Convolution Neural Network Approaches for Cancer Cell Image Classification

Recently, research incorporating the benefits of deep learning in the application of cancer cell classification and analysis has been actively conducted. In this paper, we investigated examples of binary-class classification and multi-class classification of cancer cell image data of commonly occurr...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioprocess engineering Vol. 28; no. 5; pp. 707 - 719
Main Authors Kim, Chaeyoung, Shin, Sungtae, Jeong, Sehoon
Format Journal Article
LanguageEnglish
Published Seoul The Korean Society for Biotechnology and Bioengineering 01.10.2023
Springer Nature B.V
한국생물공학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, research incorporating the benefits of deep learning in the application of cancer cell classification and analysis has been actively conducted. In this paper, we investigated examples of binary-class classification and multi-class classification of cancer cell image data of commonly occurring types of cancer worldwide, such as cervical cancer, breast cancer, lung cancer, and colon cancer, using convolutional neural networks (CNNs) models. For instance, some studies explored the utilization of transfer learning, leveraging a pre-trained CNN model is used as a starting point for additional training on a specific cancer cell dataset. Cancer cells have irregular and abnormal growth, making accurate classification challenging. The application of deep learning techniques, such as CNN, for cancer cell classification has been able to solve these complex analysis problems and enable fast cancer cell classification results, leading to early detection of cancer. Indeed, most of the studies in this paper achieved high performance using CNN models, and this approach enables faster and more accurate confirmation of cancer cell classification results, leading to early detection of cancer. This shows the current trend of applying deep learning in the application of cancer cell classification and demonstrates the significant potential of deep learning to contribute to cancer research. Overall, we provide an overview of the current trend of applying deep learning in the field of cancer cell classification and expect that deep learning will open the way for more effective cancer diagnosis and treatment in the future.
AbstractList Recently, research incorporating the benefits of deep learning in the application of cancer cell classification and analysis has been actively conducted. In this paper, we investigated examples of binary-class classification and multi-class classification of cancer cell image data of commonly occurring types of cancer worldwide, such as cervical cancer, breast cancer, lung cancer, and colon cancer, using convolutional neural networks (CNNs) models. For instance, some studies explored the utilization of transfer learning, leveraging a pre-trained CNN model is used as a starting point for additional training on a specific cancer cell dataset. Cancer cells have irregular and abnormal growth, making accurate classification challenging. The application of deep learning techniques, such as CNN, for cancer cell classification has been able to solve these complex analysis problems and enable fast cancer cell classification results, leading to early detection of cancer. Indeed, most of the studies in this paper achieved high performance using CNN models, and this approach enables faster and more accurate confirmation of cancer cell classification results, leading to early detection of cancer. This shows the current trend of applying deep learning in the application of cancer cell classification and demonstrates the significant potential of deep learning to contribute to cancer research. Overall, we provide an overview of the current trend of applying deep learning in the field of cancer cell classification and expect that deep learning will open the way for more effective cancer diagnosis and treatment in the future.
Recently, research incorporating the benefits of deep learning in the application of cancer cell classification and analysis has been actively conducted. In this paper, we investigated examples of binary-class classification and multi-class classification of cancer cell image data of commonly occurring types of cancer worldwide, such as cervical cancer, breast cancer, lung cancer, and colon cancer, using convolutional neural networks (CNNs) models. For instance, some studies explored the utilization of transfer learning, leveraging a pre-trained CNN model is used as a starting point for additional training on a specific cancer cell dataset. Cancer cells have irregular and abnormal growth, making accurate classification challenging. The application of deep learning techniques, such as CNN, for cancer cell classification has been able to solve these complex analysis problems and enable fast cancer cell classification results, leading to early detection of cancer. Indeed, most of the studies in this paper achieved high performance using CNN models, and this approach enables faster and more accurate confirmation of cancer cell classification results, leading to early detection of cancer. This shows the current trend of applying deep learning in the application of cancer cell classification and demonstrates the significant potential of deep learning to contribute to cancer research. Overall, we provide an overview of the current trend of applying deep learning in the field of cancer cell classification and expect that deep learning will open the way for more effective cancer diagnosis and treatment in the future. KCI Citation Count: 0
Author Jeong, Sehoon
Kim, Chaeyoung
Shin, Sungtae
Author_xml – sequence: 1
  givenname: Chaeyoung
  surname: Kim
  fullname: Kim, Chaeyoung
  organization: Institute for Digital Antiaging and Healthcare, Inje University
– sequence: 2
  givenname: Sungtae
  surname: Shin
  fullname: Shin, Sungtae
  email: stshin@dau.ac.kr
  organization: Department of Mechanical Engineering, Dong-A University
– sequence: 3
  givenname: Sehoon
  surname: Jeong
  fullname: Jeong, Sehoon
  email: jeongsh@inje.ac.kr
  organization: Institute for Digital Antiaging and Healthcare, Inje University, Department of Healthcare Information Technology, Inje University, Paik Institute for Clinical Research, Inje University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003015343$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp1kUtLAzEUhYNUsK3-AHcDbkSI5jF5zLIMPipFQboPaZrUaadJTTqK_97UEQTB1bmL79x7D2cEBj54C8A5RtcYIXGTMCFMQEQoRJiXUByBIa4Eh1RiPsgzIRxKKsgJGKW0RqgUUsoheKyDfw9tt2-CL55sF3WbZf8R4qaY7HYxaPNqU-FCLGrtjc1i27aYbvXKFnWrU2pcY_TBfgqOnW6TPfvRMZjf3c7rBzh7vp_Wkxk0lPI9JPmTBRN4uXDGVaZcGs2XhCNmLKMCE1kyXsmqshlwSCKqrRCOEYsXFaWSjsFVv9ZHpzamUUE337oKahPV5GU-VRhRwqqSZviyh3OSt86mvdo2yeQE2tvQJUUxo4xxgsqMXvxB16GLPidRREohMBMUZwr3lIkhpWid2sVmq-NnvqkOTai-CZWbUIcmlMge0ntSZv3Kxt_N_5u-AOzNiyM
Cites_doi 10.1002/cyto.a.23701
10.1016/j.media.2019.05.010
10.1016/j.patrec.2019.03.022
10.1016/j.cmpb.2017.09.005
10.1145/3065386
10.1038/s41467-020-18147-8
10.1016/j.compbiomed.2021.104649
10.1038/s41598-021-89895-w
10.1016/j.compbiomed.2021.105207
10.1109/ACCESS.2021.3060447
10.1016/j.procs.2020.03.427
10.1001/jama.2017.14585
10.1016/j.bspc.2020.102402
10.3322/caac.21492
10.1016/j.bbamcr.2006.07.001
10.5121/ijdkp.2015.5201
10.1109/TMI.2020.3013246
10.1016/j.compmedimag.2019.01.003
10.1007/s11263-015-0816-y
10.1093/bioinformatics/btz083
10.1109/TKDE.2009.191
10.1016/j.procs.2021.01.025
10.1016/j.aci.2018.08.003
10.1371/journal.pone.0213626
10.1016/S1470-2045(10)70264-3
10.1038/s41591-018-0177-5
10.1038/nature14539
10.3389/fmed.2023.1114673
10.1109/IJCNN.2016.7727519
10.1109/ISITIA52817.2021.9502205
10.1109/IWSSIP48289.2020.9145130
10.1109/CVPR.2016.90
10.1109/SMC.2017.8122889
10.1093/gigascience/giac037
10.1109/ISCAS.2018.8351550
10.1109/CVPR.2018.00745
10.1109/ICEngTechnol.2017.8308186
10.1109/CVPR.2017.243
ContentType Journal Article
Copyright The Korean Society for Biotechnology and Bioengineering and Springer 2023
The Korean Society for Biotechnology and Bioengineering and Springer 2023.
Copyright_xml – notice: The Korean Society for Biotechnology and Bioengineering and Springer 2023
– notice: The Korean Society for Biotechnology and Bioengineering and Springer 2023.
DBID AAYXX
CITATION
3V.
7QO
7QP
7T7
7WY
7WZ
7X7
7XB
87Z
88A
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
L6V
LK8
M0C
M0S
M2P
M7P
M7S
P5Z
P62
P64
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7S9
L.6
ACYCR
DOI 10.1007/s12257-023-0164-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Biology Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Biological Science Collection
ABI/INFORM Global
Health & Medical Collection (Alumni Edition)
Science Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
AGRICOLA
AGRICOLA - Academic
Korean Citation Index
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ABI/INFORM Complete (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

AGRICOLA

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1976-3816
EndPage 719
ExternalDocumentID oai_kci_go_kr_ARTI_10325943
10_1007_s12257_023_0164_7
GroupedDBID ---
-4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.UV
.VR
06C
06D
0R~
0VY
1N0
203
23N
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2WC
2~H
30V
3V.
4.4
406
408
40D
40E
53G
5GY
5VS
6NX
7WY
7X7
88A
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8FL
8UJ
95-
95.
95~
96X
9ZL
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
E3Z
EBD
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K60
K6~
KOV
KVFHK
L6V
LK8
LLZTM
M0C
M0L
M2P
M4Y
M7P
M7S
MA-
ML0
MZR
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OK1
P19
P2P
P62
P9N
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOR
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TUC
TUS
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
YLTOR
Z45
Z7U
Z7V
Z7W
Z8Q
ZMTXR
ZZE
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7QO
7QP
7T7
7XB
8FD
8FK
ABRTQ
C1K
FR3
K9.
L.-
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7S9
L.6
AABYN
AAEOY
AAFGU
AAGCJ
AAUCO
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEEQQ
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AJGSW
AKQUC
ESTFP
SQXTU
UNUBA
ID FETCH-LOGICAL-c336t-2226b571dbfcf9c4dca6d2605ce5371284569899edbff0803ae77f52e1b93383
IEDL.DBID 7X7
ISSN 1226-8372
IngestDate Wed May 08 03:11:41 EDT 2024
Fri Jul 11 14:51:27 EDT 2025
Fri Jul 25 18:53:29 EDT 2025
Tue Jul 01 02:05:45 EDT 2025
Fri Feb 21 02:41:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords deep learning
binary class classification
cancer cell classification
convolutional neural network
multi-class classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-2226b571dbfcf9c4dca6d2605ce5371284569899edbff0803ae77f52e1b93383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2887715731
PQPubID 54768
PageCount 13
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10325943
proquest_miscellaneous_3153556204
proquest_journals_2887715731
crossref_primary_10_1007_s12257_023_0164_7
springer_journals_10_1007_s12257_023_0164_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231000
2023-10-00
20231001
2023-10
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 20231000
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Dordrecht
PublicationTitle Biotechnology and bioprocess engineering
PublicationTitleAbbrev Biotechnol Bioproc E
PublicationYear 2023
Publisher The Korean Society for Biotechnology and Bioengineering
Springer Nature B.V
한국생물공학회
Publisher_xml – name: The Korean Society for Biotechnology and Bioengineering
– name: Springer Nature B.V
– name: 한국생물공학회
References Sarwinda, Paradisa, Bustamam, Anggia (CR43) 2021; 179
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, Fei-Fei (CR11) 2015; 115
Graham, Epstein, Rajpoot (CR29) 2020; 39
CR35
CR34
Gupta, Chawla (CR7) 2020; 167
Araújo, Silva, Ushizima, Rezende, Carneiro, Campos Bianchi, Medeiros (CR42) 2019; 72
Tharwat (CR36) 2020; 17
Krizhevsky, Sutskever, Hinton (CR18) 2017; 60
Rahaman, Li, Yao, Kulwa, Wu, Li, Wang (CR2) 2021; 136
Sitnik, Aralica, Hadžija, Hadžija, Pačić, Periša, Manojlović, Krstanac, Plavetić, Kopriva (CR27) 2021; 66
López, Lejeune, Bosch, Korzynska, García-Rojo, Salvadó, Álvaro, Callau, Roso, Jaén (CR1) 2012; 179
CR8
Khan, Islam, Jan, Din, Rodrigues (CR39) 2019; 125
Sornapudi, Brown, Xue, Long, Allen, Antani (CR32) 2019; 2019
CR48
CR41
Amgad, Elfandy, Hussein, Atteya, Elsebaie, Abo Elnasr, Sakr, Salem, Ismail, Saad, Ahmed, Elsebaie, Rahman, Ruhban, Elgazar, Alagha, Osman, Alhusseiny, Khalaf, Younes, Abdulkarim, Younes, Gadallah, Elkashash, Fala, Zaki, Beezley, Chittajallu, Manthey, Gutman, Cooper (CR22) 2019; 35
Shi, Li, Hu, Chen, Chen, Fan, Gao, Jing, Lu, Ma, Ma, Meng, Tang, Sun, Grzegorzek, Qi, Teng, Li (CR30) 2023; 10
Song, Zou, Zhou, Huang, Shao, Yuan, Gou, Jin, Wang, Chen, Ding, Liu, Yu, Ku, Liu, Sun, Xu, Wang, Zhang, Wang, Wang, Xu, Davis, Shi (CR6) 2020; 11
Hospedales, Antoniou, Micaelli, Storkey (CR13) 2021; 44
Hu, Li, Li, Rahaman, Ma, Zhang, Chen, Liu, Sun, Yao, Sun, Grzegorzek (CR23) 2022; 142
Pan, Yang (CR12) 2009; 22
CR19
CR17
CR16
CR15
CR14
CR10
LeCun, Bengio, Hinton (CR5) 2015; 521
Aresta, Araújo, Kwok, Chennamsetty, Safwan, Alex, Marami, Prastawa, Chan, Donovan, Fernandez, Zeineh, Kohl, Walz, Ludwig, Braunewell, Baust, Vu, To, Kim, Kwak, Galal, Sanchez-Freire, Brancati, Frucci, Riccio, Wang, Sun, Ma, Fang, Kone, Boulmane, Campilho, Eloy, Polónia, Aguiar (CR33) 2019; 56
Coudray, Ocampo, Sakellaropoulos, Narula, Snuderl, Fenyö, Moreira, Razavian, Tsirigos (CR46) 2018; 24
Bray, Ferlay, Soerjomataram, Siegel, Torre, Jemal (CR47) 2018; 68
Golatkar, Anand, Sethi, Campilho, Karray, ter Haar Romeny (CR44) 2018
Hossin, Sulaiman (CR37) 2015; 5
CR28
CR26
Pattarone, Acion, Simian, Mertelsmann, Follo, Iarussi (CR38) 2021; 11
Yu, Feng, Wang, Dun, Zhang, Zhang, Huang (CR40) 2021; 9
CR25
Bejnordi, Veta, van Diest, van Ginneken, Karssemeijer, Litjens, van der Laak, Hermsen, Manson, Balkenhol, Geessink, Stathonikos, van Dijk, Bult, Beca, Beck, Wang, Khosla, Gargeya, Irshad, Zhong, Dou, Li, Chen, Lin, Heng, Haß, Bruni, Wong, Halici, Öner, Cetin-Atalay, Berseth, Khvatkov, Vylegzhanin, Kraus, Shaban, Rajpoot, Awan, Sirinukunwattana, Qaiser, Tsang, Tellez, Annuscheit, Hufnagl, Valkonen, Kartasalo, Latonen, Ruusuvuori, Liimatainen, Albarqouni, Mungal, George, Demirci, Navab, Watanabe, Seno, Takenaka, Matsuda, Phoulady, Kovalev, Kalinovsky, Liauchuk, Bueno, Fernandez-Carrobles, Serrano, Deniz, Racoceanu, Venâncio (CR31) 2017; 318
CR24
CR21
Kitchener, Blanks, Dunn, Gunn, Desai, Albrow, Mather, Rana, Cubie, Moore, Legood, Gray, Moss (CR3) 2011; 12
CR20
Xiao, Wu, Lin, Zhao (CR4) 2018; 153
Yamaguchi, Condeelis (CR49) 2007; 1773
Oei, Hou, Liu, Zhong, Zhang, An, Xu, Yang (CR45) 2019; 14
Gupta, Harrison, Wieslander, Pielawski, Kartasalo, Partel, Solorzano, Suveer, Klemm, Spjuth, Sintorn, Wählby (CR9) 2019; 95
D Sitnik (164_CR27) 2021; 66
164_CR48
A Krizhevsky (164_CR18) 2017; 60
M Hossin (164_CR37) 2015; 5
F H D Araújo (164_CR42) 2019; 72
H C Kitchener (164_CR3) 2011; 12
S Graham (164_CR29) 2020; 39
164_CR10
M Amgad (164_CR22) 2019; 35
164_CR14
A Tharwat (164_CR36) 2020; 17
164_CR15
164_CR16
164_CR17
Z Song (164_CR6) 2020; 11
164_CR19
O Russakovsky (164_CR11) 2015; 115
M M Rahaman (164_CR2) 2021; 136
G Pattarone (164_CR38) 2021; 11
K Gupta (164_CR7) 2020; 167
S Yu (164_CR40) 2021; 9
C López (164_CR1) 2012; 179
164_CR20
W Hu (164_CR23) 2022; 142
164_CR21
164_CR24
164_CR25
164_CR26
164_CR28
N . Coudray (164_CR46) 2018; 24
Y LeCun (164_CR5) 2015; 521
L Shi (164_CR30) 2023; 10
S J Pan (164_CR12) 2009; 22
B E Bejnordi (164_CR31) 2017; 318
164_CR8
D Sarwinda (164_CR43) 2021; 179
F Bray (164_CR47) 2018; 68
G Aresta (164_CR33) 2019; 56
164_CR34
164_CR35
H Yamaguchi (164_CR49) 2007; 1773
A Golatkar (164_CR44) 2018
A Gupta (164_CR9) 2019; 95
T Hospedales (164_CR13) 2021; 44
S Sornapudi (164_CR32) 2019; 2019
Y Xiao (164_CR4) 2018; 153
R W Oei (164_CR45) 2019; 14
S Khan (164_CR39) 2019; 125
164_CR41
References_xml – volume: 95
  start-page: 366
  year: 2019
  end-page: 380
  ident: CR9
  article-title: Deep learning in image cytometry: a review
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.23701
– ident: CR16
– volume: 56
  start-page: 122
  year: 2019
  end-page: 139
  ident: CR33
  article-title: BACH: grand challenge on breast cancer histology images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.05.010
– volume: 125
  start-page: 1
  year: 2019
  end-page: 6
  ident: CR39
  article-title: A novel deep learning based framework for the detection and classification of breast cancer using transfer learning
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.03.022
– volume: 179
  start-page: 155
  year: 2012
  end-page: 171
  ident: CR1
  article-title: Digital image analysis in breast cancer: an example of an automated methodology and the effects of image compression
  publication-title: Stud. Health Technol. Inform.
– ident: CR35
– ident: CR8
– volume: 153
  start-page: 1
  year: 2018
  end-page: 9
  ident: CR4
  article-title: A deep learning-based multi-model ensemble method for cancer prediction
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.09.005
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: CR18
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– ident: CR25
– volume: 11
  start-page: 4294
  year: 2020
  ident: CR6
  article-title: Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18147-8
– ident: CR21
– ident: CR19
– volume: 136
  start-page: 104649
  year: 2021
  ident: CR2
  article-title: DeepCervix: a deep learning-based framework for the classification of cervical cells using hybrid deep feature fusion techniques
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104649
– volume: 11
  start-page: 10304
  year: 2021
  ident: CR38
  article-title: Learning deep features for dead and living breast cancer cell classification without staining
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-89895-w
– ident: CR15
– volume: 44
  start-page: 5149
  year: 2021
  end-page: 5169
  ident: CR13
  article-title: Meta-learning in neural networks: a survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 142
  start-page: 105207
  year: 2022
  ident: CR23
  article-title: GasHisSDB: a new gastric histopathology image dataset for computer aided diagnosis of gastric cancer
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.105207
– volume: 9
  start-page: 32559
  year: 2021
  end-page: 32568
  ident: CR40
  article-title: Automatic classification of cervical cells using deep learning method
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3060447
– volume: 167
  start-page: 878
  year: 2020
  end-page: 889
  ident: CR7
  article-title: Analysis of histopathological images for prediction of breast cancer using traditional classifiers with pre-trained CNN
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.03.427
– volume: 318
  start-page: 2199
  year: 2017
  end-page: 2210
  ident: CR31
  article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
  publication-title: JAMA
  doi: 10.1001/jama.2017.14585
– volume: 66
  start-page: 102402
  year: 2021
  ident: CR27
  article-title: A dataset and a methodology for intraoperative computer-aided diagnosis of a metastatic colon cancer in a liver
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102402
– volume: 68
  start-page: 394
  year: 2018
  end-page: 424
  ident: CR47
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21492
– ident: CR26
– volume: 1773
  start-page: 642
  year: 2007
  end-page: 652
  ident: CR49
  article-title: Regulation of the actin cytoskeleton in cancer cell migration and invasion
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2006.07.001
– volume: 5
  start-page: 1
  year: 2015
  end-page: 11
  ident: CR37
  article-title: A review on evaluation metrics for data classification evaluations
  publication-title: Int. J. Data Min. Knowl. Manag. Process
  doi: 10.5121/ijdkp.2015.5201
– volume: 39
  start-page: 4124
  year: 2020
  end-page: 4136
  ident: CR29
  article-title: Dense steerable filter CNNs for exploiting rotational symmetry in histology images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3013246
– ident: CR14
– ident: CR10
– volume: 72
  start-page: 13
  year: 2019
  end-page: 21
  ident: CR42
  article-title: Deep learning for cell image segmentation and ranking
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2019.01.003
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: CR11
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– start-page: 837
  year: 2018
  end-page: 844
  ident: CR44
  article-title: Classification of breast cancer histology using deep learning
  publication-title: ICIAR 2018: Image Analysis and Recognition
– ident: CR48
– volume: 35
  start-page: 3461
  year: 2019
  end-page: 3467
  ident: CR22
  article-title: Structured crowdsourcing enables convolutional segmentation of histology images
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz083
– volume: 22
  start-page: 1345
  year: 2009
  end-page: 1359
  ident: CR12
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: 179
  start-page: 423
  year: 2021
  end-page: 431
  ident: CR43
  article-title: Deep learning in image classification using residual network (ResNet) variants for detection of colorectal cancer
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2021.01.025
– ident: CR17
– volume: 17
  start-page: 168
  year: 2020
  end-page: 192
  ident: CR36
  article-title: Classification assessment methods
  publication-title: Appl. Comput. Inform.
  doi: 10.1016/j.aci.2018.08.003
– volume: 14
  start-page: e0213626
  year: 2019
  ident: CR45
  article-title: Convolutional neural network for cell classification using microscope images of intracellular actin networks
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0213626
– volume: 12
  start-page: 56
  year: 2011
  end-page: 64
  ident: CR3
  article-title: Automation-assisted versus manual reading of cervical cytology (MAVARIC): a randomised controlled trial
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(10)70264-3
– volume: 24
  start-page: 1559
  year: 2018
  end-page: 1567
  ident: CR46
  article-title: Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0177-5
– ident: CR34
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR5
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 2019
  start-page: 820
  year: 2019
  end-page: 827
  ident: CR32
  article-title: Comparing deep learning models for multi-cell classification in liquid-based cervical cytology image
  publication-title: AMIA Annu. Symp. Proc.
– ident: CR28
– ident: CR41
– ident: CR24
– volume: 10
  start-page: 1114673
  year: 2023
  ident: CR30
  article-title: EBHI-Seg: a novel enteroscope biopsy histopathological hematoxylin and eosin image dataset for image segmentation tasks
  publication-title: Front. Med. (Lausanne)
  doi: 10.3389/fmed.2023.1114673
– ident: CR20
– ident: 164_CR24
  doi: 10.1109/IJCNN.2016.7727519
– volume: 11
  start-page: 4294
  year: 2020
  ident: 164_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18147-8
– ident: 164_CR25
  doi: 10.1109/ISITIA52817.2021.9502205
– ident: 164_CR15
– volume: 56
  start-page: 122
  year: 2019
  ident: 164_CR33
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.05.010
– ident: 164_CR34
– volume: 9
  start-page: 32559
  year: 2021
  ident: 164_CR40
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3060447
– volume: 22
  start-page: 1345
  year: 2009
  ident: 164_CR12
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: 66
  start-page: 102402
  year: 2021
  ident: 164_CR27
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102402
– volume: 2019
  start-page: 820
  year: 2019
  ident: 164_CR32
  publication-title: AMIA Annu. Symp. Proc.
– ident: 164_CR35
  doi: 10.1109/IWSSIP48289.2020.9145130
– volume: 11
  start-page: 10304
  year: 2021
  ident: 164_CR38
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-89895-w
– ident: 164_CR48
– volume: 72
  start-page: 13
  year: 2019
  ident: 164_CR42
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2019.01.003
– volume: 10
  start-page: 1114673
  year: 2023
  ident: 164_CR30
  publication-title: Front. Med. (Lausanne)
  doi: 10.3389/fmed.2023.1114673
– ident: 164_CR19
  doi: 10.1109/CVPR.2016.90
– volume: 125
  start-page: 1
  year: 2019
  ident: 164_CR39
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.03.022
– ident: 164_CR26
  doi: 10.1109/SMC.2017.8122889
– volume: 17
  start-page: 168
  year: 2020
  ident: 164_CR36
  publication-title: Appl. Comput. Inform.
  doi: 10.1016/j.aci.2018.08.003
– ident: 164_CR28
  doi: 10.1093/gigascience/giac037
– volume: 12
  start-page: 56
  year: 2011
  ident: 164_CR3
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(10)70264-3
– volume: 95
  start-page: 366
  year: 2019
  ident: 164_CR9
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.23701
– volume: 60
  start-page: 84
  year: 2017
  ident: 164_CR18
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 142
  start-page: 105207
  year: 2022
  ident: 164_CR23
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.105207
– volume: 39
  start-page: 4124
  year: 2020
  ident: 164_CR29
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3013246
– ident: 164_CR16
– volume: 14
  start-page: e0213626
  year: 2019
  ident: 164_CR45
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0213626
– volume: 1773
  start-page: 642
  year: 2007
  ident: 164_CR49
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2006.07.001
– ident: 164_CR41
  doi: 10.1109/ISCAS.2018.8351550
– volume: 167
  start-page: 878
  year: 2020
  ident: 164_CR7
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.03.427
– volume: 179
  start-page: 155
  year: 2012
  ident: 164_CR1
  publication-title: Stud. Health Technol. Inform.
– volume: 24
  start-page: 1559
  year: 2018
  ident: 164_CR46
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0177-5
– volume: 521
  start-page: 436
  year: 2015
  ident: 164_CR5
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 164_CR17
– ident: 164_CR21
  doi: 10.1109/CVPR.2018.00745
– ident: 164_CR8
  doi: 10.1109/ICEngTechnol.2017.8308186
– volume: 68
  start-page: 394
  year: 2018
  ident: 164_CR47
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21492
– volume: 153
  start-page: 1
  year: 2018
  ident: 164_CR4
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.09.005
– volume: 35
  start-page: 3461
  year: 2019
  ident: 164_CR22
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz083
– volume: 179
  start-page: 423
  year: 2021
  ident: 164_CR43
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2021.01.025
– volume: 318
  start-page: 2199
  year: 2017
  ident: 164_CR31
  publication-title: JAMA
  doi: 10.1001/jama.2017.14585
– ident: 164_CR10
– ident: 164_CR14
– ident: 164_CR20
  doi: 10.1109/CVPR.2017.243
– volume: 5
  start-page: 1
  year: 2015
  ident: 164_CR37
  publication-title: Int. J. Data Min. Knowl. Manag. Process
  doi: 10.5121/ijdkp.2015.5201
– start-page: 837
  volume-title: ICIAR 2018: Image Analysis and Recognition
  year: 2018
  ident: 164_CR44
– volume: 136
  start-page: 104649
  year: 2021
  ident: 164_CR2
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104649
– volume: 115
  start-page: 211
  year: 2015
  ident: 164_CR11
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– volume: 44
  start-page: 5149
  year: 2021
  ident: 164_CR13
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
SSID ssj0047888
Score 2.3173156
SecondaryResourceType review_article
Snippet Recently, research incorporating the benefits of deep learning in the application of cancer cell classification and analysis has been actively conducted. In...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 707
SubjectTerms Artificial neural networks
Biotechnology
Breast cancer
breast neoplasms
Cancer
Cervical cancer
Chemistry
Chemistry and Materials Science
Classification
Colon cancer
Colorectal cancer
colorectal neoplasms
data collection
Deep learning
image analysis
Image classification
Industrial and Production Engineering
Lung cancer
lung neoplasms
Machine learning
Medical imaging
Medical research
neoplasm cells
Neural networks
Review Paper
Transfer learning
uterine cervical neoplasms
생물공학
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYOAAHBANEYaAiOIEirU3TrMdpAm2T2GmTdov6SBDaaNG68fux-2AMwYFTD02jynbsz4r9GeAOg3TXj4zDjAkF86gvJ5R48CLeCR1PeHE3pEbh57E_mHqjmZhVfdx5Xe1eX0kWnnrT7IamJxnGGEa0UEw2YFdQ6o5GPHV7tfslOvii_w1xBcPsy62vMn_bYisYNdKl2cKZP65Gi4jzdASHFVS0e6Vuj2FHpy3Y69cT2lpw8I1M8ARG_Sz9qAzJJs4N_HZcFnnbvYo5XOc2glS7T6rGh14s7OEbehS7mI1JVUOFok5h8vQ46Q9YNSmBxZz7K4ZB3o-EdJLIxCaIvSQO_YQylVgLLikECRoUGWhcYBAj8lBLaYSrnSigHPUMmmmW6nOwE6NdKWXCQwRKnUQHWiNA6pq46wjtBIkF97XE1HvJh6E2zMckXoXiVSReJS24RZmqefyqiMWani-Zmi8VYvWhIio_EXjcgnYtc1UdoFy56PykIyR3LLj5eo3ypfuMMNXZOlccvbUQRKhvwUOtq80Wf_7Wxb9WX8I-jZgvC_ja0Fwt1_oKgcgqui4M7xNlANKf
  priority: 102
  providerName: Springer Nature
Title Convolution Neural Network Approaches for Cancer Cell Image Classification
URI https://link.springer.com/article/10.1007/s12257-023-0164-7
https://www.proquest.com/docview/2887715731
https://www.proquest.com/docview/3153556204
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003015343
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Biotechnology and Bioprocess Engineering, 2023, 28(5), , pp.707-719
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58XPQgPrG6SkVPStA2TdOeZF12feEiorCeQpsmIqut7sPf70y3dVXQSwNtaMvMJPMlmfkG4ACddBSm1mPWJoIFlJeTSBx4KT9JvEAEOkooUfimG148BFc90as23IZVWGU9J5YTdVZo2iM_9nE0SE9I7p2-vTOqGkWnq1UJjVmYJ-oyCumSva8FFzHDl6lwCDEYLsT8-lSzTJ1DQ5YMPRYjkikmf_il2Xxgf0DOX6ekpfPpLMNShRrd5kTNKzBj8lVY_MYluAZXrSL_qOzIJcoN7N-dxHi7zYo43AxdxKhuizSNjXl5cS9fcUJxy9KYFDRU6mkd7jvt-9YFqwolMM15OGLo48NUSC9LrbaxDjKdhBktVLQRXJIHElQnMjbYwSJE5ImR0grfeGlMS9QNmMuL3GyCm1njSykzniBOOslMbAzio8jqyBPGizMHDmspqbcJHYaaEh-TSBWKVJFIlXRgH-Wo-vpZEYk1tU-F6g8UQvVLRUx-Ig64A41azqoaP0M11bYDe1-P0fLpOCPJTTEeKo6TtRDEp-_AUa2f6Sv-_K2t_z-4DQtUUn4SsNeAudFgbHYQeIzS3dK68Bp1zndhvnn-eN3G9qzdvb3Duw9-8xMk0Ndb
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPbQcUAtUDWxbI-gFZHUTx3FyQBXadtnlsaetxM1KHLuqgAT2AeqP6n9kJo9uqURvnHxIZEfjeWZmvgHYQyMdR5nzuXOp5CH15aQKBS8T3dQPZWjilBqFz0fR4Ht4ciEvluB32wtDZZWtTqwUdV4a-kf-OUBpUL5Uwv9yc8tpahRlV9sRGjVbnNpf9xiyTQ-HX_F-PwVB_9u4N-DNVAFuhIhmHA1ilEnl55kzLjFhbtIoJ6_eWCkUqWtJQxUTiy849KdEapVyMrB-llA8h9suw4tQiIQEKu4ft4qfgOirzjs8gGPcF7RJ1KpTD-VGcTSQnDCtuHpkBpeLiXvk4f6TlK1sXf81rDVOKjuqueoNLNliHVb_gi7cgJNeWdw1bMsI4QPfH9Ul5eyowSm3U4YuMesRY-Fir67Y8Br1F6smcVKNUsUWmzB-Dgq-hZWiLOw7YLmzgVIqFym6Zd3cJtaiOxY7E_vS-knuwX5LJX1To2_oBc4ykVQjSTWRVCsPdpGO-tL81ISZTeuPUl9ONEYGQ03AgTIJhQedls66EdepXjCXBzt_HqOgUfYkLWw5n2qBtkFKgu_34KC9n8UWT37W1v8P_AgvB-PzM302HJ1uwyuaZl_XCnZgZTaZ2_fo88yyDxWnMdDPzNkPHsUOcw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BVqrKAdGXCK-6anuhssBxHG8OCKGlKxbaVQ8g7c1KHLuqgGTZXUD9af13zOTBFiR64-RDIjsaf-OZiWe-AfiMRrobZ15w71PFI6rLSTUqXiZ3UxGpyHZTKhT-MYyPzqLjkRotwN-2FobSKtszsTqo89LSP_KdELVBC6Wl2PFNWsTPw_7--IpTBym6aW3badQQOXF_bjF8m-4NDnGvv4Rh_9tp74g3HQa4lTKecTSOcaa0yDNvfWKj3KZxTh6-dUpqOroVNVhMHL7g0beSqdPaq9CJLKHYDqddhBdaKkEqpkf3sR6R0ldVeLgAxxgwbC9Uq6o91CHN0Vhy4rfi-oFJXCwm_oG3--iCtrJ7_RVYbhxWdlAj7DUsuOINLP1DY_gWjntlcdNAmBHbB74_rNPL2UHDWe6mDN1j1iOQ4eAuLtjgEs8yVnXlpHylCiLv4PQ5JPgeOkVZuFVguXeh1jqXKbpou7lLnEPXrOttVygnkjyA7VZKZlwzcZg55zKJ1KBIDYnU6AA-oRzNuf1tiD-bxl-lOZ8YjBIGhkgEVRLJADZaOZtGdadmDrQAPt4_RqWjm5S0cOX11Ei0E0oRlX8AX9v9mU_x5Get_X_BD_ASMW2-D4Yn6_CKGtvXaYMb0JlNrt0muj-zbKsCGgPzzMC-A6SdEqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolution+Neural+Network+Approaches+for+Cancer+Cell+Image+Classification&rft.jtitle=Biotechnology+and+bioprocess+engineering&rft.au=Kim%2C+Chaeyoung&rft.au=Shin%2C+Sungtae&rft.au=Jeong%2C+Sehoon&rft.date=2023-10-01&rft.issn=1226-8372&rft.eissn=1976-3816&rft.volume=28&rft.issue=5&rft.spage=707&rft.epage=719&rft_id=info:doi/10.1007%2Fs12257-023-0164-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12257_023_0164_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-8372&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-8372&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-8372&client=summon