Ultra-Scalable Spectral Clustering and Ensemble Clustering
This paper focuses on scalability and robustness of spectral clustering for extremely large-scale datasets with limited resources. Two novel algorithms are proposed, namely, ultra-scalable spectral clustering (U-SPEC) and ultra-scalable ensemble clustering (U-SENC). In U-SPEC, a hybrid representativ...
Saved in:
Published in | IEEE transactions on knowledge and data engineering Vol. 32; no. 6; pp. 1212 - 1226 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper focuses on scalability and robustness of spectral clustering for extremely large-scale datasets with limited resources. Two novel algorithms are proposed, namely, ultra-scalable spectral clustering (U-SPEC) and ultra-scalable ensemble clustering (U-SENC). In U-SPEC, a hybrid representative selection strategy and a fast approximation method for <inline-formula><tex-math notation="LaTeX">K</tex-math> <mml:math><mml:mi>K</mml:mi></mml:math><inline-graphic xlink:href="wang-ieq1-2903410.gif"/> </inline-formula>-nearest representatives are proposed for the construction of a sparse affinity sub-matrix. By interpreting the sparse sub-matrix as a bipartite graph, the transfer cut is then utilized to efficiently partition the graph and obtain the clustering result. In U-SENC, multiple U-SPEC clusterers are further integrated into an ensemble clustering framework to enhance the robustness of U-SPEC while maintaining high efficiency. Based on the ensemble generation via multiple U-SEPC's, a new bipartite graph is constructed between objects and base clusters and then efficiently partitioned to achieve the consensus clustering result. It is noteworthy that both U-SPEC and U-SENC have nearly linear time and space complexity, and are capable of robustly and efficiently partitioning 10-million-level nonlinearly-separable datasets on a PC with 64 GB memory. Experiments on various large-scale datasets have demonstrated the scalability and robustness of our algorithms. The MATLAB code and experimental data are available at https://www.researchgate.net/publication/330760669 . |
---|---|
AbstractList | This paper focuses on scalability and robustness of spectral clustering for extremely large-scale datasets with limited resources. Two novel algorithms are proposed, namely, ultra-scalable spectral clustering (U-SPEC) and ultra-scalable ensemble clustering (U-SENC). In U-SPEC, a hybrid representative selection strategy and a fast approximation method for <inline-formula><tex-math notation="LaTeX">K</tex-math> <mml:math><mml:mi>K</mml:mi></mml:math><inline-graphic xlink:href="wang-ieq1-2903410.gif"/> </inline-formula>-nearest representatives are proposed for the construction of a sparse affinity sub-matrix. By interpreting the sparse sub-matrix as a bipartite graph, the transfer cut is then utilized to efficiently partition the graph and obtain the clustering result. In U-SENC, multiple U-SPEC clusterers are further integrated into an ensemble clustering framework to enhance the robustness of U-SPEC while maintaining high efficiency. Based on the ensemble generation via multiple U-SEPC's, a new bipartite graph is constructed between objects and base clusters and then efficiently partitioned to achieve the consensus clustering result. It is noteworthy that both U-SPEC and U-SENC have nearly linear time and space complexity, and are capable of robustly and efficiently partitioning 10-million-level nonlinearly-separable datasets on a PC with 64 GB memory. Experiments on various large-scale datasets have demonstrated the scalability and robustness of our algorithms. The MATLAB code and experimental data are available at https://www.researchgate.net/publication/330760669 . This paper focuses on scalability and robustness of spectral clustering for extremely large-scale datasets with limited resources. Two novel algorithms are proposed, namely, ultra-scalable spectral clustering (U-SPEC) and ultra-scalable ensemble clustering (U-SENC). In U-SPEC, a hybrid representative selection strategy and a fast approximation method for [Formula Omitted]-nearest representatives are proposed for the construction of a sparse affinity sub-matrix. By interpreting the sparse sub-matrix as a bipartite graph, the transfer cut is then utilized to efficiently partition the graph and obtain the clustering result. In U-SENC, multiple U-SPEC clusterers are further integrated into an ensemble clustering framework to enhance the robustness of U-SPEC while maintaining high efficiency. Based on the ensemble generation via multiple U-SEPC's, a new bipartite graph is constructed between objects and base clusters and then efficiently partitioned to achieve the consensus clustering result. It is noteworthy that both U-SPEC and U-SENC have nearly linear time and space complexity, and are capable of robustly and efficiently partitioning 10-million-level nonlinearly-separable datasets on a PC with 64 GB memory. Experiments on various large-scale datasets have demonstrated the scalability and robustness of our algorithms. The MATLAB code and experimental data are available at https://www.researchgate.net/publication/330760669 . |
Author | Wang, Chang-Dong Lai, Jian-Huang Huang, Dong Wu, Jian-Sheng Kwoh, Chee-Keong |
Author_xml | – sequence: 1 givenname: Dong orcidid: 0000-0003-3923-8828 surname: Huang fullname: Huang, Dong email: huangdonghere@gmail.com organization: College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China – sequence: 2 givenname: Chang-Dong orcidid: 0000-0001-5972-559X surname: Wang fullname: Wang, Chang-Dong email: changdongwang@hotmail.com organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China – sequence: 3 givenname: Jian-Sheng surname: Wu fullname: Wu, Jian-Sheng email: jiansheng4211@gmail.com organization: School of Information Engineering, Nanchang University, Nanchang, China – sequence: 4 givenname: Jian-Huang orcidid: 0000-0003-3883-2024 surname: Lai fullname: Lai, Jian-Huang email: stsljh@mail.sysu.edu.cn organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China – sequence: 5 givenname: Chee-Keong orcidid: 0000-0002-8547-6387 surname: Kwoh fullname: Kwoh, Chee-Keong email: asckkwoh@ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore |
BookMark | eNp9kE1LAzEQhoNUsK3-APGy4HnrJJNkE29S6wcWPLQ9hzSbypZttibbg__eXVoUPHiaYXjeGeYZkUFogifkmsKEUtB3y7fH2YQB1ROmATmFMzKkQqicUU0HXQ-c5hx5cUFGKW0BQBWKDsn9qm6jzRfO1nZd-2yx964b1Nm0PqTWxyp8ZDaU2Swkv-uB3_klOd_YOvmrUx2T1dNsOX3J5-_Pr9OHee4QZZszXWqHBQethbRSIhYbyaTkmiNo5zlzas0EypJxq0WJ0ntqOaBaC8cQcExuj3v3sfk8-NSabXOIoTtpGGqppBbAO6o4Ui42KUW_Ma5qbVs1oXunqg0F04syvSjTizInUV2S_knuY7Wz8evfzM0xU3nvf3glJRWM4TePQHMY |
CODEN | ITKEEH |
CitedBy_id | crossref_primary_10_1002_advs_202205442 crossref_primary_10_1016_j_image_2022_116918 crossref_primary_10_1109_ACCESS_2020_2977195 crossref_primary_10_3233_IDA_216105 crossref_primary_10_1016_j_patcog_2024_110772 crossref_primary_10_1016_j_is_2023_102178 crossref_primary_10_1016_j_patrec_2022_01_022 crossref_primary_10_1007_s10489_021_03020_y crossref_primary_10_32604_csse_2022_023481 crossref_primary_10_1109_TGRS_2021_3097358 crossref_primary_10_1016_j_ijepes_2025_110486 crossref_primary_10_1109_TKDE_2023_3268215 crossref_primary_10_1109_TETCI_2024_3353598 crossref_primary_10_1007_s10489_023_04580_x crossref_primary_10_1109_TGRS_2023_3278529 crossref_primary_10_1016_j_engappai_2023_106497 crossref_primary_10_1155_2020_3650926 crossref_primary_10_3390_a16110524 crossref_primary_10_1007_s13042_021_01369_7 crossref_primary_10_1109_ACCESS_2020_3003046 crossref_primary_10_1109_ACCESS_2021_3060135 crossref_primary_10_1007_s10489_023_04489_5 crossref_primary_10_1109_TCYB_2021_3049633 crossref_primary_10_3390_rs13204139 crossref_primary_10_1016_j_neucom_2021_07_056 crossref_primary_10_1109_TNNLS_2022_3146136 crossref_primary_10_1109_TNNLS_2023_3276393 crossref_primary_10_1007_s40314_022_01757_x crossref_primary_10_1016_j_energy_2021_121843 crossref_primary_10_1109_TKDE_2022_3206330 crossref_primary_10_1016_j_ins_2025_121962 crossref_primary_10_1016_j_jmsy_2021_05_005 crossref_primary_10_1016_j_neunet_2025_107217 crossref_primary_10_3233_IDA_216240 crossref_primary_10_1109_ACCESS_2021_3056677 crossref_primary_10_1016_j_ijepes_2021_107403 crossref_primary_10_1007_s11063_023_11147_x crossref_primary_10_1016_j_ins_2023_03_067 crossref_primary_10_3390_a16050245 crossref_primary_10_1049_ipr2_12191 crossref_primary_10_1109_TKDE_2019_2952596 crossref_primary_10_1007_s00500_023_08723_7 crossref_primary_10_1109_TCSS_2024_3479188 crossref_primary_10_1016_j_inffus_2022_08_031 crossref_primary_10_1109_TKDE_2024_3486530 crossref_primary_10_3390_s23052488 crossref_primary_10_1109_TBDATA_2023_3325045 crossref_primary_10_2478_jaiscr_2024_0009 crossref_primary_10_1155_2021_4969233 crossref_primary_10_1007_s11280_023_01158_y crossref_primary_10_1016_j_ins_2024_121314 crossref_primary_10_1016_j_eswa_2023_122584 crossref_primary_10_1109_TKDE_2023_3305624 crossref_primary_10_1016_j_ins_2023_119516 crossref_primary_10_3233_JIFS_223897 crossref_primary_10_1007_s10723_023_09683_w crossref_primary_10_1016_j_inffus_2024_102587 crossref_primary_10_1109_TNNLS_2022_3219131 crossref_primary_10_1016_j_eswa_2025_126878 crossref_primary_10_1016_j_knosys_2020_106280 crossref_primary_10_1016_j_knosys_2022_109196 crossref_primary_10_1109_ACCESS_2021_3066498 crossref_primary_10_1109_TKDE_2022_3218693 crossref_primary_10_1016_j_patcog_2023_109470 crossref_primary_10_1109_TCYB_2025_3534195 crossref_primary_10_1016_j_inffus_2023_101986 crossref_primary_10_1109_TKDE_2021_3098806 crossref_primary_10_1109_ACCESS_2020_2979915 crossref_primary_10_1109_TFUZZ_2024_3456091 crossref_primary_10_1016_j_asoc_2025_112844 crossref_primary_10_1016_j_procs_2023_10_155 crossref_primary_10_1109_TFUZZ_2024_3421576 crossref_primary_10_1016_j_neucom_2023_126490 crossref_primary_10_1007_s11063_020_10297_6 crossref_primary_10_1016_j_ins_2024_120114 crossref_primary_10_1016_j_asoc_2023_110903 crossref_primary_10_1145_3580282 crossref_primary_10_1016_j_ijepes_2022_108119 crossref_primary_10_1016_j_patcog_2025_111545 crossref_primary_10_1109_TAI_2023_3237648 crossref_primary_10_3390_su13041822 crossref_primary_10_1007_s11063_022_10789_7 crossref_primary_10_1145_3555777 crossref_primary_10_1145_3681793 crossref_primary_10_1007_s00500_023_09309_z crossref_primary_10_1093_comjnl_bxab169 crossref_primary_10_1016_j_knosys_2019_07_027 crossref_primary_10_1016_j_neucom_2022_12_023 crossref_primary_10_1007_s13042_022_01651_2 crossref_primary_10_1109_TCYB_2021_3069434 crossref_primary_10_2139_ssrn_4073610 crossref_primary_10_3103_S0005105521010039 crossref_primary_10_1016_j_knosys_2024_111793 crossref_primary_10_1016_j_neunet_2024_106696 crossref_primary_10_1109_TKDE_2023_3264970 crossref_primary_10_1109_TKDE_2022_3150403 crossref_primary_10_1080_08839514_2021_2004346 crossref_primary_10_1016_j_oceaneng_2023_115953 crossref_primary_10_1016_j_artint_2023_103924 crossref_primary_10_12677_CSA_2023_134084 crossref_primary_10_1109_JIOT_2021_3127747 crossref_primary_10_1007_s10994_020_05940_1 crossref_primary_10_1007_s11063_021_10563_1 crossref_primary_10_1109_TKDE_2024_3489553 crossref_primary_10_1016_j_knosys_2021_107295 crossref_primary_10_1007_s10489_023_05113_2 crossref_primary_10_1016_j_patcog_2024_110746 crossref_primary_10_1109_TKDE_2024_3483572 crossref_primary_10_1109_ACCESS_2024_3497977 crossref_primary_10_1109_ACCESS_2020_2978404 crossref_primary_10_7717_peerj_cs_1621 crossref_primary_10_1016_j_patcog_2022_109238 crossref_primary_10_1109_TPAMI_2024_3361912 crossref_primary_10_3390_sym16091208 crossref_primary_10_1049_ipr2_12896 crossref_primary_10_1109_ACCESS_2022_3228238 crossref_primary_10_1007_s11063_023_11287_0 crossref_primary_10_1109_ACCESS_2022_3167031 crossref_primary_10_1016_j_inffus_2023_102099 crossref_primary_10_1016_j_inffus_2020_03_009 crossref_primary_10_1049_cvi2_12077 crossref_primary_10_1016_j_eswa_2024_123313 crossref_primary_10_1109_TNNLS_2023_3261460 crossref_primary_10_1007_s11277_021_09083_x crossref_primary_10_1109_ACCESS_2024_3448472 crossref_primary_10_1016_j_patcog_2024_110715 crossref_primary_10_1109_TETCI_2022_3221491 crossref_primary_10_1155_2024_5555191 crossref_primary_10_1016_j_knosys_2022_109444 crossref_primary_10_1109_TKDE_2023_3271120 crossref_primary_10_1109_TPAMI_2024_3507857 crossref_primary_10_1109_TNSM_2023_3291890 crossref_primary_10_1109_TGRS_2021_3096320 crossref_primary_10_1016_j_knosys_2025_113119 crossref_primary_10_1016_j_knosys_2024_112743 crossref_primary_10_1109_TKDE_2023_3249475 crossref_primary_10_1016_j_eswa_2020_113913 crossref_primary_10_2478_amns_2025_0056 crossref_primary_10_1109_ACCESS_2020_3010475 crossref_primary_10_1016_j_patcog_2024_111133 crossref_primary_10_1016_j_dsp_2024_104815 crossref_primary_10_1109_TNNLS_2023_3307158 crossref_primary_10_1142_S0219649222500174 crossref_primary_10_1109_TNSE_2024_3423418 crossref_primary_10_1016_j_inffus_2021_09_003 crossref_primary_10_1109_TETCI_2023_3306233 crossref_primary_10_1109_TGRS_2022_3217597 crossref_primary_10_3390_infrastructures9090161 crossref_primary_10_1007_s44336_024_00008_3 crossref_primary_10_1016_j_cosrev_2021_100435 crossref_primary_10_1007_s00500_020_05264_1 crossref_primary_10_1109_TNNLS_2021_3093426 crossref_primary_10_1016_j_ins_2022_03_091 crossref_primary_10_1109_ACCESS_2020_2968150 crossref_primary_10_1016_j_asoc_2024_111775 crossref_primary_10_1109_TKDE_2023_3311409 crossref_primary_10_1109_TNNLS_2021_3105822 crossref_primary_10_1109_LSP_2023_3298284 crossref_primary_10_1109_TFUZZ_2023_3329108 crossref_primary_10_1016_j_knosys_2021_107124 crossref_primary_10_1016_j_knosys_2020_105582 crossref_primary_10_1109_ACCESS_2023_3268862 crossref_primary_10_1109_TKDE_2023_3236698 crossref_primary_10_1016_j_patcog_2024_111226 crossref_primary_10_1016_j_neunet_2025_107187 crossref_primary_10_1007_s10462_022_10366_3 crossref_primary_10_1109_ACCESS_2020_3039742 crossref_primary_10_1016_j_inffus_2022_10_020 crossref_primary_10_1016_j_ins_2022_08_109 crossref_primary_10_1007_s13042_020_01068_9 crossref_primary_10_1016_j_patcog_2022_108975 crossref_primary_10_1093_bioinformatics_btad075 crossref_primary_10_1109_TKDE_2023_3321913 crossref_primary_10_1016_j_neucom_2022_06_006 crossref_primary_10_1016_j_knosys_2022_110141 crossref_primary_10_1109_ACCESS_2019_2946744 crossref_primary_10_4236_ijis_2021_111001 crossref_primary_10_3390_app13169438 crossref_primary_10_1109_TKDE_2022_3207141 crossref_primary_10_1371_journal_pone_0269878 crossref_primary_10_1109_TCSVT_2023_3266801 crossref_primary_10_1155_2022_8081177 crossref_primary_10_1016_j_ins_2022_11_091 crossref_primary_10_1016_j_knosys_2024_112327 crossref_primary_10_1109_TGRS_2024_3374597 crossref_primary_10_1007_s10044_022_01062_7 crossref_primary_10_1016_j_engappai_2024_109502 crossref_primary_10_3390_pr9030439 crossref_primary_10_1016_j_asoc_2024_112299 crossref_primary_10_1145_3617335 crossref_primary_10_1109_ACCESS_2025_3551160 crossref_primary_10_1016_j_eswa_2022_117565 crossref_primary_10_1016_j_asoc_2023_111015 crossref_primary_10_1109_TSMC_2021_3049490 crossref_primary_10_1016_j_ins_2024_121187 crossref_primary_10_1109_TCYB_2020_3026396 crossref_primary_10_1080_01969722_2022_2110682 crossref_primary_10_1007_s10596_024_10277_y crossref_primary_10_1166_jno_2023_3506 crossref_primary_10_1002_spe_3019 crossref_primary_10_1016_j_patcog_2022_109283 crossref_primary_10_1007_s10489_020_01864_4 crossref_primary_10_1016_j_patcog_2024_111321 crossref_primary_10_1080_09540091_2020_1866496 crossref_primary_10_1016_j_enbuild_2022_112687 crossref_primary_10_1016_j_inffus_2025_103105 crossref_primary_10_1145_3564701 crossref_primary_10_1007_s12559_021_09876_z crossref_primary_10_1109_ACCESS_2021_3101250 crossref_primary_10_1016_j_asoc_2023_110058 crossref_primary_10_1109_TCSVT_2023_3241172 crossref_primary_10_1007_s41066_024_00452_y crossref_primary_10_1109_TPWRS_2024_3361313 crossref_primary_10_1016_j_knosys_2024_111695 crossref_primary_10_1109_TCSVT_2024_3492045 crossref_primary_10_1109_TMM_2024_3385986 crossref_primary_10_1016_j_neucom_2020_07_060 crossref_primary_10_1109_TCSVT_2020_3035775 crossref_primary_10_1016_j_ins_2024_120504 crossref_primary_10_1016_j_patcog_2024_110366 crossref_primary_10_1016_j_asoc_2021_107899 crossref_primary_10_1002_cpe_7992 crossref_primary_10_1109_ACCESS_2021_3087575 crossref_primary_10_1109_TKDE_2024_3391627 crossref_primary_10_1109_TCYB_2021_3081988 crossref_primary_10_1016_j_bspc_2024_106720 crossref_primary_10_1109_TCYB_2020_2969684 crossref_primary_10_1016_j_ins_2022_10_008 crossref_primary_10_1109_ACCESS_2020_3034623 crossref_primary_10_3390_electronics13214316 crossref_primary_10_1007_s10766_025_00783_6 crossref_primary_10_1016_j_jksuci_2023_101731 crossref_primary_10_1016_j_patcog_2022_109062 crossref_primary_10_1109_ACCESS_2019_2952548 crossref_primary_10_1109_TKDE_2020_3045770 crossref_primary_10_1007_s41060_021_00306_9 crossref_primary_10_1016_j_sigpro_2021_108301 crossref_primary_10_1007_s11042_023_17147_2 crossref_primary_10_1016_j_knosys_2019_105126 crossref_primary_10_1109_ACCESS_2021_3050404 crossref_primary_10_1016_j_asoc_2022_109492 crossref_primary_10_1109_TAI_2023_3293479 crossref_primary_10_1016_j_ins_2022_07_101 crossref_primary_10_32604_cmc_2021_016364 crossref_primary_10_1109_ACCESS_2020_3012907 crossref_primary_10_3390_electronics10212666 crossref_primary_10_3390_e24101324 crossref_primary_10_1007_s10489_024_05654_0 crossref_primary_10_1109_TKDE_2023_3267167 crossref_primary_10_1109_TPAMI_2022_3188160 crossref_primary_10_3390_app13010155 crossref_primary_10_1016_j_knosys_2021_107457 crossref_primary_10_1109_ACCESS_2020_3022718 crossref_primary_10_1109_TSMC_2022_3205365 crossref_primary_10_1007_s13042_023_01910_w crossref_primary_10_1109_TKDE_2024_3487534 crossref_primary_10_1109_TKDE_2023_3327043 crossref_primary_10_1109_TCYB_2021_3083592 crossref_primary_10_1016_j_eswa_2025_127118 crossref_primary_10_1109_TBDATA_2023_3255003 crossref_primary_10_1145_3694689 crossref_primary_10_61186_jsdp_20_1_99 crossref_primary_10_1109_TKDE_2023_3292573 crossref_primary_10_1109_TPAMI_2024_3386828 crossref_primary_10_1016_j_knosys_2024_112106 crossref_primary_10_1109_TMC_2024_3419021 crossref_primary_10_1142_S0219649224500540 crossref_primary_10_36535_0548_0027_2021_01_1 crossref_primary_10_1109_TCYB_2020_3034157 crossref_primary_10_1016_j_knosys_2021_107118 crossref_primary_10_1109_TNNLS_2021_3117403 crossref_primary_10_3390_electronics11040572 crossref_primary_10_1007_s11042_023_17662_2 crossref_primary_10_1016_j_sysarc_2021_102212 crossref_primary_10_1109_TNNLS_2023_3300916 crossref_primary_10_3390_math10111834 crossref_primary_10_1016_j_neucom_2025_129764 crossref_primary_10_1016_j_patcog_2023_109836 crossref_primary_10_1109_TNNLS_2023_3252586 |
Cites_doi | 10.1109/TKDE.2017.2650229 10.1109/ICDM.2007.73 10.1137/S1064827595287997 10.1109/TKDE.2014.2316512 10.1109/TSMC.2018.2876202 10.1145/1015330.1015414 10.1145/2611380 10.1109/TKDE.2015.2503753 10.1109/ICDM.2012.123 10.1145/1963405.1963487 10.1109/TPAMI.2010.88 10.1016/j.neucom.2014.05.094 10.1109/TKDE.2017.2695615 10.1016/j.patcog.2015.02.014 10.1109/TCYB.2018.2794998 10.1109/34.868688 10.1109/TPAMI.2011.84 10.1016/j.patrec.2009.09.011 10.1109/TBDATA.2017.2742530 10.1109/TKDE.2017.2787640 10.1109/TPAMI.2005.113 10.1016/j.patcog.2015.08.015 10.1109/TCYB.2014.2358564 10.1109/TKDE.2015.2499200 10.1109/TCYB.2017.2702343 10.1007/s11222-007-9033-z 10.1016/j.patcog.2013.08.019 10.1007/s10479-008-0352-z 10.1093/bioinformatics/btx167 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TKDE.2019.2903410 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-2191 |
EndPage | 1226 |
ExternalDocumentID | 10_1109_TKDE_2019_2903410 8661522 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China; NSFC grantid: 61602189; 61876193; 61876104 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China Stem Cell and Translational Research grantid: 2016YFB1001003 funderid: 10.13039/501100013290 – fundername: Key Areas Research and Development Program of Guangdong grantid: 2018B010109007 – fundername: Guangdong Natural Science Funds for Distinguished Young Scholars grantid: 2016A030306014 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c336t-29d9c37409956a66337f6266494309ce42c8b2536d24a95d36ee1a4038b5c2303 |
IEDL.DBID | RIE |
ISSN | 1041-4347 |
IngestDate | Sun Jun 29 15:52:37 EDT 2025 Thu Apr 24 23:06:25 EDT 2025 Tue Jul 01 03:14:40 EDT 2025 Wed Aug 27 01:57:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-29d9c37409956a66337f6266494309ce42c8b2536d24a95d36ee1a4038b5c2303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5972-559X 0000-0003-3883-2024 0000-0003-3923-8828 0000-0002-8547-6387 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8661522 |
PQID | 2396869504 |
PQPubID | 85438 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_TKDE_2019_2903410 crossref_citationtrail_10_1109_TKDE_2019_2903410 ieee_primary_8661522 proquest_journals_2396869504 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on knowledge and data engineering |
PublicationTitleAbbrev | TKDE |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | bache (ref33) 2017 ref35 ref13 cai (ref36) 2011 ref12 ref15 ref14 ref31 ref11 ref32 ref10 ref2 ref1 golub (ref30) 2012 ref17 ref16 ref19 liu (ref37) 2013 zhang (ref27) 2013 shi (ref29) 2000; 22 ref24 ref23 ref26 ref25 ref20 ref22 ref21 roweis (ref34) 0 ref28 ref8 ref7 li (ref6) 2012 ref9 ref4 ref3 strehl (ref18) 2003; 3 ref5 |
References_xml | – ident: ref15 doi: 10.1109/TKDE.2017.2650229 – start-page: 789 year: 2012 ident: ref6 article-title: Segmentation using superpixels: A bipartite graph partitioning approach publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref35 doi: 10.1109/ICDM.2007.73 – ident: ref23 doi: 10.1137/S1064827595287997 – ident: ref10 doi: 10.1109/TKDE.2014.2316512 – volume: 3 start-page: 583 year: 2003 ident: ref18 article-title: Cluster ensembles: A knowledge reuse framework for combining multiple partitions publication-title: J Mach Learn Res – year: 0 ident: ref34 – ident: ref13 doi: 10.1109/TSMC.2018.2876202 – ident: ref22 doi: 10.1145/1015330.1015414 – ident: ref19 doi: 10.1145/2611380 – start-page: 660 year: 2013 ident: ref27 article-title: Fast kNN graph construction with locality sensitive hashing publication-title: Proc Eur Conf Mach Learn Principles Practice Knowl Discovery Databases – ident: ref11 doi: 10.1109/TKDE.2015.2503753 – ident: ref21 doi: 10.1109/ICDM.2012.123 – ident: ref26 doi: 10.1145/1963405.1963487 – ident: ref3 doi: 10.1109/TPAMI.2010.88 – year: 2011 ident: ref36 article-title: Litekmeans: the fastest matlab implementation of kmeans – year: 2017 ident: ref33 article-title: UCI machine learning repository – ident: ref16 doi: 10.1016/j.neucom.2014.05.094 – ident: ref32 doi: 10.1109/TKDE.2017.2695615 – ident: ref20 doi: 10.1016/j.patcog.2015.02.014 – start-page: 1486 year: 2013 ident: ref37 article-title: Large-scale spectral clustering on graphs publication-title: Proc Int Joint Conf Artif Intell – ident: ref5 doi: 10.1109/TCYB.2018.2794998 – volume: 22 start-page: 888 year: 2000 ident: ref29 article-title: Normalized cuts and image segmentation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.868688 – ident: ref9 doi: 10.1109/TPAMI.2011.84 – ident: ref1 doi: 10.1016/j.patrec.2009.09.011 – ident: ref7 doi: 10.1109/TBDATA.2017.2742530 – ident: ref28 doi: 10.1109/TKDE.2017.2787640 – year: 2012 ident: ref30 publication-title: Matrix Computations – ident: ref8 doi: 10.1109/TPAMI.2005.113 – ident: ref17 doi: 10.1016/j.patcog.2015.08.015 – ident: ref4 doi: 10.1109/TCYB.2014.2358564 – ident: ref31 doi: 10.1109/TKDE.2015.2499200 – ident: ref12 doi: 10.1109/TCYB.2017.2702343 – ident: ref2 doi: 10.1007/s11222-007-9033-z – ident: ref24 doi: 10.1016/j.patcog.2013.08.019 – ident: ref25 doi: 10.1007/s10479-008-0352-z – ident: ref14 doi: 10.1093/bioinformatics/btx167 |
SSID | ssj0008781 |
Score | 2.683077 |
Snippet | This paper focuses on scalability and robustness of spectral clustering for extremely large-scale datasets with limited resources. Two novel algorithms are... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1212 |
SubjectTerms | Algorithms Approximation algorithms Bipartite graph Clustering Clustering algorithms Complexity theory Data clustering Datasets ensemble clustering Graph theory large-scale clustering large-scale datasets nonlinearly separable datasets Robustness Scalability Sparse matrices Spectra spectral clustering |
Title | Ultra-Scalable Spectral Clustering and Ensemble Clustering |
URI | https://ieeexplore.ieee.org/document/8661522 https://www.proquest.com/docview/2396869504 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWCg0IIoFJSBCZHUjZ2H2VBpVYFgoZW6RYntLpQUtcnCr-fsPHgKsUXRWbLu7Lv7zvZ3ABchogoiEeQEXHoaoCibcyHtxGNDhQsIs2bD9vnoT-fsbuEtGnBVv4VRSpnLZ8rRn-YsX65FrktlgxCDCeYLTWgicCveatVeNwxMQ1JEF4iJKAvKE8wh4YPZ_e1YX-LijssJem3yJQaZpio_PLEJL5M2PFQTK26VPDt5ljji7Rtn439nvg97ZZ5p3RQL4wAaKu1Au-rhYJVbugO7nwgJu3A9X2Wb2H5Cw-knVZbuTq9LIdZolWtGBRSy4lRa43SrXrTAx_9DmE_Gs9HULrsr2IJSP7NdLrmgAeI7hEgxJh40WCK68ZkmZOdCMVeEietRX7os5p6kvlLDmBEaJp5A4EKPoJWuU3UMlhABC31GEnQODBUds4TGiVrGSzlkkoU9IJW-I1FSj-sOGKvIQBDCI22iSJsoKk3Ug8t6yGvBu_GXcFervBYstd2DfmXUqNyZ28il3A997hF28vuoU9hxNaY2lZY-tLJNrs4w8ciSc7Pi3gG8BtBZ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB2xHIADO6KsOcAFKcW1ncVIHBAUFQpcaCVuIbHdCyVFbSoE38Kv8G-MXbes4obELYrGlpJ5mplnzwKwEyOrIApJTiRUYAiK9oWQys8CXtEIIIyabbfPq7DW5Oc3wc0YvIxqYbTWNvlMl82jvctXHdk3R2X7MToTjBdcCmVdPz0iQesdnp2gNncpPa02jmu-myHgS8bCwqdCCckiZDFIBFJ0ryxqYQwfctN2XEjNqYwzGrBQUZ6KQLFQ60rKCYuzQGJ4znDfcZjEOCOgg-qwkZ2PIzsCFfkMsjDGI3dnWiFiv1E_qZq0MVGmgqCfIJ-8nh3j8s32W4d2Ogevw18xyGO5K_eLrCyfv3SJ_K__ah5mXSTtHQ2gvwBjOl-EueGUCs8ZrUWY-dBycQkOmu2im_rXCE1TNOZdm0rTLu5z3O6bnhEo5KW58qp5T98bgff3y9D8k-9ZgYm8k-tV8KSMeBxykqH546jYlGcszXQrbakKVzwuARnqN5GuubqZ8dFOLMkiIjGQSAwkEgeJEuyNljwMOov8JrxkVDwSdNotwcYQRImzPb2EMhHGoQgIX_t51TZM1RqXF8nF2VV9HaapOUGw50obMFF0-3oTw6wi27Jo9-D2ryHzBuuUKTo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-Scalable+Spectral+Clustering+and+Ensemble+Clustering&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Huang%2C+Dong&rft.au=Wang%2C+Chang-Dong&rft.au=Wu%2C+Jian-Sheng&rft.au=Lai%2C+Jian-Huang&rft.date=2020-06-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=32&rft.issue=6&rft.spage=1212&rft.epage=1226&rft_id=info:doi/10.1109%2FTKDE.2019.2903410&rft.externalDocID=8661522 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |