Aerobic exercise training alleviates renal injury in db/db mice through inhibiting Nox4-mediated NLRP3 inflammasome activation
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease, with few therapeutic options available to slow its progression. Aerobic exercise training is an effective strategy for diabetes mellitus and its complications' prevention and treatment. The purpose of this study was...
Saved in:
Published in | Experimental gerontology Vol. 168; p. 111934 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease, with few therapeutic options available to slow its progression. Aerobic exercise training is an effective strategy for diabetes mellitus and its complications' prevention and treatment. The purpose of this study was to determine the effects of aerobic exercise training on diabetic kidney injury in db/db mice and to characterize the mechanism underlying the renal protective effects. The db/db mice were exercised 5 days a week for 60 min each day for 8 weeks at a speed of 5.6 m/min, after which renal function, morphology, oxidative stress, inflammation, fibrosis, and the expression of the Nox4/ROS/NF-κB/NLRP3 signaling pathway-related protein were assessed. Our results showed that aerobic exercise training significantly reduced body weight and microalbuminuria, improved renal function, and attenuated renal pathological changes in db/db mice independent of hyperglycemic state. Aerobic exercise training was also found to significantly improve oxidative stress and inflammation in the kidneys of db/db mice by decreasing the activity of complex I, the levels of MDA, 8-OHdG, Nox4, ROS, TNF-α, MCP-1, IL-6, and IL-18, increasing the activities of SOD and GSH-Px, the expression of klotho and NPHS2, and decreasing the phosphorylation of NF-κB p65 and IκBα, as well as the expression of NLRP3, ASC, caspase-1 p20, and IL-1β. Additionally, aerobic exercise training decreased TGF-β, collagen I, collagen IV, and α-SMA expression, thereby slowing the progression of kidney fibrosis in db/db mice. In conclusion, aerobic exercise training effectively reduces oxidative stress, inflammation, and renal fibrosis by modulating the Nox4/ROS/NF-κB/NLRP3 signaling pathway, implying that aerobic exercise training has significant potential to protect diabetic kidney injury and should be given more emphasis in DKD treatment.
•Exercise alleviates high glucose-induced renal injury in db/db mice.•Exercise improves glomerular ultrastructure in db/db mice.•Exercise suppresses Nox4 expression and subsequently inhibits ROS over-production.•ROS over-generation activates NLRP3 inflammasome. |
---|---|
AbstractList | Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease, with few therapeutic options available to slow its progression. Aerobic exercise training is an effective strategy for diabetes mellitus and its complications' prevention and treatment. The purpose of this study was to determine the effects of aerobic exercise training on diabetic kidney injury in db/db mice and to characterize the mechanism underlying the renal protective effects. The db/db mice were exercised 5 days a week for 60 min each day for 8 weeks at a speed of 5.6 m/min, after which renal function, morphology, oxidative stress, inflammation, fibrosis, and the expression of the Nox4/ROS/NF-κB/NLRP3 signaling pathway-related protein were assessed. Our results showed that aerobic exercise training significantly reduced body weight and microalbuminuria, improved renal function, and attenuated renal pathological changes in db/db mice independent of hyperglycemic state. Aerobic exercise training was also found to significantly improve oxidative stress and inflammation in the kidneys of db/db mice by decreasing the activity of complex I, the levels of MDA, 8-OHdG, Nox4, ROS, TNF-α, MCP-1, IL-6, and IL-18, increasing the activities of SOD and GSH-Px, the expression of klotho and NPHS2, and decreasing the phosphorylation of NF-κB p65 and IκBα, as well as the expression of NLRP3, ASC, caspase-1 p20, and IL-1β. Additionally, aerobic exercise training decreased TGF-β, collagen I, collagen IV, and α-SMA expression, thereby slowing the progression of kidney fibrosis in db/db mice. In conclusion, aerobic exercise training effectively reduces oxidative stress, inflammation, and renal fibrosis by modulating the Nox4/ROS/NF-κB/NLRP3 signaling pathway, implying that aerobic exercise training has significant potential to protect diabetic kidney injury and should be given more emphasis in DKD treatment.Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease, with few therapeutic options available to slow its progression. Aerobic exercise training is an effective strategy for diabetes mellitus and its complications' prevention and treatment. The purpose of this study was to determine the effects of aerobic exercise training on diabetic kidney injury in db/db mice and to characterize the mechanism underlying the renal protective effects. The db/db mice were exercised 5 days a week for 60 min each day for 8 weeks at a speed of 5.6 m/min, after which renal function, morphology, oxidative stress, inflammation, fibrosis, and the expression of the Nox4/ROS/NF-κB/NLRP3 signaling pathway-related protein were assessed. Our results showed that aerobic exercise training significantly reduced body weight and microalbuminuria, improved renal function, and attenuated renal pathological changes in db/db mice independent of hyperglycemic state. Aerobic exercise training was also found to significantly improve oxidative stress and inflammation in the kidneys of db/db mice by decreasing the activity of complex I, the levels of MDA, 8-OHdG, Nox4, ROS, TNF-α, MCP-1, IL-6, and IL-18, increasing the activities of SOD and GSH-Px, the expression of klotho and NPHS2, and decreasing the phosphorylation of NF-κB p65 and IκBα, as well as the expression of NLRP3, ASC, caspase-1 p20, and IL-1β. Additionally, aerobic exercise training decreased TGF-β, collagen I, collagen IV, and α-SMA expression, thereby slowing the progression of kidney fibrosis in db/db mice. In conclusion, aerobic exercise training effectively reduces oxidative stress, inflammation, and renal fibrosis by modulating the Nox4/ROS/NF-κB/NLRP3 signaling pathway, implying that aerobic exercise training has significant potential to protect diabetic kidney injury and should be given more emphasis in DKD treatment. Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease, with few therapeutic options available to slow its progression. Aerobic exercise training is an effective strategy for diabetes mellitus and its complications' prevention and treatment. The purpose of this study was to determine the effects of aerobic exercise training on diabetic kidney injury in db/db mice and to characterize the mechanism underlying the renal protective effects. The db/db mice were exercised 5 days a week for 60 min each day for 8 weeks at a speed of 5.6 m/min, after which renal function, morphology, oxidative stress, inflammation, fibrosis, and the expression of the Nox4/ROS/NF-κB/NLRP3 signaling pathway-related protein were assessed. Our results showed that aerobic exercise training significantly reduced body weight and microalbuminuria, improved renal function, and attenuated renal pathological changes in db/db mice independent of hyperglycemic state. Aerobic exercise training was also found to significantly improve oxidative stress and inflammation in the kidneys of db/db mice by decreasing the activity of complex I, the levels of MDA, 8-OHdG, Nox4, ROS, TNF-α, MCP-1, IL-6, and IL-18, increasing the activities of SOD and GSH-Px, the expression of klotho and NPHS2, and decreasing the phosphorylation of NF-κB p65 and IκBα, as well as the expression of NLRP3, ASC, caspase-1 p20, and IL-1β. Additionally, aerobic exercise training decreased TGF-β, collagen I, collagen IV, and α-SMA expression, thereby slowing the progression of kidney fibrosis in db/db mice. In conclusion, aerobic exercise training effectively reduces oxidative stress, inflammation, and renal fibrosis by modulating the Nox4/ROS/NF-κB/NLRP3 signaling pathway, implying that aerobic exercise training has significant potential to protect diabetic kidney injury and should be given more emphasis in DKD treatment. •Exercise alleviates high glucose-induced renal injury in db/db mice.•Exercise improves glomerular ultrastructure in db/db mice.•Exercise suppresses Nox4 expression and subsequently inhibits ROS over-production.•ROS over-generation activates NLRP3 inflammasome. |
ArticleNumber | 111934 |
Author | Li, Xiaofei Ying, Changjiang Zhou, Xiaoyan Shi, Yuanyuan Xu, Jian Li, Yan Xiang, Jie Zhou, Zhongyuan Zhu, Yandong Wang, Meng |
Author_xml | – sequence: 1 givenname: Zhongyuan surname: Zhou fullname: Zhou, Zhongyuan organization: The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China – sequence: 2 givenname: Changjiang surname: Ying fullname: Ying, Changjiang organization: Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China – sequence: 3 givenname: Xiaoyan surname: Zhou fullname: Zhou, Xiaoyan organization: Laboratory of Morphology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China – sequence: 4 givenname: Yuanyuan surname: Shi fullname: Shi, Yuanyuan organization: The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China – sequence: 5 givenname: Jian surname: Xu fullname: Xu, Jian organization: The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China – sequence: 6 givenname: Yandong surname: Zhu fullname: Zhu, Yandong organization: The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China – sequence: 7 givenname: Meng surname: Wang fullname: Wang, Meng organization: The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China – sequence: 8 givenname: Yan surname: Li fullname: Li, Yan organization: The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China – sequence: 9 givenname: Xiaofei surname: Li fullname: Li, Xiaofei organization: Department of Sports Medicine, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, PR China – sequence: 10 givenname: Jie surname: Xiang fullname: Xiang, Jie email: 18052268386@163.com organization: The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China |
BookMark | eNqFkD1v2zAQhokiBeqk_QVdOGaRQ4oiJQ0ZgiBfgJEERTsTJ-pk05DIlKQNZ-lvLxV3ytBML3D3Pgfcc0pOnHdIyHfOlpxxdbFd4mGNYVmyslxyzltRfSIL3tSiUA2XJ2TBpOCFlEp-IacxbhljqhR8Qf5cYfCdNRQPGIyNSFMA66xbUxhH3FtIGGlAByO1brsLrzlo3130HZ2syfVN8Lv1Jk83trNpBh_9oSom7Ge2p4-rH88ir4cRpgmin5CCSXYPyXr3lXweYIz47V-ekV-3Nz-v74vV093D9dWqMEKoVPAeqk42MNTdwAQ0DdZgTKnqphpKqAAqqTpVydaIVmAr2JAbfatMW5qmRyPOyPnx7kvwv3cYk55sNDiO4NDvoi5rVqusrZG5Ko5VE3yMAQf9EuwE4VVzpmfbeqvfbOvZtj7azlT7jjI2vb04-xw_YC-PLGYDe5u30Vh0JhsMaJLuvf0v_xdIuqDI |
CitedBy_id | crossref_primary_10_1016_j_lfs_2023_121740 crossref_primary_10_3389_fendo_2023_1230646 crossref_primary_10_3390_ijms242216441 crossref_primary_10_3389_fmicb_2024_1476908 crossref_primary_10_3390_ijms26010343 crossref_primary_10_1016_j_intimp_2024_112131 crossref_primary_10_1016_j_freeradbiomed_2024_10_283 crossref_primary_10_3390_ijms25137130 crossref_primary_10_3389_fendo_2025_1557797 crossref_primary_10_3233_CH_242306 crossref_primary_10_3389_fmed_2024_1471642 crossref_primary_10_3389_fphar_2024_1368835 crossref_primary_10_3390_foods13040591 |
Cites_doi | 10.1038/s41418-018-0105-8 10.1155/2012/702948 10.1371/journal.pone.0072344 10.1038/ni.3333 10.1681/ASN.2010020143 10.2337/diabetes.50.12.2837 10.1155/2017/2353729 10.1681/ASN.2015060676 10.1016/j.metabol.2021.154748 10.1161/JAHA.118.009358 10.1053/meta.2001.28074 10.1152/ajpheart.00516.2018 10.1001/jama.2016.10924 10.1038/nrd.2018.149 10.1152/ajprenal.00028.2010 10.4049/jimmunol.0901363 10.2337/db09-1342 10.1152/ajplung.00206.2001 10.1016/j.cmet.2019.04.011 10.1038/nature09663 10.1155/2017/1516985 10.1371/journal.pone.0138037 10.1016/j.semnephrol.2010.03.007 10.2215/CJN.11491116 10.1096/fj.201801749RRR 10.2337/diabetes.51.5.1588 10.1007/s00125-008-0996-x 10.1074/jbc.M502412200 10.12659/MSM.912877 10.1111/bph.14853 10.1007/s11011-020-00646-8 10.1002/jcp.30342 10.1007/BF00253407 10.1016/j.redox.2020.101479 10.1038/s41374-020-00508-y 10.1016/j.addr.2017.07.009 10.1084/jem.161.3.475 10.1080/08860220601098870 10.1172/JCI111523 10.1681/ASN.2013070810 10.1038/nature10759 10.1177/0960327116650013 10.1161/CIRCRESAHA.117.305205 10.2337/diabetes.49.12.2170 10.1152/ajprenal.90548.2008 10.3389/fphys.2018.00636 10.1001/jama.2011.861 10.1186/s12986-019-0349-4 10.1016/j.kint.2017.03.027 10.1146/annurev.immunol.021908.132715 10.1001/jama.291.24.2931 10.1038/nri2725 |
ContentType | Journal Article |
Copyright | 2022 Copyright © 2022. Published by Elsevier Inc. |
Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier Inc. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.exger.2022.111934 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Social Welfare & Social Work Anatomy & Physiology |
EISSN | 1873-6815 |
ExternalDocumentID | 10_1016_j_exger_2022_111934 S053155652200242X |
GroupedDBID | --- --K --M --Z -~X .GJ .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29G 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYJJ ABBQC ABFNM ABFRF ABGSF ABJNI ABLJU ABLVK ABMAC ABMZM ABPPZ ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACNCT ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFPKN AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HEA HLW HMK HMO HVGLF HZ~ H~9 IHE J1W KOM LCYCR LPU LX3 LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAE SBG SCC SDF SDG SDP SES SEW SPCBC SSH SSU SSZ T5K TEORI UKR WUQ XOL ZA5 ZGI ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION 7X8 |
ID | FETCH-LOGICAL-c336t-1da4b58af7bf03a88e7acc26784f2a4aa456b6459c393e930f8e7d96c92c8dec3 |
IEDL.DBID | .~1 |
ISSN | 0531-5565 1873-6815 |
IngestDate | Thu Jul 10 16:40:28 EDT 2025 Tue Jul 01 02:52:22 EDT 2025 Thu Apr 24 23:03:38 EDT 2025 Fri Feb 23 02:38:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nox4 Oxidative stress Aerobic exercise training NLRP3 inflammasome Fibrosis Diabetic kidney disease |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-1da4b58af7bf03a88e7acc26784f2a4aa456b6459c393e930f8e7d96c92c8dec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2707619385 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2707619385 crossref_primary_10_1016_j_exger_2022_111934 crossref_citationtrail_10_1016_j_exger_2022_111934 elsevier_sciencedirect_doi_10_1016_j_exger_2022_111934 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-15 |
PublicationDateYYYYMMDD | 2022-10-15 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Experimental gerontology |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Liu (10.1016/j.exger.2022.111934_bb0125) 2018; 9 Bauernfeind (10.1016/j.exger.2022.111934_bb0015) 2009; 183 Chang (10.1016/j.exger.2022.111934_bb0035) 2017; 36 Ward (10.1016/j.exger.2022.111934_bb0240) 1994; 24 Shahzad (10.1016/j.exger.2022.111934_bb0195) 2016; 27 Ma (10.1016/j.exger.2022.111934_bb0140) 2021; 236 Yang (10.1016/j.exger.2022.111934_bb0255) 2021; 101 Sedeek (10.1016/j.exger.2022.111934_bb0190) 2010; 299 Mangan (10.1016/j.exger.2022.111934_bb0145) 2018; 17 Strowig (10.1016/j.exger.2022.111934_bb0205) 2012; 481 Lazarevic (10.1016/j.exger.2022.111934_bb0115) 2007; 29 Fang (10.1016/j.exger.2022.111934_bb0070) 2013; 8 Ceriello (10.1016/j.exger.2022.111934_bb0030) 2000; 49 Tang (10.1016/j.exger.2022.111934_bb0210) 2018; 24 Wang (10.1016/j.exger.2022.111934_bb0235) 2020; 32 Wu (10.1016/j.exger.2022.111934_bb0245) 2021; 118 Lee (10.1016/j.exger.2022.111934_bb0120) 1985; 161 Brar (10.1016/j.exger.2022.111934_bb0020) 2002; 282 Park (10.1016/j.exger.2022.111934_bb0175) 2001; 50 Butcher (10.1016/j.exger.2022.111934_bb0025) 2018; 7 Afkarian (10.1016/j.exger.2022.111934_bb0005) 2016; 316 Moien-Afshari (10.1016/j.exger.2022.111934_bb0170) 2008; 51 Zhou (10.1016/j.exger.2022.111934_bb0265) 2011; 469 Ito (10.1016/j.exger.2022.111934_bb0090) 2015; 10 Zucker (10.1016/j.exger.2022.111934_bb0270) 2018; 315 Kakimoto (10.1016/j.exger.2022.111934_bb0105) 2002; 51 Vilaysane (10.1016/j.exger.2022.111934_bb0225) 2010; 21 Mencke (10.1016/j.exger.2022.111934_bb0160) 2017; 121 Wang (10.1016/j.exger.2022.111934_bb0230) 2017; 2017 Collins (10.1016/j.exger.2022.111934_bb0060) 2012; 59 Ishikawa (10.1016/j.exger.2022.111934_bb0085) 2012; 2012 Tschopp (10.1016/j.exger.2022.111934_bb0220) 2010; 10 Cohen (10.1016/j.exger.2022.111934_bb0055) 2001; 50 Alicic (10.1016/j.exger.2022.111934_bb0010) 2017; 12 Mitka (10.1016/j.exger.2022.111934_bb0165) 2004; 291 Shi (10.1016/j.exger.2022.111934_bb0200) 2016; 17 Ghosh (10.1016/j.exger.2022.111934_bb0075) 2009; 296 Jiang (10.1016/j.exger.2022.111934_bb0100) 2010; 59 Liu (10.1016/j.exger.2022.111934_bb0130) 2019; 16 Parving (10.1016/j.exger.2022.111934_bb0180) 1981; 20 Rosa (10.1016/j.exger.2022.111934_bb0185) 2021; 36 Zhang (10.1016/j.exger.2022.111934_bb0260) 2017; 92 Gorin (10.1016/j.exger.2022.111934_bb0080) 2005; 280 Chen (10.1016/j.exger.2022.111934_bb0040) 2019; 33 Lu (10.1016/j.exger.2022.111934_bb0135) 2017; 2017 Martinon (10.1016/j.exger.2022.111934_bb0150) 2009; 27 Mauer (10.1016/j.exger.2022.111934_bb0155) 1984; 74 Chen (10.1016/j.exger.2022.111934_bb0045) 2020; 177 Lavie (10.1016/j.exger.2022.111934_bb0110) 2015; 117 Xue (10.1016/j.exger.2022.111934_bb0250) 2019; 26 Cherney (10.1016/j.exger.2022.111934_bb0050) 2019; 29 Jha (10.1016/j.exger.2022.111934_bb0095) 2014; 25 Tesch (10.1016/j.exger.2022.111934_bb0215) 2010; 30 de Boer (10.1016/j.exger.2022.111934_bb0065) 2011; 305 |
References_xml | – volume: 59 start-page: e1 issue: A7 year: 2012 ident: 10.1016/j.exger.2022.111934_bb0060 article-title: 'United States Renal Data System 2011 Annual Data Report: Atlas of chronic kidney disease & end-stage renal disease in the United States publication-title: Am. J. Kidney Dis. – volume: 26 start-page: 130 year: 2019 ident: 10.1016/j.exger.2022.111934_bb0250 article-title: lincRNA-Cox2 regulates NLRP3 inflammasome and autophagy mediated neuroinflammation publication-title: Cell Death Differ. doi: 10.1038/s41418-018-0105-8 – volume: 2012 year: 2012 ident: 10.1016/j.exger.2022.111934_bb0085 article-title: Effect of exercise on kidney function, oxidative stress, and inflammation in type 2 diabetic KK-A(y) mice publication-title: Exp. Diabetes Res. doi: 10.1155/2012/702948 – volume: 8 year: 2013 ident: 10.1016/j.exger.2022.111934_bb0070 article-title: Involvement of endoplasmic reticulum stress in albuminuria induced inflammasome activation in renal proximal tubular cells publication-title: PLoS One doi: 10.1371/journal.pone.0072344 – volume: 17 start-page: 250 year: 2016 ident: 10.1016/j.exger.2022.111934_bb0200 article-title: NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component publication-title: Nat. Immunol. doi: 10.1038/ni.3333 – volume: 21 start-page: 1732 year: 2010 ident: 10.1016/j.exger.2022.111934_bb0225 article-title: The NLRP3 inflammasome promotes renal inflammation and contributes to CKD publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2010020143 – volume: 50 start-page: 2837 year: 2001 ident: 10.1016/j.exger.2022.111934_bb0175 article-title: Effects of insulin and antioxidant on plasma 8-hydroxyguanine and tissue 8-hydroxydeoxyguanosine in streptozotocin-induced diabetic rats publication-title: Diabetes doi: 10.2337/diabetes.50.12.2837 – volume: 2017 start-page: 2353729 year: 2017 ident: 10.1016/j.exger.2022.111934_bb0230 article-title: Increased oxidative damage of RNA in early-stage nephropathy in db/db mice publication-title: Oxidative Med. Cell. Longev. doi: 10.1155/2017/2353729 – volume: 27 start-page: 2270 year: 2016 ident: 10.1016/j.exger.2022.111934_bb0195 article-title: Caspase-1, but not caspase-3, promotes diabetic nephropathy publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2015060676 – volume: 118 year: 2021 ident: 10.1016/j.exger.2022.111934_bb0245 article-title: Inhibition of NLRP3 inflammasome ameliorates podocyte damage by suppressing lipid accumulation in diabetic nephropathy publication-title: Metabolism doi: 10.1016/j.metabol.2021.154748 – volume: 7 year: 2018 ident: 10.1016/j.exger.2022.111934_bb0025 article-title: Increased muscle mass protects against hypertension and renal injury in obesity publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.118.009358 – volume: 50 start-page: 1435 year: 2001 ident: 10.1016/j.exger.2022.111934_bb0055 article-title: Increased urinary type IV collagen marks the development of glomerular pathology in diabetic d/db mice publication-title: Metabolism doi: 10.1053/meta.2001.28074 – volume: 315 start-page: H1027 year: 2018 ident: 10.1016/j.exger.2022.111934_bb0270 article-title: Benefits of exercise training on cardiovascular dysfunction: molecular and integrative publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00516.2018 – volume: 316 start-page: 602 year: 2016 ident: 10.1016/j.exger.2022.111934_bb0005 article-title: Clinical manifestations of kidney disease among US adults with diabetes, 1988–2014 publication-title: JAMA doi: 10.1001/jama.2016.10924 – volume: 17 start-page: 688 year: 2018 ident: 10.1016/j.exger.2022.111934_bb0145 article-title: Targeting the NLRP3 inflammasome in inflammatory diseases publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2018.149 – volume: 299 start-page: F1348 year: 2010 ident: 10.1016/j.exger.2022.111934_bb0190 article-title: Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy publication-title: Am. J. Physiol. Renal Physiol. doi: 10.1152/ajprenal.00028.2010 – volume: 183 start-page: 787 year: 2009 ident: 10.1016/j.exger.2022.111934_bb0015 article-title: Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression publication-title: J. Immunol. doi: 10.4049/jimmunol.0901363 – volume: 59 start-page: 850 year: 2010 ident: 10.1016/j.exger.2022.111934_bb0100 article-title: The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy publication-title: Diabetes doi: 10.2337/db09-1342 – volume: 282 start-page: L782 year: 2002 ident: 10.1016/j.exger.2022.111934_bb0020 article-title: NADPH oxidase promotes NF-kappaB activation and proliferation in human airway smooth muscle publication-title: Am. J. Physiol. Lung Cell. Mol. Physiol. doi: 10.1152/ajplung.00206.2001 – volume: 29 start-page: 1024 year: 2019 ident: 10.1016/j.exger.2022.111934_bb0050 article-title: A big win for diabetic kidney disease: CREDENCE publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.04.011 – volume: 469 start-page: 221 year: 2011 ident: 10.1016/j.exger.2022.111934_bb0265 article-title: A role for mitochondria in NLRP3 inflammasome activation publication-title: Nature doi: 10.1038/nature09663 – volume: 2017 start-page: 1516985 year: 2017 ident: 10.1016/j.exger.2022.111934_bb0135 article-title: Curcumin ameliorates diabetic nephropathy by suppressing NLRP3 inflammasome signaling publication-title: Biomed. Res. Int. doi: 10.1155/2017/1516985 – volume: 10 year: 2015 ident: 10.1016/j.exger.2022.111934_bb0090 article-title: Chronic running exercise alleviates early progression of nephropathy with upregulation of nitric oxide synthases and suppression of glycation in zucker diabetic rats publication-title: PLoS One doi: 10.1371/journal.pone.0138037 – volume: 30 start-page: 290 year: 2010 ident: 10.1016/j.exger.2022.111934_bb0215 article-title: Macrophages and diabetic nephropathy publication-title: Semin. Nephrol. doi: 10.1016/j.semnephrol.2010.03.007 – volume: 12 start-page: 2032 year: 2017 ident: 10.1016/j.exger.2022.111934_bb0010 article-title: Diabetic kidney disease: challenges, progress, and possibilities publication-title: Clin. J. Am. Soc. Nephrol. doi: 10.2215/CJN.11491116 – volume: 33 start-page: 4571 year: 2019 ident: 10.1016/j.exger.2022.111934_bb0040 article-title: Optineurin inhibits NLRP3 inflammasome activation by enhancing mitophagy of renal tubular cells in diabetic nephropathy publication-title: FASEB J. doi: 10.1096/fj.201801749RRR – volume: 51 start-page: 1588 year: 2002 ident: 10.1016/j.exger.2022.111934_bb0105 article-title: Accumulation of 8-hydroxy-2'-deoxyguanosine and mitochondrial DNA deletion in kidney of diabetic rats publication-title: Diabetes doi: 10.2337/diabetes.51.5.1588 – volume: 51 start-page: 1327 year: 2008 ident: 10.1016/j.exger.2022.111934_bb0170 article-title: Exercise restores endothelial function independently of weight loss or hyperglycaemic status in db/db mice publication-title: Diabetologia doi: 10.1007/s00125-008-0996-x – volume: 280 start-page: 39616 year: 2005 ident: 10.1016/j.exger.2022.111934_bb0080 article-title: Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney publication-title: J. Biol. Chem. doi: 10.1074/jbc.M502412200 – volume: 24 start-page: 9081 year: 2018 ident: 10.1016/j.exger.2022.111934_bb0210 article-title: Aerobic exercise training alleviates renal injury by interfering with mitochondrial function in type-1 diabetic mice publication-title: Med. Sci. Monit. doi: 10.12659/MSM.912877 – volume: 177 start-page: 145 year: 2020 ident: 10.1016/j.exger.2022.111934_bb0045 article-title: Connexin32 ameliorates renal fibrosis in diabetic mice by promoting K48-linked NADPH oxidase 4 polyubiquitination and degradation publication-title: Br. J. Pharmacol. doi: 10.1111/bph.14853 – volume: 36 start-page: 351 year: 2021 ident: 10.1016/j.exger.2022.111934_bb0185 article-title: Physical exercise prevents amyloid β(1–40)-induced disturbances in NLRP3 inflammasome pathway in the hippocampus of mice publication-title: Metab. Brain Dis. doi: 10.1007/s11011-020-00646-8 – volume: 236 start-page: 6581 year: 2021 ident: 10.1016/j.exger.2022.111934_bb0140 article-title: Aerobic exercise ameliorates cardiac hypertrophy by regulating mitochondrial quality control and endoplasmic reticulum stress through M(2) AChR publication-title: J. Cell. Physiol. doi: 10.1002/jcp.30342 – volume: 20 start-page: 457 year: 1981 ident: 10.1016/j.exger.2022.111934_bb0180 article-title: A prospective study of glomerular filtration rate and arterial blood pressure in insulin-dependent diabetics with diabetic nephropathy publication-title: Diabetologia doi: 10.1007/BF00253407 – volume: 32 year: 2020 ident: 10.1016/j.exger.2022.111934_bb0235 article-title: Smad3 promotes AKI sensitivity in diabetic mice via interaction with p53 and induction of NOX4-dependent ROS production publication-title: Redox Biol. doi: 10.1016/j.redox.2020.101479 – volume: 101 start-page: 369 year: 2021 ident: 10.1016/j.exger.2022.111934_bb0255 article-title: Exercise suppresses NLRP3 inflammasome activation in mice with diet-induced NASH: a plausible role of adropin publication-title: Lab. Investig. doi: 10.1038/s41374-020-00508-y – volume: 121 start-page: 85 year: 2017 ident: 10.1016/j.exger.2022.111934_bb0160 article-title: Effects of Klotho on fibrosis and cancer: a renal focus on mechanisms and therapeutic strategies publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2017.07.009 – volume: 161 start-page: 475 year: 1985 ident: 10.1016/j.exger.2022.111934_bb0120 article-title: Quantitative analysis of total macrophage content in adult mouse tissues. Immunochemical studies with monoclonal antibody F4/80 publication-title: J. Exp. Med. doi: 10.1084/jem.161.3.475 – volume: 29 start-page: 199 year: 2007 ident: 10.1016/j.exger.2022.111934_bb0115 article-title: Effects of aerobic exercise on microalbuminuria and enzymuria in type 2 diabetic patients publication-title: Ren. Fail. doi: 10.1080/08860220601098870 – volume: 74 start-page: 1143 year: 1984 ident: 10.1016/j.exger.2022.111934_bb0155 article-title: Structural-functional relationships in diabetic nephropathy publication-title: J. Clin. Invest. doi: 10.1172/JCI111523 – volume: 25 start-page: 1237 year: 2014 ident: 10.1016/j.exger.2022.111934_bb0095 article-title: Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2013070810 – volume: 481 start-page: 278 year: 2012 ident: 10.1016/j.exger.2022.111934_bb0205 article-title: Inflammasomes in health and disease publication-title: Nature doi: 10.1038/nature10759 – volume: 36 start-page: 386 year: 2017 ident: 10.1016/j.exger.2022.111934_bb0035 article-title: Glutathione S-transferase A1 - a sensitive marker of alcoholic injury on primary hepatocytes publication-title: Hum. Exp. Toxicol. doi: 10.1177/0960327116650013 – volume: 117 start-page: 207 year: 2015 ident: 10.1016/j.exger.2022.111934_bb0110 article-title: Exercise and the cardiovascular system: clinical science and cardiovascular outcomes publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.117.305205 – volume: 49 start-page: 2170 year: 2000 ident: 10.1016/j.exger.2022.111934_bb0030 article-title: Defective intracellular antioxidant enzyme production in type 1 diabetic patients with nephropathy publication-title: Diabetes doi: 10.2337/diabetes.49.12.2170 – volume: 296 start-page: F700 year: 2009 ident: 10.1016/j.exger.2022.111934_bb0075 article-title: Moderate exercise attenuates caspase-3 activity, oxidative stress, and inhibits progression of diabetic renal disease in db/db mice publication-title: Am. J. Physiol. Renal Physiol. doi: 10.1152/ajprenal.90548.2008 – volume: 9 start-page: 636 year: 2018 ident: 10.1016/j.exger.2022.111934_bb0125 article-title: Moderate exercise suppresses NF-κB signaling and activates the SIRT1-AMPK-PGC1α axis to attenuate muscle loss in diabetic db/db mice publication-title: Front. Physiol. doi: 10.3389/fphys.2018.00636 – volume: 305 start-page: 2532 year: 2011 ident: 10.1016/j.exger.2022.111934_bb0065 article-title: Temporal trends in the prevalence of diabetic kidney disease in the United States publication-title: JAMA doi: 10.1001/jama.2011.861 – volume: 16 start-page: 22 year: 2019 ident: 10.1016/j.exger.2022.111934_bb0130 article-title: Exercise training upregulates SIRT1 to attenuate inflammation and metabolic dysfunction in kidney and liver of diabetic db/db mice publication-title: Nutr. Metab. (Lond.) doi: 10.1186/s12986-019-0349-4 – volume: 92 start-page: 909 year: 2017 ident: 10.1016/j.exger.2022.111934_bb0260 article-title: Podocyte-specific JAK2 overexpression worsens diabetic kidney disease in mice publication-title: Kidney Int. doi: 10.1016/j.kint.2017.03.027 – volume: 24 start-page: 266 year: 1994 ident: 10.1016/j.exger.2022.111934_bb0240 article-title: Aerobic training and diabetic nephropathy in the obese Zucker rat publication-title: Ann. Clin. Lab. Sci. – volume: 27 start-page: 229 year: 2009 ident: 10.1016/j.exger.2022.111934_bb0150 article-title: The inflammasomes: guardians of the body publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.021908.132715 – volume: 291 start-page: 2931 year: 2004 ident: 10.1016/j.exger.2022.111934_bb0165 article-title: Attacking host of risk factors is key to treating, preventing diabetic kidney disease publication-title: JAMA doi: 10.1001/jama.291.24.2931 – volume: 10 start-page: 210 year: 2010 ident: 10.1016/j.exger.2022.111934_bb0220 article-title: NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2725 |
SSID | ssj0006231 |
Score | 2.4595683 |
Snippet | Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease, with few therapeutic options available to slow its progression. Aerobic exercise... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 111934 |
SubjectTerms | Aerobic exercise training Diabetic kidney disease Fibrosis NLRP3 inflammasome Nox4 Oxidative stress |
Title | Aerobic exercise training alleviates renal injury in db/db mice through inhibiting Nox4-mediated NLRP3 inflammasome activation |
URI | https://dx.doi.org/10.1016/j.exger.2022.111934 https://www.proquest.com/docview/2707619385 |
Volume | 168 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVkJcEN2CKLSVkRAnwia2s4mPq6rV8ugKARV7s_wUKd2k2m5Re-lv74wTg0CiB05RnHESecbzje15EPIKQAKmUFUAB4zLhJEG9GBusrJk0sk8BMMxGvlkPpmdiveLcrFBDlMsDLpVDrq_1-lRWw8t42E0xxdNM_6C4lOCPcJYBJoFRrCLCqX87e1vNw-A91g1D4gzpE6Zh6KPl7_GvIyw_meoOiQX_0Knv_R0BJ_jx-TRYDXSaf9j22TDtyOyM21hxby8oa9p9OOMG-Qj8uBkOC4fkb0--JZ-8-dBrzwQpoZu9WOH3E49ZmGyNNVdoqlgBMUKKz8btEPpyuOnm_YMRh8u1JmxMxSr2NOhyA-0fm9Mgw7UdN5diyyGo4ApS-cfP3_i8DiA3C31Zbf0FAMp-m3gJ-T0-Ojr4Swb6jFklvPJOiucFqasdahMyLmua19paxnAnQhMC63BGDOYnMZyyb3keQAKJydWMls7b_lTstl2rX9GqKyFcEWlOSacwzA_WFiFIuSukN7mge8Slvig7JCsHIfgXCWvtDMVmaeQeapn3i5586vTRZ-r437ySWKw-kPkFKDJ_R1fJnFQMBnxhEW3vru6VKyK20K8Lp__78tfkId4h_BYlHtkc7268vtg96zNQRTsA7I1ffdhNr8DYbYCWA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGkIALgg7ExgAjASdCE9tp4gOHCpg61lYINtGbsR1bZFuTqe1gu-yf4h_kPScBgcQOSDtF8lcs_57fe7bfByHPQEjAFsoSQMAUkTDSAB-MTZSmTBYy9t5w9EaeTAejA_F-ls7WyI_OFwbNKlve3_D0wK3bkn67mv2Tsux_QvJJQR9hLAiaWWtZuefOv8O5bfl69y2A_JyxnXf7b0ZRm1ogspwPVlFSaGHSXPvM-JjrPHeZtpYB5xaeaaE16BUG46xYLrmTPPbQopADK5nNC2c5jHuNXBfALjBtwquL33YloE-ENH0wuwin14U6CkZl7gwDQTIQnMirJBf_Eod_CYYg7XbukNutmkqHzUrcJWuu6pGNYQVH9Pk5fUGD4Wi4ke-RG5P2fb5HthtvX_rZHXu9cNCwK6gXRxvkYugw7JOlXaIn2mWooJjS5VuJii9dOPx1WR0C3PChhekXhs6Bo9E2qxCUfi1NiRbbdFqfiSj4v4DuTKfjjx84VHsg9Lle1nNH0XOjuXe-Rw6uBKX7ZL2qK_eAUJkLUSSZ5hjhDv0K4STnEx8XiXQ29nyTsA4HZdvo6LgEx6ozgztUATyF4KkGvE3y8lenkyY4yOXNBx3A6g8aVyC-Lu_4tCMHBbsfn3R05erTpWJZuIfiebr1v4M_ITdH-5OxGu9O9x6SW1iDsjlJt8n6anHqHoHStTKPA5FT8uWqd9VP1n4_EA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aerobic+exercise+training+alleviates+renal+injury+in+db%2Fdb+mice+through+inhibiting+Nox4-mediated+NLRP3+inflammasome+activation&rft.jtitle=Experimental+gerontology&rft.au=Zhou%2C+Zhongyuan&rft.au=Ying%2C+Changjiang&rft.au=Zhou%2C+Xiaoyan&rft.au=Shi%2C+Yuanyuan&rft.date=2022-10-15&rft.issn=1873-6815&rft.eissn=1873-6815&rft.volume=168&rft.spage=111934&rft_id=info:doi/10.1016%2Fj.exger.2022.111934&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0531-5565&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0531-5565&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0531-5565&client=summon |