PHI-SMFE: spatial multi-scale feature extract neural network based on physical heterogeneous interaction for solving passive scalar advection in a 2-D unsteady flow

Fluid dynamic calculations play a crucial role in understanding marine biochemical dynamic processes, impacting the behavior, interactions, and distribution of biochemical components in aquatic environments. The numerical simulation of fluid dynamics is a challenging task, particularly in real-world...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in Marine Science Vol. 10
Main Authors Yuan, Yuchen, Song, Ning, Nie, Jie, Shi, Xiaomeng, Chen, Jingjian, Wen, Qi, Wei, Zhiqiang
Format Journal Article
LanguageEnglish
Published Lausanne Frontiers Research Foundation 06.11.2023
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN2296-7745
2296-7745
DOI10.3389/fmars.2023.1276869

Cover

Loading…
Abstract Fluid dynamic calculations play a crucial role in understanding marine biochemical dynamic processes, impacting the behavior, interactions, and distribution of biochemical components in aquatic environments. The numerical simulation of fluid dynamics is a challenging task, particularly in real-world scenarios where fluid motion is highly complex. Traditional numerical simulation methods enhance accuracy by increasing the resolution of the computational grid. However, this approach comes with a higher computational demand. Recent advancements have introduced an alternative by leveraging deep learning techniques for fluid dynamic simulations. These methods utilize discretized learned coefficients to achieve high-precision solutions on low-resolution grids, effectively reducing the computational burden while maintaining accuracy. Yet, existing fluid numerical simulation methods based on deep learning are limited by their single-scale analysis of spatially correlated physical fields, which fails to capture the diverse scale characteristics inherent in flow fields governed by complex laws in different physical space. Additionally, these models lack an effective approach to enhance correlation interactions among dynamic fields within the same system. To tackle these challenges, we propose the Spatial Multi-Scale Feature Extract Neural Network based on Physical Heterogeneous Interaction (PHI-SMFE). The PHI module is designed to extract heterogeneity and interaction information from diverse dynamic fields, while the SMFE module focuses on capturing multi-scale features in fluid dynamic fields. We utilize channel-biased convolution to implement a separation strategy, reducing the processing of redundant feature information. Furthermore, the traditional solution module based on the finite volume method is integrated into the network to facilitate the numerical solution of the discretized dynamic field in subsequent time steps. Comparative analysis with the current state-of-the-art model reveals that our proposed method offers a 41% increase in simulation accuracy and a 12.7% decrease in inference time during the iterative evolution of unsteady flow. These results underscore the superior performance of our model in terms of both simulation accuracy and computational speedup, establishing it as a state-of-the-art solution.
AbstractList Fluid dynamic calculations have a profound impact on marine biochemical dynamic processes, influencing the behavior, interactions, and distribution of biochemical components within aquatic environments. The high precision numerical simulation of fluid dynamics poses a significant challenge due to the inherent complexity of fluid motion in real-world scenarios. Traditional numerical simulation methods typically achieve higher accuracy by increasing the resolution of the computational grid. However, this increase in grid resolution also introduces a higher computational demand. Recently, the advancement in machine learning has paved the way for overcoming aforementioned bottleneck issue by harnessing the power of deep learning techniques in numerical simulation. Numerical simulation methods that incorporate deep learning leverage discretized learned coefficients to attain high-precision solutions on low-resolution grids, which means that these methods can effectively alleviate the computational burden while maintaining simulation accuracy. Nevertheless, current fluid numerical simulation methods based on deep learning are constrained by their reliance on a single scale analysis of spatially correlated physical fields. This limitation prevents them from effectively capturing the diverse scale characteristics inherent in flow fields governed by complex motion laws in different physical spaces. Furthermore, different dynamic fields within the same system are subject to physical interactions, yet existing models lack an effective approach to enhance the correlation interactions among these dynamic fields. To tackle these challenges, we present spatial multi-scale featrue extract neural network based on physical heterogeneous interaction (PHI-SMFE). Specifically, the PHI module is designed to extract heterogeneity and interaction information from diverse dynamic fields. In addition, we propose the SMFE module that focuses on capturing multi-scale features in fluid dynamic fields. Notably, we utilize channel-biased convolution based on Partial Convolution to implement a separation strategy, effectively reducing the processing of redundant feature information. Compared to the current state-of-the-art model, our method exhibits a 41% increase in simulation accuracy and a 12.7% decrease in inference time during the iterative evolution of the unsteady flow field. These results demonstrate that our proposed model achieves SOTA-level performance in terms of both simulation accuracy and computational speedup.
Fluid dynamic calculations play a crucial role in understanding marine biochemical dynamic processes, impacting the behavior, interactions, and distribution of biochemical components in aquatic environments. The numerical simulation of fluid dynamics is a challenging task, particularly in real-world scenarios where fluid motion is highly complex. Traditional numerical simulation methods enhance accuracy by increasing the resolution of the computational grid. However, this approach comes with a higher computational demand. Recent advancements have introduced an alternative by leveraging deep learning techniques for fluid dynamic simulations. These methods utilize discretized learned coefficients to achieve high-precision solutions on low-resolution grids, effectively reducing the computational burden while maintaining accuracy. Yet, existing fluid numerical simulation methods based on deep learning are limited by their single-scale analysis of spatially correlated physical fields, which fails to capture the diverse scale characteristics inherent in flow fields governed by complex laws in different physical space. Additionally, these models lack an effective approach to enhance correlation interactions among dynamic fields within the same system. To tackle these challenges, we propose the Spatial Multi-Scale Feature Extract Neural Network based on Physical Heterogeneous Interaction (PHI-SMFE). The PHI module is designed to extract heterogeneity and interaction information from diverse dynamic fields, while the SMFE module focuses on capturing multi-scale features in fluid dynamic fields. We utilize channel-biased convolution to implement a separation strategy, reducing the processing of redundant feature information. Furthermore, the traditional solution module based on the finite volume method is integrated into the network to facilitate the numerical solution of the discretized dynamic field in subsequent time steps. Comparative analysis with the current state-of-the-art model reveals that our proposed method offers a 41% increase in simulation accuracy and a 12.7% decrease in inference time during the iterative evolution of unsteady flow. These results underscore the superior performance of our model in terms of both simulation accuracy and computational speedup, establishing it as a state-of-the-art solution.
Author Chen, Jingjian
Song, Ning
Shi, Xiaomeng
Wen, Qi
Wei, Zhiqiang
Nie, Jie
Yuan, Yuchen
Author_xml – sequence: 1
  givenname: Yuchen
  surname: Yuan
  fullname: Yuan, Yuchen
– sequence: 2
  givenname: Ning
  surname: Song
  fullname: Song, Ning
– sequence: 3
  givenname: Jie
  surname: Nie
  fullname: Nie, Jie
– sequence: 4
  givenname: Xiaomeng
  surname: Shi
  fullname: Shi, Xiaomeng
– sequence: 5
  givenname: Jingjian
  surname: Chen
  fullname: Chen, Jingjian
– sequence: 6
  givenname: Qi
  surname: Wen
  fullname: Wen, Qi
– sequence: 7
  givenname: Zhiqiang
  surname: Wei
  fullname: Wei, Zhiqiang
BookMark eNpNUctu1DAUjVCRKEN_gJUl1hn8SGKHHSotHakIJGBt3djXUw-pHWxn2vkfPpRMp0Ks7kPncXXP6-osxIBV9ZbRtRCqf-_uIeU1p1ysGZed6voX1TnnfVdL2bRn__Wvqoucd5RSJhraNv159efbzab-_uX66gPJExQPI7mfx-LrbGBE4hDKnJDgY0lgCgk4pwUSsDzE9IsMkNGSGMh0d8h-YZA7LJjiFgPGORMflmnh-QXiYiI5jnsftmSCnP0eydEEEgG7xxPIBwKE15_IHHJBsAfixvjwpnrpYMx48VxX1c_rqx-XN_Xt18-by4-3tRGiK3XDEJXFXshhoFRQ42BohVJGmk4KBT0FoRiIobdOMqEsMCM6Jrqhsa20rVhVm5OujbDTU_LLYw86gtdPi5i2GlLxZkRtJUhh3KAa4RqgsleGOzlwoyj2fLFbVe9OWlOKv2fMRe_inMJyvuZKdU3LO3Z05CeUSTHnhO6fK6P6GK5-Clcfw9XP4Yq_wTSdBA
Cites_doi 10.1016/j.cageo.2021.104842
10.1063/1.4927765
10.1243/PIMEPROC198720108702
10.1016/0021-9991(84)90073-1
10.1016/S0377-0427(96)00156-2
10.1016/j.cja.2014.12.007
10.48550/arXiv.2009.04544
10.1098/rsbm.2009.0013
10.1146/annurev-fluid-120710-101240
10.1016/0021-9991(82)90091-2
10.1007/s10494-019-00026-y
10.2514/6.1992-439
10.3390/w13040423
10.1016/0021-9991(82)90058-4
10.1002/fld.1650201003
10.1063/1.1692799
10.1088/0741-3335/47/2/R01
10.3390/atmos13111753
10.1006/jcph.1996.5572
10.1137/0902035
10.3389/fmars.2023.1132640
10.1016/j.ombustflame.2017.02.035
10.1016/j.jcp.2018.10.045
10.1002/sapm1972513253
10.1016/B978-008043328-8/50064-3
10.1073/pnas.1814058116
10.33737/gpps19-bj-126
10.1073/pnas.2101784118
10.1126/science.aaw4741
10.1016/0021-9991(84)90128-1
10.1175/1520-0493(1974)102⟨0056:FSOS⟩2.0.CO;2
10.1137/S1064827596305738
10.1175/JAMC-D-15-0115.1
10.48550/arXiv.1906.01200
10.1137/S0036142997326203
10.1029/2011JD016603
10.1016/j.jocs.2020.101237
10.1146/annurev.fl.28.010196.000401
10.1016/j.jcp.2010.05.003
10.1175/1520-0493(1994)122\%3C1575:ACOTVL\%3E2.0.CO;2
10.1103/PhysRevFluids.6.064605
10.1016/j.fuel.2021.121384
10.1016/j.automatica.2010.06.048
10.1007/s13351-020-9128-4
10.1115/1.3124648
10.1016/j.enganabound.2004.01.004
10.1007/s10546-016-0217-y
10.1016/j.jweia.2011.01.013
10.5194/gmd-16-199-2023
10.1137/19M1274067
10.1016/j.crme.2004.09.016
10.1038/nature14539
ContentType Journal Article
Copyright 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7TN
7XB
88I
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
F1W
GNUQQ
HCIFZ
LK8
M2P
M7P
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3389/fmars.2023.1276869
DatabaseName CrossRef
ProQuest Central (Corporate)
Oceanic Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
ProQuest Biological Science Database (NC LIVE)
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
Engineering
EISSN 2296-7745
ExternalDocumentID oai_doaj_org_article_d7a73cfb843f4a0798c2f7b2c80e9267
10_3389_fmars_2023_1276869
GroupedDBID 5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFS
ACXDI
ADBBV
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
KQ8
LK8
M2P
M7P
M~E
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
3V.
7TN
7XB
8FK
F1W
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c336t-41ee8de937bb0030cfab5388c7c6738a90a381a3b9df7138da1c36136b4d57d53
IEDL.DBID DOA
ISSN 2296-7745
IngestDate Wed Aug 27 01:28:30 EDT 2025
Fri Jul 25 11:49:23 EDT 2025
Tue Jul 01 02:48:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-41ee8de937bb0030cfab5388c7c6738a90a381a3b9df7138da1c36136b4d57d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/d7a73cfb843f4a0798c2f7b2c80e9267
PQID 2886452615
PQPubID 2049538
ParticipantIDs doaj_primary_oai_doaj_org_article_d7a73cfb843f4a0798c2f7b2c80e9267
proquest_journals_2886452615
crossref_primary_10_3389_fmars_2023_1276869
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-06
PublicationDateYYYYMMDD 2023-11-06
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-06
  day: 06
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Frontiers in Marine Science
PublicationYear 2023
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Berger (B9) 1984; 53
Hiptmair (B18) 1998; 36
Jameson (B21) 1981
Esclapez (B14) 2017; 181
Liu (B32) 2011; 99
McClenny (B35) 2020
Raissi (B41) 2019; 378
Vanella (B50) 2010; 229
Liu (B31) 1998; 20
Cheng (B12) 2021; 13
Ling (B30) 2015; 27
Kraichnan (B24) 1970; 13
Kansa (B22) 2004; 28
Wang (B51) 2021; 155
Lin (B29) 1994; 122
Shur (B43) 1999
Spalart (B46) 1992
Orszag (B37) 1972; 51
Stuart (B47) 2009
Malé (B34) 2019; 103
Bassi (B6) 1997; 131
Ghia (B17) 1982; 48
Feit (B15) 1982; 47
Lesieur (B27) 1996; 28
Benmoshe (B8) 2012; 117
Li (B28) 1995; 20
Hsieh (B19) 2019
Wei (B52) 2020; 34
Arcoumanis (B3) 1987; 201
Zhong (B55) 2023; 16
Zhiyin (B54) 2015; 28
Xue (B53) 2016; 55
Belbute-Peres (B7) 2020
Garg (B16) 2010; 46
Patera (B39) 1984; 54
Jameson (B20) 1993
Song (B45) 2023; 10
Alfonsi (B2) 2009; 62
Raissi (B42) 2020; 367
Mi (B36) 2022; 13
Um (B49) 2020; 33
Lu (B33) 2021; 63
Boffetta (B10) 2012; 44
Doan (B13) 2020; 47
Orszag (B38) 1974; 102
Tang (B48) 2005; 47
Alcouffe (B1) 1981; 2
Simos (B44) 1997; 79
Zhou (B56) 2021; 304
LeCun (B26) 2015; 521
Kochkov (B23) 2021; 118
Arroyo (B4) 2019
Krastev (B25) 2005; 333
Rai (B40) 2017; 163
Bar-Sinai (B5) 2019; 116
Zhuang (B57) 2021; 6
Chen (B11) 2023
References_xml – volume: 155
  year: 2021
  ident: B51
  article-title: Random-forest based adjusting method for wind forecast of wrf model
  publication-title: Comput. Geosciences
  doi: 10.1016/j.cageo.2021.104842
– volume: 27
  start-page: 085103
  year: 2015
  ident: B30
  article-title: Evaluation of machine learning algorithms for prediction of regions of high reynolds averaged navier stokes uncertainty
  publication-title: Phys. Fluids
  doi: 10.1063/1.4927765
– volume: 201
  start-page: 57
  year: 1987
  ident: B3
  article-title: Fluid mechanics of internal combustion engines—a review
  publication-title: Proc. Institution Mechanical Engineers Part C: J. Mechanical Eng. Sci.
  doi: 10.1243/PIMEPROC198720108702
– volume: 53
  start-page: 484
  year: 1984
  ident: B9
  article-title: Adaptive mesh refinement for hyperbolic partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(84)90073-1
– volume: 79
  start-page: 189
  year: 1997
  ident: B44
  article-title: A finite-difference method for the numerical solution of the schrodinger¨ equation
  publication-title: J. Comput. Appl. Mathematics
  doi: 10.1016/S0377-0427(96)00156-2
– volume: 28
  start-page: 11
  year: 2015
  ident: B54
  article-title: Large-eddy simulation: Past, present and the future
  publication-title: Chin. J. Aeronautics
  doi: 10.1016/j.cja.2014.12.007
– year: 2020
  ident: B35
  article-title: Self-adaptive physics-informed neural networks using a soft attention mechanism
  publication-title: arXiv
  doi: 10.48550/arXiv.2009.04544
– volume-title: Leslie howarth obe. 23 may 1911—22 september 2001
  year: 2009
  ident: B47
  doi: 10.1098/rsbm.2009.0013
– volume: 44
  start-page: 427
  year: 2012
  ident: B10
  article-title: Two-dimensional turbulence
  publication-title: Annu. Rev. Fluid Mechanics
  doi: 10.1146/annurev-fluid-120710-101240
– start-page: 12021
  year: 2023
  ident: B11
  article-title: Run, don’t walk: Chasing higher flops for faster neural networks
– start-page: 3359
  year: 1993
  ident: B20
  article-title: Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence in transonic and hypersonic flows
– start-page: 2402
  volume-title: international conference on machine learning (PMLR)
  year: 2020
  ident: B7
  article-title: Combining differentiable pde solvers and graph neural networks for fluid flow prediction
– volume: 47
  start-page: 412
  year: 1982
  ident: B15
  article-title: Solution of the schrodinger¨ equation by a spectral method
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(82)90091-2
– volume: 103
  start-page: 465
  year: 2019
  ident: B34
  article-title: Large eddy simulation of pre-chamber ignition in an internal combustion engine
  publication-title: Flow Turbulence Combustion
  doi: 10.1007/s10494-019-00026-y
– start-page: 439
  volume-title: 30th aerospace sciences meeting and exhibit
  year: 1992
  ident: B46
  article-title: A one-equation turbulence model for aerodynamic flows
  doi: 10.2514/6.1992-439
– volume: 13
  year: 2021
  ident: B12
  article-title: Deep learning method based on physics informed neural network with resnet block for solving fluid flow problems
  publication-title: Water
  doi: 10.3390/w13040423
– volume: 48
  start-page: 387
  year: 1982
  ident: B17
  article-title: High-re solutions for incompressible flow using the navierstokes equations and a multigrid method
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(82)90058-4
– volume: 20
  start-page: 1137
  year: 1995
  ident: B28
  article-title: A compact fourth-order finite difference scheme for the steady incompressible navier-stokes equations
  publication-title: Int. J. Numerical Methods Fluids
  doi: 10.1002/fld.1650201003
– volume: 13
  start-page: 22
  year: 1970
  ident: B24
  article-title: Diffusion by a random velocity field
  publication-title: Phys. Fluids
  doi: 10.1063/1.1692799
– volume: 47
  start-page: R1
  year: 2005
  ident: B48
  article-title: Advances and challenges in computational plasma science
  publication-title: Plasma Phys. Controlled Fusion
  doi: 10.1088/0741-3335/47/2/R01
– volume: 13
  start-page: 1753
  year: 2022
  ident: B36
  article-title: Multi-scale numerical assessments of urban wind resource using coupled wrf-bep and rans simulation: A case study
  publication-title: Atmosphere
  doi: 10.3390/atmos13111753
– volume: 131
  start-page: 267
  year: 1997
  ident: B6
  article-title: A high-order accurate discontinuous finite element method for the numerical solution of the compressible navier–stokes equations
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.5572
– volume: 2
  start-page: 430
  year: 1981
  ident: B1
  article-title: The multi-grid method for the diffusion equation with strongly discontinuous coefficients
  publication-title: SIAM J. Sci. Stat. Computing
  doi: 10.1137/0902035
– volume: 10
  year: 2023
  ident: B45
  article-title: Tsi-sd: A time-sequence-involved space discretization neural network for passive scalar advection in a two-dimensional unsteady flow
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2023.1132640
– volume: 181
  start-page: 82
  year: 2017
  ident: B14
  article-title: Fuel effects on lean blow-out in a realistic gas turbine combustor
  publication-title: Combustion Flame
  doi: 10.1016/j.ombustflame.2017.02.035
– volume: 378
  start-page: 686
  year: 2019
  ident: B41
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 51
  start-page: 253
  year: 1972
  ident: B37
  article-title: Comparison of pseudospectral and spectral approximation
  publication-title: Stud. Appl. Mathematics
  doi: 10.1002/sapm1972513253
– start-page: 1259
  year: 1981
  ident: B21
  article-title: Numerical solution of the euler equations by finite volume methods using runge kutta time stepping schemes
– start-page: 669
  volume-title: Engineering turbulence modelling and experiments 4
  year: 1999
  ident: B43
  article-title: Detached-eddy simulation of an airfoil at high angle of attack
  doi: 10.1016/B978-008043328-8/50064-3
– volume: 116
  start-page: 15344
  year: 2019
  ident: B5
  article-title: Learning data-driven discretizations for partial differential equations
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1814058116
– start-page: GPPS-BJ-2019-0013
  year: 2019
  ident: B4
  article-title: Cfd modeling of a realistic turbofan blade for noise prediction. part 1: Aerodynamics
  publication-title: Proc. Global Power Propulsion Soc. (GPPS 2019)
  doi: 10.33737/gpps19-bj-126
– volume: 118
  start-page: e2101784118
  year: 2021
  ident: B23
  article-title: Machine learning– accelerated computational fluid dynamics
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2101784118
– volume: 367
  start-page: 1026
  year: 2020
  ident: B42
  article-title: Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations
  publication-title: Science
  doi: 10.1126/science.aaw4741
– volume: 54
  start-page: 468
  year: 1984
  ident: B39
  article-title: A spectral element method for fluid dynamics: laminar flow in a channel expansion
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(84)90128-1
– volume: 102
  start-page: 56
  year: 1974
  ident: B38
  article-title: Fourier series on spheres
  publication-title: Monthly Weather Rev.
  doi: 10.1175/1520-0493(1974)102⟨0056:FSOS⟩2.0.CO;2
– volume: 20
  start-page: 811
  year: 1998
  ident: B31
  article-title: An adaptive grid method and its application to steady euler flow calculations
  publication-title: SIAM J. Sci. Computing
  doi: 10.1137/S1064827596305738
– volume: 33
  start-page: 6111
  year: 2020
  ident: B49
  article-title: Solver-in-the-loop: Learning from differentiable physics to interact with iterative pde-solvers
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 55
  start-page: 445
  year: 2016
  ident: B53
  article-title: A case study of radar observations and wrf les simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. part ii: Agi dispersion and seeding signals simulated by wrf
  publication-title: J. Appl. Meteorology Climatology
  doi: 10.1175/JAMC-D-15-0115.1
– year: 2019
  ident: B19
  article-title: Learning neural pde solvers with convergence guarantees
  publication-title: arXiv
  doi: 10.48550/arXiv.1906.01200
– volume: 36
  start-page: 204
  year: 1998
  ident: B18
  article-title: Multigrid method for maxwell’s equations
  publication-title: SIAM J. Numerical Anal.
  doi: 10.1137/S0036142997326203
– volume: 117
  year: 2012
  ident: B8
  article-title: Turbulent effects on the microphysics and initiation of warm rain in deep convective clouds: 2-d simulations by a spectral mixed-phase microphysics cloud model
  publication-title: J. Geophysical Research: Atmospheres
  doi: 10.1029/2011JD016603
– volume: 47
  year: 2020
  ident: B13
  article-title: Physics-informed echo state networks
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2020.101237
– volume: 28
  start-page: 45
  year: 1996
  ident: B27
  article-title: New trends in large-eddy simulations of turbulence
  publication-title: Annu. Rev. Fluid mechanics
  doi: 10.1146/annurev.fl.28.010196.000401
– volume: 229
  start-page: 6427
  year: 2010
  ident: B50
  article-title: A direct-forcing embedded-boundary method with adaptive mesh refinement for fluid–structure interaction problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.05.003
– volume: 122
  start-page: 1575
  year: 1994
  ident: B29
  article-title: A class of the van leer-type transport schemes and its application to the moisture transport in a general circulation model
  publication-title: Monthly Weather Rev.
  doi: 10.1175/1520-0493(1994)122\%3C1575:ACOTVL\%3E2.0.CO;2
– volume: 6
  year: 2021
  ident: B57
  article-title: Learned discretizations for passive scalar advection in a two-dimensional turbulent flow
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.6.064605
– volume: 304
  year: 2021
  ident: B56
  article-title: Numerical analysis of particle dispersion and deposition in coal combustion using large-eddy simulation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.121384
– volume: 46
  start-page: 1843
  year: 2010
  ident: B16
  article-title: A unified framework for the numerical solution of optimal control problems using pseudospectral methods
  publication-title: Automatica
  doi: 10.1016/j.automatica.2010.06.048
– volume: 34
  start-page: 176
  year: 2020
  ident: B52
  article-title: Influence of intermittent turbulence on air pollution and its dispersion in winter 2016/2017 over beijing, China
  publication-title: J. Meteorological Res.
  doi: 10.1007/s13351-020-9128-4
– volume: 62
  start-page: 040802
  year: 2009
  ident: B2
  article-title: Reynolds-averaged navier–stokes equations for turbulence modeling
  publication-title: Appl. Mechanics Rev.
  doi: 10.1115/1.3124648
– volume: 28
  start-page: 1191
  year: 2004
  ident: B22
  article-title: A volumetric integral radial basis function method for time-dependent partial differential equations. i. formulation
  publication-title: Eng. Anal. Boundary Elements
  doi: 10.1016/j.enganabound.2004.01.004
– volume: 163
  start-page: 69
  year: 2017
  ident: B40
  article-title: Comparison of measured and numerically simulated turbulence statistics in a convective boundary layer over complex terrain
  publication-title: Boundary-Layer Meteorology
  doi: 10.1007/s10546-016-0217-y
– volume: 99
  start-page: 308
  year: 2011
  ident: B32
  article-title: Simultaneous nested modeling from the synoptic scale to the les scale for wind energy applications
  publication-title: J. Wind Eng. Ind. Aerodynamics
  doi: 10.1016/j.jweia.2011.01.013
– volume: 16
  start-page: 199
  year: 2023
  ident: B55
  article-title: Wrf–ml v1. 0: a bridge between wrf v4. 3 and machine learning parameterizations and its application to atmospheric radiative transfer
  publication-title: Geoscientific Model. Dev.
  doi: 10.5194/gmd-16-199-2023
– volume: 63
  start-page: 208
  year: 2021
  ident: B33
  article-title: Deepxde: A deep learning library for solving differential equations
  publication-title: SIAM Rev.
  doi: 10.1137/19M1274067
– volume: 333
  start-page: 59
  year: 2005
  ident: B25
  article-title: A multigrid pseudo-spectral method for incompressible navier–stokes flows
  publication-title: Comptes Rendus Mécanique
  doi: 10.1016/j.crme.2004.09.016
– volume: 521
  start-page: 436
  year: 2015
  ident: B26
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
SSID ssj0001340549
Score 2.249372
Snippet Fluid dynamic calculations play a crucial role in understanding marine biochemical dynamic processes, impacting the behavior, interactions, and distribution of...
Fluid dynamic calculations have a profound impact on marine biochemical dynamic processes, influencing the behavior, interactions, and distribution of...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
SubjectTerms Ablation
Accuracy
Aquatic environment
ASPP
Coefficients
Computer applications
Convolution
Deep learning
discretization acceleration
Engineering
Experiments
Finite volume method
Flow velocity
Fluid dynamics
Fluid flow
Fluid motion
Gas turbine engines
Heterogeneity
Hydrodynamics
Information processing
Machine learning
Mathematical models
multi-scale features
Neural networks
Partial differential equations
passive scalar advection
Reynolds number
Simulation
spatial discretization
Unsteady flow
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA_avmhBtCqeVpkH3yT1LpvdJL6I1TtOobWohb4t-ayC7F7vQ_H_8Q91JpurBcHX3SxZ-E3mKzO_Yey5a7RVaGq4dK7mUgTPTawFt9pJ5y2ajEi9w8cnzfxMfjivz0vCbVXKKrc6MSvq0HvKkb8UWtMdHBrg14tLTlOj6Ha1jNC4yXZRBWsMvnaPpienn_5mWSp0SKQZumUwGjMIFwaMhzQ0_HAi0NemSudrFikT9_-jl7Oxmd1ld4qXCG8GWO-xG7HbZ7evcQfus72PPtquEE7fZ79P5-_55-PZ9BWsqEgav861gnyFIERIMRN4AqpiaosCorHEJd1QBA5kywL0HSwKbPCVymR6lK7Yb1ZApBLLoQUC0MsFFFhKRMACXW9Ul0Cb2CXY8CMOi751YEHwd7Dpshj9gvS9__mAnc2mX97OeZnAwH1VNWsuJzHqENGFcVkd-GQdakjtladpodaMLVp8WzkTEka7OtiJr9BBaJwMtQp19ZDtdH0XHzGoJ00ySgSpnZHRWieU0xj7JIyBEAQ7Yi-2KLSLgWijxQCFMGszZi1h1hbMRuyIgLpaSSTZ-UG_vGjLmWuDsqryCbepkrRjZbQXSTnh9Tga0agRO9jC3JaTi7tcydnj_79-wm7RH-W-xOaA7ayXm_gUHZS1e1ak8A9Meekf
  priority: 102
  providerName: ProQuest
Title PHI-SMFE: spatial multi-scale feature extract neural network based on physical heterogeneous interaction for solving passive scalar advection in a 2-D unsteady flow
URI https://www.proquest.com/docview/2886452615
https://doaj.org/article/d7a73cfb843f4a0798c2f7b2c80e9267
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yXkQQnzi6LnXwJlln0ulO4s3VGUZh10Vd2FtTeaEg3cM8XPb_-EOtSvfKgAcvXpuChPoqVV-lqypCvPSNRUOhRmrva6lVDNKlWkm0XvuAFDIS9w6fnjXLC_3xsr7ce-qLa8KG8cCD4l5Hg6YK2VtdZY1T42xQ2XgV7DQ51ZQ-cop5e8lUuV2piIhoN3TJUBbmCCZKFI_5sfDjmSKOzRXOe5GoDOz_yx-XILO4L-6N7BDeDrt6IG6l7qG4-ykk7MbR0o_Er_PlB_nldDF_Axsuhyb5UhUoN6TuBDmVUZ1ATpcboIAHVpJIN5R7A0etCH0HqxEg-MYFMT3ZUep3G-DxEeuh2QGIzwKZJl85wIpINjlG4EVwDRh_pkHoewcISr6HXVcM5hryj_7qsbhYzL--W8rxrQUZqqrZSj1LycZEZMWXgx8yevKFNpjA74KimyLFdqy8i5nyWhtxFiqiAo3XsTaxrp6Ig67v0lMB9azJzqiorXc6IXplCD1lM2U7pHaciFc3em9Xw0iNllIRRqktKLWMUjuiNBEnDM0fSR6HXT6QkbSjkbT_MpKJOLwBth3PKK1iLf_VJUr37H-s8Vzc4X2XPsXmUBxs17v0ggjL1h-J2yfzs_PPR8VGfwPZxe13
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V6YGHhKCACBSYA5zQlmS99q6REKI0UUKbUEEr9Wb2ZVoJ2SEPqv4fzvxGZtZOqYTErVdno7X0fTvfzHoejL2wmTYKpYZLa1MuhXc8D6ngRltpnUHJCFQ7PJlmo2P58SQ92WC_17UwlFa5tonRUPva0R35a6E1fYNDAX43-8FpahR9XV2P0GhosR8uzjFkW7wd7yG-L4UYDo4-jHg7VYC7JMmWXPZD0D6gLNtIcVcai6deO-VoAqbJewZVzCQ29yVGcNqbvktQ9DIrfao8TYlAk78pEwxlOmxzdzA9_Pz3VidBB0jmTXUORn850gMD1B0aUr7TF-jbU2b1FQWMgwL-0YEobsO77E7rlcL7hkb32EaottitK70Kt9jtTy6Yqm1wfZ_9OhyN-ZfJcPAGFpSUjf-OuYl8gaAHKENsGApo-qkMC6htJi6pmqRzIO30UFcwa2kCp5SWUyObQ71aADWxmDclF4BeNeABoYsPmKGrj-YZaBMzB-N_hmbRWQUGBN-DVRVpewHl9_r8ATu-Fmwesk5VV-ERg7SflbkSXmqby2CMFcpqjLVKjLkQBNNlr9YoFLOmsUeBARFhVkTMCsKsaDHrsl0C6nIlNeWOD-r5t6I944VXRiWuxG2SUpqeyrUTpbLC6V7IRaa6bHsNc9FaCtzlkteP___zc3ZjdDQ5KA7G0_0n7Ca9XayJzLZZZzlfhafoHC3ts5aRwL5e9yH4AwgsJck
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxNBFB5KCqKCaFWMVj0P-iTTJrOTnVlBxJqExNoY1ELftnNbFWQ35mLp__FX-Os8Z3a3FgTf-prMMiHfN-c7Z_ZcGHtmU20USg2X1g64FN7xLAwEN9pK6wxKRqDa4aNZOjmW704GJ1vsd1sLQ2mVrU2MhtpXju7I94XW9A4OBXi_aNIi5sPx68UPThOk6E1rO06jpshhOD_D8G31ajpErJ8LMR59fjvhzYQB7pIkXXPZD0H7gBJtI91dYSxaAO2Uo2mYJusZVDST2MwXGM1pb_ouQQFMrfQD5WliBJr_bYVRUa_Dtg9Gs_nHvzc8CTpDMqsrdTASzJAqGKzu0cDyvb5AP5-yrC-pYRwa8I8mRKEb32a3Gg8V3tSUusO2QrnDblzqW7jDbn5wwZRNs-u77Nd8MuWfjsajl7CiBG18OuYp8hUSIEARYvNQwP-SSrKAWmjikrJOQAfSUQ9VCYuGMvCVUnQqZHaoNiughhbLuvwC0MMGPCx0CQILdPvRVANtYpZg_M9QL_pWggHBh7ApI4XPofhend1jx1eCzX3WKasyPGAw6KdFpoSX2mYyGGOFshrjrgLjLwTBdNmLFoV8UTf5yDE4IszyiFlOmOUNZl12QEBdrKQG3fGDavklb8577pVRiStwm6SQpqcy7UShrHC6FzKRqi7bbWHOG6uBu1xw_OH_v37KriH58_fT2eEjdp1-XCyPTHdZZ73chMfoJ63tk4aQwE6v-gz8AV-HKf4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PHI-SMFE%3A+spatial+multi-scale+feature+extract+neural+network+based+on+physical+heterogeneous+interaction+for+solving+passive+scalar+advection+in+a+2-D+unsteady+flow&rft.jtitle=Frontiers+in+Marine+Science&rft.au=Yuchen+Yuan&rft.au=Ning+Song&rft.au=Jie+Nie&rft.au=Xiaomeng+Shi&rft.date=2023-11-06&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-7745&rft.volume=10&rft_id=info:doi/10.3389%2Ffmars.2023.1276869&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d7a73cfb843f4a0798c2f7b2c80e9267
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-7745&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-7745&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-7745&client=summon