Ultra-Scalable Spectral Clustering and Ensemble Clustering

This paper focuses on scalability and robustness of spectral clustering for extremely large-scale datasets with limited resources. Two novel algorithms are proposed, namely, ultra-scalable spectral clustering (U-SPEC) and ultra-scalable ensemble clustering (U-SENC). In U-SPEC, a hybrid representativ...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 32; no. 6; pp. 1212 - 1226
Main Authors Huang, Dong, Wang, Chang-Dong, Wu, Jian-Sheng, Lai, Jian-Huang, Kwoh, Chee-Keong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper focuses on scalability and robustness of spectral clustering for extremely large-scale datasets with limited resources. Two novel algorithms are proposed, namely, ultra-scalable spectral clustering (U-SPEC) and ultra-scalable ensemble clustering (U-SENC). In U-SPEC, a hybrid representative selection strategy and a fast approximation method for <inline-formula><tex-math notation="LaTeX">K</tex-math> <mml:math><mml:mi>K</mml:mi></mml:math><inline-graphic xlink:href="wang-ieq1-2903410.gif"/> </inline-formula>-nearest representatives are proposed for the construction of a sparse affinity sub-matrix. By interpreting the sparse sub-matrix as a bipartite graph, the transfer cut is then utilized to efficiently partition the graph and obtain the clustering result. In U-SENC, multiple U-SPEC clusterers are further integrated into an ensemble clustering framework to enhance the robustness of U-SPEC while maintaining high efficiency. Based on the ensemble generation via multiple U-SEPC's, a new bipartite graph is constructed between objects and base clusters and then efficiently partitioned to achieve the consensus clustering result. It is noteworthy that both U-SPEC and U-SENC have nearly linear time and space complexity, and are capable of robustly and efficiently partitioning 10-million-level nonlinearly-separable datasets on a PC with 64 GB memory. Experiments on various large-scale datasets have demonstrated the scalability and robustness of our algorithms. The MATLAB code and experimental data are available at https://www.researchgate.net/publication/330760669 .
AbstractList This paper focuses on scalability and robustness of spectral clustering for extremely large-scale datasets with limited resources. Two novel algorithms are proposed, namely, ultra-scalable spectral clustering (U-SPEC) and ultra-scalable ensemble clustering (U-SENC). In U-SPEC, a hybrid representative selection strategy and a fast approximation method for <inline-formula><tex-math notation="LaTeX">K</tex-math> <mml:math><mml:mi>K</mml:mi></mml:math><inline-graphic xlink:href="wang-ieq1-2903410.gif"/> </inline-formula>-nearest representatives are proposed for the construction of a sparse affinity sub-matrix. By interpreting the sparse sub-matrix as a bipartite graph, the transfer cut is then utilized to efficiently partition the graph and obtain the clustering result. In U-SENC, multiple U-SPEC clusterers are further integrated into an ensemble clustering framework to enhance the robustness of U-SPEC while maintaining high efficiency. Based on the ensemble generation via multiple U-SEPC's, a new bipartite graph is constructed between objects and base clusters and then efficiently partitioned to achieve the consensus clustering result. It is noteworthy that both U-SPEC and U-SENC have nearly linear time and space complexity, and are capable of robustly and efficiently partitioning 10-million-level nonlinearly-separable datasets on a PC with 64 GB memory. Experiments on various large-scale datasets have demonstrated the scalability and robustness of our algorithms. The MATLAB code and experimental data are available at https://www.researchgate.net/publication/330760669 .
This paper focuses on scalability and robustness of spectral clustering for extremely large-scale datasets with limited resources. Two novel algorithms are proposed, namely, ultra-scalable spectral clustering (U-SPEC) and ultra-scalable ensemble clustering (U-SENC). In U-SPEC, a hybrid representative selection strategy and a fast approximation method for [Formula Omitted]-nearest representatives are proposed for the construction of a sparse affinity sub-matrix. By interpreting the sparse sub-matrix as a bipartite graph, the transfer cut is then utilized to efficiently partition the graph and obtain the clustering result. In U-SENC, multiple U-SPEC clusterers are further integrated into an ensemble clustering framework to enhance the robustness of U-SPEC while maintaining high efficiency. Based on the ensemble generation via multiple U-SEPC's, a new bipartite graph is constructed between objects and base clusters and then efficiently partitioned to achieve the consensus clustering result. It is noteworthy that both U-SPEC and U-SENC have nearly linear time and space complexity, and are capable of robustly and efficiently partitioning 10-million-level nonlinearly-separable datasets on a PC with 64 GB memory. Experiments on various large-scale datasets have demonstrated the scalability and robustness of our algorithms. The MATLAB code and experimental data are available at https://www.researchgate.net/publication/330760669 .
Author Wang, Chang-Dong
Lai, Jian-Huang
Huang, Dong
Wu, Jian-Sheng
Kwoh, Chee-Keong
Author_xml – sequence: 1
  givenname: Dong
  orcidid: 0000-0003-3923-8828
  surname: Huang
  fullname: Huang, Dong
  email: huangdonghere@gmail.com
  organization: College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
– sequence: 2
  givenname: Chang-Dong
  orcidid: 0000-0001-5972-559X
  surname: Wang
  fullname: Wang, Chang-Dong
  email: changdongwang@hotmail.com
  organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
– sequence: 3
  givenname: Jian-Sheng
  surname: Wu
  fullname: Wu, Jian-Sheng
  email: jiansheng4211@gmail.com
  organization: School of Information Engineering, Nanchang University, Nanchang, China
– sequence: 4
  givenname: Jian-Huang
  orcidid: 0000-0003-3883-2024
  surname: Lai
  fullname: Lai, Jian-Huang
  email: stsljh@mail.sysu.edu.cn
  organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
– sequence: 5
  givenname: Chee-Keong
  orcidid: 0000-0002-8547-6387
  surname: Kwoh
  fullname: Kwoh, Chee-Keong
  email: asckkwoh@ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
BookMark eNp9kE1LAzEQhoNUsK3-APGy4HnrJJNkE29S6wcWPLQ9hzSbypZttibbg__eXVoUPHiaYXjeGeYZkUFogifkmsKEUtB3y7fH2YQB1ROmATmFMzKkQqicUU0HXQ-c5hx5cUFGKW0BQBWKDsn9qm6jzRfO1nZd-2yx964b1Nm0PqTWxyp8ZDaU2Swkv-uB3_klOd_YOvmrUx2T1dNsOX3J5-_Pr9OHee4QZZszXWqHBQethbRSIhYbyaTkmiNo5zlzas0EypJxq0WJ0ntqOaBaC8cQcExuj3v3sfk8-NSabXOIoTtpGGqppBbAO6o4Ui42KUW_Ma5qbVs1oXunqg0F04syvSjTizInUV2S_knuY7Wz8evfzM0xU3nvf3glJRWM4TePQHMY
CODEN ITKEEH
CitedBy_id crossref_primary_10_1002_advs_202205442
crossref_primary_10_1016_j_image_2022_116918
crossref_primary_10_1109_ACCESS_2020_2977195
crossref_primary_10_3233_IDA_216105
crossref_primary_10_1016_j_patcog_2024_110772
crossref_primary_10_1016_j_is_2023_102178
crossref_primary_10_1016_j_patrec_2022_01_022
crossref_primary_10_1007_s10489_021_03020_y
crossref_primary_10_32604_csse_2022_023481
crossref_primary_10_1109_TGRS_2021_3097358
crossref_primary_10_1016_j_ijepes_2025_110486
crossref_primary_10_1109_TKDE_2023_3268215
crossref_primary_10_1109_TETCI_2024_3353598
crossref_primary_10_1007_s10489_023_04580_x
crossref_primary_10_1109_TGRS_2023_3278529
crossref_primary_10_1016_j_engappai_2023_106497
crossref_primary_10_1155_2020_3650926
crossref_primary_10_3390_a16110524
crossref_primary_10_1007_s13042_021_01369_7
crossref_primary_10_1109_ACCESS_2020_3003046
crossref_primary_10_1109_ACCESS_2021_3060135
crossref_primary_10_1007_s10489_023_04489_5
crossref_primary_10_1109_TCYB_2021_3049633
crossref_primary_10_3390_rs13204139
crossref_primary_10_1016_j_neucom_2021_07_056
crossref_primary_10_1109_TNNLS_2022_3146136
crossref_primary_10_1109_TNNLS_2023_3276393
crossref_primary_10_1007_s40314_022_01757_x
crossref_primary_10_1016_j_energy_2021_121843
crossref_primary_10_1109_TKDE_2022_3206330
crossref_primary_10_1016_j_ins_2025_121962
crossref_primary_10_1016_j_jmsy_2021_05_005
crossref_primary_10_1016_j_neunet_2025_107217
crossref_primary_10_3233_IDA_216240
crossref_primary_10_1109_ACCESS_2021_3056677
crossref_primary_10_1016_j_ijepes_2021_107403
crossref_primary_10_1007_s11063_023_11147_x
crossref_primary_10_1016_j_ins_2023_03_067
crossref_primary_10_3390_a16050245
crossref_primary_10_1049_ipr2_12191
crossref_primary_10_1109_TKDE_2019_2952596
crossref_primary_10_1007_s00500_023_08723_7
crossref_primary_10_1109_TCSS_2024_3479188
crossref_primary_10_1016_j_inffus_2022_08_031
crossref_primary_10_1109_TKDE_2024_3486530
crossref_primary_10_3390_s23052488
crossref_primary_10_1109_TBDATA_2023_3325045
crossref_primary_10_2478_jaiscr_2024_0009
crossref_primary_10_1155_2021_4969233
crossref_primary_10_1007_s11280_023_01158_y
crossref_primary_10_1016_j_ins_2024_121314
crossref_primary_10_1016_j_eswa_2023_122584
crossref_primary_10_1109_TKDE_2023_3305624
crossref_primary_10_1016_j_ins_2023_119516
crossref_primary_10_3233_JIFS_223897
crossref_primary_10_1007_s10723_023_09683_w
crossref_primary_10_1016_j_inffus_2024_102587
crossref_primary_10_1109_TNNLS_2022_3219131
crossref_primary_10_1016_j_eswa_2025_126878
crossref_primary_10_1016_j_knosys_2020_106280
crossref_primary_10_1016_j_knosys_2022_109196
crossref_primary_10_1109_ACCESS_2021_3066498
crossref_primary_10_1109_TKDE_2022_3218693
crossref_primary_10_1016_j_patcog_2023_109470
crossref_primary_10_1109_TCYB_2025_3534195
crossref_primary_10_1016_j_inffus_2023_101986
crossref_primary_10_1109_TKDE_2021_3098806
crossref_primary_10_1109_ACCESS_2020_2979915
crossref_primary_10_1109_TFUZZ_2024_3456091
crossref_primary_10_1016_j_asoc_2025_112844
crossref_primary_10_1016_j_procs_2023_10_155
crossref_primary_10_1109_TFUZZ_2024_3421576
crossref_primary_10_1016_j_neucom_2023_126490
crossref_primary_10_1007_s11063_020_10297_6
crossref_primary_10_1016_j_ins_2024_120114
crossref_primary_10_1016_j_asoc_2023_110903
crossref_primary_10_1145_3580282
crossref_primary_10_1016_j_ijepes_2022_108119
crossref_primary_10_1016_j_patcog_2025_111545
crossref_primary_10_1109_TAI_2023_3237648
crossref_primary_10_3390_su13041822
crossref_primary_10_1007_s11063_022_10789_7
crossref_primary_10_1145_3555777
crossref_primary_10_1145_3681793
crossref_primary_10_1007_s00500_023_09309_z
crossref_primary_10_1093_comjnl_bxab169
crossref_primary_10_1016_j_knosys_2019_07_027
crossref_primary_10_1016_j_neucom_2022_12_023
crossref_primary_10_1007_s13042_022_01651_2
crossref_primary_10_1109_TCYB_2021_3069434
crossref_primary_10_2139_ssrn_4073610
crossref_primary_10_3103_S0005105521010039
crossref_primary_10_1016_j_knosys_2024_111793
crossref_primary_10_1016_j_neunet_2024_106696
crossref_primary_10_1109_TKDE_2023_3264970
crossref_primary_10_1109_TKDE_2022_3150403
crossref_primary_10_1080_08839514_2021_2004346
crossref_primary_10_1016_j_oceaneng_2023_115953
crossref_primary_10_1016_j_artint_2023_103924
crossref_primary_10_12677_CSA_2023_134084
crossref_primary_10_1109_JIOT_2021_3127747
crossref_primary_10_1007_s10994_020_05940_1
crossref_primary_10_1007_s11063_021_10563_1
crossref_primary_10_1109_TKDE_2024_3489553
crossref_primary_10_1016_j_knosys_2021_107295
crossref_primary_10_1007_s10489_023_05113_2
crossref_primary_10_1016_j_patcog_2024_110746
crossref_primary_10_1109_TKDE_2024_3483572
crossref_primary_10_1109_ACCESS_2024_3497977
crossref_primary_10_1109_ACCESS_2020_2978404
crossref_primary_10_7717_peerj_cs_1621
crossref_primary_10_1016_j_patcog_2022_109238
crossref_primary_10_1109_TPAMI_2024_3361912
crossref_primary_10_3390_sym16091208
crossref_primary_10_1049_ipr2_12896
crossref_primary_10_1109_ACCESS_2022_3228238
crossref_primary_10_1007_s11063_023_11287_0
crossref_primary_10_1109_ACCESS_2022_3167031
crossref_primary_10_1016_j_inffus_2023_102099
crossref_primary_10_1016_j_inffus_2020_03_009
crossref_primary_10_1049_cvi2_12077
crossref_primary_10_1016_j_eswa_2024_123313
crossref_primary_10_1109_TNNLS_2023_3261460
crossref_primary_10_1007_s11277_021_09083_x
crossref_primary_10_1109_ACCESS_2024_3448472
crossref_primary_10_1016_j_patcog_2024_110715
crossref_primary_10_1109_TETCI_2022_3221491
crossref_primary_10_1155_2024_5555191
crossref_primary_10_1016_j_knosys_2022_109444
crossref_primary_10_1109_TKDE_2023_3271120
crossref_primary_10_1109_TPAMI_2024_3507857
crossref_primary_10_1109_TNSM_2023_3291890
crossref_primary_10_1109_TGRS_2021_3096320
crossref_primary_10_1016_j_knosys_2025_113119
crossref_primary_10_1016_j_knosys_2024_112743
crossref_primary_10_1109_TKDE_2023_3249475
crossref_primary_10_1016_j_eswa_2020_113913
crossref_primary_10_2478_amns_2025_0056
crossref_primary_10_1109_ACCESS_2020_3010475
crossref_primary_10_1016_j_patcog_2024_111133
crossref_primary_10_1016_j_dsp_2024_104815
crossref_primary_10_1109_TNNLS_2023_3307158
crossref_primary_10_1142_S0219649222500174
crossref_primary_10_1109_TNSE_2024_3423418
crossref_primary_10_1016_j_inffus_2021_09_003
crossref_primary_10_1109_TETCI_2023_3306233
crossref_primary_10_1109_TGRS_2022_3217597
crossref_primary_10_3390_infrastructures9090161
crossref_primary_10_1007_s44336_024_00008_3
crossref_primary_10_1016_j_cosrev_2021_100435
crossref_primary_10_1007_s00500_020_05264_1
crossref_primary_10_1109_TNNLS_2021_3093426
crossref_primary_10_1016_j_ins_2022_03_091
crossref_primary_10_1109_ACCESS_2020_2968150
crossref_primary_10_1016_j_asoc_2024_111775
crossref_primary_10_1109_TKDE_2023_3311409
crossref_primary_10_1109_TNNLS_2021_3105822
crossref_primary_10_1109_LSP_2023_3298284
crossref_primary_10_1109_TFUZZ_2023_3329108
crossref_primary_10_1016_j_knosys_2021_107124
crossref_primary_10_1016_j_knosys_2020_105582
crossref_primary_10_1109_ACCESS_2023_3268862
crossref_primary_10_1109_TKDE_2023_3236698
crossref_primary_10_1016_j_patcog_2024_111226
crossref_primary_10_1016_j_neunet_2025_107187
crossref_primary_10_1007_s10462_022_10366_3
crossref_primary_10_1109_ACCESS_2020_3039742
crossref_primary_10_1016_j_inffus_2022_10_020
crossref_primary_10_1016_j_ins_2022_08_109
crossref_primary_10_1007_s13042_020_01068_9
crossref_primary_10_1016_j_patcog_2022_108975
crossref_primary_10_1093_bioinformatics_btad075
crossref_primary_10_1109_TKDE_2023_3321913
crossref_primary_10_1016_j_neucom_2022_06_006
crossref_primary_10_1016_j_knosys_2022_110141
crossref_primary_10_1109_ACCESS_2019_2946744
crossref_primary_10_4236_ijis_2021_111001
crossref_primary_10_3390_app13169438
crossref_primary_10_1109_TKDE_2022_3207141
crossref_primary_10_1371_journal_pone_0269878
crossref_primary_10_1109_TCSVT_2023_3266801
crossref_primary_10_1155_2022_8081177
crossref_primary_10_1016_j_ins_2022_11_091
crossref_primary_10_1016_j_knosys_2024_112327
crossref_primary_10_1109_TGRS_2024_3374597
crossref_primary_10_1007_s10044_022_01062_7
crossref_primary_10_1016_j_engappai_2024_109502
crossref_primary_10_3390_pr9030439
crossref_primary_10_1016_j_asoc_2024_112299
crossref_primary_10_1145_3617335
crossref_primary_10_1109_ACCESS_2025_3551160
crossref_primary_10_1016_j_eswa_2022_117565
crossref_primary_10_1016_j_asoc_2023_111015
crossref_primary_10_1109_TSMC_2021_3049490
crossref_primary_10_1016_j_ins_2024_121187
crossref_primary_10_1109_TCYB_2020_3026396
crossref_primary_10_1080_01969722_2022_2110682
crossref_primary_10_1007_s10596_024_10277_y
crossref_primary_10_1166_jno_2023_3506
crossref_primary_10_1002_spe_3019
crossref_primary_10_1016_j_patcog_2022_109283
crossref_primary_10_1007_s10489_020_01864_4
crossref_primary_10_1016_j_patcog_2024_111321
crossref_primary_10_1080_09540091_2020_1866496
crossref_primary_10_1016_j_enbuild_2022_112687
crossref_primary_10_1016_j_inffus_2025_103105
crossref_primary_10_1145_3564701
crossref_primary_10_1007_s12559_021_09876_z
crossref_primary_10_1109_ACCESS_2021_3101250
crossref_primary_10_1016_j_asoc_2023_110058
crossref_primary_10_1109_TCSVT_2023_3241172
crossref_primary_10_1007_s41066_024_00452_y
crossref_primary_10_1109_TPWRS_2024_3361313
crossref_primary_10_1016_j_knosys_2024_111695
crossref_primary_10_1109_TCSVT_2024_3492045
crossref_primary_10_1109_TMM_2024_3385986
crossref_primary_10_1016_j_neucom_2020_07_060
crossref_primary_10_1109_TCSVT_2020_3035775
crossref_primary_10_1016_j_ins_2024_120504
crossref_primary_10_1016_j_patcog_2024_110366
crossref_primary_10_1016_j_asoc_2021_107899
crossref_primary_10_1002_cpe_7992
crossref_primary_10_1109_ACCESS_2021_3087575
crossref_primary_10_1109_TKDE_2024_3391627
crossref_primary_10_1109_TCYB_2021_3081988
crossref_primary_10_1016_j_bspc_2024_106720
crossref_primary_10_1109_TCYB_2020_2969684
crossref_primary_10_1016_j_ins_2022_10_008
crossref_primary_10_1109_ACCESS_2020_3034623
crossref_primary_10_3390_electronics13214316
crossref_primary_10_1007_s10766_025_00783_6
crossref_primary_10_1016_j_jksuci_2023_101731
crossref_primary_10_1016_j_patcog_2022_109062
crossref_primary_10_1109_ACCESS_2019_2952548
crossref_primary_10_1109_TKDE_2020_3045770
crossref_primary_10_1007_s41060_021_00306_9
crossref_primary_10_1016_j_sigpro_2021_108301
crossref_primary_10_1007_s11042_023_17147_2
crossref_primary_10_1016_j_knosys_2019_105126
crossref_primary_10_1109_ACCESS_2021_3050404
crossref_primary_10_1016_j_asoc_2022_109492
crossref_primary_10_1109_TAI_2023_3293479
crossref_primary_10_1016_j_ins_2022_07_101
crossref_primary_10_32604_cmc_2021_016364
crossref_primary_10_1109_ACCESS_2020_3012907
crossref_primary_10_3390_electronics10212666
crossref_primary_10_3390_e24101324
crossref_primary_10_1007_s10489_024_05654_0
crossref_primary_10_1109_TKDE_2023_3267167
crossref_primary_10_1109_TPAMI_2022_3188160
crossref_primary_10_3390_app13010155
crossref_primary_10_1016_j_knosys_2021_107457
crossref_primary_10_1109_ACCESS_2020_3022718
crossref_primary_10_1109_TSMC_2022_3205365
crossref_primary_10_1007_s13042_023_01910_w
crossref_primary_10_1109_TKDE_2024_3487534
crossref_primary_10_1109_TKDE_2023_3327043
crossref_primary_10_1109_TCYB_2021_3083592
crossref_primary_10_1016_j_eswa_2025_127118
crossref_primary_10_1109_TBDATA_2023_3255003
crossref_primary_10_1145_3694689
crossref_primary_10_61186_jsdp_20_1_99
crossref_primary_10_1109_TKDE_2023_3292573
crossref_primary_10_1109_TPAMI_2024_3386828
crossref_primary_10_1016_j_knosys_2024_112106
crossref_primary_10_1109_TMC_2024_3419021
crossref_primary_10_1142_S0219649224500540
crossref_primary_10_36535_0548_0027_2021_01_1
crossref_primary_10_1109_TCYB_2020_3034157
crossref_primary_10_1016_j_knosys_2021_107118
crossref_primary_10_1109_TNNLS_2021_3117403
crossref_primary_10_3390_electronics11040572
crossref_primary_10_1007_s11042_023_17662_2
crossref_primary_10_1016_j_sysarc_2021_102212
crossref_primary_10_1109_TNNLS_2023_3300916
crossref_primary_10_3390_math10111834
crossref_primary_10_1016_j_neucom_2025_129764
crossref_primary_10_1016_j_patcog_2023_109836
crossref_primary_10_1109_TNNLS_2023_3252586
Cites_doi 10.1109/TKDE.2017.2650229
10.1109/ICDM.2007.73
10.1137/S1064827595287997
10.1109/TKDE.2014.2316512
10.1109/TSMC.2018.2876202
10.1145/1015330.1015414
10.1145/2611380
10.1109/TKDE.2015.2503753
10.1109/ICDM.2012.123
10.1145/1963405.1963487
10.1109/TPAMI.2010.88
10.1016/j.neucom.2014.05.094
10.1109/TKDE.2017.2695615
10.1016/j.patcog.2015.02.014
10.1109/TCYB.2018.2794998
10.1109/34.868688
10.1109/TPAMI.2011.84
10.1016/j.patrec.2009.09.011
10.1109/TBDATA.2017.2742530
10.1109/TKDE.2017.2787640
10.1109/TPAMI.2005.113
10.1016/j.patcog.2015.08.015
10.1109/TCYB.2014.2358564
10.1109/TKDE.2015.2499200
10.1109/TCYB.2017.2702343
10.1007/s11222-007-9033-z
10.1016/j.patcog.2013.08.019
10.1007/s10479-008-0352-z
10.1093/bioinformatics/btx167
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2019.2903410
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 1226
ExternalDocumentID 10_1109_TKDE_2019_2903410
8661522
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China; NSFC
  grantid: 61602189; 61876193; 61876104
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China Stem Cell and Translational Research
  grantid: 2016YFB1001003
  funderid: 10.13039/501100013290
– fundername: Key Areas Research and Development Program of Guangdong
  grantid: 2018B010109007
– fundername: Guangdong Natural Science Funds for Distinguished Young Scholars
  grantid: 2016A030306014
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c336t-29d9c37409956a66337f6266494309ce42c8b2536d24a95d36ee1a4038b5c2303
IEDL.DBID RIE
ISSN 1041-4347
IngestDate Sun Jun 29 15:52:37 EDT 2025
Thu Apr 24 23:06:25 EDT 2025
Tue Jul 01 03:14:40 EDT 2025
Wed Aug 27 01:57:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-29d9c37409956a66337f6266494309ce42c8b2536d24a95d36ee1a4038b5c2303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5972-559X
0000-0003-3883-2024
0000-0003-3923-8828
0000-0002-8547-6387
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8661522
PQID 2396869504
PQPubID 85438
PageCount 15
ParticipantIDs crossref_primary_10_1109_TKDE_2019_2903410
crossref_citationtrail_10_1109_TKDE_2019_2903410
ieee_primary_8661522
proquest_journals_2396869504
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References bache (ref33) 2017
ref35
ref13
cai (ref36) 2011
ref12
ref15
ref14
ref31
ref11
ref32
ref10
ref2
ref1
golub (ref30) 2012
ref17
ref16
ref19
liu (ref37) 2013
zhang (ref27) 2013
shi (ref29) 2000; 22
ref24
ref23
ref26
ref25
ref20
ref22
ref21
roweis (ref34) 0
ref28
ref8
ref7
li (ref6) 2012
ref9
ref4
ref3
strehl (ref18) 2003; 3
ref5
References_xml – ident: ref15
  doi: 10.1109/TKDE.2017.2650229
– start-page: 789
  year: 2012
  ident: ref6
  article-title: Segmentation using superpixels: A bipartite graph partitioning approach
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref35
  doi: 10.1109/ICDM.2007.73
– ident: ref23
  doi: 10.1137/S1064827595287997
– ident: ref10
  doi: 10.1109/TKDE.2014.2316512
– volume: 3
  start-page: 583
  year: 2003
  ident: ref18
  article-title: Cluster ensembles: A knowledge reuse framework for combining multiple partitions
  publication-title: J Mach Learn Res
– year: 0
  ident: ref34
– ident: ref13
  doi: 10.1109/TSMC.2018.2876202
– ident: ref22
  doi: 10.1145/1015330.1015414
– ident: ref19
  doi: 10.1145/2611380
– start-page: 660
  year: 2013
  ident: ref27
  article-title: Fast kNN graph construction with locality sensitive hashing
  publication-title: Proc Eur Conf Mach Learn Principles Practice Knowl Discovery Databases
– ident: ref11
  doi: 10.1109/TKDE.2015.2503753
– ident: ref21
  doi: 10.1109/ICDM.2012.123
– ident: ref26
  doi: 10.1145/1963405.1963487
– ident: ref3
  doi: 10.1109/TPAMI.2010.88
– year: 2011
  ident: ref36
  article-title: Litekmeans: the fastest matlab implementation of kmeans
– year: 2017
  ident: ref33
  article-title: UCI machine learning repository
– ident: ref16
  doi: 10.1016/j.neucom.2014.05.094
– ident: ref32
  doi: 10.1109/TKDE.2017.2695615
– ident: ref20
  doi: 10.1016/j.patcog.2015.02.014
– start-page: 1486
  year: 2013
  ident: ref37
  article-title: Large-scale spectral clustering on graphs
  publication-title: Proc Int Joint Conf Artif Intell
– ident: ref5
  doi: 10.1109/TCYB.2018.2794998
– volume: 22
  start-page: 888
  year: 2000
  ident: ref29
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.868688
– ident: ref9
  doi: 10.1109/TPAMI.2011.84
– ident: ref1
  doi: 10.1016/j.patrec.2009.09.011
– ident: ref7
  doi: 10.1109/TBDATA.2017.2742530
– ident: ref28
  doi: 10.1109/TKDE.2017.2787640
– year: 2012
  ident: ref30
  publication-title: Matrix Computations
– ident: ref8
  doi: 10.1109/TPAMI.2005.113
– ident: ref17
  doi: 10.1016/j.patcog.2015.08.015
– ident: ref4
  doi: 10.1109/TCYB.2014.2358564
– ident: ref31
  doi: 10.1109/TKDE.2015.2499200
– ident: ref12
  doi: 10.1109/TCYB.2017.2702343
– ident: ref2
  doi: 10.1007/s11222-007-9033-z
– ident: ref24
  doi: 10.1016/j.patcog.2013.08.019
– ident: ref25
  doi: 10.1007/s10479-008-0352-z
– ident: ref14
  doi: 10.1093/bioinformatics/btx167
SSID ssj0008781
Score 2.683077
Snippet This paper focuses on scalability and robustness of spectral clustering for extremely large-scale datasets with limited resources. Two novel algorithms are...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1212
SubjectTerms Algorithms
Approximation algorithms
Bipartite graph
Clustering
Clustering algorithms
Complexity theory
Data clustering
Datasets
ensemble clustering
Graph theory
large-scale clustering
large-scale datasets
nonlinearly separable datasets
Robustness
Scalability
Sparse matrices
Spectra
spectral clustering
Title Ultra-Scalable Spectral Clustering and Ensemble Clustering
URI https://ieeexplore.ieee.org/document/8661522
https://www.proquest.com/docview/2396869504
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWCg0IIoFJSBCZHUjZ2H2VBpVYFgoZW6RYntLpQUtcnCr-fsPHgKsUXRWbLu7Lv7zvZ3ABchogoiEeQEXHoaoCibcyHtxGNDhQsIs2bD9vnoT-fsbuEtGnBVv4VRSpnLZ8rRn-YsX65FrktlgxCDCeYLTWgicCveatVeNwxMQ1JEF4iJKAvKE8wh4YPZ_e1YX-LijssJem3yJQaZpio_PLEJL5M2PFQTK26VPDt5ljji7Rtn439nvg97ZZ5p3RQL4wAaKu1Au-rhYJVbugO7nwgJu3A9X2Wb2H5Cw-knVZbuTq9LIdZolWtGBRSy4lRa43SrXrTAx_9DmE_Gs9HULrsr2IJSP7NdLrmgAeI7hEgxJh40WCK68ZkmZOdCMVeEietRX7os5p6kvlLDmBEaJp5A4EKPoJWuU3UMlhABC31GEnQODBUds4TGiVrGSzlkkoU9IJW-I1FSj-sOGKvIQBDCI22iSJsoKk3Ug8t6yGvBu_GXcFervBYstd2DfmXUqNyZ28il3A997hF28vuoU9hxNaY2lZY-tLJNrs4w8ciSc7Pi3gG8BtBZ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB2xHIADO6KsOcAFKcW1ncVIHBAUFQpcaCVuIbHdCyVFbSoE38Kv8G-MXbes4obELYrGlpJ5mplnzwKwEyOrIApJTiRUYAiK9oWQys8CXtEIIIyabbfPq7DW5Oc3wc0YvIxqYbTWNvlMl82jvctXHdk3R2X7MToTjBdcCmVdPz0iQesdnp2gNncpPa02jmu-myHgS8bCwqdCCckiZDFIBFJ0ryxqYQwfctN2XEjNqYwzGrBQUZ6KQLFQ60rKCYuzQGJ4znDfcZjEOCOgg-qwkZ2PIzsCFfkMsjDGI3dnWiFiv1E_qZq0MVGmgqCfIJ-8nh3j8s32W4d2Ogevw18xyGO5K_eLrCyfv3SJ_K__ah5mXSTtHQ2gvwBjOl-EueGUCs8ZrUWY-dBycQkOmu2im_rXCE1TNOZdm0rTLu5z3O6bnhEo5KW58qp5T98bgff3y9D8k-9ZgYm8k-tV8KSMeBxykqH546jYlGcszXQrbakKVzwuARnqN5GuubqZ8dFOLMkiIjGQSAwkEgeJEuyNljwMOov8JrxkVDwSdNotwcYQRImzPb2EMhHGoQgIX_t51TZM1RqXF8nF2VV9HaapOUGw50obMFF0-3oTw6wi27Jo9-D2ryHzBuuUKTo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-Scalable+Spectral+Clustering+and+Ensemble+Clustering&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Huang%2C+Dong&rft.au=Wang%2C+Chang-Dong&rft.au=Wu%2C+Jian-Sheng&rft.au=Lai%2C+Jian-Huang&rft.date=2020-06-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=32&rft.issue=6&rft.spage=1212&rft.epage=1226&rft_id=info:doi/10.1109%2FTKDE.2019.2903410&rft.externalDocID=8661522
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon