Automatic Grading Assessments for Knee MRI Cartilage Defects via Self-ensembling Semi-supervised Learning with Dual-Consistency

Knee cartilage defects caused by osteoarthritis are major musculoskeletal disorders, leading to joint necrosis or even disability if not intervened at early stage. Deep learning has demonstrated its effectiveness in computer-aided diagnosis, but it is time-consuming to prepare a large set of well-an...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 80; p. 102508
Main Authors Huo, Jiayu, Ouyang, Xi, Si, Liping, Xuan, Kai, Wang, Sheng, Yao, Weiwu, Liu, Ying, Xu, Jia, Qian, Dahong, Xue, Zhong, Wang, Qian, Shen, Dinggang, Zhang, Lichi
Format Journal Article
LanguageEnglish
Published 01.08.2022
Online AccessGet full text

Cover

Loading…
Abstract Knee cartilage defects caused by osteoarthritis are major musculoskeletal disorders, leading to joint necrosis or even disability if not intervened at early stage. Deep learning has demonstrated its effectiveness in computer-aided diagnosis, but it is time-consuming to prepare a large set of well-annotated data by experienced radiologists for model training. In this paper, we propose a semi-supervised framework to effectively use unlabeled data for better evaluation of knee cartilage defect grading. Our framework is developed based on the widely-used mean-teacher classification model, by designing a novel dual-consistency strategy to boost the consistency between the teacher and student models. The main contributions are three-fold: (1) We define an attention loss function to make the network focus on the cartilage regions, which can both achieve accurate attention masks and boost classification performance simultaneously; (2) Besides enforcing the consistency of classification results, we further design a novel attention consistency mechanism to ensure the focusing of the student and teacher networks on the same defect regions; (3) We introduce an aggregation approach to ensemble the slice-level classification outcomes for deriving the final subject-level diagnosis. Experimental results show that our proposed method can significantly improve both classification and localization performances of knee cartilage defects. Our code is available on https://github.com/King-HAW/DC-MT.Knee cartilage defects caused by osteoarthritis are major musculoskeletal disorders, leading to joint necrosis or even disability if not intervened at early stage. Deep learning has demonstrated its effectiveness in computer-aided diagnosis, but it is time-consuming to prepare a large set of well-annotated data by experienced radiologists for model training. In this paper, we propose a semi-supervised framework to effectively use unlabeled data for better evaluation of knee cartilage defect grading. Our framework is developed based on the widely-used mean-teacher classification model, by designing a novel dual-consistency strategy to boost the consistency between the teacher and student models. The main contributions are three-fold: (1) We define an attention loss function to make the network focus on the cartilage regions, which can both achieve accurate attention masks and boost classification performance simultaneously; (2) Besides enforcing the consistency of classification results, we further design a novel attention consistency mechanism to ensure the focusing of the student and teacher networks on the same defect regions; (3) We introduce an aggregation approach to ensemble the slice-level classification outcomes for deriving the final subject-level diagnosis. Experimental results show that our proposed method can significantly improve both classification and localization performances of knee cartilage defects. Our code is available on https://github.com/King-HAW/DC-MT.
AbstractList Knee cartilage defects caused by osteoarthritis are major musculoskeletal disorders, leading to joint necrosis or even disability if not intervened at early stage. Deep learning has demonstrated its effectiveness in computer-aided diagnosis, but it is time-consuming to prepare a large set of well-annotated data by experienced radiologists for model training. In this paper, we propose a semi-supervised framework to effectively use unlabeled data for better evaluation of knee cartilage defect grading. Our framework is developed based on the widely-used mean-teacher classification model, by designing a novel dual-consistency strategy to boost the consistency between the teacher and student models. The main contributions are three-fold: (1) We define an attention loss function to make the network focus on the cartilage regions, which can both achieve accurate attention masks and boost classification performance simultaneously; (2) Besides enforcing the consistency of classification results, we further design a novel attention consistency mechanism to ensure the focusing of the student and teacher networks on the same defect regions; (3) We introduce an aggregation approach to ensemble the slice-level classification outcomes for deriving the final subject-level diagnosis. Experimental results show that our proposed method can significantly improve both classification and localization performances of knee cartilage defects. Our code is available on https://github.com/King-HAW/DC-MT.Knee cartilage defects caused by osteoarthritis are major musculoskeletal disorders, leading to joint necrosis or even disability if not intervened at early stage. Deep learning has demonstrated its effectiveness in computer-aided diagnosis, but it is time-consuming to prepare a large set of well-annotated data by experienced radiologists for model training. In this paper, we propose a semi-supervised framework to effectively use unlabeled data for better evaluation of knee cartilage defect grading. Our framework is developed based on the widely-used mean-teacher classification model, by designing a novel dual-consistency strategy to boost the consistency between the teacher and student models. The main contributions are three-fold: (1) We define an attention loss function to make the network focus on the cartilage regions, which can both achieve accurate attention masks and boost classification performance simultaneously; (2) Besides enforcing the consistency of classification results, we further design a novel attention consistency mechanism to ensure the focusing of the student and teacher networks on the same defect regions; (3) We introduce an aggregation approach to ensemble the slice-level classification outcomes for deriving the final subject-level diagnosis. Experimental results show that our proposed method can significantly improve both classification and localization performances of knee cartilage defects. Our code is available on https://github.com/King-HAW/DC-MT.
ArticleNumber 102508
Author Yao, Weiwu
Xuan, Kai
Huo, Jiayu
Wang, Sheng
Xue, Zhong
Si, Liping
Liu, Ying
Xu, Jia
Wang, Qian
Shen, Dinggang
Zhang, Lichi
Ouyang, Xi
Qian, Dahong
Author_xml – sequence: 1
  givenname: Jiayu
  orcidid: 0000-0002-9811-0368
  surname: Huo
  fullname: Huo, Jiayu
– sequence: 2
  givenname: Xi
  orcidid: 0000-0002-7841-5359
  surname: Ouyang
  fullname: Ouyang, Xi
– sequence: 3
  givenname: Liping
  orcidid: 0000-0001-9672-035X
  surname: Si
  fullname: Si, Liping
– sequence: 4
  givenname: Kai
  surname: Xuan
  fullname: Xuan, Kai
– sequence: 5
  givenname: Sheng
  surname: Wang
  fullname: Wang, Sheng
– sequence: 6
  givenname: Weiwu
  surname: Yao
  fullname: Yao, Weiwu
– sequence: 7
  givenname: Ying
  surname: Liu
  fullname: Liu, Ying
– sequence: 8
  givenname: Jia
  surname: Xu
  fullname: Xu, Jia
– sequence: 9
  givenname: Dahong
  orcidid: 0000-0001-9715-6674
  surname: Qian
  fullname: Qian, Dahong
– sequence: 10
  givenname: Zhong
  orcidid: 0000-0003-3207-0890
  surname: Xue
  fullname: Xue, Zhong
– sequence: 11
  givenname: Qian
  surname: Wang
  fullname: Wang, Qian
– sequence: 12
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
– sequence: 13
  givenname: Lichi
  surname: Zhang
  fullname: Zhang, Lichi
BookMark eNp9kD1PwzAQhi0EEm3hF7B4ZEnxR-qkY9VCqShCojBbTnIprhKn-JyiTvx1UooYGJju473nhqdPTl3jgJArzoaccXWzGdZQWDMUTIhuI0YsPSE9LhWP0ljI09-ej85JH3HDGEvimPXI56QNTW2Czencm8K6NZ0gAmINLiAtG08fHAB9fF7QqfHBVmYNdAYl5F28s4auoCojcAh1Vh3wFdQ2wnYLfmcRCroE490h-LDhjc5aU0XTxqHFAC7fX5Cz0lQIlz91QF7vbl-m99Hyab6YTpZRLqUKES-LLDEjkEJlCVfcQDIqxipmsixSOZYyiTMpRMky0c08l5AKniZcGJWAYpkckOvj361v3lvAoGuLOVSVcdC0qIVKecplrFh3Ko-nuW8QPZR6621t_F5zpg-69UZ_69YH3fqou6PGf6jchs5r44I3tvqX_QJZk4pq
CitedBy_id crossref_primary_10_1016_j_inffus_2024_102263
crossref_primary_10_1136_bmjopen_2023_074508
crossref_primary_10_1016_j_arthro_2024_01_043
crossref_primary_10_1007_s00264_023_05987_4
crossref_primary_10_1016_j_compmedimag_2022_102142
crossref_primary_10_1109_ACCESS_2024_3439096
crossref_primary_10_1007_s00330_024_11105_8
crossref_primary_10_1016_j_displa_2025_102974
crossref_primary_10_1360_TB_2023_0441
crossref_primary_10_1371_journal_pone_0310203
crossref_primary_10_1007_s10278_023_00894_x
crossref_primary_10_1016_j_ostima_2023_100161
crossref_primary_10_1109_JBHI_2024_3360102
Cites_doi 10.1016/j.neuroimage.2014.10.002
10.1016/S0140-6736(14)60802-3
10.1007/978-3-031-01548-9
10.1111/j.2517-6161.1977.tb01600.x
10.1109/TPAMI.2018.2858821
10.1002/art.39324
10.1016/j.neuroimage.2011.06.064
10.1007/978-3-030-32226-7_56
10.1148/radiol.2018172986
10.1016/j.cmpb.2020.105328
10.1007/978-1-4899-7687-1_79
10.1148/rg.311105084
10.1002/art.34453
10.1109/TCYB.2018.2797905
10.1109/TMI.2020.2995508
10.1038/s41592-019-0686-2
10.1016/j.media.2018.03.011
10.18653/v1/D15-1044
10.1016/j.joca.2015.03.036
10.1038/s41598-018-20132-7
10.1109/TKDE.2021.3106804
10.1136/ard.16.4.494
10.1109/TMI.2020.3017007
10.1371/journal.pmed.1002699
ContentType Journal Article
Copyright Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.media.2022.102508
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
ExternalDocumentID 10_1016_j_media_2022_102508
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
AAYXX
ABBOA
ABBQC
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
ADVLN
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
CITATION
COF
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
7X8
ID FETCH-LOGICAL-c336t-1fdb7a5e326b7161ae75d96403fd8393374b322f0b2d831c3e8218712a67e60b3
ISSN 1361-8415
1361-8423
IngestDate Fri Jul 11 16:02:52 EDT 2025
Tue Jul 01 02:49:32 EDT 2025
Thu Apr 24 23:12:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c336t-1fdb7a5e326b7161ae75d96403fd8393374b322f0b2d831c3e8218712a67e60b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9715-6674
0000-0002-7841-5359
0000-0002-9811-0368
0000-0001-9672-035X
0000-0003-3207-0890
PQID 2681813460
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2681813460
crossref_primary_10_1016_j_media_2022_102508
crossref_citationtrail_10_1016_j_media_2022_102508
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-00
PublicationDecade 2020
PublicationTitle Medical image analysis
PublicationYear 2022
References Liu (10.1016/j.media.2022.102508_bib0028) 2018; 289
10.1016/j.media.2022.102508_bib0010
Tiulpin (10.1016/j.media.2022.102508_bib0042) 2018; 8
Zhou (10.1016/j.media.2022.102508_bib0048) 2016
Zhu (10.1016/j.media.2022.102508_bib0049) 2009; 3
Kellegren (10.1016/j.media.2022.102508_bib0021) 1957; 16
Gu (10.1016/j.media.2022.102508_bib0018) 2017
10.1016/j.media.2022.102508_bib0024
10.1016/j.media.2022.102508_bib0022
Fu (10.1016/j.media.2022.102508_bib0015) 2019
Wang (10.1016/j.media.2022.102508_bib0045) 2018
Astuto (10.1016/j.media.2022.102508_bib0002) 2021; 3
Bai (10.1016/j.media.2022.102508_bib0004) 2020
Kraus (10.1016/j.media.2022.102508_bib0023) 2015; 23
Chen (10.1016/j.media.2022.102508_bib0009) 2017
Eckstein (10.1016/j.media.2022.102508_bib0014) 2015; 67
Miyato (10.1016/j.media.2022.102508_bib0031) 2018; 41
Lian (10.1016/j.media.2022.102508_bib0027) 2020
Moradi (10.1016/j.media.2022.102508_bib0032) 2015; 104
Pinheiro (10.1016/j.media.2022.102508_bib0037) 2015
Fukui (10.1016/j.media.2022.102508_bib0016) 2019
Steiner (10.1016/j.media.2022.102508_bib0040) 2019; 32
Crema (10.1016/j.media.2022.102508_bib0011) 2011; 31
Lee (10.1016/j.media.2022.102508_bib0025) 2013
Nguyen (10.1016/j.media.2022.102508_bib0033) 2020; 39
Xiang (10.1016/j.media.2022.102508_bib0046) 2018; 47
Selvaraju (10.1016/j.media.2022.102508_bib0039) 2017
10.1016/j.media.2022.102508_bib0038
10.1016/j.media.2022.102508_bib0003
10.1016/j.media.2022.102508_bib0047
Virtanen (10.1016/j.media.2022.102508_bib0043) 2020; 17
Ouyang (10.1016/j.media.2022.102508_bib0035) 2020; 39
10.1016/j.media.2022.102508_bib0041
Hu (10.1016/j.media.2022.102508_bib0020) 2018
Loeser (10.1016/j.media.2022.102508_bib0030) 2012; 64
Glyn-Jones (10.1016/j.media.2022.102508_bib0017) 2015; 386
Burton (10.1016/j.media.2022.102508_bib0008) 2020; 189
Li (10.1016/j.media.2022.102508_bib0026) 2018
Bien (10.1016/j.media.2022.102508_bib0007) 2018; 15
Wang (10.1016/j.media.2022.102508_bib0044) 2011; 58
Ouyang (10.1016/j.media.2022.102508_bib0036) 2020
Liu (10.1016/j.media.2022.102508_bib0029) 2019
Antony (10.1016/j.media.2022.102508_bib0001) 2016
Bai (10.1016/j.media.2022.102508_bib0005) 2021
Bai (10.1016/j.media.2022.102508_bib0006) 2019
Dempster (10.1016/j.media.2022.102508_bib0013) 1977; 39
Nie (10.1016/j.media.2022.102508_bib0034) 2018; 49
Cui (10.1016/j.media.2022.102508_bib0012) 2021
Hara (10.1016/j.media.2022.102508_bib0019) 2018
References_xml – volume: 3
  year: 2021
  ident: 10.1016/j.media.2022.102508_bib0002
  article-title: Automatic Deep Learning–assisted Detection and Grading of Abnormalities in Knee MRI Studies'
  publication-title: Radiology: Artificial Intelligence
– volume: 104
  start-page: 398
  year: 2015
  ident: 10.1016/j.media.2022.102508_bib0032
  article-title: Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.002
– year: 2021
  ident: 10.1016/j.media.2022.102508_bib0012
  article-title: Learning Aligned Vertex Convolutional Networks for Graph Classification
– start-page: 541
  year: 2019
  ident: 10.1016/j.media.2022.102508_bib0006
  article-title: Self-supervised learning for cardiac MR image segmentation by anatomical position prediction
– volume: 386
  start-page: 376
  year: 2015
  ident: 10.1016/j.media.2022.102508_bib0017
  article-title: 'Osteoarthritis'
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(14)60802-3
– ident: 10.1016/j.media.2022.102508_bib0010
– start-page: 702
  year: 2017
  ident: 10.1016/j.media.2022.102508_bib0018
  article-title: Semi-supervised learning for biomedical image segmentation via forest oriented super pixels (voxels)
– start-page: 7132
  year: 2018
  ident: 10.1016/j.media.2022.102508_bib0020
  article-title: Squeeze-and-excitation networks
– start-page: 7794
  year: 2018
  ident: 10.1016/j.media.2022.102508_bib0045
  article-title: Non-local neural networks
– volume: 3
  start-page: 1
  year: 2009
  ident: 10.1016/j.media.2022.102508_bib0049
  article-title: Introduction to semi-supervised learning
  publication-title: Synthesis lectures on artificial intelligence and machine learning
  doi: 10.1007/978-3-031-01548-9
– year: 2013
  ident: 10.1016/j.media.2022.102508_bib0025
  article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks
– volume: 39
  start-page: 1
  year: 1977
  ident: 10.1016/j.media.2022.102508_bib0013
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 41
  start-page: 1979
  year: 2018
  ident: 10.1016/j.media.2022.102508_bib0031
  article-title: 'Virtual adversarial training: a regularization method for supervised and semi-supervised learning'
  publication-title: IEEE transactions on pattern analysis and machine intelligence
  doi: 10.1109/TPAMI.2018.2858821
– volume: 67
  start-page: 3184
  year: 2015
  ident: 10.1016/j.media.2022.102508_bib0014
  article-title: Cartilage thickness change as an imaging biomarker of knee osteoarthritis progression–data from the fnih OA biomarkers consortium'
  publication-title: Arthritis & rheumatology (Hoboken, NJ)
  doi: 10.1002/art.39324
– ident: 10.1016/j.media.2022.102508_bib0024
– start-page: 3146
  year: 2019
  ident: 10.1016/j.media.2022.102508_bib0015
  article-title: Dual attention network for scene segmentation
– volume: 58
  start-page: 805
  year: 2011
  ident: 10.1016/j.media.2022.102508_bib0044
  article-title: Automatic segmentation of neonatal images using convex optimization and coupled level sets
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.06.064
– start-page: 1195
  year: 2016
  ident: 10.1016/j.media.2022.102508_bib0001
  article-title: Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks
– start-page: 9215
  year: 2018
  ident: 10.1016/j.media.2022.102508_bib0026
  article-title: Tell me where to look: Guided attention inference network
– start-page: 2921
  year: 2016
  ident: 10.1016/j.media.2022.102508_bib0048
  article-title: Learning deep features for discriminative localization
– ident: 10.1016/j.media.2022.102508_bib0003
  doi: 10.1007/978-3-030-32226-7_56
– volume: 289
  start-page: 160
  year: 2018
  ident: 10.1016/j.media.2022.102508_bib0028
  article-title: Deep learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection
  publication-title: Radiology
  doi: 10.1148/radiol.2018172986
– volume: 189
  year: 2020
  ident: 10.1016/j.media.2022.102508_bib0008
  article-title: 'Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks'
  publication-title: Computer methods and programs in biomedicine
  doi: 10.1016/j.cmpb.2020.105328
– year: 2020
  ident: 10.1016/j.media.2022.102508_bib0027
  article-title: Attention-Guided Hybrid Network for Dementia Diagnosis With Structural MR Images
  publication-title: IEEE Transactions on Cybernetics
– ident: 10.1016/j.media.2022.102508_bib0047
  doi: 10.1007/978-1-4899-7687-1_79
– start-page: 5659
  year: 2017
  ident: 10.1016/j.media.2022.102508_bib0009
  article-title: Sca-cnn: Spatial and channel-wise attention in convolutional networks for image captioning
– volume: 31
  start-page: 37
  year: 2011
  ident: 10.1016/j.media.2022.102508_bib0011
  article-title: Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research
  publication-title: Radiographics
  doi: 10.1148/rg.311105084
– volume: 64
  start-page: 1697
  year: 2012
  ident: 10.1016/j.media.2022.102508_bib0030
  article-title: Osteoarthritis: a disease of the joint as an organ
  publication-title: Arthritis and rheumatism
  doi: 10.1002/art.34453
– volume: 49
  start-page: 1123
  year: 2018
  ident: 10.1016/j.media.2022.102508_bib0034
  article-title: 3-D fully convolutional networks for multimodal isointense infant brain image segmentation
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2018.2797905
– volume: 39
  start-page: 2595
  year: 2020
  ident: 10.1016/j.media.2022.102508_bib0035
  article-title: Dual-sampling attention network for diagnosis of COVID-19 from community acquired pneumonia
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2020.2995508
– ident: 10.1016/j.media.2022.102508_bib0022
– volume: 17
  start-page: 261
  year: 2020
  ident: 10.1016/j.media.2022.102508_bib0043
  article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python
  publication-title: Nature methods
  doi: 10.1038/s41592-019-0686-2
– start-page: 86
  year: 2019
  ident: 10.1016/j.media.2022.102508_bib0029
  article-title: Multi-class gradient harmonized dice loss with application to knee MR image segmentation
– ident: 10.1016/j.media.2022.102508_bib0041
– volume: 47
  start-page: 31
  year: 2018
  ident: 10.1016/j.media.2022.102508_bib0046
  article-title: Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image
  publication-title: Medical image analysis
  doi: 10.1016/j.media.2018.03.011
– start-page: 10705
  year: 2019
  ident: 10.1016/j.media.2022.102508_bib0016
  article-title: Attention branch network: Learning of attention mechanism for visual explanation
– ident: 10.1016/j.media.2022.102508_bib0038
  doi: 10.18653/v1/D15-1044
– volume: 23
  start-page: 1233
  year: 2015
  ident: 10.1016/j.media.2022.102508_bib0023
  article-title: Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use
  publication-title: Osteoarthritis and cartilage
  doi: 10.1016/j.joca.2015.03.036
– volume: 32
  start-page: 8026
  year: 2019
  ident: 10.1016/j.media.2022.102508_bib0040
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Advances in Neural Information Processing Systems
– year: 2020
  ident: 10.1016/j.media.2022.102508_bib0004
  article-title: Learning backtrackless aligned-spatial graph convolutional networks for graph classification
  publication-title: IEEE transactions on pattern analysis and machine intelligence
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.media.2022.102508_bib0042
  article-title: Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach
  publication-title: Scientific reports
  doi: 10.1038/s41598-018-20132-7
– year: 2021
  ident: 10.1016/j.media.2022.102508_bib0005
  article-title: Learning graph convolutional networks based on quantum vertex information propagation
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2021.3106804
– start-page: 6546
  year: 2018
  ident: 10.1016/j.media.2022.102508_bib0019
  article-title: Can spatiotemporal 3d cnns retrace the history of 2d cnns and imagenet?
– volume: 16
  start-page: 494
  year: 1957
  ident: 10.1016/j.media.2022.102508_bib0021
  article-title: Radiological assessment of osteoarthritis
  publication-title: Ann Rheum Dis
  doi: 10.1136/ard.16.4.494
– volume: 39
  start-page: 4346
  year: 2020
  ident: 10.1016/j.media.2022.102508_bib0033
  article-title: Semixup: In-and Out-of-Manifold Regularization for Deep Semi-Supervised Knee Osteoarthritis Severity Grading From Plain Radiographs
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2020.3017007
– start-page: 1713
  year: 2015
  ident: 10.1016/j.media.2022.102508_bib0037
  article-title: From image-level to pixel-level labeling with convolutional networks
– start-page: 618
  year: 2017
  ident: 10.1016/j.media.2022.102508_bib0039
  article-title: Grad-cam: Visual explanations from deep networks via gradient-based localization
– volume: 15
  year: 2018
  ident: 10.1016/j.media.2022.102508_bib0007
  article-title: Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet
  publication-title: PLoS medicine
  doi: 10.1371/journal.pmed.1002699
– year: 2020
  ident: 10.1016/j.media.2022.102508_bib0036
  article-title: Learning Hierarchical Attention for Weakly-supervised Chest X-Ray Abnormality Localization and Diagnosis
  publication-title: IEEE Transactions on Medical Imaging
SSID ssj0007440
Score 2.4513783
Snippet Knee cartilage defects caused by osteoarthritis are major musculoskeletal disorders, leading to joint necrosis or even disability if not intervened at early...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 102508
Title Automatic Grading Assessments for Knee MRI Cartilage Defects via Self-ensembling Semi-supervised Learning with Dual-Consistency
URI https://www.proquest.com/docview/2681813460
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgkxA8IBggxpeMxNtwlMSu0zwW9gXrhoRa1LfIdhyUqU2nNUEaL_zrnD-SflChwUvUWk4d9X45353vfofQO1P9ERcqJUXKBWF5DHqQSka0TnuqzwrFLJH2-QU_HbPPk95kmatqq0tqGaifW-tK_keqMAZyNVWy_yDZ7kdhAD6DfOEKEobrrWQ8aOq5o1w9uba58AeDjmjT8iwcnFUa3tuvn0xiR11OTYLOoXYZHD9KAZpiWhBwZPVMOmpuPSvJorkyCmQBpuiwDZzYcO1hI6bEdvhcGEt77UC4PfApZ2YN4alOlqBxBzyluGm6sG5z42PVk7KL87habdNP-3s7NmlcjPZMlKshCvBu2wS5VqtSHpE-c4XFgd4y5lWxa-rkdWlkzLP-VjXvIg6Xga2uCcySwXL2Oqn2xZfseDwcZqOjyegu2o3BmwB1uHvyYfht0G3ZhiXRFei5Z2rpqWwi4B-LrJsw6zu4NUtGj9BD70_ggQPHY3RHV3vowQrL5B66d-7zJ56gXx1isEcMXkEMBsRggxgMiMEdYrBHDAbE4A3E4A3E4BYx2CAGbyLmKRofH40-nhLfgoMoSnlNoiKXiehpMPIleNaR0EkvTzkLaZGDaU1pwiRsCUUoY_geKar7YDMmUSx4onko6TO0U80r_RxhqXKlQ5GwUEhGmZJJKhPGU5ZzLWSu9lHc_quZ8vz0pk3KNGsTES8zK4rMiCJzothH77ubrhw9y9-nv23FlYEaNWdjotLzZpHFHCzXiDIevrjFnJfo_hLnr9BOfd3o12Cc1vKNh9Zvq9CSWA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Grading+Assessments+for+Knee+MRI+Cartilage+Defects+via+Self-ensembling+Semi-supervised+Learning+with+Dual-Consistency&rft.jtitle=Medical+image+analysis&rft.au=Huo%2C+Jiayu&rft.au=Ouyang%2C+Xi&rft.au=Si%2C+Liping&rft.au=Xuan%2C+Kai&rft.date=2022-08-01&rft.issn=1361-8423&rft.eissn=1361-8423&rft.volume=80&rft.spage=102508&rft_id=info:doi/10.1016%2Fj.media.2022.102508&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon