Convolution Neural Network Approaches for Cancer Cell Image Classification
Recently, research incorporating the benefits of deep learning in the application of cancer cell classification and analysis has been actively conducted. In this paper, we investigated examples of binary-class classification and multi-class classification of cancer cell image data of commonly occurr...
Saved in:
Published in | Biotechnology and bioprocess engineering Vol. 28; no. 5; pp. 707 - 719 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean Society for Biotechnology and Bioengineering
01.10.2023
Springer Nature B.V 한국생물공학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, research incorporating the benefits of deep learning in the application of cancer cell classification and analysis has been actively conducted. In this paper, we investigated examples of binary-class classification and multi-class classification of cancer cell image data of commonly occurring types of cancer worldwide, such as cervical cancer, breast cancer, lung cancer, and colon cancer, using convolutional neural networks (CNNs) models. For instance, some studies explored the utilization of transfer learning, leveraging a pre-trained CNN model is used as a starting point for additional training on a specific cancer cell dataset. Cancer cells have irregular and abnormal growth, making accurate classification challenging. The application of deep learning techniques, such as CNN, for cancer cell classification has been able to solve these complex analysis problems and enable fast cancer cell classification results, leading to early detection of cancer. Indeed, most of the studies in this paper achieved high performance using CNN models, and this approach enables faster and more accurate confirmation of cancer cell classification results, leading to early detection of cancer. This shows the current trend of applying deep learning in the application of cancer cell classification and demonstrates the significant potential of deep learning to contribute to cancer research. Overall, we provide an overview of the current trend of applying deep learning in the field of cancer cell classification and expect that deep learning will open the way for more effective cancer diagnosis and treatment in the future. |
---|---|
AbstractList | Recently, research incorporating the benefits of deep learning in the application of cancer cell classification and analysis has been actively conducted. In this paper, we investigated examples of binary-class classification and multi-class classification of cancer cell image data of commonly occurring types of cancer worldwide, such as cervical cancer, breast cancer, lung cancer, and colon cancer, using convolutional neural networks (CNNs) models. For instance, some studies explored the utilization of transfer learning, leveraging a pre-trained CNN model is used as a starting point for additional training on a specific cancer cell dataset. Cancer cells have irregular and abnormal growth, making accurate classification challenging. The application of deep learning techniques, such as CNN, for cancer cell classification has been able to solve these complex analysis problems and enable fast cancer cell classification results, leading to early detection of cancer. Indeed, most of the studies in this paper achieved high performance using CNN models, and this approach enables faster and more accurate confirmation of cancer cell classification results, leading to early detection of cancer. This shows the current trend of applying deep learning in the application of cancer cell classification and demonstrates the significant potential of deep learning to contribute to cancer research. Overall, we provide an overview of the current trend of applying deep learning in the field of cancer cell classification and expect that deep learning will open the way for more effective cancer diagnosis and treatment in the future. Recently, research incorporating the benefits of deep learning in the application of cancer cell classification and analysis has been actively conducted. In this paper, we investigated examples of binary-class classification and multi-class classification of cancer cell image data of commonly occurring types of cancer worldwide, such as cervical cancer, breast cancer, lung cancer, and colon cancer, using convolutional neural networks (CNNs) models. For instance, some studies explored the utilization of transfer learning, leveraging a pre-trained CNN model is used as a starting point for additional training on a specific cancer cell dataset. Cancer cells have irregular and abnormal growth, making accurate classification challenging. The application of deep learning techniques, such as CNN, for cancer cell classification has been able to solve these complex analysis problems and enable fast cancer cell classification results, leading to early detection of cancer. Indeed, most of the studies in this paper achieved high performance using CNN models, and this approach enables faster and more accurate confirmation of cancer cell classification results, leading to early detection of cancer. This shows the current trend of applying deep learning in the application of cancer cell classification and demonstrates the significant potential of deep learning to contribute to cancer research. Overall, we provide an overview of the current trend of applying deep learning in the field of cancer cell classification and expect that deep learning will open the way for more effective cancer diagnosis and treatment in the future. KCI Citation Count: 0 |
Author | Jeong, Sehoon Kim, Chaeyoung Shin, Sungtae |
Author_xml | – sequence: 1 givenname: Chaeyoung surname: Kim fullname: Kim, Chaeyoung organization: Institute for Digital Antiaging and Healthcare, Inje University – sequence: 2 givenname: Sungtae surname: Shin fullname: Shin, Sungtae email: stshin@dau.ac.kr organization: Department of Mechanical Engineering, Dong-A University – sequence: 3 givenname: Sehoon surname: Jeong fullname: Jeong, Sehoon email: jeongsh@inje.ac.kr organization: Institute for Digital Antiaging and Healthcare, Inje University, Department of Healthcare Information Technology, Inje University, Paik Institute for Clinical Research, Inje University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003015343$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp1kUtLAzEUhYNUsK3-AHcDbkSI5jF5zLIMPipFQboPaZrUaadJTTqK_97UEQTB1bmL79x7D2cEBj54C8A5RtcYIXGTMCFMQEQoRJiXUByBIa4Eh1RiPsgzIRxKKsgJGKW0RqgUUsoheKyDfw9tt2-CL55sF3WbZf8R4qaY7HYxaPNqU-FCLGrtjc1i27aYbvXKFnWrU2pcY_TBfgqOnW6TPfvRMZjf3c7rBzh7vp_Wkxk0lPI9JPmTBRN4uXDGVaZcGs2XhCNmLKMCE1kyXsmqshlwSCKqrRCOEYsXFaWSjsFVv9ZHpzamUUE337oKahPV5GU-VRhRwqqSZviyh3OSt86mvdo2yeQE2tvQJUUxo4xxgsqMXvxB16GLPidRREohMBMUZwr3lIkhpWid2sVmq-NnvqkOTai-CZWbUIcmlMge0ntSZv3Kxt_N_5u-AOzNiyM |
Cites_doi | 10.1002/cyto.a.23701 10.1016/j.media.2019.05.010 10.1016/j.patrec.2019.03.022 10.1016/j.cmpb.2017.09.005 10.1145/3065386 10.1038/s41467-020-18147-8 10.1016/j.compbiomed.2021.104649 10.1038/s41598-021-89895-w 10.1016/j.compbiomed.2021.105207 10.1109/ACCESS.2021.3060447 10.1016/j.procs.2020.03.427 10.1001/jama.2017.14585 10.1016/j.bspc.2020.102402 10.3322/caac.21492 10.1016/j.bbamcr.2006.07.001 10.5121/ijdkp.2015.5201 10.1109/TMI.2020.3013246 10.1016/j.compmedimag.2019.01.003 10.1007/s11263-015-0816-y 10.1093/bioinformatics/btz083 10.1109/TKDE.2009.191 10.1016/j.procs.2021.01.025 10.1016/j.aci.2018.08.003 10.1371/journal.pone.0213626 10.1016/S1470-2045(10)70264-3 10.1038/s41591-018-0177-5 10.1038/nature14539 10.3389/fmed.2023.1114673 10.1109/IJCNN.2016.7727519 10.1109/ISITIA52817.2021.9502205 10.1109/IWSSIP48289.2020.9145130 10.1109/CVPR.2016.90 10.1109/SMC.2017.8122889 10.1093/gigascience/giac037 10.1109/ISCAS.2018.8351550 10.1109/CVPR.2018.00745 10.1109/ICEngTechnol.2017.8308186 10.1109/CVPR.2017.243 |
ContentType | Journal Article |
Copyright | The Korean Society for Biotechnology and Bioengineering and Springer 2023 The Korean Society for Biotechnology and Bioengineering and Springer 2023. |
Copyright_xml | – notice: The Korean Society for Biotechnology and Bioengineering and Springer 2023 – notice: The Korean Society for Biotechnology and Bioengineering and Springer 2023. |
DBID | AAYXX CITATION 3V. 7QO 7QP 7T7 7WY 7WZ 7X7 7XB 87Z 88A 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8FL ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI C1K CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- L6V LK8 M0C M0S M2P M7P M7S P5Z P62 P64 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7S9 L.6 ACYCR |
DOI | 10.1007/s12257-023-0164-7 |
DatabaseName | CrossRef ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Biology Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Biological Science Collection ABI/INFORM Global Health & Medical Collection (Alumni Edition) Science Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic AGRICOLA AGRICOLA - Academic Korean Citation Index |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Business Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ABI/INFORM Complete (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) AGRICOLA |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1976-3816 |
EndPage | 719 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10325943 10_1007_s12257_023_0164_7 |
GroupedDBID | --- -4Y -58 -5G -BR -EM -Y2 -~C .86 .UV .VR 06C 06D 0R~ 0VY 1N0 203 23N 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2WC 2~H 30V 3V. 4.4 406 408 40D 40E 53G 5GY 5VS 6NX 7WY 7X7 88A 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8FL 8UJ 95- 95. 95~ 96X 9ZL A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO E3Z EBD EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG6 HMCUK HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ K60 K6~ KOV KVFHK L6V LK8 LLZTM M0C M0L M2P M4Y M7P M7S MA- ML0 MZR N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OK1 P19 P2P P62 P9N PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOR QOS R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TUC TUS U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 YLTOR Z45 Z7U Z7V Z7W Z8Q ZMTXR ZZE ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7QO 7QP 7T7 7XB 8FD 8FK ABRTQ C1K FR3 K9. L.- P64 PKEHL PQEST PQGLB PQUKI PRINS Q9U 7S9 L.6 AABYN AAEOY AAFGU AAGCJ AAUCO ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEEQQ AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AJGSW AKQUC ESTFP SQXTU UNUBA |
ID | FETCH-LOGICAL-c336t-2226b571dbfcf9c4dca6d2605ce5371284569899edbff0803ae77f52e1b93383 |
IEDL.DBID | 7X7 |
ISSN | 1226-8372 |
IngestDate | Wed May 08 03:11:41 EDT 2024 Fri Jul 11 14:51:27 EDT 2025 Fri Jul 25 18:53:29 EDT 2025 Tue Jul 01 02:05:45 EDT 2025 Fri Feb 21 02:41:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | deep learning binary class classification cancer cell classification convolutional neural network multi-class classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-2226b571dbfcf9c4dca6d2605ce5371284569899edbff0803ae77f52e1b93383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2887715731 |
PQPubID | 54768 |
PageCount | 13 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10325943 proquest_miscellaneous_3153556204 proquest_journals_2887715731 crossref_primary_10_1007_s12257_023_0164_7 springer_journals_10_1007_s12257_023_0164_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231000 2023-10-00 20231001 2023-10 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 20231000 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Dordrecht |
PublicationTitle | Biotechnology and bioprocess engineering |
PublicationTitleAbbrev | Biotechnol Bioproc E |
PublicationYear | 2023 |
Publisher | The Korean Society for Biotechnology and Bioengineering Springer Nature B.V 한국생물공학회 |
Publisher_xml | – name: The Korean Society for Biotechnology and Bioengineering – name: Springer Nature B.V – name: 한국생물공학회 |
References | Sarwinda, Paradisa, Bustamam, Anggia (CR43) 2021; 179 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, Fei-Fei (CR11) 2015; 115 Graham, Epstein, Rajpoot (CR29) 2020; 39 CR35 CR34 Gupta, Chawla (CR7) 2020; 167 Araújo, Silva, Ushizima, Rezende, Carneiro, Campos Bianchi, Medeiros (CR42) 2019; 72 Tharwat (CR36) 2020; 17 Krizhevsky, Sutskever, Hinton (CR18) 2017; 60 Rahaman, Li, Yao, Kulwa, Wu, Li, Wang (CR2) 2021; 136 Sitnik, Aralica, Hadžija, Hadžija, Pačić, Periša, Manojlović, Krstanac, Plavetić, Kopriva (CR27) 2021; 66 López, Lejeune, Bosch, Korzynska, García-Rojo, Salvadó, Álvaro, Callau, Roso, Jaén (CR1) 2012; 179 CR8 Khan, Islam, Jan, Din, Rodrigues (CR39) 2019; 125 Sornapudi, Brown, Xue, Long, Allen, Antani (CR32) 2019; 2019 CR48 CR41 Amgad, Elfandy, Hussein, Atteya, Elsebaie, Abo Elnasr, Sakr, Salem, Ismail, Saad, Ahmed, Elsebaie, Rahman, Ruhban, Elgazar, Alagha, Osman, Alhusseiny, Khalaf, Younes, Abdulkarim, Younes, Gadallah, Elkashash, Fala, Zaki, Beezley, Chittajallu, Manthey, Gutman, Cooper (CR22) 2019; 35 Shi, Li, Hu, Chen, Chen, Fan, Gao, Jing, Lu, Ma, Ma, Meng, Tang, Sun, Grzegorzek, Qi, Teng, Li (CR30) 2023; 10 Song, Zou, Zhou, Huang, Shao, Yuan, Gou, Jin, Wang, Chen, Ding, Liu, Yu, Ku, Liu, Sun, Xu, Wang, Zhang, Wang, Wang, Xu, Davis, Shi (CR6) 2020; 11 Hospedales, Antoniou, Micaelli, Storkey (CR13) 2021; 44 Hu, Li, Li, Rahaman, Ma, Zhang, Chen, Liu, Sun, Yao, Sun, Grzegorzek (CR23) 2022; 142 Pan, Yang (CR12) 2009; 22 CR19 CR17 CR16 CR15 CR14 CR10 LeCun, Bengio, Hinton (CR5) 2015; 521 Aresta, Araújo, Kwok, Chennamsetty, Safwan, Alex, Marami, Prastawa, Chan, Donovan, Fernandez, Zeineh, Kohl, Walz, Ludwig, Braunewell, Baust, Vu, To, Kim, Kwak, Galal, Sanchez-Freire, Brancati, Frucci, Riccio, Wang, Sun, Ma, Fang, Kone, Boulmane, Campilho, Eloy, Polónia, Aguiar (CR33) 2019; 56 Coudray, Ocampo, Sakellaropoulos, Narula, Snuderl, Fenyö, Moreira, Razavian, Tsirigos (CR46) 2018; 24 Bray, Ferlay, Soerjomataram, Siegel, Torre, Jemal (CR47) 2018; 68 Golatkar, Anand, Sethi, Campilho, Karray, ter Haar Romeny (CR44) 2018 Hossin, Sulaiman (CR37) 2015; 5 CR28 CR26 Pattarone, Acion, Simian, Mertelsmann, Follo, Iarussi (CR38) 2021; 11 Yu, Feng, Wang, Dun, Zhang, Zhang, Huang (CR40) 2021; 9 CR25 Bejnordi, Veta, van Diest, van Ginneken, Karssemeijer, Litjens, van der Laak, Hermsen, Manson, Balkenhol, Geessink, Stathonikos, van Dijk, Bult, Beca, Beck, Wang, Khosla, Gargeya, Irshad, Zhong, Dou, Li, Chen, Lin, Heng, Haß, Bruni, Wong, Halici, Öner, Cetin-Atalay, Berseth, Khvatkov, Vylegzhanin, Kraus, Shaban, Rajpoot, Awan, Sirinukunwattana, Qaiser, Tsang, Tellez, Annuscheit, Hufnagl, Valkonen, Kartasalo, Latonen, Ruusuvuori, Liimatainen, Albarqouni, Mungal, George, Demirci, Navab, Watanabe, Seno, Takenaka, Matsuda, Phoulady, Kovalev, Kalinovsky, Liauchuk, Bueno, Fernandez-Carrobles, Serrano, Deniz, Racoceanu, Venâncio (CR31) 2017; 318 CR24 CR21 Kitchener, Blanks, Dunn, Gunn, Desai, Albrow, Mather, Rana, Cubie, Moore, Legood, Gray, Moss (CR3) 2011; 12 CR20 Xiao, Wu, Lin, Zhao (CR4) 2018; 153 Yamaguchi, Condeelis (CR49) 2007; 1773 Oei, Hou, Liu, Zhong, Zhang, An, Xu, Yang (CR45) 2019; 14 Gupta, Harrison, Wieslander, Pielawski, Kartasalo, Partel, Solorzano, Suveer, Klemm, Spjuth, Sintorn, Wählby (CR9) 2019; 95 D Sitnik (164_CR27) 2021; 66 164_CR48 A Krizhevsky (164_CR18) 2017; 60 M Hossin (164_CR37) 2015; 5 F H D Araújo (164_CR42) 2019; 72 H C Kitchener (164_CR3) 2011; 12 S Graham (164_CR29) 2020; 39 164_CR10 M Amgad (164_CR22) 2019; 35 164_CR14 A Tharwat (164_CR36) 2020; 17 164_CR15 164_CR16 164_CR17 Z Song (164_CR6) 2020; 11 164_CR19 O Russakovsky (164_CR11) 2015; 115 M M Rahaman (164_CR2) 2021; 136 G Pattarone (164_CR38) 2021; 11 K Gupta (164_CR7) 2020; 167 S Yu (164_CR40) 2021; 9 C López (164_CR1) 2012; 179 164_CR20 W Hu (164_CR23) 2022; 142 164_CR21 164_CR24 164_CR25 164_CR26 164_CR28 N . Coudray (164_CR46) 2018; 24 Y LeCun (164_CR5) 2015; 521 L Shi (164_CR30) 2023; 10 S J Pan (164_CR12) 2009; 22 B E Bejnordi (164_CR31) 2017; 318 164_CR8 D Sarwinda (164_CR43) 2021; 179 F Bray (164_CR47) 2018; 68 G Aresta (164_CR33) 2019; 56 164_CR34 164_CR35 H Yamaguchi (164_CR49) 2007; 1773 A Golatkar (164_CR44) 2018 A Gupta (164_CR9) 2019; 95 T Hospedales (164_CR13) 2021; 44 S Sornapudi (164_CR32) 2019; 2019 Y Xiao (164_CR4) 2018; 153 R W Oei (164_CR45) 2019; 14 S Khan (164_CR39) 2019; 125 164_CR41 |
References_xml | – volume: 95 start-page: 366 year: 2019 end-page: 380 ident: CR9 article-title: Deep learning in image cytometry: a review publication-title: Cytometry A doi: 10.1002/cyto.a.23701 – ident: CR16 – volume: 56 start-page: 122 year: 2019 end-page: 139 ident: CR33 article-title: BACH: grand challenge on breast cancer histology images publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.05.010 – volume: 125 start-page: 1 year: 2019 end-page: 6 ident: CR39 article-title: A novel deep learning based framework for the detection and classification of breast cancer using transfer learning publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2019.03.022 – volume: 179 start-page: 155 year: 2012 end-page: 171 ident: CR1 article-title: Digital image analysis in breast cancer: an example of an automated methodology and the effects of image compression publication-title: Stud. Health Technol. Inform. – ident: CR35 – ident: CR8 – volume: 153 start-page: 1 year: 2018 end-page: 9 ident: CR4 article-title: A deep learning-based multi-model ensemble method for cancer prediction publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.09.005 – volume: 60 start-page: 84 year: 2017 end-page: 90 ident: CR18 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – ident: CR25 – volume: 11 start-page: 4294 year: 2020 ident: CR6 article-title: Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning publication-title: Nat. Commun. doi: 10.1038/s41467-020-18147-8 – ident: CR21 – ident: CR19 – volume: 136 start-page: 104649 year: 2021 ident: CR2 article-title: DeepCervix: a deep learning-based framework for the classification of cervical cells using hybrid deep feature fusion techniques publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104649 – volume: 11 start-page: 10304 year: 2021 ident: CR38 article-title: Learning deep features for dead and living breast cancer cell classification without staining publication-title: Sci. Rep. doi: 10.1038/s41598-021-89895-w – ident: CR15 – volume: 44 start-page: 5149 year: 2021 end-page: 5169 ident: CR13 article-title: Meta-learning in neural networks: a survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 142 start-page: 105207 year: 2022 ident: CR23 article-title: GasHisSDB: a new gastric histopathology image dataset for computer aided diagnosis of gastric cancer publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.105207 – volume: 9 start-page: 32559 year: 2021 end-page: 32568 ident: CR40 article-title: Automatic classification of cervical cells using deep learning method publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3060447 – volume: 167 start-page: 878 year: 2020 end-page: 889 ident: CR7 article-title: Analysis of histopathological images for prediction of breast cancer using traditional classifiers with pre-trained CNN publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.03.427 – volume: 318 start-page: 2199 year: 2017 end-page: 2210 ident: CR31 article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer publication-title: JAMA doi: 10.1001/jama.2017.14585 – volume: 66 start-page: 102402 year: 2021 ident: CR27 article-title: A dataset and a methodology for intraoperative computer-aided diagnosis of a metastatic colon cancer in a liver publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102402 – volume: 68 start-page: 394 year: 2018 end-page: 424 ident: CR47 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21492 – ident: CR26 – volume: 1773 start-page: 642 year: 2007 end-page: 652 ident: CR49 article-title: Regulation of the actin cytoskeleton in cancer cell migration and invasion publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2006.07.001 – volume: 5 start-page: 1 year: 2015 end-page: 11 ident: CR37 article-title: A review on evaluation metrics for data classification evaluations publication-title: Int. J. Data Min. Knowl. Manag. Process doi: 10.5121/ijdkp.2015.5201 – volume: 39 start-page: 4124 year: 2020 end-page: 4136 ident: CR29 article-title: Dense steerable filter CNNs for exploiting rotational symmetry in histology images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.3013246 – ident: CR14 – ident: CR10 – volume: 72 start-page: 13 year: 2019 end-page: 21 ident: CR42 article-title: Deep learning for cell image segmentation and ranking publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2019.01.003 – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: CR11 article-title: ImageNet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – start-page: 837 year: 2018 end-page: 844 ident: CR44 article-title: Classification of breast cancer histology using deep learning publication-title: ICIAR 2018: Image Analysis and Recognition – ident: CR48 – volume: 35 start-page: 3461 year: 2019 end-page: 3467 ident: CR22 article-title: Structured crowdsourcing enables convolutional segmentation of histology images publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz083 – volume: 22 start-page: 1345 year: 2009 end-page: 1359 ident: CR12 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – volume: 179 start-page: 423 year: 2021 end-page: 431 ident: CR43 article-title: Deep learning in image classification using residual network (ResNet) variants for detection of colorectal cancer publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2021.01.025 – ident: CR17 – volume: 17 start-page: 168 year: 2020 end-page: 192 ident: CR36 article-title: Classification assessment methods publication-title: Appl. Comput. Inform. doi: 10.1016/j.aci.2018.08.003 – volume: 14 start-page: e0213626 year: 2019 ident: CR45 article-title: Convolutional neural network for cell classification using microscope images of intracellular actin networks publication-title: PLoS One doi: 10.1371/journal.pone.0213626 – volume: 12 start-page: 56 year: 2011 end-page: 64 ident: CR3 article-title: Automation-assisted versus manual reading of cervical cytology (MAVARIC): a randomised controlled trial publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(10)70264-3 – volume: 24 start-page: 1559 year: 2018 end-page: 1567 ident: CR46 article-title: Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning publication-title: Nat. Med. doi: 10.1038/s41591-018-0177-5 – ident: CR34 – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR5 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 2019 start-page: 820 year: 2019 end-page: 827 ident: CR32 article-title: Comparing deep learning models for multi-cell classification in liquid-based cervical cytology image publication-title: AMIA Annu. Symp. Proc. – ident: CR28 – ident: CR41 – ident: CR24 – volume: 10 start-page: 1114673 year: 2023 ident: CR30 article-title: EBHI-Seg: a novel enteroscope biopsy histopathological hematoxylin and eosin image dataset for image segmentation tasks publication-title: Front. Med. (Lausanne) doi: 10.3389/fmed.2023.1114673 – ident: CR20 – ident: 164_CR24 doi: 10.1109/IJCNN.2016.7727519 – volume: 11 start-page: 4294 year: 2020 ident: 164_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18147-8 – ident: 164_CR25 doi: 10.1109/ISITIA52817.2021.9502205 – ident: 164_CR15 – volume: 56 start-page: 122 year: 2019 ident: 164_CR33 publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.05.010 – ident: 164_CR34 – volume: 9 start-page: 32559 year: 2021 ident: 164_CR40 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3060447 – volume: 22 start-page: 1345 year: 2009 ident: 164_CR12 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – volume: 66 start-page: 102402 year: 2021 ident: 164_CR27 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102402 – volume: 2019 start-page: 820 year: 2019 ident: 164_CR32 publication-title: AMIA Annu. Symp. Proc. – ident: 164_CR35 doi: 10.1109/IWSSIP48289.2020.9145130 – volume: 11 start-page: 10304 year: 2021 ident: 164_CR38 publication-title: Sci. Rep. doi: 10.1038/s41598-021-89895-w – ident: 164_CR48 – volume: 72 start-page: 13 year: 2019 ident: 164_CR42 publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2019.01.003 – volume: 10 start-page: 1114673 year: 2023 ident: 164_CR30 publication-title: Front. Med. (Lausanne) doi: 10.3389/fmed.2023.1114673 – ident: 164_CR19 doi: 10.1109/CVPR.2016.90 – volume: 125 start-page: 1 year: 2019 ident: 164_CR39 publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2019.03.022 – ident: 164_CR26 doi: 10.1109/SMC.2017.8122889 – volume: 17 start-page: 168 year: 2020 ident: 164_CR36 publication-title: Appl. Comput. Inform. doi: 10.1016/j.aci.2018.08.003 – ident: 164_CR28 doi: 10.1093/gigascience/giac037 – volume: 12 start-page: 56 year: 2011 ident: 164_CR3 publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(10)70264-3 – volume: 95 start-page: 366 year: 2019 ident: 164_CR9 publication-title: Cytometry A doi: 10.1002/cyto.a.23701 – volume: 60 start-page: 84 year: 2017 ident: 164_CR18 publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 142 start-page: 105207 year: 2022 ident: 164_CR23 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.105207 – volume: 39 start-page: 4124 year: 2020 ident: 164_CR29 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.3013246 – ident: 164_CR16 – volume: 14 start-page: e0213626 year: 2019 ident: 164_CR45 publication-title: PLoS One doi: 10.1371/journal.pone.0213626 – volume: 1773 start-page: 642 year: 2007 ident: 164_CR49 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2006.07.001 – ident: 164_CR41 doi: 10.1109/ISCAS.2018.8351550 – volume: 167 start-page: 878 year: 2020 ident: 164_CR7 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.03.427 – volume: 179 start-page: 155 year: 2012 ident: 164_CR1 publication-title: Stud. Health Technol. Inform. – volume: 24 start-page: 1559 year: 2018 ident: 164_CR46 publication-title: Nat. Med. doi: 10.1038/s41591-018-0177-5 – volume: 521 start-page: 436 year: 2015 ident: 164_CR5 publication-title: Nature doi: 10.1038/nature14539 – ident: 164_CR17 – ident: 164_CR21 doi: 10.1109/CVPR.2018.00745 – ident: 164_CR8 doi: 10.1109/ICEngTechnol.2017.8308186 – volume: 68 start-page: 394 year: 2018 ident: 164_CR47 publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21492 – volume: 153 start-page: 1 year: 2018 ident: 164_CR4 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.09.005 – volume: 35 start-page: 3461 year: 2019 ident: 164_CR22 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz083 – volume: 179 start-page: 423 year: 2021 ident: 164_CR43 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2021.01.025 – volume: 318 start-page: 2199 year: 2017 ident: 164_CR31 publication-title: JAMA doi: 10.1001/jama.2017.14585 – ident: 164_CR10 – ident: 164_CR14 – ident: 164_CR20 doi: 10.1109/CVPR.2017.243 – volume: 5 start-page: 1 year: 2015 ident: 164_CR37 publication-title: Int. J. Data Min. Knowl. Manag. Process doi: 10.5121/ijdkp.2015.5201 – start-page: 837 volume-title: ICIAR 2018: Image Analysis and Recognition year: 2018 ident: 164_CR44 – volume: 136 start-page: 104649 year: 2021 ident: 164_CR2 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104649 – volume: 115 start-page: 211 year: 2015 ident: 164_CR11 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – volume: 44 start-page: 5149 year: 2021 ident: 164_CR13 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. |
SSID | ssj0047888 |
Score | 2.3173156 |
SecondaryResourceType | review_article |
Snippet | Recently, research incorporating the benefits of deep learning in the application of cancer cell classification and analysis has been actively conducted. In... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 707 |
SubjectTerms | Artificial neural networks Biotechnology Breast cancer breast neoplasms Cancer Cervical cancer Chemistry Chemistry and Materials Science Classification Colon cancer Colorectal cancer colorectal neoplasms data collection Deep learning image analysis Image classification Industrial and Production Engineering Lung cancer lung neoplasms Machine learning Medical imaging Medical research neoplasm cells Neural networks Review Paper Transfer learning uterine cervical neoplasms 생물공학 |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYOAAHBANEYaAiOIEirU3TrMdpAm2T2GmTdov6SBDaaNG68fux-2AMwYFTD02jynbsz4r9GeAOg3TXj4zDjAkF86gvJ5R48CLeCR1PeHE3pEbh57E_mHqjmZhVfdx5Xe1eX0kWnnrT7IamJxnGGEa0UEw2YFdQ6o5GPHV7tfslOvii_w1xBcPsy62vMn_bYisYNdKl2cKZP65Gi4jzdASHFVS0e6Vuj2FHpy3Y69cT2lpw8I1M8ARG_Sz9qAzJJs4N_HZcFnnbvYo5XOc2glS7T6rGh14s7OEbehS7mI1JVUOFok5h8vQ46Q9YNSmBxZz7K4ZB3o-EdJLIxCaIvSQO_YQylVgLLikECRoUGWhcYBAj8lBLaYSrnSigHPUMmmmW6nOwE6NdKWXCQwRKnUQHWiNA6pq46wjtBIkF97XE1HvJh6E2zMckXoXiVSReJS24RZmqefyqiMWani-Zmi8VYvWhIio_EXjcgnYtc1UdoFy56PykIyR3LLj5eo3ypfuMMNXZOlccvbUQRKhvwUOtq80Wf_7Wxb9WX8I-jZgvC_ja0Fwt1_oKgcgqui4M7xNlANKf priority: 102 providerName: Springer Nature |
Title | Convolution Neural Network Approaches for Cancer Cell Image Classification |
URI | https://link.springer.com/article/10.1007/s12257-023-0164-7 https://www.proquest.com/docview/2887715731 https://www.proquest.com/docview/3153556204 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003015343 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Biotechnology and Bioprocess Engineering, 2023, 28(5), , pp.707-719 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58XPQgPrG6SkVPStA2TdOeZF12feEiorCeQpsmIqut7sPf70y3dVXQSwNtaMvMJPMlmfkG4ACddBSm1mPWJoIFlJeTSBx4KT9JvEAEOkooUfimG148BFc90as23IZVWGU9J5YTdVZo2iM_9nE0SE9I7p2-vTOqGkWnq1UJjVmYJ-oyCumSva8FFzHDl6lwCDEYLsT8-lSzTJ1DQ5YMPRYjkikmf_il2Xxgf0DOX6ekpfPpLMNShRrd5kTNKzBj8lVY_MYluAZXrSL_qOzIJcoN7N-dxHi7zYo43AxdxKhuizSNjXl5cS9fcUJxy9KYFDRU6mkd7jvt-9YFqwolMM15OGLo48NUSC9LrbaxDjKdhBktVLQRXJIHElQnMjbYwSJE5ImR0grfeGlMS9QNmMuL3GyCm1njSykzniBOOslMbAzio8jqyBPGizMHDmspqbcJHYaaEh-TSBWKVJFIlXRgH-Wo-vpZEYk1tU-F6g8UQvVLRUx-Ig64A41azqoaP0M11bYDe1-P0fLpOCPJTTEeKo6TtRDEp-_AUa2f6Sv-_K2t_z-4DQtUUn4SsNeAudFgbHYQeIzS3dK68Bp1zndhvnn-eN3G9qzdvb3Duw9-8xMk0Ndb |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPbQcUAtUDWxbI-gFZHUTx3FyQBXadtnlsaetxM1KHLuqgAT2AeqP6n9kJo9uqURvnHxIZEfjeWZmvgHYQyMdR5nzuXOp5CH15aQKBS8T3dQPZWjilBqFz0fR4Ht4ciEvluB32wtDZZWtTqwUdV4a-kf-OUBpUL5Uwv9yc8tpahRlV9sRGjVbnNpf9xiyTQ-HX_F-PwVB_9u4N-DNVAFuhIhmHA1ilEnl55kzLjFhbtIoJ6_eWCkUqWtJQxUTiy849KdEapVyMrB-llA8h9suw4tQiIQEKu4ft4qfgOirzjs8gGPcF7RJ1KpTD-VGcTSQnDCtuHpkBpeLiXvk4f6TlK1sXf81rDVOKjuqueoNLNliHVb_gi7cgJNeWdw1bMsI4QPfH9Ul5eyowSm3U4YuMesRY-Fir67Y8Br1F6smcVKNUsUWmzB-Dgq-hZWiLOw7YLmzgVIqFym6Zd3cJtaiOxY7E_vS-knuwX5LJX1To2_oBc4ykVQjSTWRVCsPdpGO-tL81ISZTeuPUl9ONEYGQ03AgTIJhQedls66EdepXjCXBzt_HqOgUfYkLWw5n2qBtkFKgu_34KC9n8UWT37W1v8P_AgvB-PzM302HJ1uwyuaZl_XCnZgZTaZ2_fo88yyDxWnMdDPzNkPHsUOcw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BVqrKAdGXCK-6anuhssBxHG8OCKGlKxbaVQ8g7c1KHLuqgGTZXUD9af13zOTBFiR64-RDIjsaf-OZiWe-AfiMRrobZ15w71PFI6rLSTUqXiZ3UxGpyHZTKhT-MYyPzqLjkRotwN-2FobSKtszsTqo89LSP_KdELVBC6Wl2PFNWsTPw_7--IpTBym6aW3badQQOXF_bjF8m-4NDnGvv4Rh_9tp74g3HQa4lTKecTSOcaa0yDNvfWKj3KZxTh6-dUpqOroVNVhMHL7g0beSqdPaq9CJLKHYDqddhBdaKkEqpkf3sR6R0ldVeLgAxxgwbC9Uq6o91CHN0Vhy4rfi-oFJXCwm_oG3--iCtrJ7_RVYbhxWdlAj7DUsuOINLP1DY_gWjntlcdNAmBHbB74_rNPL2UHDWe6mDN1j1iOQ4eAuLtjgEs8yVnXlpHylCiLv4PQ5JPgeOkVZuFVguXeh1jqXKbpou7lLnEPXrOttVygnkjyA7VZKZlwzcZg55zKJ1KBIDYnU6AA-oRzNuf1tiD-bxl-lOZ8YjBIGhkgEVRLJADZaOZtGdadmDrQAPt4_RqWjm5S0cOX11Ei0E0oRlX8AX9v9mU_x5Get_X_BD_ASMW2-D4Yn6_CKGtvXaYMb0JlNrt0muj-zbKsCGgPzzMC-A6SdEqA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolution+Neural+Network+Approaches+for+Cancer+Cell+Image+Classification&rft.jtitle=Biotechnology+and+bioprocess+engineering&rft.au=Kim%2C+Chaeyoung&rft.au=Shin%2C+Sungtae&rft.au=Jeong%2C+Sehoon&rft.date=2023-10-01&rft.issn=1226-8372&rft.eissn=1976-3816&rft.volume=28&rft.issue=5&rft.spage=707&rft.epage=719&rft_id=info:doi/10.1007%2Fs12257-023-0164-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12257_023_0164_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-8372&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-8372&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-8372&client=summon |