Latent variable method for automatic adaptation to background states in motor imagery BCI

Objective. Brain-computer interface (BCI) systems are known to be vulnerable to variabilities in background states of a user. Usually, no detailed information on these states is available even during the training stage. Thus there is a need in a method which is capable of taking background states in...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 15; no. 1; pp. 16004 - 16017
Main Authors Dagaev, Nikolay, Volkova, Ksenia, Ossadtchi, Alexei
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective. Brain-computer interface (BCI) systems are known to be vulnerable to variabilities in background states of a user. Usually, no detailed information on these states is available even during the training stage. Thus there is a need in a method which is capable of taking background states into account in an unsupervised way. Approach. We propose a latent variable method that is based on a probabilistic model with a discrete latent variable. In order to estimate the model's parameters, we suggest to use the expectation maximization algorithm. The proposed method is aimed at assessing characteristics of background states without any corresponding data labeling. In the context of asynchronous motor imagery paradigm, we applied this method to the real data from twelve able-bodied subjects with open/closed eyes serving as background states. Main results. We found that the latent variable method improved classification of target states compared to the baseline method (in seven of twelve subjects). In addition, we found that our method was also capable of background states recognition (in six of twelve subjects). Significance. Without any supervised information on background states, the latent variable method provides a way to improve classification in BCI by taking background states into account at the training stage and then by making decisions on target states weighted by posterior probabilities of background states at the prediction stage.
AbstractList Objective. Brain-computer interface (BCI) systems are known to be vulnerable to variabilities in background states of a user. Usually, no detailed information on these states is available even during the training stage. Thus there is a need in a method which is capable of taking background states into account in an unsupervised way. Approach. We propose a latent variable method that is based on a probabilistic model with a discrete latent variable. In order to estimate the model's parameters, we suggest to use the expectation maximization algorithm. The proposed method is aimed at assessing characteristics of background states without any corresponding data labeling. In the context of asynchronous motor imagery paradigm, we applied this method to the real data from twelve able-bodied subjects with open/closed eyes serving as background states. Main results. We found that the latent variable method improved classification of target states compared to the baseline method (in seven of twelve subjects). In addition, we found that our method was also capable of background states recognition (in six of twelve subjects). Significance. Without any supervised information on background states, the latent variable method provides a way to improve classification in BCI by taking background states into account at the training stage and then by making decisions on target states weighted by posterior probabilities of background states at the prediction stage.
Brain-computer interface (BCI) systems are known to be vulnerable to variabilities in background states of a user. Usually, no detailed information on these states is available even during the training stage. Thus there is a need in a method which is capable of taking background states into account in an unsupervised way.OBJECTIVEBrain-computer interface (BCI) systems are known to be vulnerable to variabilities in background states of a user. Usually, no detailed information on these states is available even during the training stage. Thus there is a need in a method which is capable of taking background states into account in an unsupervised way.We propose a latent variable method that is based on a probabilistic model with a discrete latent variable. In order to estimate the model's parameters, we suggest to use the expectation maximization algorithm. The proposed method is aimed at assessing characteristics of background states without any corresponding data labeling. In the context of asynchronous motor imagery paradigm, we applied this method to the real data from twelve able-bodied subjects with open/closed eyes serving as background states.APPROACHWe propose a latent variable method that is based on a probabilistic model with a discrete latent variable. In order to estimate the model's parameters, we suggest to use the expectation maximization algorithm. The proposed method is aimed at assessing characteristics of background states without any corresponding data labeling. In the context of asynchronous motor imagery paradigm, we applied this method to the real data from twelve able-bodied subjects with open/closed eyes serving as background states.We found that the latent variable method improved classification of target states compared to the baseline method (in seven of twelve subjects). In addition, we found that our method was also capable of background states recognition (in six of twelve subjects).MAIN RESULTSWe found that the latent variable method improved classification of target states compared to the baseline method (in seven of twelve subjects). In addition, we found that our method was also capable of background states recognition (in six of twelve subjects).Without any supervised information on background states, the latent variable method provides a way to improve classification in BCI by taking background states into account at the training stage and then by making decisions on target states weighted by posterior probabilities of background states at the prediction stage.SIGNIFICANCEWithout any supervised information on background states, the latent variable method provides a way to improve classification in BCI by taking background states into account at the training stage and then by making decisions on target states weighted by posterior probabilities of background states at the prediction stage.
Brain-computer interface (BCI) systems are known to be vulnerable to variabilities in background states of a user. Usually, no detailed information on these states is available even during the training stage. Thus there is a need in a method which is capable of taking background states into account in an unsupervised way. We propose a latent variable method that is based on a probabilistic model with a discrete latent variable. In order to estimate the model's parameters, we suggest to use the expectation maximization algorithm. The proposed method is aimed at assessing characteristics of background states without any corresponding data labeling. In the context of asynchronous motor imagery paradigm, we applied this method to the real data from twelve able-bodied subjects with open/closed eyes serving as background states. We found that the latent variable method improved classification of target states compared to the baseline method (in seven of twelve subjects). In addition, we found that our method was also capable of background states recognition (in six of twelve subjects). Without any supervised information on background states, the latent variable method provides a way to improve classification in BCI by taking background states into account at the training stage and then by making decisions on target states weighted by posterior probabilities of background states at the prediction stage.
Author Dagaev, Nikolay
Volkova, Ksenia
Ossadtchi, Alexei
Author_xml – sequence: 1
  givenname: Nikolay
  surname: Dagaev
  fullname: Dagaev, Nikolay
  email: ndagaev@hse.ru
  organization: National Research University Higher School of Economics Centre for Cognition and Decision Making, Moscow, Russia
– sequence: 2
  givenname: Ksenia
  surname: Volkova
  fullname: Volkova, Ksenia
  organization: National Research University Higher School of Economics Centre for Cognition and Decision Making, Moscow, Russia
– sequence: 3
  givenname: Alexei
  surname: Ossadtchi
  fullname: Ossadtchi, Alexei
  organization: National Research University Higher School of Economics Faculty of Computer Science, School of Data Analysis and Artificial Intelligence, Moscow, Russia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28718781$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PwzAQhi0EAlrYmZBHBkrtOHGSESo-KlVigYHJujiXEkjiYjtI_fe4StsBCaY7nd7ndPeMyGFnOiTkgrMbzrJsytOYT6IkiaYAGZPJATndjw73vWQnZOTcB2OCpzk7JidRlvIszfgpeVuAx87Tb7A1FA3SFv27KWllLIXemxZ8rSmUsPKhMx31hhagP5fW9F1JXZiio3VHW-MDUrewRLumd7P5GTmqoHF4vq1j8vpw_zJ7miyeH-ez28VECyH9JCoSjECLlDEds1ynVSwiLGSMUQoxiyGTOZY8LrVkeSVKDrGWpZDAMl4hcjEmV8PelTVfPTqv2tppbBro0PRO8TziXCTh4xC93Eb7osVSrWy4167VTkcIyCGgrXHOYqV0PfztLdSN4kxtvKuNWLWRrAbvAWS_wN3uf5DrAanNSn2Y3nbB0t_xH6aXkfk
CODEN JNEIEZ
CitedBy_id crossref_primary_10_1016_j_bbr_2019_112240
crossref_primary_10_3390_e20010007
crossref_primary_10_3390_s21062173
crossref_primary_10_3389_fnins_2023_1122661
Cites_doi 10.1016/j.neucom.2016.01.007
10.1109/86.895948
10.1109/TNSRE.2012.2197221
10.1109/10.841330
10.1088/1741-2560/13/3/036018
10.1155/2007/79642
10.1088/1741-2560/10/3/036007
10.1016/S0893-6080(00)00026-5
10.1016/0013-4694(91)90040-B
10.1098/rsta.2012.0222
10.1007/b98874
10.1152/physrev.00027.2016
10.1109/IEMBS.2005.1615701
10.1088/1741-2560/10/4/046003
10.1109/TBME.2005.851521
10.3389/fnhum.2015.00308
10.1016/j.neucom.2015.02.005
10.1371/journal.pone.0080886
10.1088/1741-2560/4/2/R01
10.1016/j.jneumeth.2011.04.037
10.1109/TBME.2004.827062
10.1088/1741-2560/13/6/066022
10.1007/978-0-387-21606-5
10.1109/CNE.2007.369647
10.1109/TPAMI.2010.125
10.1007/s11517-006-0107-4
10.2307/2669645
10.1016/j.neuroimage.2010.03.022
10.1016/j.jneumeth.2015.01.033
10.1111/j.2517-6161.1977.tb01600.x
10.1088/1741-2560/1/2/001
10.1088/1741-2560/3/1/R02
10.1109/MSP.2008.4408441
10.1109/TMAG.2010.2072775
10.1109/7333.948456
10.1007/s11434-008-0547-3
10.1109/TBME.2004.826698
10.1109/86.895947
10.1109/TNSRE.2003.814441
10.1016/S0079-6123(06)59025-9
10.1016/j.clinph.2007.04.027
10.1016/j.jneumeth.2015.08.004
10.1016/j.tins.2007.02.001
10.1109/TBME.2009.2026181
10.1109/TBME.2010.2055564
10.1007/s00521-010-0481-6
10.1007/978-3-642-35289-8_3
10.1016/S0167-8655(01)00075-7
10.1109/TNSRE.2006.875557
ContentType Journal Article
Copyright 2017 IOP Publishing Ltd
Copyright_xml – notice: 2017 IOP Publishing Ltd
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1088/1741-2552/aa8065
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate Latent variable method for automatic adaptation to background states in motor imagery BCI
EISSN 1741-2552
ExternalDocumentID 28718781
10_1088_1741_2552_aa8065
jneaa8065
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Russian Academic Excellence Project '5-100'
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
W28
XPP
AAYXX
ADEQX
CITATION
02O
1WK
AERVB
AHSEE
ARNYC
BBWZM
FEDTE
HVGLF
JCGBZ
NPM
Q02
RNS
S3P
7X8
ID FETCH-LOGICAL-c336t-2b5e2ac3700c409c7f432eb64e27a404a869ed14dc609f3d1a4c6d36a081fee13
IEDL.DBID IOP
ISSN 1741-2560
1741-2552
IngestDate Thu Jul 10 18:55:33 EDT 2025
Wed Feb 19 02:32:45 EST 2025
Tue Jul 01 01:58:37 EDT 2025
Thu Apr 24 22:58:19 EDT 2025
Wed Aug 21 03:33:55 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-2b5e2ac3700c409c7f432eb64e27a404a869ed14dc609f3d1a4c6d36a081fee13
Notes JNE-101859.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28718781
PQID 1921135871
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_1921135871
crossref_citationtrail_10_1088_1741_2552_aa8065
crossref_primary_10_1088_1741_2552_aa8065
pubmed_primary_28718781
iop_journals_10_1088_1741_2552_aa8065
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2018
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
45
46
47
49
50
51
10
11
55
12
13
14
Myrden A (29) 2016; 13
15
16
Wu W (48) 2006
Perdikis S (53) 2016; 13
17
18
Bishop C M (30) 2006
1
3
4
5
Shenoy P (20) 2006; 3
7
8
9
LaFleur K (52) 2013; 10
21
23
Perdikis S (54) 2015
24
Raza H (22) 2014
Leuthardt E C (2) 2004; 1
26
27
Zander T O (19) 2011; 9
Mühl C (25) 2014; 8
Liyanage S R (28) 2013; 10
32
Lotte F (6) 2007; 4
33
Dempster A P (31) 1977; 39
34
35
36
37
38
39
40
41
42
43
References_xml – ident: 27
  doi: 10.1016/j.neucom.2016.01.007
– ident: 11
  doi: 10.1109/86.895948
– start-page: 230
  year: 2014
  ident: 22
  publication-title: IEEE Int. Conf. on Bioinformatics and Biomedicine
– volume: 8
  start-page: 114
  year: 2014
  ident: 25
  publication-title: Frontiers Neurosci.
– ident: 51
  doi: 10.1109/TNSRE.2012.2197221
– volume: 9
  issn: 1741-2552
  year: 2011
  ident: 19
  publication-title: J. Neural Eng.
– ident: 42
  doi: 10.1109/10.841330
– volume: 13
  issn: 1741-2552
  year: 2016
  ident: 53
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/13/3/036018
– ident: 4
  doi: 10.1155/2007/79642
– year: 2015
  ident: 54
– volume: 10
  issn: 1741-2552
  year: 2013
  ident: 28
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/3/036007
– ident: 41
  doi: 10.1016/S0893-6080(00)00026-5
– ident: 3
  doi: 10.1016/0013-4694(91)90040-B
– ident: 55
  doi: 10.1098/rsta.2012.0222
– ident: 38
  doi: 10.1007/b98874
– ident: 1
  doi: 10.1152/physrev.00027.2016
– ident: 17
  doi: 10.1109/IEMBS.2005.1615701
– volume: 10
  issn: 1741-2552
  year: 2013
  ident: 52
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/4/046003
– ident: 43
  doi: 10.1109/TBME.2005.851521
– ident: 24
  doi: 10.3389/fnhum.2015.00308
– ident: 26
  doi: 10.1016/j.neucom.2015.02.005
– ident: 36
  doi: 10.1371/journal.pone.0080886
– volume: 4
  start-page: R1
  issn: 1741-2552
  year: 2007
  ident: 6
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/4/2/R01
– ident: 23
  doi: 10.1016/j.jneumeth.2011.04.037
– ident: 8
  doi: 10.1109/TBME.2004.827062
– volume: 13
  issn: 1741-2552
  year: 2016
  ident: 29
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/13/6/066022
– ident: 33
  doi: 10.1007/978-0-387-21606-5
– ident: 44
  doi: 10.1109/CNE.2007.369647
– ident: 10
  doi: 10.1109/TPAMI.2010.125
– ident: 21
  doi: 10.1007/s11517-006-0107-4
– ident: 32
  doi: 10.2307/2669645
– year: 2006
  ident: 30
  publication-title: Pattern Recognition and Machinme Learning
– ident: 35
  doi: 10.1016/j.neuroimage.2010.03.022
– ident: 37
  doi: 10.1016/j.jneumeth.2015.01.033
– volume: 39
  start-page: 1
  issn: 0035-9246
  year: 1977
  ident: 31
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 1
  start-page: 63
  issn: 1741-2552
  year: 2004
  ident: 2
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/1/2/001
– volume: 3
  start-page: R13
  issn: 1741-2552
  year: 2006
  ident: 20
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/3/1/R02
– start-page: 2387
  year: 2006
  ident: 48
  publication-title: 27th Annual Int. Conf. of the Engineering in Medicine and Biology Society
– ident: 18
  doi: 10.1109/MSP.2008.4408441
– ident: 13
  doi: 10.1109/TMAG.2010.2072775
– ident: 15
  doi: 10.1109/7333.948456
– ident: 40
  doi: 10.1007/s11434-008-0547-3
– ident: 12
  doi: 10.1109/TBME.2004.826698
– ident: 16
  doi: 10.1109/86.895947
– ident: 7
  doi: 10.1109/TNSRE.2003.814441
– ident: 5
  doi: 10.1016/S0079-6123(06)59025-9
– ident: 47
  doi: 10.1016/j.clinph.2007.04.027
– ident: 46
  doi: 10.1016/j.jneumeth.2015.08.004
– ident: 34
  doi: 10.1016/j.tins.2007.02.001
– ident: 45
  doi: 10.1109/TBME.2009.2026181
– ident: 50
  doi: 10.1109/TBME.2010.2055564
– ident: 9
  doi: 10.1007/s00521-010-0481-6
– ident: 49
  doi: 10.1007/978-3-642-35289-8_3
– ident: 14
  doi: 10.1016/S0167-8655(01)00075-7
– ident: 39
  doi: 10.1109/TNSRE.2006.875557
SSID ssj0031790
Score 2.2089427
Snippet Objective. Brain-computer interface (BCI) systems are known to be vulnerable to variabilities in background states of a user. Usually, no detailed information...
Brain-computer interface (BCI) systems are known to be vulnerable to variabilities in background states of a user. Usually, no detailed information on these...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16004
SubjectTerms brain-computer interface
electroencephalography
latent variable
motor imagery
probabilistic model
Title Latent variable method for automatic adaptation to background states in motor imagery BCI
URI https://iopscience.iop.org/article/10.1088/1741-2552/aa8065
https://www.ncbi.nlm.nih.gov/pubmed/28718781
https://www.proquest.com/docview/1921135871
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS91AEB7UvvhiL96OvbCFVvAh5yTZSzb0yUpFRVofFBSEMHsJiDXnoDkF--s7m805oFQpfcvDbDaZnc1-k5n5BuBTaZQvrTRJhkWeCG8xKetCJoV0Ka8Dn7jpEmS_q4MzcXQuzxfgy7wWZjzpP_1DuoxEwVGFfUKcHhGGzhJCwvkIMYQFF-EF10qF9gWHP05mn2EeqKdiNWSQVmkfo_zbHR6cSYs079Nwszt29l_C5eyBY7bJ9XDamqH9_YjL8T_f6BWs9HCU7UbR17DgmzewutuQK35zz7ZZlyDa_XlfhYtjwqVNy36Rex0KrljsPs0I9jKc0oBA_srQ4SSG91k7ZgbtdSgcaRzrSpfu2FXDyDpoyNVNoM-4Z1_3DtfgbP_b6d5B0ndmSCznqk1yI32OlhdpaslBtEUteO6NEj4vUKQCtSq9y4SzKi1r7jIUVjmukABI7X3G12GpGTd-ExgBLofGSmkdCpV6zL1WVmS1oZNTcjWA0WxtKtvTlofuGT-rLnyudRW0VwXtVVF7A9iZj5hEyo5nZD_TolT9vr17Ru7jzCAq2n8hqIKNH09pREkuNJfkdw5gI1rKfNbgjepCZ1v_OMtbWCY8pmNS-DtYam-n_j1hntZ86Gz7D4_q9ps
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9xADLaAShUXSkuBLRSmUovUQ3aTzCPJkdeKbRHlUCR6Sj2PSAjIrkq2Evx6PJksUiuKKnHLYZxJPJ7M59j-DPCx0MoVRuoowSyNhDMYFVUmo0zamFeeT1y3CbIn6uhMfDmX512f07YWZjzpPv19ugxEwUGFXUJcPiAMnUSEhNMBog8LDia2mocXkivuyfNH305nn2Lu6adCRaSXUHEXp3zsLn-cS_M0978hZ3v0DF_Bz9lDh4yTy_600X1z9xef4zPeahmWOljKdsPw1zDn6jewsluTS359y3ZYmyja_oFfgR_HhE_rhv0mN9sXXrHQhZoR_GU4JQFPAsvQ4iSE-VkzZhrNpS8gqS1rS5hu2EXNyEpI5OLa02jcsr390Vs4Gx5-3z-Kug4NkeFcNVGqpUvR8CyODTmKJqsET51WwqUZilhgrgpnE2GNiouK2wSFUZYrJCBSOZfwVViox7VbB0bAy6I2UhqLQsUOU5crI5JK0wlKa9uDwWx9StPRl_suGldlG0bP89JrsPQaLIMGe_D5QWISqDueGPuJFqbs9u_NE-M-zIyipH3ogytYu_GUJApypbkk_7MHa8FaHmb1Xmme5cm7_5xlG16eHgzL49HJ1w1YJIiWhzzxTVhofk3de4JBjd5qTf0eWYj7_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Latent+variable+method+for+automatic+adaptation+to+background+states+in+motor+imagery+BCI&rft.jtitle=Journal+of+neural+engineering&rft.au=Dagaev%2C+Nikolay&rft.au=Volkova%2C+Ksenia&rft.au=Ossadtchi%2C+Alexei&rft.date=2018-02-01&rft.eissn=1741-2552&rft.volume=15&rft.issue=1&rft.spage=016004&rft_id=info:doi/10.1088%2F1741-2552%2Faa8065&rft_id=info%3Apmid%2F28718781&rft.externalDocID=28718781
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon