Proximal Gradient Method for Solving Bilevel Optimization Problems

In this paper, we consider a bilevel optimization problem as a task of finding the optimum of the upper-level problem subject to the solution set of the split feasibility problem of fixed point problems and optimization problems. Based on proximal and gradient methods, we propose a strongly converge...

Full description

Saved in:
Bibliographic Details
Published inMathematical and computational applications Vol. 25; no. 4; p. 66
Main Authors Yimer, Seifu Endris, Kumam, Poom, Gebrie, Anteneh Getachew
Format Journal Article
LanguageEnglish
Published MDPI AG 04.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we consider a bilevel optimization problem as a task of finding the optimum of the upper-level problem subject to the solution set of the split feasibility problem of fixed point problems and optimization problems. Based on proximal and gradient methods, we propose a strongly convergent iterative algorithm with an inertia effect solving the bilevel optimization problem under our consideration. Furthermore, we present a numerical example of our algorithm to illustrate its applicability.
AbstractList In this paper, we consider a bilevel optimization problem as a task of finding the optimum of the upper-level problem subject to the solution set of the split feasibility problem of fixed point problems and optimization problems. Based on proximal and gradient methods, we propose a strongly convergent iterative algorithm with an inertia effect solving the bilevel optimization problem under our consideration. Furthermore, we present a numerical example of our algorithm to illustrate its applicability.
Author Yimer, Seifu Endris
Gebrie, Anteneh Getachew
Kumam, Poom
Author_xml – sequence: 1
  givenname: Seifu Endris
  orcidid: 0000-0003-2312-3663
  surname: Yimer
  fullname: Yimer, Seifu Endris
– sequence: 2
  givenname: Poom
  orcidid: 0000-0002-5463-4581
  surname: Kumam
  fullname: Kumam, Poom
– sequence: 3
  givenname: Anteneh Getachew
  orcidid: 0000-0001-7368-8713
  surname: Gebrie
  fullname: Gebrie, Anteneh Getachew
BookMark eNptkE1LAzEQhoNUsNae_AN7l-pskk02R1u0FioV1POSz5qyuynZUNRf79qKFPE0w_C-D8NzjgZtaC1ClzlcEyLgptESF0ABGDtBQ4wFn5Sc8sHRfobGXbcBAJxTwABDNH2K4d03ss7mURpv25Q92vQWTOZCzJ5DvfPtOpv62u5sna22yTf-UyYf2qxvqto23QU6dbLu7PhnjtDr_d3L7GGyXM0Xs9vlRBPC0oRQxp1iGhjFnJmSFRwzJxnHWrhSOSEd5ZLlhco5I7Y0BkBbbEguQBrFyQgtDlwT5Kbaxv7r-FEF6av9IcR1JWPyurYVJQpLZZXuGVRyXeZGFVhYQoXDTkDPujqwdAxdF6375eVQfdusjmz26fxPWvu0l5Ci9PW_nS8k5Xla
CitedBy_id crossref_primary_10_1109_TPAMI_2021_3132674
crossref_primary_10_1109_TCYB_2024_3492075
Cites_doi 10.1088/0266-5611/21/5/009
10.1088/0266-5611/18/2/310
10.1080/02331934.2015.1101599
10.1007/s10589-007-9066-4
10.1007/978-1-4419-9467-7
10.1137/16M105592X
10.1007/s10013-017-0256-9
10.1080/02331934.2015.1020943
10.1186/s13660-018-1898-1
10.3390/math7090841
10.1007/0-387-34221-4_2
10.1007/978-3-662-45827-3
10.1137/0314056
10.1088/0266-5611/28/8/085004
10.1002/aic.690420814
10.1007/BF02142692
10.1007/s11075-018-0583-2
10.1137/09076773X
10.1016/j.cor.2010.05.007
10.1112/S0024610702003332
10.22436/jnsa.011.02.03
10.1007/s11228-008-0102-z
10.1007/s11075-011-9490-5
10.1007/978-3-642-59073-3_11
10.22436/jnsa.009.04.10
10.1137/S105262340343467X
10.1016/j.na.2011.05.005
10.1016/0041-5553(64)90137-5
10.1080/10556788.2019.1619729
10.1007/s10957-011-9837-z
10.1088/1361-6420/aa6136
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3390/mca25040066
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2297-8747
ExternalDocumentID oai_doaj_org_article_43b2abebcd004a7c81db529e349f2f90
10_3390_mca25040066
GroupedDBID AADQD
AAFWJ
AAYXX
ADBBV
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GIY
GROUPED_DOAJ
IAO
ITC
MODMG
M~E
OK1
ID FETCH-LOGICAL-c336t-3467fb6c064276d865726fa672c9f8bf9af47a615b1763e8dd00ce2d3190adb73
IEDL.DBID DOA
ISSN 2297-8747
1300-686X
IngestDate Wed Aug 27 01:31:01 EDT 2025
Tue Jul 01 03:48:43 EDT 2025
Thu Apr 24 23:05:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-3467fb6c064276d865726fa672c9f8bf9af47a615b1763e8dd00ce2d3190adb73
ORCID 0000-0003-2312-3663
0000-0002-5463-4581
0000-0001-7368-8713
OpenAccessLink https://doaj.org/article/43b2abebcd004a7c81db529e349f2f90
ParticipantIDs doaj_primary_oai_doaj_org_article_43b2abebcd004a7c81db529e349f2f90
crossref_primary_10_3390_mca25040066
crossref_citationtrail_10_3390_mca25040066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-04
PublicationDateYYYYMMDD 2020-10-04
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-04
  day: 04
PublicationDecade 2020
PublicationTitle Mathematical and computational applications
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Censor (ref_9) 2012; 59
Combettes (ref_37) 2005; 6
(ref_36) 2008; 16
Anh (ref_18) 2016; 65
Anh (ref_17) 2019; 81
ref_34
Fampa (ref_27) 2008; 39
Xu (ref_35) 2002; 66
ref_19
Polyak (ref_33) 1964; 4
Wang (ref_14) 2012; 28
Martinet (ref_6) 1970; 4
ref_16
ref_38
ref_15
Chang (ref_24) 2016; 9
Qu (ref_12) 2005; 21
Rockafellar (ref_8) 1976; 14
Censor (ref_11) 1994; 8
Csetnek (ref_22) 2018; 46
Su (ref_1) 2010; 1
Byrne (ref_13) 2002; 18
Helou (ref_32) 2017; 33
Takahashi (ref_29) 2016; 65
Ceng (ref_3) 2011; 74
Solodov (ref_23) 2007; 14
ref_25
Mohideen (ref_26) 1996; 42
ref_20
Xu (ref_2) 2011; 150
Sabach (ref_21) 2017; 27
Hendrickx (ref_10) 2010; 31
Cabot (ref_31) 2005; 15
Martinet (ref_7) 1972; 274
ref_5
ref_4
Song (ref_30) 2018; 11
Calvete (ref_28) 2011; 38
References_xml – volume: 21
  start-page: 1655
  year: 2005
  ident: ref_12
  article-title: A note on the CQ algorithm for the split feasibility problem
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/21/5/009
– volume: 18
  start-page: 441
  year: 2002
  ident: ref_13
  article-title: Iterative oblique projection onto convex sets and the split feasibility problem
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/18/2/310
– volume: 65
  start-page: 1229
  year: 2016
  ident: ref_18
  article-title: A projection-fixed point method for a class of bilevel variational inequalities with split fixed point constraints
  publication-title: Optimization
  doi: 10.1080/02331934.2015.1101599
– volume: 39
  start-page: 121
  year: 2008
  ident: ref_27
  article-title: Bilevel optimization applied to strategic pricing in competitive electricity markets
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-007-9066-4
– ident: ref_5
  doi: 10.1007/978-1-4419-9467-7
– volume: 27
  start-page: 640
  year: 2017
  ident: ref_21
  article-title: A first order method for solving convex bilevel optimization problems
  publication-title: SIAM J. Optimiz.
  doi: 10.1137/16M105592X
– volume: 46
  start-page: 53
  year: 2018
  ident: ref_22
  article-title: An inertial proximal-gradient penalization scheme for constrained convex optimization problems
  publication-title: Vietnam J. Math.
  doi: 10.1007/s10013-017-0256-9
– volume: 65
  start-page: 281
  year: 2016
  ident: ref_29
  article-title: The split common null point problem and the shrinking projection method in Banach spaces
  publication-title: Optimization
  doi: 10.1080/02331934.2015.1020943
– volume: 14
  start-page: 227
  year: 2007
  ident: ref_23
  article-title: An explicit descent method for bilevel convex optimization
  publication-title: J. Convex Anal.
– volume: 274
  start-page: 163
  year: 1972
  ident: ref_7
  article-title: Détermination approchée d’un point fixe d’une application pseudo-contractante
  publication-title: CR Acad. Sci. Paris
– ident: ref_19
  doi: 10.1186/s13660-018-1898-1
– ident: ref_15
  doi: 10.3390/math7090841
– ident: ref_25
  doi: 10.1007/0-387-34221-4_2
– ident: ref_16
  doi: 10.1007/978-3-662-45827-3
– volume: 14
  start-page: 877
  year: 1976
  ident: ref_8
  article-title: Monotone operators and the proximal point algorithm
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0314056
– volume: 28
  start-page: 085004
  year: 2012
  ident: ref_14
  article-title: Solving the split feasibility problem without prior knowledge of matrix norms
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/28/8/085004
– volume: 42
  start-page: 2251
  year: 1996
  ident: ref_26
  article-title: Optimal design of dynamic systems under uncertainty
  publication-title: AIChE J.
  doi: 10.1002/aic.690420814
– volume: 8
  start-page: 221
  year: 1994
  ident: ref_11
  article-title: A multiprojection algorithm using Bregman projections in a product space
  publication-title: Numer. Algorithms
  doi: 10.1007/BF02142692
– volume: 81
  start-page: 1067
  year: 2019
  ident: ref_17
  article-title: Linesearch methods for bilevel split pseudomonotone variational inequality problems
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-018-0583-2
– volume: 31
  start-page: 2802
  year: 2010
  ident: ref_10
  article-title: Matrix p-Norms Are NP-Hard to Approximate If p ≠ 1,2,∞
  publication-title: SIAM J. Matrix Anal. A
  doi: 10.1137/09076773X
– volume: 38
  start-page: 320
  year: 2011
  ident: ref_28
  article-title: Bilevel model for production–distribution planning solved by using ant colony optimization
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2010.05.007
– ident: ref_4
– volume: 66
  start-page: 240
  year: 2002
  ident: ref_35
  article-title: Iterative algorithms for nonlinear operators
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/S0024610702003332
– volume: 11
  start-page: 198
  year: 2018
  ident: ref_30
  article-title: Iterative methods for fixed point problems and generalized split feasibility problems in Banach spaces
  publication-title: J. Nonlinear Sci. Appl.
  doi: 10.22436/jnsa.011.02.03
– volume: 16
  start-page: 899
  year: 2008
  ident: ref_36
  article-title: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization
  publication-title: Set Valued Anal.
  doi: 10.1007/s11228-008-0102-z
– volume: 59
  start-page: 301
  year: 2012
  ident: ref_9
  article-title: Algorithms for the split variational inequality problem
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-011-9490-5
– volume: 6
  start-page: 117
  year: 2005
  ident: ref_37
  article-title: Equilibrium programming in Hilbert spaces
  publication-title: J. Nonlinear Convex Anal.
– ident: ref_34
  doi: 10.1007/978-3-642-59073-3_11
– volume: 4
  start-page: 154
  year: 1970
  ident: ref_6
  article-title: Brève communication. Régularisation d’inéquations variationnelles par approximations successives
  publication-title: Revue Française d’Informatique et de Recherche Opérationnelle Série Rouge
– ident: ref_38
– volume: 9
  start-page: 1515
  year: 2016
  ident: ref_24
  article-title: Feasible iterative algorithms and strong convergence theorems for bi-level fixed point problems
  publication-title: J. Nonlinear Sci. Appl.
  doi: 10.22436/jnsa.009.04.10
– volume: 1
  start-page: 35
  year: 2010
  ident: ref_1
  article-title: Remarks on the gradient-projection algorithm
  publication-title: J. Nonlinear Anal. Optim.
– volume: 15
  start-page: 555
  year: 2005
  ident: ref_31
  article-title: Proximal point algorithm controlled by a slowly vanishing term: Applications to hierarchical minimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/S105262340343467X
– volume: 74
  start-page: 5286
  year: 2011
  ident: ref_3
  article-title: Some iterative methods for finding fixed points and for solving constrained convex minimization problems
  publication-title: Nonlinear Anal. Theor.
  doi: 10.1016/j.na.2011.05.005
– volume: 4
  start-page: 1
  year: 1964
  ident: ref_33
  article-title: Some methods of speeding up the convergence of iteration methods
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(64)90137-5
– ident: ref_20
  doi: 10.1080/10556788.2019.1619729
– volume: 150
  start-page: 360
  year: 2011
  ident: ref_2
  article-title: Averaged mappings and the gradient-projection algorithm
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-011-9837-z
– volume: 33
  start-page: 5
  year: 2017
  ident: ref_32
  article-title: ϵ-subgradient algorithms for bilevel convex optimization
  publication-title: Inverse Probl.
  doi: 10.1088/1361-6420/aa6136
SSID ssj0002140200
ssib005905691
ssib045321559
Score 2.1833737
Snippet In this paper, we consider a bilevel optimization problem as a task of finding the optimum of the upper-level problem subject to the solution set of the split...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 66
SubjectTerms bilevel problem
fixed point problem
gradient method
proximal method
Title Proximal Gradient Method for Solving Bilevel Optimization Problems
URI https://doaj.org/article/43b2abebcd004a7c81db529e349f2f90
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv9tCTEJrsI9kcrbQWIVrQQm9hnyD0IW0UT_52Z5MYIwheJJBDGEL4djIzX7LzDUK9yHAtJLFBxF0YMKF5oFjCAmGso4wa55RvTs7u4_GU3c34rDXqy-8Jq-SBK-D6jCoilVXawHLKREN9pThJLWWpIy4t2TrkvBaZKj0rhcT-rQLDOCXN_zcfo0nkeVPVQhwCfxLxrGreozQN-wstvbKXT8c_0lVL1b9MP6M9tFvXjfi6et59tGWXB2gna0RXN4doMFmv3p8XYHW7LjdyFTgr50NjKEzx42ruvx3gAYSBNzvHDxArFnUTJp5UY2U2R2g6Gj7djIN6REKgKY2LgEKccyrWnkYksRExT0jsZJwQnTqhXCodSyRULSqCQGKFARS1JQZevFAaldBj1FmulvYEYa4cY1CuEaUJswIOMPP6bJGjFlagi66-kMh1rR_ux1jMc-ARHra8BVsX9Rrjl0o243ezgYe0MfFa1-UF8IC89oD8Lw84_Y-bnKFt4pm03xrAzlGnWL_aCyg3CnVZehacs4_hJ3Jkz8A
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proximal+Gradient+Method+for+Solving+Bilevel+Optimization+Problems&rft.jtitle=Mathematical+and+computational+applications&rft.au=Seifu+Endris+Yimer&rft.au=Poom+Kumam&rft.au=Anteneh+Getachew+Gebrie&rft.date=2020-10-04&rft.pub=MDPI+AG&rft.issn=1300-686X&rft.eissn=2297-8747&rft.volume=25&rft.issue=4&rft.spage=66&rft_id=info:doi/10.3390%2Fmca25040066&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_43b2abebcd004a7c81db529e349f2f90
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2297-8747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2297-8747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2297-8747&client=summon