 1: Aerodynamics publication-title: Proc. Global Power Propulsion Soc. (GPPS 2019) doi: 10.33737/gpps19-bj-126 – volume: 118 start-page: e2101784118 year: 2021 ident: B23 article-title: Machine learning– accelerated computational fluid dynamics publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2101784118 – volume: 367 start-page: 1026 year: 2020 ident: B42 article-title: Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations publication-title: Science doi: 10.1126/science.aaw4741 – volume: 54 start-page: 468 year: 1984 ident: B39 article-title: A spectral element method for fluid dynamics: laminar flow in a channel expansion publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(84)90128-1 – volume: 102 start-page: 56 year: 1974 ident: B38 article-title: Fourier series on spheres publication-title: Monthly Weather Rev. doi: 10.1175/1520-0493(1974)102⟨0056:FSOS⟩2.0.CO;2 – volume: 20 start-page: 811 year: 1998 ident: B31 article-title: An adaptive grid method and its application to steady euler flow calculations publication-title: SIAM J. Sci. Computing doi: 10.1137/S1064827596305738 – volume: 33 start-page: 6111 year: 2020 ident: B49 article-title: Solver-in-the-loop: Learning from differentiable physics to interact with iterative pde-solvers publication-title: Adv. Neural Inf. Process. Syst. – volume: 55 start-page: 445 year: 2016 ident: B53 article-title: A case study of radar observations and wrf les simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. part ii: Agi dispersion and seeding signals simulated by wrf publication-title: J. Appl. Meteorology Climatology doi: 10.1175/JAMC-D-15-0115.1 – year: 2019 ident: B19 article-title: Learning neural pde solvers with convergence guarantees publication-title: arXiv doi: 10.48550/arXiv.1906.01200 – volume: 36 start-page: 204 year: 1998 ident: B18 article-title: Multigrid method for maxwell’s equations publication-title: SIAM J. Numerical Anal. doi: 10.1137/S0036142997326203 – volume: 117 year: 2012 ident: B8 article-title: Turbulent effects on the microphysics and initiation of warm rain in deep convective clouds: 2-d simulations by a spectral mixed-phase microphysics cloud model publication-title: J. Geophysical Research: Atmospheres doi: 10.1029/2011JD016603 – volume: 47 year: 2020 ident: B13 article-title: Physics-informed echo state networks publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2020.101237 – volume: 28 start-page: 45 year: 1996 ident: B27 article-title: New trends in large-eddy simulations of turbulence publication-title: Annu. Rev. Fluid mechanics doi: 10.1146/annurev.fl.28.010196.000401 – volume: 229 start-page: 6427 year: 2010 ident: B50 article-title: A direct-forcing embedded-boundary method with adaptive mesh refinement for fluid–structure interaction problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.05.003 – volume: 122 start-page: 1575 year: 1994 ident: B29 article-title: A class of the van leer-type transport schemes and its application to the moisture transport in a general circulation model publication-title: Monthly Weather Rev. doi: 10.1175/1520-0493(1994)122\%3C1575:ACOTVL\%3E2.0.CO;2 – volume: 6 year: 2021 ident: B57 article-title: Learned discretizations for passive scalar advection in a two-dimensional turbulent flow publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.6.064605 – volume: 304 year: 2021 ident: B56 article-title: Numerical analysis of particle dispersion and deposition in coal combustion using large-eddy simulation publication-title: Fuel doi: 10.1016/j.fuel.2021.121384 – volume: 46 start-page: 1843 year: 2010 ident: B16 article-title: A unified framework for the numerical solution of optimal control problems using pseudospectral methods publication-title: Automatica doi: 10.1016/j.automatica.2010.06.048 – volume: 34 start-page: 176 year: 2020 ident: B52 article-title: Influence of intermittent turbulence on air pollution and its dispersion in winter 2016/2017 over beijing, China publication-title: J. Meteorological Res. doi: 10.1007/s13351-020-9128-4 – volume: 62 start-page: 040802 year: 2009 ident: B2 article-title: Reynolds-averaged navier–stokes equations for turbulence modeling publication-title: Appl. Mechanics Rev. doi: 10.1115/1.3124648 – volume: 28 start-page: 1191 year: 2004 ident: B22 article-title: A volumetric integral radial basis function method for time-dependent partial differential equations. i. formulation publication-title: Eng. Anal. Boundary Elements doi: 10.1016/j.enganabound.2004.01.004 – volume: 163 start-page: 69 year: 2017 ident: B40 article-title: Comparison of measured and numerically simulated turbulence statistics in a convective boundary layer over complex terrain publication-title: Boundary-Layer Meteorology doi: 10.1007/s10546-016-0217-y – volume: 99 start-page: 308 year: 2011 ident: B32 article-title: Simultaneous nested modeling from the synoptic scale to the les scale for wind energy applications publication-title: J. Wind Eng. Ind. Aerodynamics doi: 10.1016/j.jweia.2011.01.013 – volume: 16 start-page: 199 year: 2023 ident: B55 article-title: Wrf–ml v1. 0: a bridge between wrf v4. 3 and machine learning parameterizations and its application to atmospheric radiative transfer publication-title: Geoscientific Model. Dev. doi: 10.5194/gmd-16-199-2023 – volume: 63 start-page: 208 year: 2021 ident: B33 article-title: Deepxde: A deep learning library for solving differential equations publication-title: SIAM Rev. doi: 10.1137/19M1274067 – volume: 333 start-page: 59 year: 2005 ident: B25 article-title: A multigrid pseudo-spectral method for incompressible navier–stokes flows publication-title: Comptes Rendus Mécanique doi: 10.1016/j.crme.2004.09.016 – volume: 521 start-page: 436 year: 2015 ident: B26 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 |
SSID | ssj0001340549 |
Score | 2.249372 |
Snippet | Fluid dynamic calculations play a crucial role in understanding marine biochemical dynamic processes, impacting the behavior, interactions, and distribution of... Fluid dynamic calculations have a profound impact on marine biochemical dynamic processes, influencing the behavior, interactions, and distribution of... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Index Database |
SubjectTerms | Ablation Accuracy Aquatic environment ASPP Coefficients Computer applications Convolution Deep learning discretization acceleration Engineering Experiments Finite volume method Flow velocity Fluid dynamics Fluid flow Fluid motion Gas turbine engines Heterogeneity Hydrodynamics Information processing Machine learning Mathematical models multi-scale features Neural networks Partial differential equations passive scalar advection Reynolds number Simulation spatial discretization Unsteady flow |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA_avmhBtCqeVpkH3yT1LpvdJL6I1TtOobWohb4t-ayC7F7vQ_H_8Q91JpurBcHX3SxZ-E3mKzO_Yey5a7RVaGq4dK7mUgTPTawFt9pJ5y2ajEi9w8cnzfxMfjivz0vCbVXKKrc6MSvq0HvKkb8UWtMdHBrg14tLTlOj6Ha1jNC4yXZRBWsMvnaPpienn_5mWSp0SKQZumUwGjMIFwaMhzQ0_HAi0NemSudrFikT9_-jl7Oxmd1ld4qXCG8GWO-xG7HbZ7evcQfus72PPtquEE7fZ79P5-_55-PZ9BWsqEgav861gnyFIERIMRN4AqpiaosCorHEJd1QBA5kywL0HSwKbPCVymR6lK7Yb1ZApBLLoQUC0MsFFFhKRMACXW9Ul0Cb2CXY8CMOi751YEHwd7Dpshj9gvS9__mAnc2mX97OeZnAwH1VNWsuJzHqENGFcVkd-GQdakjtladpodaMLVp8WzkTEka7OtiJr9BBaJwMtQp19ZDtdH0XHzGoJ00ySgSpnZHRWieU0xj7JIyBEAQ7Yi-2KLSLgWijxQCFMGszZi1h1hbMRuyIgLpaSSTZ-UG_vGjLmWuDsqryCbepkrRjZbQXSTnh9Tga0agRO9jC3JaTi7tcydnj_79-wm7RH-W-xOaA7ayXm_gUHZS1e1ak8A9Meekf priority: 102 providerName: ProQuest |
Title | PHI-SMFE: spatial multi-scale feature extract neural network based on physical heterogeneous interaction for solving passive scalar advection in a 2-D unsteady flow |
URI | https://www.proquest.com/docview/2886452615 https://doaj.org/article/d7a73cfb843f4a0798c2f7b2c80e9267 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yXkQQnzi6LnXwJlln0ulO4s3VGUZh10Vd2FtTeaEg3cM8XPb_-EOtSvfKgAcvXpuChPoqVV-lqypCvPSNRUOhRmrva6lVDNKlWkm0XvuAFDIS9w6fnjXLC_3xsr7ce-qLa8KG8cCD4l5Hg6YK2VtdZY1T42xQ2XgV7DQ51ZQ-cop5e8lUuV2piIhoN3TJUBbmCCZKFI_5sfDjmSKOzRXOe5GoDOz_yx-XILO4L-6N7BDeDrt6IG6l7qG4-ykk7MbR0o_Er_PlB_nldDF_Axsuhyb5UhUoN6TuBDmVUZ1ATpcboIAHVpJIN5R7A0etCH0HqxEg-MYFMT3ZUep3G-DxEeuh2QGIzwKZJl85wIpINjlG4EVwDRh_pkHoewcISr6HXVcM5hryj_7qsbhYzL--W8rxrQUZqqrZSj1LycZEZMWXgx8yevKFNpjA74KimyLFdqy8i5nyWhtxFiqiAo3XsTaxrp6Ig67v0lMB9azJzqiorXc6IXplCD1lM2U7pHaciFc3em9Xw0iNllIRRqktKLWMUjuiNBEnDM0fSR6HXT6QkbSjkbT_MpKJOLwBth3PKK1iLf_VJUr37H-s8Vzc4X2XPsXmUBxs17v0ggjL1h-J2yfzs_PPR8VGfwPZxe13 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V6YGHhKCACBSYA5zQlmS99q6REKI0UUKbUEEr9Wb2ZVoJ2SEPqv4fzvxGZtZOqYTErVdno7X0fTvfzHoejL2wmTYKpYZLa1MuhXc8D6ngRltpnUHJCFQ7PJlmo2P58SQ92WC_17UwlFa5tonRUPva0R35a6E1fYNDAX43-8FpahR9XV2P0GhosR8uzjFkW7wd7yG-L4UYDo4-jHg7VYC7JMmWXPZD0D6gLNtIcVcai6deO-VoAqbJewZVzCQ29yVGcNqbvktQ9DIrfao8TYlAk78pEwxlOmxzdzA9_Pz3VidBB0jmTXUORn850gMD1B0aUr7TF-jbU2b1FQWMgwL-0YEobsO77E7rlcL7hkb32EaottitK70Kt9jtTy6Yqm1wfZ_9OhyN-ZfJcPAGFpSUjf-OuYl8gaAHKENsGApo-qkMC6htJi6pmqRzIO30UFcwa2kCp5SWUyObQ71aADWxmDclF4BeNeABoYsPmKGrj-YZaBMzB-N_hmbRWQUGBN-DVRVpewHl9_r8ATu-Fmwesk5VV-ERg7SflbkSXmqby2CMFcpqjLVKjLkQBNNlr9YoFLOmsUeBARFhVkTMCsKsaDHrsl0C6nIlNeWOD-r5t6I944VXRiWuxG2SUpqeyrUTpbLC6V7IRaa6bHsNc9FaCtzlkteP___zc3ZjdDQ5KA7G0_0n7Ca9XayJzLZZZzlfhafoHC3ts5aRwL5e9yH4AwgsJck |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxNBFB5KCqKCaFWMVj0P-iTTJrOTnVlBxJqExNoY1ELftnNbFWQ35mLp__FX-Os8Z3a3FgTf-prMMiHfN-c7Z_ZcGHtmU20USg2X1g64FN7xLAwEN9pK6wxKRqDa4aNZOjmW704GJ1vsd1sLQ2mVrU2MhtpXju7I94XW9A4OBXi_aNIi5sPx68UPThOk6E1rO06jpshhOD_D8G31ajpErJ8LMR59fjvhzYQB7pIkXXPZD0H7gBJtI91dYSxaAO2Uo2mYJusZVDST2MwXGM1pb_ouQQFMrfQD5WliBJr_bYVRUa_Dtg9Gs_nHvzc8CTpDMqsrdTASzJAqGKzu0cDyvb5AP5-yrC-pYRwa8I8mRKEb32a3Gg8V3tSUusO2QrnDblzqW7jDbn5wwZRNs-u77Nd8MuWfjsajl7CiBG18OuYp8hUSIEARYvNQwP-SSrKAWmjikrJOQAfSUQ9VCYuGMvCVUnQqZHaoNiughhbLuvwC0MMGPCx0CQILdPvRVANtYpZg_M9QL_pWggHBh7ApI4XPofhend1jx1eCzX3WKasyPGAw6KdFpoSX2mYyGGOFshrjrgLjLwTBdNmLFoV8UTf5yDE4IszyiFlOmOUNZl12QEBdrKQG3fGDavklb8577pVRiStwm6SQpqcy7UShrHC6FzKRqi7bbWHOG6uBu1xw_OH_v37KriH58_fT2eEjdp1-XCyPTHdZZ73chMfoJ63tk4aQwE6v-gz8AV-HKf4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PHI-SMFE%3A+spatial+multi-scale+feature+extract+neural+network+based+on+physical+heterogeneous+interaction+for+solving+passive+scalar+advection+in+a+2-D+unsteady+flow&rft.jtitle=Frontiers+in+Marine+Science&rft.au=Yuchen+Yuan&rft.au=Ning+Song&rft.au=Jie+Nie&rft.au=Xiaomeng+Shi&rft.date=2023-11-06&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-7745&rft.volume=10&rft_id=info:doi/10.3389%2Ffmars.2023.1276869&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d7a73cfb843f4a0798c2f7b2c80e9267 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-7745&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-7745&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-7745&client=summon |