Automatic Grading Assessments for Knee MRI Cartilage Defects via Self-ensembling Semi-supervised Learning with Dual-Consistency
Knee cartilage defects caused by osteoarthritis are major musculoskeletal disorders, leading to joint necrosis or even disability if not intervened at early stage. Deep learning has demonstrated its effectiveness in computer-aided diagnosis, but it is time-consuming to prepare a large set of well-an...
Saved in:
Published in | Medical image analysis Vol. 80; p. 102508 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.08.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | Knee cartilage defects caused by osteoarthritis are major musculoskeletal disorders, leading to joint necrosis or even disability if not intervened at early stage. Deep learning has demonstrated its effectiveness in computer-aided diagnosis, but it is time-consuming to prepare a large set of well-annotated data by experienced radiologists for model training. In this paper, we propose a semi-supervised framework to effectively use unlabeled data for better evaluation of knee cartilage defect grading. Our framework is developed based on the widely-used mean-teacher classification model, by designing a novel dual-consistency strategy to boost the consistency between the teacher and student models. The main contributions are three-fold: (1) We define an attention loss function to make the network focus on the cartilage regions, which can both achieve accurate attention masks and boost classification performance simultaneously; (2) Besides enforcing the consistency of classification results, we further design a novel attention consistency mechanism to ensure the focusing of the student and teacher networks on the same defect regions; (3) We introduce an aggregation approach to ensemble the slice-level classification outcomes for deriving the final subject-level diagnosis. Experimental results show that our proposed method can significantly improve both classification and localization performances of knee cartilage defects. Our code is available on https://github.com/King-HAW/DC-MT.Knee cartilage defects caused by osteoarthritis are major musculoskeletal disorders, leading to joint necrosis or even disability if not intervened at early stage. Deep learning has demonstrated its effectiveness in computer-aided diagnosis, but it is time-consuming to prepare a large set of well-annotated data by experienced radiologists for model training. In this paper, we propose a semi-supervised framework to effectively use unlabeled data for better evaluation of knee cartilage defect grading. Our framework is developed based on the widely-used mean-teacher classification model, by designing a novel dual-consistency strategy to boost the consistency between the teacher and student models. The main contributions are three-fold: (1) We define an attention loss function to make the network focus on the cartilage regions, which can both achieve accurate attention masks and boost classification performance simultaneously; (2) Besides enforcing the consistency of classification results, we further design a novel attention consistency mechanism to ensure the focusing of the student and teacher networks on the same defect regions; (3) We introduce an aggregation approach to ensemble the slice-level classification outcomes for deriving the final subject-level diagnosis. Experimental results show that our proposed method can significantly improve both classification and localization performances of knee cartilage defects. Our code is available on https://github.com/King-HAW/DC-MT. |
---|---|
AbstractList | Knee cartilage defects caused by osteoarthritis are major musculoskeletal disorders, leading to joint necrosis or even disability if not intervened at early stage. Deep learning has demonstrated its effectiveness in computer-aided diagnosis, but it is time-consuming to prepare a large set of well-annotated data by experienced radiologists for model training. In this paper, we propose a semi-supervised framework to effectively use unlabeled data for better evaluation of knee cartilage defect grading. Our framework is developed based on the widely-used mean-teacher classification model, by designing a novel dual-consistency strategy to boost the consistency between the teacher and student models. The main contributions are three-fold: (1) We define an attention loss function to make the network focus on the cartilage regions, which can both achieve accurate attention masks and boost classification performance simultaneously; (2) Besides enforcing the consistency of classification results, we further design a novel attention consistency mechanism to ensure the focusing of the student and teacher networks on the same defect regions; (3) We introduce an aggregation approach to ensemble the slice-level classification outcomes for deriving the final subject-level diagnosis. Experimental results show that our proposed method can significantly improve both classification and localization performances of knee cartilage defects. Our code is available on https://github.com/King-HAW/DC-MT.Knee cartilage defects caused by osteoarthritis are major musculoskeletal disorders, leading to joint necrosis or even disability if not intervened at early stage. Deep learning has demonstrated its effectiveness in computer-aided diagnosis, but it is time-consuming to prepare a large set of well-annotated data by experienced radiologists for model training. In this paper, we propose a semi-supervised framework to effectively use unlabeled data for better evaluation of knee cartilage defect grading. Our framework is developed based on the widely-used mean-teacher classification model, by designing a novel dual-consistency strategy to boost the consistency between the teacher and student models. The main contributions are three-fold: (1) We define an attention loss function to make the network focus on the cartilage regions, which can both achieve accurate attention masks and boost classification performance simultaneously; (2) Besides enforcing the consistency of classification results, we further design a novel attention consistency mechanism to ensure the focusing of the student and teacher networks on the same defect regions; (3) We introduce an aggregation approach to ensemble the slice-level classification outcomes for deriving the final subject-level diagnosis. Experimental results show that our proposed method can significantly improve both classification and localization performances of knee cartilage defects. Our code is available on https://github.com/King-HAW/DC-MT. |
ArticleNumber | 102508 |
Author | Yao, Weiwu Xuan, Kai Huo, Jiayu Wang, Sheng Xue, Zhong Si, Liping Liu, Ying Xu, Jia Wang, Qian Shen, Dinggang Zhang, Lichi Ouyang, Xi Qian, Dahong |
Author_xml | – sequence: 1 givenname: Jiayu orcidid: 0000-0002-9811-0368 surname: Huo fullname: Huo, Jiayu – sequence: 2 givenname: Xi orcidid: 0000-0002-7841-5359 surname: Ouyang fullname: Ouyang, Xi – sequence: 3 givenname: Liping orcidid: 0000-0001-9672-035X surname: Si fullname: Si, Liping – sequence: 4 givenname: Kai surname: Xuan fullname: Xuan, Kai – sequence: 5 givenname: Sheng surname: Wang fullname: Wang, Sheng – sequence: 6 givenname: Weiwu surname: Yao fullname: Yao, Weiwu – sequence: 7 givenname: Ying surname: Liu fullname: Liu, Ying – sequence: 8 givenname: Jia surname: Xu fullname: Xu, Jia – sequence: 9 givenname: Dahong orcidid: 0000-0001-9715-6674 surname: Qian fullname: Qian, Dahong – sequence: 10 givenname: Zhong orcidid: 0000-0003-3207-0890 surname: Xue fullname: Xue, Zhong – sequence: 11 givenname: Qian surname: Wang fullname: Wang, Qian – sequence: 12 givenname: Dinggang surname: Shen fullname: Shen, Dinggang – sequence: 13 givenname: Lichi surname: Zhang fullname: Zhang, Lichi |
BookMark | eNp9kD1PwzAQhi0EEm3hF7B4ZEnxR-qkY9VCqShCojBbTnIprhKn-JyiTvx1UooYGJju473nhqdPTl3jgJArzoaccXWzGdZQWDMUTIhuI0YsPSE9LhWP0ljI09-ej85JH3HDGEvimPXI56QNTW2Czencm8K6NZ0gAmINLiAtG08fHAB9fF7QqfHBVmYNdAYl5F28s4auoCojcAh1Vh3wFdQ2wnYLfmcRCroE490h-LDhjc5aU0XTxqHFAC7fX5Cz0lQIlz91QF7vbl-m99Hyab6YTpZRLqUKES-LLDEjkEJlCVfcQDIqxipmsixSOZYyiTMpRMky0c08l5AKniZcGJWAYpkckOvj361v3lvAoGuLOVSVcdC0qIVKecplrFh3Ko-nuW8QPZR6621t_F5zpg-69UZ_69YH3fqou6PGf6jchs5r44I3tvqX_QJZk4pq |
CitedBy_id | crossref_primary_10_1016_j_inffus_2024_102263 crossref_primary_10_1136_bmjopen_2023_074508 crossref_primary_10_1016_j_arthro_2024_01_043 crossref_primary_10_1007_s00264_023_05987_4 crossref_primary_10_1016_j_compmedimag_2022_102142 crossref_primary_10_1109_ACCESS_2024_3439096 crossref_primary_10_1007_s00330_024_11105_8 crossref_primary_10_1016_j_displa_2025_102974 crossref_primary_10_1360_TB_2023_0441 crossref_primary_10_1371_journal_pone_0310203 crossref_primary_10_1007_s10278_023_00894_x crossref_primary_10_1016_j_ostima_2023_100161 crossref_primary_10_1109_JBHI_2024_3360102 |
Cites_doi | 10.1016/j.neuroimage.2014.10.002 10.1016/S0140-6736(14)60802-3 10.1007/978-3-031-01548-9 10.1111/j.2517-6161.1977.tb01600.x 10.1109/TPAMI.2018.2858821 10.1002/art.39324 10.1016/j.neuroimage.2011.06.064 10.1007/978-3-030-32226-7_56 10.1148/radiol.2018172986 10.1016/j.cmpb.2020.105328 10.1007/978-1-4899-7687-1_79 10.1148/rg.311105084 10.1002/art.34453 10.1109/TCYB.2018.2797905 10.1109/TMI.2020.2995508 10.1038/s41592-019-0686-2 10.1016/j.media.2018.03.011 10.18653/v1/D15-1044 10.1016/j.joca.2015.03.036 10.1038/s41598-018-20132-7 10.1109/TKDE.2021.3106804 10.1136/ard.16.4.494 10.1109/TMI.2020.3017007 10.1371/journal.pmed.1002699 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.media.2022.102508 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1361-8423 |
ExternalDocumentID | 10_1016_j_media_2022_102508 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO AAYXX ABBOA ABBQC ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO ADTZH ADVLN AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFRAH AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG CITATION COF CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- 7X8 |
ID | FETCH-LOGICAL-c336t-1fdb7a5e326b7161ae75d96403fd8393374b322f0b2d831c3e8218712a67e60b3 |
ISSN | 1361-8415 1361-8423 |
IngestDate | Fri Jul 11 16:02:52 EDT 2025 Tue Jul 01 02:49:32 EDT 2025 Thu Apr 24 23:12:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c336t-1fdb7a5e326b7161ae75d96403fd8393374b322f0b2d831c3e8218712a67e60b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9715-6674 0000-0002-7841-5359 0000-0002-9811-0368 0000-0001-9672-035X 0000-0003-3207-0890 |
PQID | 2681813460 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2681813460 crossref_primary_10_1016_j_media_2022_102508 crossref_citationtrail_10_1016_j_media_2022_102508 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-00 20220801 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-00 |
PublicationDecade | 2020 |
PublicationTitle | Medical image analysis |
PublicationYear | 2022 |
References | Liu (10.1016/j.media.2022.102508_bib0028) 2018; 289 10.1016/j.media.2022.102508_bib0010 Tiulpin (10.1016/j.media.2022.102508_bib0042) 2018; 8 Zhou (10.1016/j.media.2022.102508_bib0048) 2016 Zhu (10.1016/j.media.2022.102508_bib0049) 2009; 3 Kellegren (10.1016/j.media.2022.102508_bib0021) 1957; 16 Gu (10.1016/j.media.2022.102508_bib0018) 2017 10.1016/j.media.2022.102508_bib0024 10.1016/j.media.2022.102508_bib0022 Fu (10.1016/j.media.2022.102508_bib0015) 2019 Wang (10.1016/j.media.2022.102508_bib0045) 2018 Astuto (10.1016/j.media.2022.102508_bib0002) 2021; 3 Bai (10.1016/j.media.2022.102508_bib0004) 2020 Kraus (10.1016/j.media.2022.102508_bib0023) 2015; 23 Chen (10.1016/j.media.2022.102508_bib0009) 2017 Eckstein (10.1016/j.media.2022.102508_bib0014) 2015; 67 Miyato (10.1016/j.media.2022.102508_bib0031) 2018; 41 Lian (10.1016/j.media.2022.102508_bib0027) 2020 Moradi (10.1016/j.media.2022.102508_bib0032) 2015; 104 Pinheiro (10.1016/j.media.2022.102508_bib0037) 2015 Fukui (10.1016/j.media.2022.102508_bib0016) 2019 Steiner (10.1016/j.media.2022.102508_bib0040) 2019; 32 Crema (10.1016/j.media.2022.102508_bib0011) 2011; 31 Lee (10.1016/j.media.2022.102508_bib0025) 2013 Nguyen (10.1016/j.media.2022.102508_bib0033) 2020; 39 Xiang (10.1016/j.media.2022.102508_bib0046) 2018; 47 Selvaraju (10.1016/j.media.2022.102508_bib0039) 2017 10.1016/j.media.2022.102508_bib0038 10.1016/j.media.2022.102508_bib0003 10.1016/j.media.2022.102508_bib0047 Virtanen (10.1016/j.media.2022.102508_bib0043) 2020; 17 Ouyang (10.1016/j.media.2022.102508_bib0035) 2020; 39 10.1016/j.media.2022.102508_bib0041 Hu (10.1016/j.media.2022.102508_bib0020) 2018 Loeser (10.1016/j.media.2022.102508_bib0030) 2012; 64 Glyn-Jones (10.1016/j.media.2022.102508_bib0017) 2015; 386 Burton (10.1016/j.media.2022.102508_bib0008) 2020; 189 Li (10.1016/j.media.2022.102508_bib0026) 2018 Bien (10.1016/j.media.2022.102508_bib0007) 2018; 15 Wang (10.1016/j.media.2022.102508_bib0044) 2011; 58 Ouyang (10.1016/j.media.2022.102508_bib0036) 2020 Liu (10.1016/j.media.2022.102508_bib0029) 2019 Antony (10.1016/j.media.2022.102508_bib0001) 2016 Bai (10.1016/j.media.2022.102508_bib0005) 2021 Bai (10.1016/j.media.2022.102508_bib0006) 2019 Dempster (10.1016/j.media.2022.102508_bib0013) 1977; 39 Nie (10.1016/j.media.2022.102508_bib0034) 2018; 49 Cui (10.1016/j.media.2022.102508_bib0012) 2021 Hara (10.1016/j.media.2022.102508_bib0019) 2018 |
References_xml | – volume: 3 year: 2021 ident: 10.1016/j.media.2022.102508_bib0002 article-title: Automatic Deep Learning–assisted Detection and Grading of Abnormalities in Knee MRI Studies' publication-title: Radiology: Artificial Intelligence – volume: 104 start-page: 398 year: 2015 ident: 10.1016/j.media.2022.102508_bib0032 article-title: Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.002 – year: 2021 ident: 10.1016/j.media.2022.102508_bib0012 article-title: Learning Aligned Vertex Convolutional Networks for Graph Classification – start-page: 541 year: 2019 ident: 10.1016/j.media.2022.102508_bib0006 article-title: Self-supervised learning for cardiac MR image segmentation by anatomical position prediction – volume: 386 start-page: 376 year: 2015 ident: 10.1016/j.media.2022.102508_bib0017 article-title: 'Osteoarthritis' publication-title: The Lancet doi: 10.1016/S0140-6736(14)60802-3 – ident: 10.1016/j.media.2022.102508_bib0010 – start-page: 702 year: 2017 ident: 10.1016/j.media.2022.102508_bib0018 article-title: Semi-supervised learning for biomedical image segmentation via forest oriented super pixels (voxels) – start-page: 7132 year: 2018 ident: 10.1016/j.media.2022.102508_bib0020 article-title: Squeeze-and-excitation networks – start-page: 7794 year: 2018 ident: 10.1016/j.media.2022.102508_bib0045 article-title: Non-local neural networks – volume: 3 start-page: 1 year: 2009 ident: 10.1016/j.media.2022.102508_bib0049 article-title: Introduction to semi-supervised learning publication-title: Synthesis lectures on artificial intelligence and machine learning doi: 10.1007/978-3-031-01548-9 – year: 2013 ident: 10.1016/j.media.2022.102508_bib0025 article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks – volume: 39 start-page: 1 year: 1977 ident: 10.1016/j.media.2022.102508_bib0013 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society: Series B (Methodological) doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 41 start-page: 1979 year: 2018 ident: 10.1016/j.media.2022.102508_bib0031 article-title: 'Virtual adversarial training: a regularization method for supervised and semi-supervised learning' publication-title: IEEE transactions on pattern analysis and machine intelligence doi: 10.1109/TPAMI.2018.2858821 – volume: 67 start-page: 3184 year: 2015 ident: 10.1016/j.media.2022.102508_bib0014 article-title: Cartilage thickness change as an imaging biomarker of knee osteoarthritis progression–data from the fnih OA biomarkers consortium' publication-title: Arthritis & rheumatology (Hoboken, NJ) doi: 10.1002/art.39324 – ident: 10.1016/j.media.2022.102508_bib0024 – start-page: 3146 year: 2019 ident: 10.1016/j.media.2022.102508_bib0015 article-title: Dual attention network for scene segmentation – volume: 58 start-page: 805 year: 2011 ident: 10.1016/j.media.2022.102508_bib0044 article-title: Automatic segmentation of neonatal images using convex optimization and coupled level sets publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.06.064 – start-page: 1195 year: 2016 ident: 10.1016/j.media.2022.102508_bib0001 article-title: Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks – start-page: 9215 year: 2018 ident: 10.1016/j.media.2022.102508_bib0026 article-title: Tell me where to look: Guided attention inference network – start-page: 2921 year: 2016 ident: 10.1016/j.media.2022.102508_bib0048 article-title: Learning deep features for discriminative localization – ident: 10.1016/j.media.2022.102508_bib0003 doi: 10.1007/978-3-030-32226-7_56 – volume: 289 start-page: 160 year: 2018 ident: 10.1016/j.media.2022.102508_bib0028 article-title: Deep learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection publication-title: Radiology doi: 10.1148/radiol.2018172986 – volume: 189 year: 2020 ident: 10.1016/j.media.2022.102508_bib0008 article-title: 'Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks' publication-title: Computer methods and programs in biomedicine doi: 10.1016/j.cmpb.2020.105328 – year: 2020 ident: 10.1016/j.media.2022.102508_bib0027 article-title: Attention-Guided Hybrid Network for Dementia Diagnosis With Structural MR Images publication-title: IEEE Transactions on Cybernetics – ident: 10.1016/j.media.2022.102508_bib0047 doi: 10.1007/978-1-4899-7687-1_79 – start-page: 5659 year: 2017 ident: 10.1016/j.media.2022.102508_bib0009 article-title: Sca-cnn: Spatial and channel-wise attention in convolutional networks for image captioning – volume: 31 start-page: 37 year: 2011 ident: 10.1016/j.media.2022.102508_bib0011 article-title: Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research publication-title: Radiographics doi: 10.1148/rg.311105084 – volume: 64 start-page: 1697 year: 2012 ident: 10.1016/j.media.2022.102508_bib0030 article-title: Osteoarthritis: a disease of the joint as an organ publication-title: Arthritis and rheumatism doi: 10.1002/art.34453 – volume: 49 start-page: 1123 year: 2018 ident: 10.1016/j.media.2022.102508_bib0034 article-title: 3-D fully convolutional networks for multimodal isointense infant brain image segmentation publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2018.2797905 – volume: 39 start-page: 2595 year: 2020 ident: 10.1016/j.media.2022.102508_bib0035 article-title: Dual-sampling attention network for diagnosis of COVID-19 from community acquired pneumonia publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2020.2995508 – ident: 10.1016/j.media.2022.102508_bib0022 – volume: 17 start-page: 261 year: 2020 ident: 10.1016/j.media.2022.102508_bib0043 article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nature methods doi: 10.1038/s41592-019-0686-2 – start-page: 86 year: 2019 ident: 10.1016/j.media.2022.102508_bib0029 article-title: Multi-class gradient harmonized dice loss with application to knee MR image segmentation – ident: 10.1016/j.media.2022.102508_bib0041 – volume: 47 start-page: 31 year: 2018 ident: 10.1016/j.media.2022.102508_bib0046 article-title: Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image publication-title: Medical image analysis doi: 10.1016/j.media.2018.03.011 – start-page: 10705 year: 2019 ident: 10.1016/j.media.2022.102508_bib0016 article-title: Attention branch network: Learning of attention mechanism for visual explanation – ident: 10.1016/j.media.2022.102508_bib0038 doi: 10.18653/v1/D15-1044 – volume: 23 start-page: 1233 year: 2015 ident: 10.1016/j.media.2022.102508_bib0023 article-title: Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use publication-title: Osteoarthritis and cartilage doi: 10.1016/j.joca.2015.03.036 – volume: 32 start-page: 8026 year: 2019 ident: 10.1016/j.media.2022.102508_bib0040 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Advances in Neural Information Processing Systems – year: 2020 ident: 10.1016/j.media.2022.102508_bib0004 article-title: Learning backtrackless aligned-spatial graph convolutional networks for graph classification publication-title: IEEE transactions on pattern analysis and machine intelligence – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.media.2022.102508_bib0042 article-title: Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach publication-title: Scientific reports doi: 10.1038/s41598-018-20132-7 – year: 2021 ident: 10.1016/j.media.2022.102508_bib0005 article-title: Learning graph convolutional networks based on quantum vertex information propagation publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2021.3106804 – start-page: 6546 year: 2018 ident: 10.1016/j.media.2022.102508_bib0019 article-title: Can spatiotemporal 3d cnns retrace the history of 2d cnns and imagenet? – volume: 16 start-page: 494 year: 1957 ident: 10.1016/j.media.2022.102508_bib0021 article-title: Radiological assessment of osteoarthritis publication-title: Ann Rheum Dis doi: 10.1136/ard.16.4.494 – volume: 39 start-page: 4346 year: 2020 ident: 10.1016/j.media.2022.102508_bib0033 article-title: Semixup: In-and Out-of-Manifold Regularization for Deep Semi-Supervised Knee Osteoarthritis Severity Grading From Plain Radiographs publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2020.3017007 – start-page: 1713 year: 2015 ident: 10.1016/j.media.2022.102508_bib0037 article-title: From image-level to pixel-level labeling with convolutional networks – start-page: 618 year: 2017 ident: 10.1016/j.media.2022.102508_bib0039 article-title: Grad-cam: Visual explanations from deep networks via gradient-based localization – volume: 15 year: 2018 ident: 10.1016/j.media.2022.102508_bib0007 article-title: Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet publication-title: PLoS medicine doi: 10.1371/journal.pmed.1002699 – year: 2020 ident: 10.1016/j.media.2022.102508_bib0036 article-title: Learning Hierarchical Attention for Weakly-supervised Chest X-Ray Abnormality Localization and Diagnosis publication-title: IEEE Transactions on Medical Imaging |
SSID | ssj0007440 |
Score | 2.4513783 |
Snippet | Knee cartilage defects caused by osteoarthritis are major musculoskeletal disorders, leading to joint necrosis or even disability if not intervened at early... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 102508 |
Title | Automatic Grading Assessments for Knee MRI Cartilage Defects via Self-ensembling Semi-supervised Learning with Dual-Consistency |
URI | https://www.proquest.com/docview/2681813460 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgkxA8IBggxpeMxNtwlMSu0zwW9gXrhoRa1LfIdhyUqU2nNUEaL_zrnD-SflChwUvUWk4d9X45353vfofQO1P9ERcqJUXKBWF5DHqQSka0TnuqzwrFLJH2-QU_HbPPk95kmatqq0tqGaifW-tK_keqMAZyNVWy_yDZ7kdhAD6DfOEKEobrrWQ8aOq5o1w9uba58AeDjmjT8iwcnFUa3tuvn0xiR11OTYLOoXYZHD9KAZpiWhBwZPVMOmpuPSvJorkyCmQBpuiwDZzYcO1hI6bEdvhcGEt77UC4PfApZ2YN4alOlqBxBzyluGm6sG5z42PVk7KL87habdNP-3s7NmlcjPZMlKshCvBu2wS5VqtSHpE-c4XFgd4y5lWxa-rkdWlkzLP-VjXvIg6Xga2uCcySwXL2Oqn2xZfseDwcZqOjyegu2o3BmwB1uHvyYfht0G3ZhiXRFei5Z2rpqWwi4B-LrJsw6zu4NUtGj9BD70_ggQPHY3RHV3vowQrL5B66d-7zJ56gXx1isEcMXkEMBsRggxgMiMEdYrBHDAbE4A3E4A3E4BYx2CAGbyLmKRofH40-nhLfgoMoSnlNoiKXiehpMPIleNaR0EkvTzkLaZGDaU1pwiRsCUUoY_geKar7YDMmUSx4onko6TO0U80r_RxhqXKlQ5GwUEhGmZJJKhPGU5ZzLWSu9lHc_quZ8vz0pk3KNGsTES8zK4rMiCJzothH77ubrhw9y9-nv23FlYEaNWdjotLzZpHFHCzXiDIevrjFnJfo_hLnr9BOfd3o12Cc1vKNh9Zvq9CSWA |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Grading+Assessments+for+Knee+MRI+Cartilage+Defects+via+Self-ensembling+Semi-supervised+Learning+with+Dual-Consistency&rft.jtitle=Medical+image+analysis&rft.au=Huo%2C+Jiayu&rft.au=Ouyang%2C+Xi&rft.au=Si%2C+Liping&rft.au=Xuan%2C+Kai&rft.date=2022-08-01&rft.issn=1361-8423&rft.eissn=1361-8423&rft.volume=80&rft.spage=102508&rft_id=info:doi/10.1016%2Fj.media.2022.102508&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |