Proximal Gradient Method for Solving Bilevel Optimization Problems
In this paper, we consider a bilevel optimization problem as a task of finding the optimum of the upper-level problem subject to the solution set of the split feasibility problem of fixed point problems and optimization problems. Based on proximal and gradient methods, we propose a strongly converge...
Saved in:
Published in | Mathematical and computational applications Vol. 25; no. 4; p. 66 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
04.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we consider a bilevel optimization problem as a task of finding the optimum of the upper-level problem subject to the solution set of the split feasibility problem of fixed point problems and optimization problems. Based on proximal and gradient methods, we propose a strongly convergent iterative algorithm with an inertia effect solving the bilevel optimization problem under our consideration. Furthermore, we present a numerical example of our algorithm to illustrate its applicability. |
---|---|
AbstractList | In this paper, we consider a bilevel optimization problem as a task of finding the optimum of the upper-level problem subject to the solution set of the split feasibility problem of fixed point problems and optimization problems. Based on proximal and gradient methods, we propose a strongly convergent iterative algorithm with an inertia effect solving the bilevel optimization problem under our consideration. Furthermore, we present a numerical example of our algorithm to illustrate its applicability. |
Author | Yimer, Seifu Endris Gebrie, Anteneh Getachew Kumam, Poom |
Author_xml | – sequence: 1 givenname: Seifu Endris orcidid: 0000-0003-2312-3663 surname: Yimer fullname: Yimer, Seifu Endris – sequence: 2 givenname: Poom orcidid: 0000-0002-5463-4581 surname: Kumam fullname: Kumam, Poom – sequence: 3 givenname: Anteneh Getachew orcidid: 0000-0001-7368-8713 surname: Gebrie fullname: Gebrie, Anteneh Getachew |
BookMark | eNptkE1LAzEQhoNUsNae_AN7l-pskk02R1u0FioV1POSz5qyuynZUNRf79qKFPE0w_C-D8NzjgZtaC1ClzlcEyLgptESF0ABGDtBQ4wFn5Sc8sHRfobGXbcBAJxTwABDNH2K4d03ss7mURpv25Q92vQWTOZCzJ5DvfPtOpv62u5sna22yTf-UyYf2qxvqto23QU6dbLu7PhnjtDr_d3L7GGyXM0Xs9vlRBPC0oRQxp1iGhjFnJmSFRwzJxnHWrhSOSEd5ZLlhco5I7Y0BkBbbEguQBrFyQgtDlwT5Kbaxv7r-FEF6av9IcR1JWPyurYVJQpLZZXuGVRyXeZGFVhYQoXDTkDPujqwdAxdF6375eVQfdusjmz26fxPWvu0l5Ci9PW_nS8k5Xla |
CitedBy_id | crossref_primary_10_1109_TPAMI_2021_3132674 crossref_primary_10_1109_TCYB_2024_3492075 |
Cites_doi | 10.1088/0266-5611/21/5/009 10.1088/0266-5611/18/2/310 10.1080/02331934.2015.1101599 10.1007/s10589-007-9066-4 10.1007/978-1-4419-9467-7 10.1137/16M105592X 10.1007/s10013-017-0256-9 10.1080/02331934.2015.1020943 10.1186/s13660-018-1898-1 10.3390/math7090841 10.1007/0-387-34221-4_2 10.1007/978-3-662-45827-3 10.1137/0314056 10.1088/0266-5611/28/8/085004 10.1002/aic.690420814 10.1007/BF02142692 10.1007/s11075-018-0583-2 10.1137/09076773X 10.1016/j.cor.2010.05.007 10.1112/S0024610702003332 10.22436/jnsa.011.02.03 10.1007/s11228-008-0102-z 10.1007/s11075-011-9490-5 10.1007/978-3-642-59073-3_11 10.22436/jnsa.009.04.10 10.1137/S105262340343467X 10.1016/j.na.2011.05.005 10.1016/0041-5553(64)90137-5 10.1080/10556788.2019.1619729 10.1007/s10957-011-9837-z 10.1088/1361-6420/aa6136 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3390/mca25040066 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2297-8747 |
ExternalDocumentID | oai_doaj_org_article_43b2abebcd004a7c81db529e349f2f90 10_3390_mca25040066 |
GroupedDBID | AADQD AAFWJ AAYXX ADBBV AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GIY GROUPED_DOAJ IAO ITC MODMG M~E OK1 |
ID | FETCH-LOGICAL-c336t-3467fb6c064276d865726fa672c9f8bf9af47a615b1763e8dd00ce2d3190adb73 |
IEDL.DBID | DOA |
ISSN | 2297-8747 1300-686X |
IngestDate | Wed Aug 27 01:31:01 EDT 2025 Tue Jul 01 03:48:43 EDT 2025 Thu Apr 24 23:05:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-3467fb6c064276d865726fa672c9f8bf9af47a615b1763e8dd00ce2d3190adb73 |
ORCID | 0000-0003-2312-3663 0000-0002-5463-4581 0000-0001-7368-8713 |
OpenAccessLink | https://doaj.org/article/43b2abebcd004a7c81db529e349f2f90 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_43b2abebcd004a7c81db529e349f2f90 crossref_primary_10_3390_mca25040066 crossref_citationtrail_10_3390_mca25040066 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-04 |
PublicationDateYYYYMMDD | 2020-10-04 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-04 day: 04 |
PublicationDecade | 2020 |
PublicationTitle | Mathematical and computational applications |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Censor (ref_9) 2012; 59 Combettes (ref_37) 2005; 6 (ref_36) 2008; 16 Anh (ref_18) 2016; 65 Anh (ref_17) 2019; 81 ref_34 Fampa (ref_27) 2008; 39 Xu (ref_35) 2002; 66 ref_19 Polyak (ref_33) 1964; 4 Wang (ref_14) 2012; 28 Martinet (ref_6) 1970; 4 ref_16 ref_38 ref_15 Chang (ref_24) 2016; 9 Qu (ref_12) 2005; 21 Rockafellar (ref_8) 1976; 14 Censor (ref_11) 1994; 8 Csetnek (ref_22) 2018; 46 Su (ref_1) 2010; 1 Byrne (ref_13) 2002; 18 Helou (ref_32) 2017; 33 Takahashi (ref_29) 2016; 65 Ceng (ref_3) 2011; 74 Solodov (ref_23) 2007; 14 ref_25 Mohideen (ref_26) 1996; 42 ref_20 Xu (ref_2) 2011; 150 Sabach (ref_21) 2017; 27 Hendrickx (ref_10) 2010; 31 Cabot (ref_31) 2005; 15 Martinet (ref_7) 1972; 274 ref_5 ref_4 Song (ref_30) 2018; 11 Calvete (ref_28) 2011; 38 |
References_xml | – volume: 21 start-page: 1655 year: 2005 ident: ref_12 article-title: A note on the CQ algorithm for the split feasibility problem publication-title: Inverse Probl. doi: 10.1088/0266-5611/21/5/009 – volume: 18 start-page: 441 year: 2002 ident: ref_13 article-title: Iterative oblique projection onto convex sets and the split feasibility problem publication-title: Inverse Probl. doi: 10.1088/0266-5611/18/2/310 – volume: 65 start-page: 1229 year: 2016 ident: ref_18 article-title: A projection-fixed point method for a class of bilevel variational inequalities with split fixed point constraints publication-title: Optimization doi: 10.1080/02331934.2015.1101599 – volume: 39 start-page: 121 year: 2008 ident: ref_27 article-title: Bilevel optimization applied to strategic pricing in competitive electricity markets publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-007-9066-4 – ident: ref_5 doi: 10.1007/978-1-4419-9467-7 – volume: 27 start-page: 640 year: 2017 ident: ref_21 article-title: A first order method for solving convex bilevel optimization problems publication-title: SIAM J. Optimiz. doi: 10.1137/16M105592X – volume: 46 start-page: 53 year: 2018 ident: ref_22 article-title: An inertial proximal-gradient penalization scheme for constrained convex optimization problems publication-title: Vietnam J. Math. doi: 10.1007/s10013-017-0256-9 – volume: 65 start-page: 281 year: 2016 ident: ref_29 article-title: The split common null point problem and the shrinking projection method in Banach spaces publication-title: Optimization doi: 10.1080/02331934.2015.1020943 – volume: 14 start-page: 227 year: 2007 ident: ref_23 article-title: An explicit descent method for bilevel convex optimization publication-title: J. Convex Anal. – volume: 274 start-page: 163 year: 1972 ident: ref_7 article-title: Détermination approchée d’un point fixe d’une application pseudo-contractante publication-title: CR Acad. Sci. Paris – ident: ref_19 doi: 10.1186/s13660-018-1898-1 – ident: ref_15 doi: 10.3390/math7090841 – ident: ref_25 doi: 10.1007/0-387-34221-4_2 – ident: ref_16 doi: 10.1007/978-3-662-45827-3 – volume: 14 start-page: 877 year: 1976 ident: ref_8 article-title: Monotone operators and the proximal point algorithm publication-title: SIAM J. Control Optim. doi: 10.1137/0314056 – volume: 28 start-page: 085004 year: 2012 ident: ref_14 article-title: Solving the split feasibility problem without prior knowledge of matrix norms publication-title: Inverse Probl. doi: 10.1088/0266-5611/28/8/085004 – volume: 42 start-page: 2251 year: 1996 ident: ref_26 article-title: Optimal design of dynamic systems under uncertainty publication-title: AIChE J. doi: 10.1002/aic.690420814 – volume: 8 start-page: 221 year: 1994 ident: ref_11 article-title: A multiprojection algorithm using Bregman projections in a product space publication-title: Numer. Algorithms doi: 10.1007/BF02142692 – volume: 81 start-page: 1067 year: 2019 ident: ref_17 article-title: Linesearch methods for bilevel split pseudomonotone variational inequality problems publication-title: Numer. Algorithms doi: 10.1007/s11075-018-0583-2 – volume: 31 start-page: 2802 year: 2010 ident: ref_10 article-title: Matrix p-Norms Are NP-Hard to Approximate If p ≠ 1,2,∞ publication-title: SIAM J. Matrix Anal. A doi: 10.1137/09076773X – volume: 38 start-page: 320 year: 2011 ident: ref_28 article-title: Bilevel model for production–distribution planning solved by using ant colony optimization publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2010.05.007 – ident: ref_4 – volume: 66 start-page: 240 year: 2002 ident: ref_35 article-title: Iterative algorithms for nonlinear operators publication-title: J. Lond. Math. Soc. doi: 10.1112/S0024610702003332 – volume: 11 start-page: 198 year: 2018 ident: ref_30 article-title: Iterative methods for fixed point problems and generalized split feasibility problems in Banach spaces publication-title: J. Nonlinear Sci. Appl. doi: 10.22436/jnsa.011.02.03 – volume: 16 start-page: 899 year: 2008 ident: ref_36 article-title: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization publication-title: Set Valued Anal. doi: 10.1007/s11228-008-0102-z – volume: 59 start-page: 301 year: 2012 ident: ref_9 article-title: Algorithms for the split variational inequality problem publication-title: Numer. Algorithms doi: 10.1007/s11075-011-9490-5 – volume: 6 start-page: 117 year: 2005 ident: ref_37 article-title: Equilibrium programming in Hilbert spaces publication-title: J. Nonlinear Convex Anal. – ident: ref_34 doi: 10.1007/978-3-642-59073-3_11 – volume: 4 start-page: 154 year: 1970 ident: ref_6 article-title: Brève communication. Régularisation d’inéquations variationnelles par approximations successives publication-title: Revue Française d’Informatique et de Recherche Opérationnelle Série Rouge – ident: ref_38 – volume: 9 start-page: 1515 year: 2016 ident: ref_24 article-title: Feasible iterative algorithms and strong convergence theorems for bi-level fixed point problems publication-title: J. Nonlinear Sci. Appl. doi: 10.22436/jnsa.009.04.10 – volume: 1 start-page: 35 year: 2010 ident: ref_1 article-title: Remarks on the gradient-projection algorithm publication-title: J. Nonlinear Anal. Optim. – volume: 15 start-page: 555 year: 2005 ident: ref_31 article-title: Proximal point algorithm controlled by a slowly vanishing term: Applications to hierarchical minimization publication-title: SIAM J. Optim. doi: 10.1137/S105262340343467X – volume: 74 start-page: 5286 year: 2011 ident: ref_3 article-title: Some iterative methods for finding fixed points and for solving constrained convex minimization problems publication-title: Nonlinear Anal. Theor. doi: 10.1016/j.na.2011.05.005 – volume: 4 start-page: 1 year: 1964 ident: ref_33 article-title: Some methods of speeding up the convergence of iteration methods publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(64)90137-5 – ident: ref_20 doi: 10.1080/10556788.2019.1619729 – volume: 150 start-page: 360 year: 2011 ident: ref_2 article-title: Averaged mappings and the gradient-projection algorithm publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-011-9837-z – volume: 33 start-page: 5 year: 2017 ident: ref_32 article-title: ϵ-subgradient algorithms for bilevel convex optimization publication-title: Inverse Probl. doi: 10.1088/1361-6420/aa6136 |
SSID | ssj0002140200 ssib005905691 ssib045321559 |
Score | 2.1833737 |
Snippet | In this paper, we consider a bilevel optimization problem as a task of finding the optimum of the upper-level problem subject to the solution set of the split... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 66 |
SubjectTerms | bilevel problem fixed point problem gradient method proximal method |
Title | Proximal Gradient Method for Solving Bilevel Optimization Problems |
URI | https://doaj.org/article/43b2abebcd004a7c81db529e349f2f90 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv9tCTEJrsI9kcrbQWIVrQQm9hnyD0IW0UT_52Z5MYIwheJJBDGEL4djIzX7LzDUK9yHAtJLFBxF0YMKF5oFjCAmGso4wa55RvTs7u4_GU3c34rDXqy-8Jq-SBK-D6jCoilVXawHLKREN9pThJLWWpIy4t2TrkvBaZKj0rhcT-rQLDOCXN_zcfo0nkeVPVQhwCfxLxrGreozQN-wstvbKXT8c_0lVL1b9MP6M9tFvXjfi6et59tGWXB2gna0RXN4doMFmv3p8XYHW7LjdyFTgr50NjKEzx42ruvx3gAYSBNzvHDxArFnUTJp5UY2U2R2g6Gj7djIN6REKgKY2LgEKccyrWnkYksRExT0jsZJwQnTqhXCodSyRULSqCQGKFARS1JQZevFAaldBj1FmulvYEYa4cY1CuEaUJswIOMPP6bJGjFlagi66-kMh1rR_ux1jMc-ARHra8BVsX9Rrjl0o243ezgYe0MfFa1-UF8IC89oD8Lw84_Y-bnKFt4pm03xrAzlGnWL_aCyg3CnVZehacs4_hJ3Jkz8A |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proximal+Gradient+Method+for+Solving+Bilevel+Optimization+Problems&rft.jtitle=Mathematical+and+computational+applications&rft.au=Seifu+Endris+Yimer&rft.au=Poom+Kumam&rft.au=Anteneh+Getachew+Gebrie&rft.date=2020-10-04&rft.pub=MDPI+AG&rft.issn=1300-686X&rft.eissn=2297-8747&rft.volume=25&rft.issue=4&rft.spage=66&rft_id=info:doi/10.3390%2Fmca25040066&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_43b2abebcd004a7c81db529e349f2f90 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2297-8747&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2297-8747&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2297-8747&client=summon |