Biocompatible Synthetic Polymers for Tissue Engineering Purposes

Synthetic polymers have been an integral part of modern society since the early 1960s. Besides their most well-known applications to the public, such as packaging, construction, textiles and electronics, synthetic polymers have also revolutionized the field of medicine. Starting with the first plast...

Full description

Saved in:
Bibliographic Details
Published inBiomacromolecules Vol. 23; no. 5; pp. 1841 - 1863
Main Authors Terzopoulou, Zoi, Zamboulis, Alexandra, Koumentakou, Ioanna, Michailidou, Georgia, Noordam, Michiel Jan, Bikiaris, Dimitrios N.
Format Journal Article
LanguageEnglish
Published United States 09.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Synthetic polymers have been an integral part of modern society since the early 1960s. Besides their most well-known applications to the public, such as packaging, construction, textiles and electronics, synthetic polymers have also revolutionized the field of medicine. Starting with the first plastic syringe developed in 1955 to the complex polymeric materials used in the regeneration of tissues, their contributions have never been more prominent. Decades of research on polymeric materials, stem cells, and three-dimensional printing contributed to the rapid progress of tissue engineering and regenerative medicine that envisages the potential future of organ transplantations. This perspective discusses the role of synthetic polymers in tissue engineering, their design and properties in relation to each type of application. Additionally, selected recent achievements of tissue engineering using synthetic polymers are outlined to provide insight into how they will contribute to the advancement of the field in the near future. In this way, we aim to provide a guide that will help scientists with synthetic polymer design and selection for different tissue engineering applications.
AbstractList Synthetic polymers have been an integral part of modern society since the early 1960s. Besides their most well-known applications to the public, such as packaging, construction, textiles and electronics, synthetic polymers have also revolutionized the field of medicine. Starting with the first plastic syringe developed in 1955 to the complex polymeric materials used in the regeneration of tissues, their contributions have never been more prominent. Decades of research on polymeric materials, stem cells, and three-dimensional printing contributed to the rapid progress of tissue engineering and regenerative medicine that envisages the potential future of organ transplantations. This perspective discusses the role of synthetic polymers in tissue engineering, their design and properties in relation to each type of application. Additionally, selected recent achievements of tissue engineering using synthetic polymers are outlined to provide insight into how they will contribute to the advancement of the field in the near future. In this way, we aim to provide a guide that will help scientists with synthetic polymer design and selection for different tissue engineering applications.Synthetic polymers have been an integral part of modern society since the early 1960s. Besides their most well-known applications to the public, such as packaging, construction, textiles and electronics, synthetic polymers have also revolutionized the field of medicine. Starting with the first plastic syringe developed in 1955 to the complex polymeric materials used in the regeneration of tissues, their contributions have never been more prominent. Decades of research on polymeric materials, stem cells, and three-dimensional printing contributed to the rapid progress of tissue engineering and regenerative medicine that envisages the potential future of organ transplantations. This perspective discusses the role of synthetic polymers in tissue engineering, their design and properties in relation to each type of application. Additionally, selected recent achievements of tissue engineering using synthetic polymers are outlined to provide insight into how they will contribute to the advancement of the field in the near future. In this way, we aim to provide a guide that will help scientists with synthetic polymer design and selection for different tissue engineering applications.
Synthetic polymers have been an integral part of modern society since the early 1960s. Besides their most well-known applications to the public, such as packaging, construction, textiles and electronics, synthetic polymers have also revolutionized the field of medicine. Starting with the first plastic syringe developed in 1955 to the complex polymeric materials used in the regeneration of tissues, their contributions have never been more prominent. Decades of research on polymeric materials, stem cells, and three-dimensional printing contributed to the rapid progress of tissue engineering and regenerative medicine that envisages the potential future of organ transplantations. This perspective discusses the role of synthetic polymers in tissue engineering, their design and properties in relation to each type of application. Additionally, selected recent achievements of tissue engineering using synthetic polymers are outlined to provide insight into how they will contribute to the advancement of the field in the near future. In this way, we aim to provide a guide that will help scientists with synthetic polymer design and selection for different tissue engineering applications.
Author Noordam, Michiel Jan
Koumentakou, Ioanna
Bikiaris, Dimitrios N.
Zamboulis, Alexandra
Terzopoulou, Zoi
Michailidou, Georgia
Author_xml – sequence: 1
  givenname: Zoi
  orcidid: 0000-0001-7935-2145
  surname: Terzopoulou
  fullname: Terzopoulou, Zoi
  organization: Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
– sequence: 2
  givenname: Alexandra
  surname: Zamboulis
  fullname: Zamboulis, Alexandra
  organization: Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
– sequence: 3
  givenname: Ioanna
  surname: Koumentakou
  fullname: Koumentakou, Ioanna
  organization: Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
– sequence: 4
  givenname: Georgia
  surname: Michailidou
  fullname: Michailidou, Georgia
  organization: Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
– sequence: 5
  givenname: Michiel Jan
  surname: Noordam
  fullname: Noordam, Michiel Jan
  organization: Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
– sequence: 6
  givenname: Dimitrios N.
  orcidid: 0000-0001-8458-4952
  surname: Bikiaris
  fullname: Bikiaris, Dimitrios N.
  organization: Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35438479$$D View this record in MEDLINE/PubMed
BookMark eNqNkTtPwzAUhS1URMvjDzCgjCwpfsSPbDzES0KiEmW2HPsGjJK42MnQf0-g7cKAmO4dvnOG8x2iSRc6QOiU4DnBlFwYm-aVD62xc2oxxoXcQzPCqcgLgenk5-e5lKWcosOUPkakZAU_QFPGC6YKWc7Q5bUPNrQr0_uqgexl3fXv0HubLUKzbiGmrA4xW_qUBshuuzffAUTfvWWLIa5CgnSM9mvTJDjZ3iP0ene7vHnIn57vH2-unnLLmOhzUlalkq4mICommTDYAa0IpdaZklshicPgHCukUrjGTBlOBBGUuYqY2jF2hM43vasYPgdIvW59stA0poMwJE2F5FxRwf-DjrsoSoQa0bMtOlQtOL2KvjVxrXcDjYDaADaGlCLU2vp-HCt0fTS-0QTrbxd6dKE3LvTWxRilv6K79j9CX5axj4o
CitedBy_id crossref_primary_10_1021_acs_biomac_2c00737
crossref_primary_10_1039_D3TB01186K
crossref_primary_10_3390_polym16121729
crossref_primary_10_1002_pen_26221
crossref_primary_10_3389_fbioe_2022_953555
crossref_primary_10_1093_burnst_tkae036
crossref_primary_10_3390_ijms231911793
crossref_primary_10_1021_acsami_3c06144
crossref_primary_10_1177_20417314241286092
crossref_primary_10_32604_jpm_2024_055887
crossref_primary_10_1016_j_memsci_2024_123224
crossref_primary_10_1021_acs_biomac_3c01232
crossref_primary_10_1177_07316844241256433
crossref_primary_10_1016_j_bej_2022_108545
crossref_primary_10_1108_RPJ_06_2024_0275
crossref_primary_10_1016_j_mtchem_2023_101818
crossref_primary_10_1016_j_oooo_2023_04_015
crossref_primary_10_1088_2053_1591_ada5bd
crossref_primary_10_1016_j_ijpx_2024_100313
crossref_primary_10_1088_1758_5090_ad9409
crossref_primary_10_3390_nano14171429
crossref_primary_10_1016_j_carbpol_2023_121484
crossref_primary_10_3390_bioengineering11040332
crossref_primary_10_3390_ijms25052938
crossref_primary_10_1007_s10853_023_08149_4
crossref_primary_10_1038_s41529_024_00487_1
crossref_primary_10_3389_fbioe_2022_1005413
crossref_primary_10_1002_adma_202310040
crossref_primary_10_3390_ma18051035
crossref_primary_10_3390_nano15060470
crossref_primary_10_1016_j_ijbiomac_2025_139846
crossref_primary_10_1016_j_ijbiomac_2024_139426
crossref_primary_10_1016_j_jot_2024_07_007
crossref_primary_10_1016_j_carbpol_2023_121408
crossref_primary_10_3389_fbioe_2024_1509397
crossref_primary_10_3390_polym15193940
crossref_primary_10_1016_j_apmt_2022_101603
crossref_primary_10_1007_s10924_024_03230_8
crossref_primary_10_3390_jfb14020115
crossref_primary_10_3390_polym14214566
crossref_primary_10_15625_2525_2518_19824
crossref_primary_10_3390_biomimetics10030184
crossref_primary_10_3390_biomimetics9070409
crossref_primary_10_1038_s44222_023_00143_4
crossref_primary_10_1038_s41596_024_01066_z
crossref_primary_10_1016_j_eurpolymj_2024_113268
crossref_primary_10_1021_acsnano_4c01406
crossref_primary_10_1016_j_rechem_2024_101872
crossref_primary_10_1002_mabi_202200288
crossref_primary_10_1021_acs_jpcb_4c07518
crossref_primary_10_3390_ijms25126556
crossref_primary_10_1088_1758_5090_ad5705
crossref_primary_10_1016_j_aiepr_2024_05_001
crossref_primary_10_1002_adfm_202301062
crossref_primary_10_1007_s10853_023_09132_9
crossref_primary_10_1088_2057_1976_acdb7d
crossref_primary_10_1016_j_colsurfb_2024_114342
crossref_primary_10_3390_molecules30030686
crossref_primary_10_1002_smll_202410440
crossref_primary_10_1016_j_ijbiomac_2025_141344
crossref_primary_10_1016_j_heliyon_2024_e33223
crossref_primary_10_3390_gels11020088
crossref_primary_10_1021_acsapm_4c02250
crossref_primary_10_1016_j_mtcomm_2024_109056
crossref_primary_10_1002_adbi_202300118
crossref_primary_10_3390_polym16141998
crossref_primary_10_1146_annurev_bioeng_110222_101045
crossref_primary_10_1016_j_isci_2024_111664
crossref_primary_10_1007_s10853_024_09707_0
crossref_primary_10_1016_j_polymer_2023_126448
crossref_primary_10_1021_acsomega_3c06944
crossref_primary_10_1002_mabi_202300127
crossref_primary_10_3390_ijms25073826
crossref_primary_10_1007_s13340_024_00737_2
crossref_primary_10_1080_00914037_2024_2387026
crossref_primary_10_1039_D4BM01099J
crossref_primary_10_1016_j_cis_2024_103317
crossref_primary_10_1002_adhm_202303797
crossref_primary_10_1016_j_apmt_2024_102444
crossref_primary_10_1016_j_eurpolymj_2024_113593
crossref_primary_10_3389_fchem_2024_1417407
crossref_primary_10_1002_adom_202400248
crossref_primary_10_1007_s41779_024_01084_w
crossref_primary_10_1016_j_jconrel_2023_07_034
crossref_primary_10_3390_polym15102406
crossref_primary_10_1002_adhm_202402527
crossref_primary_10_1016_j_ijbiomac_2024_131505
crossref_primary_10_1002_adma_202404264
crossref_primary_10_1016_j_ijbiomac_2024_134615
crossref_primary_10_1016_j_pmatsci_2024_101293
crossref_primary_10_1021_acs_biomac_3c00362
crossref_primary_10_1002_inf2_12425
crossref_primary_10_1016_j_colsurfb_2024_114484
crossref_primary_10_1039_D3TB02665E
crossref_primary_10_1016_j_jddst_2023_105038
crossref_primary_10_1021_acsmaterialslett_4c00668
crossref_primary_10_1016_j_ijbiomac_2022_07_140
crossref_primary_10_1016_j_mtbio_2023_100870
crossref_primary_10_1016_j_jcou_2024_102697
crossref_primary_10_1016_j_apmt_2024_102261
crossref_primary_10_1002_jbm_b_35520
crossref_primary_10_1016_j_ijbiomac_2022_12_293
crossref_primary_10_1016_j_carbpol_2025_123350
crossref_primary_10_1016_j_ijbiomac_2024_135778
crossref_primary_10_1002_adhm_202401202
crossref_primary_10_3390_ijms232415993
crossref_primary_10_3390_molecules29040883
crossref_primary_10_3390_jfb13040279
crossref_primary_10_1088_1741_2552_ad628d
crossref_primary_10_3390_ijms24087319
crossref_primary_10_1016_j_jddst_2024_105702
crossref_primary_10_1016_j_ijbiomac_2025_141896
crossref_primary_10_1002_app_56458
crossref_primary_10_3390_molecules28248025
crossref_primary_10_2147_ORR_S501260
crossref_primary_10_1016_j_scitotenv_2024_170262
crossref_primary_10_1021_acsptsci_4c00679
crossref_primary_10_1002_admi_202300587
crossref_primary_10_1002_jbm_b_35257
crossref_primary_10_1089_ten_teb_2022_0140
crossref_primary_10_1021_acs_biomac_3c00610
crossref_primary_10_3389_fbioe_2024_1342340
crossref_primary_10_3390_fib11100082
crossref_primary_10_3390_jfb15080233
crossref_primary_10_3390_jfb14010005
crossref_primary_10_1002_adma_202413078
crossref_primary_10_1039_D3DT02932H
crossref_primary_10_1016_j_ijbiomac_2023_126760
crossref_primary_10_1021_acsami_4c02636
Cites_doi 10.1016/j.msec.2016.10.058
10.1016/j.jconrel.2021.04.003
10.1002/adhm.202100828
10.1002/adhm.202000353
10.1016/j.biomaterials.2019.119584
10.1111/ceo.13978
10.1016/j.addr.2021.113960
10.3389/fcvm.2020.583360
10.1186/ar2180
10.1007/s10439-016-1643-1
10.1016/j.msec.2020.111070
10.1016/j.jconrel.2019.02.024
10.1002/adhm.202100793
10.1002/jbm.820140203
10.1089/ten.teb.2009.0544
10.1038/s41598-018-24842-w
10.1016/j.progpolymsci.2010.04.002
10.1021/acsbiomaterials.8b00552
10.1016/j.actbio.2017.09.007
10.1002/adhm.201701328
10.1039/C8TB01430B
10.1088/1748-605X/ab3344
10.1016/j.athoracsur.2016.01.110
10.3390/polym10101073
10.1080/00914037.2016.1190930
10.1016/j.ijbiomac.2020.06.045
10.3389/fbioe.2020.582646
10.1002/mabi.202000336
10.1002/adhm.202100830
10.1016/j.addr.2016.04.019
10.1039/D0BM01209B
10.1039/D0TB00688B
10.1016/j.msec.2015.11.024
10.1002/jbm.b.32694
10.1016/j.cobme.2018.02.006
10.1021/acsomega.9b03297
10.1021/acsami.9b19715
10.3390/polym13173015
10.1039/D1BM00859E
10.1016/j.mtcomm.2019.100752
10.3389/fnano.2021.643507
10.1002/term.2945
10.1016/j.biomaterials.2020.119921
10.1186/s13287-021-02315-8
10.1088/1748-605X/ab1741
10.1016/j.actbio.2017.11.028
10.1002/jbm.820140314
10.1016/j.msec.2021.112248
10.1016/j.msec.2018.12.067
10.1016/j.msec.2020.111228
10.1016/j.mtcomm.2021.102402
10.1016/j.cis.2021.102451
10.1021/acsami.6b15009
10.1038/s41467-021-23956-6
10.1002/term.3235
10.1016/j.msec.2019.109883
10.1002/jbm.820270207
10.1016/j.biomaterials.2016.12.015
10.33549/physiolres.933983
10.1007/s10856-016-5789-z
10.1021/acs.bioconjchem.0c00270
10.2147/IJN.S114295
10.1002/(SICI)1097-4636(19981205)42:3<396::AID-JBM7>3.0.CO;2-E
10.1016/j.biomaterials.2016.01.020
10.1002/adhm.202101415
10.1002/jbm.b.34542
10.3389/fbioe.2019.00098
10.1002/app.12260
10.1136/bjophthalmol-2018-312055
10.1016/j.matchemphys.2019.122528
10.1002/adhm.202000730
10.3390/polym12071453
10.1111/j.1445-1433.2004.03106.x
10.1016/j.cej.2021.130333
10.1002/jbm.a.37156
10.1002/adhm.202101103
10.1021/acs.biomac.1c00434
10.1007/s10856-018-6133-6
10.1016/j.msec.2021.112020
10.1007/s10853-013-7359-9
10.1038/ncprheum0526
10.1088/1748-605X/aaf31b
10.3390/ijms20030636
10.1038/s41536-017-0023-2
10.1021/acsbiomaterials.0c00550
10.1016/j.actbio.2021.08.052
10.1139/Y10-073
10.1039/C7TB00419B
10.1002/smll.201805530
10.1016/j.actbio.2019.03.040
10.1002/term.348
10.1016/j.actbio.2017.01.013
10.1016/B978-0-12-818471-4.00003-0
10.1039/C5BM00123D
10.1021/bm034247a
10.1177/0885328219855719
10.1002/adhm.202100117
10.1016/j.actbio.2018.02.009
10.1016/j.polymer.2014.08.027
10.1039/b811392k
10.1021/acsbiomaterials.0c01650
10.1016/0032-3861(94)90953-9
10.1002/jbm.a.37174
10.1021/acs.biomac.9b01126
10.1002/jbm.b.34093
10.1021/acs.biomac.9b00745
10.1002/adhm.202100839
10.1021/acs.biomac.9b00159
10.1021/acs.biomac.6b00005
10.1088/1748-605X/ab16be
10.1016/j.jvs.2016.05.096
10.1126/scitranslmed.aax6919
10.1016/j.biomaterials.2020.120251
10.1016/j.progpolymsci.2020.101341
10.1038/s41467-020-20610-5
10.1089/ten.2005.11.847
10.3390/polym13111822
10.1002/jbm.a.31211
10.1002/app.50893
10.1088/1758-5090/ac0ff0
10.1089/ten.tec.2014.0578
10.1038/s41536-021-00162-y
10.1016/j.msec.2015.11.061
10.1016/j.msec.2019.110415
10.1016/j.eurpolymj.2017.08.048
10.3390/ijms19103212
10.1002/smll.201201377
10.1038/s41598-017-03851-1
10.1046/j.1525-1594.2002.06876.x
10.1159/000363693
10.1002/mabi.201900049
10.1016/j.msec.2021.111933
10.1016/j.polymer.2020.123336
10.1039/D1MA00092F
10.1039/C9CS00738E
10.1080/09205063.2017.1303867
10.3390/membranes8010015
10.1016/j.actbio.2019.03.041
10.1016/j.biomaterials.2018.07.037
10.1016/j.biomaterials.2015.10.066
10.1080/21691401.2019.1639723
10.1007/s13770-020-00262-8
10.3390/ma11071116
10.1021/acsbiomaterials.6b00484
10.1021/acsami.8b20323
10.1002/jbm.a.36473
10.3390/ijms20246210
10.1016/j.jobcr.2019.10.003
10.1186/s40824-021-00242-6
10.1002/btm2.10192
10.1016/j.biomaterials.2017.02.007
10.1021/bm050190b
10.1021/ma0705927
10.1016/j.biomaterials.2017.06.005
10.1007/s10439-013-0859-6
10.1002/adfm.201800405
10.1039/c0py00077a
10.1002/adhm.202002153
10.1186/s13287-015-0009-1
10.1039/C8BM00518D
10.1016/B978-0-08-102546-8.00005-4
10.1002/adbi.201700135
10.1039/D1PY01185E
10.1002/mabi.202000101
10.1021/acs.biomac.6b00817
10.3389/fbioe.2019.00135
10.1016/j.biomaterials.2010.02.044
10.1016/j.actbio.2021.09.005
10.1016/B978-012369410-2.50035-8
10.1016/j.msec.2019.110293
10.1038/s41598-021-98426-6
10.1007/s12221-021-1243-z
10.1080/03008207.2018.1424145
10.1515/ntrev-2020-0028
10.1007/BF00701240
10.1002/jbm.820140417
10.1038/s41467-021-24680-x
10.1016/j.progpolymsci.2008.07.006
10.1016/j.biomaterials.2014.07.020
10.1039/C8TB01981A
10.1016/j.bioactmat.2021.01.013
10.1016/j.biomaterials.2020.120231
10.1039/C9PY01021A
10.1016/j.actbio.2016.05.015
10.1080/09205063.2016.1160560
10.1089/ten.tec.2016.0373
10.1088/1741-2552/aa68f0
10.2144/000113754
10.1016/j.actbio.2021.01.016
10.1088/1748-605X/aa8357
10.1126/scitranslmed.aau7411
10.1021/acsami.9b23100
10.1002/adhm.202100107
10.1002/adfm.201000922
10.3390/polym12040844
10.1016/j.actbio.2012.12.007
10.1016/j.actbio.2017.10.037
10.1002/adhm.202100408
10.1088/1758-5090/aa644f
10.1080/09205063.2017.1286184
10.1016/B978-0-08-087780-8.00087-5
10.1146/annurev-matsci-070214-020815
10.1016/j.biomaterials.2010.02.002
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/acs.biomac.2c00047
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Medicine
EISSN 1526-4602
EndPage 1863
ExternalDocumentID 35438479
10_1021_acs_biomac_2c00047
Genre Journal Article
Review
GroupedDBID ---
-~X
23N
4.4
53G
55A
5GY
5VS
7~N
AABXI
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CITATION
CS3
CUPRZ
DU5
EBS
ED~
F5P
GGK
GNL
IH9
JG~
P2P
RNS
ROL
TN5
UI2
VF5
VG9
W1F
XKZ
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c336t-19b987df1e6b3736a0de2b122cda95c671d0edd347880f038a5161623db1afd33
IEDL.DBID ACS
ISSN 1525-7797
1526-4602
IngestDate Thu Jul 10 23:09:02 EDT 2025
Fri Jul 11 04:13:20 EDT 2025
Thu Jan 02 22:55:12 EST 2025
Tue Jul 01 04:08:16 EDT 2025
Thu Apr 24 23:01:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-19b987df1e6b3736a0de2b122cda95c671d0edd347880f038a5161623db1afd33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-8458-4952
0000-0001-7935-2145
PMID 35438479
PQID 2652582168
PQPubID 23479
PageCount 23
ParticipantIDs proquest_miscellaneous_2675582653
proquest_miscellaneous_2652582168
pubmed_primary_35438479
crossref_citationtrail_10_1021_acs_biomac_2c00047
crossref_primary_10_1021_acs_biomac_2c00047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-09
PublicationDateYYYYMMDD 2022-05-09
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-09
  day: 09
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biomacromolecules
PublicationTitleAlternate Biomacromolecules
PublicationYear 2022
References ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref185/cit185
ref23/cit23
ref115/cit115
ref187/cit187
ref181/cit181
ref111/cit111
ref113/cit113
ref183/cit183
ref117/cit117
ref48/cit48
ref74/cit74
ref189/cit189
ref119/cit119
ref10/cit10
ref35/cit35
ref93/cit93
ref42/cit42
ref120/cit120
ref178/cit178
ref122/cit122
ref61/cit61
ref176/cit176
ref67/cit67
ref128/cit128
ref124/cit124
ref126/cit126
ref54/cit54
ref137/cit137
ref11/cit11
ref102/cit102
ref29/cit29
ref174/cit174
ref86/cit86
ref170/cit170
ref43/cit43
ref80/cit80
ref133/cit133
ref207/cit207
ref28/cit28
ref203/cit203
ref148/cit148
ref55/cit55
ref144/cit144
Kondiah P. P. D. (ref177/cit177) 2020
ref167/cit167
ref163/cit163
ref66/cit66
ref22/cit22
ref87/cit87
ref190/cit190
ref140/cit140
ref198/cit198
ref194/cit194
ref98/cit98
ref153/cit153
ref150/cit150
ref63/cit63
ref56/cit56
ref155/cit155
ref156/cit156
ref158/cit158
ref8/cit8
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref17/cit17
ref82/cit82
ref147/cit147
ref145/cit145
ref21/cit21
ref166/cit166
Saltzman W. M. (ref106/cit106) 2013
ref164/cit164
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref139/cit139
ref172/cit172
ref200/cit200
ref14/cit14
ref57/cit57
ref169/cit169
ref134/cit134
ref208/cit208
ref40/cit40
ref131/cit131
ref205/cit205
ref142/cit142
ref15/cit15
ref180/cit180
ref62/cit62
ref41/cit41
ref58/cit58
ref104/cit104
ref84/cit84
ref123/cit123
ref196/cit196
ref45/cit45
Scott Taylor M. (ref7/cit7) 2013
ref52/cit52
ref184/cit184
ref114/cit114
ref186/cit186
ref116/cit116
ref110/cit110
ref182/cit182
ref2/cit2
ref112/cit112
ref77/cit77
ref71/cit71
ref188/cit188
ref20/cit20
ref118/cit118
ref89/cit89
ref19/cit19
ref96/cit96
ref107/cit107
ref191/cit191
ref109/cit109
ref13/cit13
ref193/cit193
ref105/cit105
ref197/cit197
ref38/cit38
ref199/cit199
ref90/cit90
ref195/cit195
ref64/cit64
ref6/cit6
ref18/cit18
ref136/cit136
ref65/cit65
ref171/cit171
ref97/cit97
ref101/cit101
ref76/cit76
ref32/cit32
ref39/cit39
ref202/cit202
ref168/cit168
ref206/cit206
ref132/cit132
ref91/cit91
ref12/cit12
Lee H. (ref5/cit5) 2008
ref179/cit179
ref121/cit121
ref175/cit175
ref33/cit33
ref129/cit129
ref44/cit44
ref70/cit70
ref125/cit125
ref9/cit9
ref152/cit152
ref154/cit154
ref27/cit27
ref151/cit151
ref159/cit159
ref92/cit92
ref157/cit157
ref31/cit31
Kanani G. A. (ref161/cit161) 2010; 24
ref88/cit88
ref160/cit160
ref143/cit143
ref53/cit53
Boccaccini A. R. (ref1/cit1) 2014
ref149/cit149
ref162/cit162
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref141/cit141
ref50/cit50
ref209/cit209
ref138/cit138
Kohli N. (ref26/cit26) 2019
ref100/cit100
ref25/cit25
ref173/cit173
ref103/cit103
ref72/cit72
ref201/cit201
ref51/cit51
ref135/cit135
ref68/cit68
ref94/cit94
ref130/cit130
ref204/cit204
ref146/cit146
ref73/cit73
ref69/cit69
ref165/cit165
ref95/cit95
ref108/cit108
ref192/cit192
ref4/cit4
ref30/cit30
ref47/cit47
ref127/cit127
References_xml – ident: ref48/cit48
  doi: 10.1016/j.msec.2016.10.058
– ident: ref146/cit146
  doi: 10.1016/j.jconrel.2021.04.003
– ident: ref169/cit169
  doi: 10.1002/adhm.202100828
– ident: ref29/cit29
  doi: 10.1002/adhm.202000353
– ident: ref117/cit117
  doi: 10.1016/j.biomaterials.2019.119584
– ident: ref200/cit200
  doi: 10.1111/ceo.13978
– ident: ref204/cit204
  doi: 10.1016/j.addr.2021.113960
– ident: ref203/cit203
  doi: 10.3389/fcvm.2020.583360
– ident: ref208/cit208
  doi: 10.1186/ar2180
– ident: ref88/cit88
  doi: 10.1007/s10439-016-1643-1
– ident: ref119/cit119
  doi: 10.1016/j.msec.2020.111070
– ident: ref132/cit132
  doi: 10.1016/j.jconrel.2019.02.024
– ident: ref162/cit162
  doi: 10.1002/adhm.202100793
– ident: ref151/cit151
  doi: 10.1002/jbm.820140203
– ident: ref110/cit110
  doi: 10.1089/ten.teb.2009.0544
– ident: ref37/cit37
  doi: 10.1038/s41598-018-24842-w
– ident: ref20/cit20
  doi: 10.1016/j.progpolymsci.2010.04.002
– ident: ref181/cit181
  doi: 10.1021/acsbiomaterials.8b00552
– ident: ref168/cit168
  doi: 10.1016/j.actbio.2017.09.007
– ident: ref191/cit191
  doi: 10.1002/adhm.201701328
– ident: ref178/cit178
  doi: 10.1039/C8TB01430B
– ident: ref45/cit45
  doi: 10.1088/1748-605X/ab3344
– ident: ref129/cit129
  doi: 10.1016/j.athoracsur.2016.01.110
– ident: ref56/cit56
  doi: 10.3390/polym10101073
– ident: ref89/cit89
  doi: 10.1080/00914037.2016.1190930
– ident: ref46/cit46
  doi: 10.1016/j.ijbiomac.2020.06.045
– ident: ref147/cit147
  doi: 10.3389/fbioe.2020.582646
– ident: ref33/cit33
  doi: 10.1002/mabi.202000336
– ident: ref149/cit149
  doi: 10.1002/adhm.202100830
– ident: ref155/cit155
  doi: 10.1016/j.addr.2016.04.019
– ident: ref194/cit194
  doi: 10.1039/D0BM01209B
– ident: ref165/cit165
  doi: 10.1039/D0TB00688B
– ident: ref53/cit53
  doi: 10.1016/j.msec.2015.11.024
– ident: ref90/cit90
  doi: 10.1002/jbm.b.32694
– ident: ref14/cit14
  doi: 10.1016/j.cobme.2018.02.006
– ident: ref197/cit197
  doi: 10.1021/acsomega.9b03297
– ident: ref40/cit40
  doi: 10.1021/acsami.9b19715
– ident: ref3/cit3
  doi: 10.3390/polym13173015
– ident: ref187/cit187
  doi: 10.1039/D1BM00859E
– ident: ref54/cit54
  doi: 10.1016/j.mtcomm.2019.100752
– ident: ref140/cit140
  doi: 10.3389/fnano.2021.643507
– ident: ref141/cit141
  doi: 10.1002/term.2945
– ident: ref84/cit84
  doi: 10.1016/j.biomaterials.2020.119921
– ident: ref150/cit150
  doi: 10.1186/s13287-021-02315-8
– ident: ref42/cit42
  doi: 10.1088/1748-605X/ab1741
– ident: ref58/cit58
  doi: 10.1016/j.actbio.2017.11.028
– ident: ref153/cit153
  doi: 10.1002/jbm.820140314
– ident: ref49/cit49
  doi: 10.1016/j.msec.2021.112248
– ident: ref135/cit135
  doi: 10.1016/j.msec.2018.12.067
– ident: ref68/cit68
  doi: 10.1016/j.msec.2020.111228
– ident: ref192/cit192
  doi: 10.1016/j.mtcomm.2021.102402
– ident: ref19/cit19
  doi: 10.1016/j.cis.2021.102451
– ident: ref69/cit69
  doi: 10.1021/acsami.6b15009
– ident: ref79/cit79
  doi: 10.1038/s41467-021-23956-6
– ident: ref199/cit199
  doi: 10.1002/term.3235
– ident: ref27/cit27
  doi: 10.1016/j.msec.2019.109883
– ident: ref159/cit159
  doi: 10.1002/jbm.820270207
– ident: ref183/cit183
  doi: 10.1016/j.biomaterials.2016.12.015
– ident: ref124/cit124
  doi: 10.33549/physiolres.933983
– ident: ref34/cit34
  doi: 10.1007/s10856-016-5789-z
– ident: ref81/cit81
  doi: 10.1021/acs.bioconjchem.0c00270
– ident: ref24/cit24
  doi: 10.2147/IJN.S114295
– ident: ref156/cit156
  doi: 10.1002/(SICI)1097-4636(19981205)42:3<396::AID-JBM7>3.0.CO;2-E
– ident: ref179/cit179
  doi: 10.1016/j.biomaterials.2016.01.020
– ident: ref17/cit17
  doi: 10.1002/adhm.202101415
– ident: ref30/cit30
  doi: 10.1002/jbm.b.34542
– ident: ref28/cit28
  doi: 10.3389/fbioe.2019.00098
– ident: ref158/cit158
  doi: 10.1002/app.12260
– ident: ref198/cit198
  doi: 10.1136/bjophthalmol-2018-312055
– ident: ref2/cit2
  doi: 10.1016/j.matchemphys.2019.122528
– ident: ref112/cit112
  doi: 10.1002/adhm.202000730
– ident: ref55/cit55
  doi: 10.3390/polym12071453
– ident: ref206/cit206
  doi: 10.1111/j.1445-1433.2004.03106.x
– ident: ref120/cit120
  doi: 10.1016/j.cej.2021.130333
– ident: ref38/cit38
  doi: 10.1002/jbm.a.37156
– ident: ref133/cit133
  doi: 10.1002/adhm.202101103
– ident: ref8/cit8
  doi: 10.1021/acs.biomac.1c00434
– ident: ref95/cit95
  doi: 10.1007/s10856-018-6133-6
– ident: ref66/cit66
  doi: 10.1016/j.msec.2021.112020
– ident: ref113/cit113
  doi: 10.1007/s10853-013-7359-9
– ident: ref207/cit207
  doi: 10.1038/ncprheum0526
– ident: ref87/cit87
  doi: 10.1088/1748-605X/aaf31b
– ident: ref13/cit13
  doi: 10.3390/ijms20030636
– ident: ref18/cit18
  doi: 10.1038/s41536-017-0023-2
– ident: ref167/cit167
  doi: 10.1021/acsbiomaterials.0c00550
– ident: ref142/cit142
  doi: 10.1016/j.actbio.2021.08.052
– volume: 24
  start-page: 93
  issue: 2
  year: 2010
  ident: ref161/cit161
  publication-title: Trends Biomater. Artif. Organs
– ident: ref126/cit126
  doi: 10.1139/Y10-073
– ident: ref70/cit70
  doi: 10.1039/C7TB00419B
– ident: ref121/cit121
  doi: 10.1002/smll.201805530
– volume-title: Tissue Engineering Using Ceramics and Polymers
  year: 2014
  ident: ref1/cit1
– ident: ref101/cit101
  doi: 10.1016/j.actbio.2019.03.040
– ident: ref114/cit114
  doi: 10.1002/term.348
– ident: ref51/cit51
  doi: 10.1016/j.actbio.2017.01.013
– start-page: 59
  volume-title: Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering
  year: 2020
  ident: ref177/cit177
  doi: 10.1016/B978-0-12-818471-4.00003-0
– ident: ref60/cit60
  doi: 10.1039/C5BM00123D
– ident: ref22/cit22
  doi: 10.1021/bm034247a
– ident: ref52/cit52
  doi: 10.1177/0885328219855719
– ident: ref103/cit103
  doi: 10.1002/adhm.202100117
– ident: ref36/cit36
  doi: 10.1016/j.actbio.2018.02.009
– ident: ref78/cit78
  doi: 10.1016/j.polymer.2014.08.027
– ident: ref105/cit105
  doi: 10.1039/b811392k
– ident: ref175/cit175
  doi: 10.1021/acsbiomaterials.0c01650
– ident: ref157/cit157
  doi: 10.1016/0032-3861(94)90953-9
– ident: ref93/cit93
  doi: 10.1002/jbm.a.37174
– ident: ref59/cit59
  doi: 10.1021/acs.biomac.9b01126
– ident: ref39/cit39
  doi: 10.1002/jbm.b.34093
– ident: ref62/cit62
  doi: 10.1021/acs.biomac.9b00745
– ident: ref92/cit92
  doi: 10.1002/adhm.202100839
– ident: ref10/cit10
  doi: 10.1021/acs.biomac.9b00159
– ident: ref64/cit64
  doi: 10.1021/acs.biomac.6b00005
– ident: ref171/cit171
  doi: 10.1088/1748-605X/ab16be
– ident: ref136/cit136
  doi: 10.1016/j.jvs.2016.05.096
– ident: ref202/cit202
  doi: 10.1126/scitranslmed.aax6919
– ident: ref74/cit74
  doi: 10.1016/j.biomaterials.2020.120251
– ident: ref97/cit97
  doi: 10.1016/j.progpolymsci.2020.101341
– ident: ref111/cit111
  doi: 10.1038/s41467-020-20610-5
– ident: ref160/cit160
  doi: 10.1089/ten.2005.11.847
– ident: ref21/cit21
  doi: 10.3390/polym13111822
– ident: ref75/cit75
  doi: 10.1002/jbm.a.31211
– ident: ref44/cit44
  doi: 10.1002/app.50893
– ident: ref85/cit85
  doi: 10.1088/1758-5090/ac0ff0
– ident: ref104/cit104
  doi: 10.1089/ten.tec.2014.0578
– ident: ref57/cit57
  doi: 10.1038/s41536-021-00162-y
– ident: ref174/cit174
  doi: 10.1016/j.msec.2015.11.061
– ident: ref31/cit31
  doi: 10.1016/j.msec.2019.110415
– ident: ref96/cit96
  doi: 10.1016/j.eurpolymj.2017.08.048
– ident: ref115/cit115
  doi: 10.3390/ijms19103212
– ident: ref144/cit144
  doi: 10.1002/smll.201201377
– ident: ref128/cit128
  doi: 10.1038/s41598-017-03851-1
– ident: ref107/cit107
  doi: 10.1046/j.1525-1594.2002.06876.x
– ident: ref23/cit23
  doi: 10.1159/000363693
– ident: ref65/cit65
  doi: 10.1002/mabi.201900049
– ident: ref186/cit186
  doi: 10.1016/j.msec.2021.111933
– ident: ref61/cit61
  doi: 10.1016/j.polymer.2020.123336
– ident: ref4/cit4
  doi: 10.1039/D1MA00092F
– ident: ref98/cit98
  doi: 10.1039/C9CS00738E
– ident: ref47/cit47
  doi: 10.1080/09205063.2017.1303867
– ident: ref123/cit123
  doi: 10.3390/membranes8010015
– ident: ref180/cit180
  doi: 10.1016/j.actbio.2019.03.041
– ident: ref15/cit15
  doi: 10.1016/j.biomaterials.2018.07.037
– ident: ref130/cit130
  doi: 10.1016/j.biomaterials.2015.10.066
– ident: ref139/cit139
  doi: 10.1080/21691401.2019.1639723
– ident: ref195/cit195
  doi: 10.1007/s13770-020-00262-8
– ident: ref122/cit122
  doi: 10.3390/ma11071116
– ident: ref91/cit91
  doi: 10.1021/acsbiomaterials.6b00484
– ident: ref176/cit176
  doi: 10.1021/acsami.8b20323
– ident: ref137/cit137
  doi: 10.1002/jbm.a.36473
– ident: ref72/cit72
  doi: 10.3390/ijms20246210
– ident: ref25/cit25
  doi: 10.1016/j.jobcr.2019.10.003
– ident: ref209/cit209
  doi: 10.1186/s40824-021-00242-6
– ident: ref185/cit185
  doi: 10.1002/btm2.10192
– ident: ref138/cit138
  doi: 10.1016/j.biomaterials.2017.02.007
– ident: ref63/cit63
  doi: 10.1021/bm050190b
– ident: ref80/cit80
  doi: 10.1021/ma0705927
– ident: ref108/cit108
  doi: 10.1016/j.biomaterials.2017.06.005
– ident: ref67/cit67
  doi: 10.1007/s10439-013-0859-6
– ident: ref41/cit41
  doi: 10.1002/adfm.201800405
– ident: ref145/cit145
  doi: 10.1039/c0py00077a
– ident: ref11/cit11
  doi: 10.1002/adhm.202002153
– ident: ref190/cit190
  doi: 10.1186/s13287-015-0009-1
– ident: ref9/cit9
  doi: 10.1039/C8BM00518D
– start-page: 125
  volume-title: Biomaterials for Skin Repair and Regeneration
  year: 2019
  ident: ref26/cit26
  doi: 10.1016/B978-0-08-102546-8.00005-4
– ident: ref196/cit196
  doi: 10.1002/adbi.201700135
– ident: ref116/cit116
  doi: 10.1039/D1PY01185E
– ident: ref76/cit76
  doi: 10.1002/mabi.202000101
– ident: ref99/cit99
  doi: 10.1021/acs.biomac.6b00817
– ident: ref188/cit188
  doi: 10.3389/fbioe.2019.00135
– ident: ref86/cit86
  doi: 10.1016/j.biomaterials.2010.02.044
– ident: ref134/cit134
  doi: 10.1016/j.actbio.2021.09.005
– start-page: 580
  volume-title: Principles of Regenerative Medicine
  year: 2008
  ident: ref5/cit5
  doi: 10.1016/B978-012369410-2.50035-8
– ident: ref73/cit73
  doi: 10.1016/j.msec.2019.110293
– ident: ref35/cit35
  doi: 10.1038/s41598-021-98426-6
– ident: ref172/cit172
  doi: 10.1007/s12221-021-1243-z
– ident: ref131/cit131
  doi: 10.1080/03008207.2018.1424145
– ident: ref109/cit109
  doi: 10.1515/ntrev-2020-0028
– ident: ref6/cit6
  doi: 10.1007/BF00701240
– ident: ref152/cit152
  doi: 10.1002/jbm.820140417
– ident: ref71/cit71
  doi: 10.1038/s41467-021-24680-x
– ident: ref102/cit102
  doi: 10.1016/j.progpolymsci.2008.07.006
– ident: ref118/cit118
  doi: 10.1016/j.biomaterials.2014.07.020
– ident: ref100/cit100
  doi: 10.1039/C8TB01981A
– ident: ref170/cit170
  doi: 10.1016/j.bioactmat.2021.01.013
– ident: ref83/cit83
  doi: 10.1016/j.biomaterials.2020.120231
– ident: ref82/cit82
  doi: 10.1039/C9PY01021A
– ident: ref182/cit182
  doi: 10.1016/j.actbio.2016.05.015
– ident: ref43/cit43
  doi: 10.1080/09205063.2016.1160560
– ident: ref50/cit50
  doi: 10.1089/ten.tec.2016.0373
– ident: ref143/cit143
  doi: 10.1088/1741-2552/aa68f0
– start-page: 385
  volume-title: Principles of Tissue Engineering
  year: 2013
  ident: ref106/cit106
– ident: ref12/cit12
  doi: 10.2144/000113754
– ident: ref16/cit16
  doi: 10.1016/j.actbio.2021.01.016
– ident: ref189/cit189
– ident: ref173/cit173
  doi: 10.1088/1748-605X/aa8357
– ident: ref166/cit166
  doi: 10.1126/scitranslmed.aau7411
– ident: ref205/cit205
– ident: ref32/cit32
  doi: 10.1021/acsami.9b23100
– ident: ref148/cit148
  doi: 10.1002/adhm.202100107
– ident: ref125/cit125
  doi: 10.1002/adfm.201000922
– ident: ref154/cit154
  doi: 10.3390/polym12040844
– ident: ref184/cit184
  doi: 10.1016/j.actbio.2012.12.007
– ident: ref193/cit193
  doi: 10.1016/j.actbio.2017.10.037
– ident: ref164/cit164
  doi: 10.1002/adhm.202100408
– ident: ref94/cit94
  doi: 10.1088/1758-5090/aa644f
– ident: ref163/cit163
  doi: 10.1080/09205063.2017.1286184
– start-page: 1010
  volume-title: Biomaterials Science
  year: 2013
  ident: ref7/cit7
  doi: 10.1016/B978-0-08-087780-8.00087-5
– ident: ref77/cit77
  doi: 10.1146/annurev-matsci-070214-020815
– ident: ref201/cit201
– ident: ref127/cit127
  doi: 10.1016/j.biomaterials.2010.02.002
SSID ssj0009345
Score 2.6648557
SecondaryResourceType review_article
Snippet Synthetic polymers have been an integral part of modern society since the early 1960s. Besides their most well-known applications to the public, such as...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1841
SubjectTerms Biocompatible Materials
electronics
medicine
Polymers
Printing, Three-Dimensional
Regenerative Medicine
syringes
Tissue Engineering - methods
Tissue Scaffolds
Title Biocompatible Synthetic Polymers for Tissue Engineering Purposes
URI https://www.ncbi.nlm.nih.gov/pubmed/35438479
https://www.proquest.com/docview/2652582168
https://www.proquest.com/docview/2675582653
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KL3rx_agvInjT1O5ussnerMVSBKXQFnoL-woUSyImPdRf72ySVkVb9D7ZXWYG5pvMzDcIXUFU0pY23DUxlZCgMOkKiNuugFAGeD1moSgaZJ9Zb-Q9jv1xDd2sqOATfCtU1rSj6HA8URaCFKPjgWeJ8tudwSfDLi02Ett9PgAZeVBNyPx-xPcotAJaFiGmu42eFoM6ZWfJS3OWy6Z6_8nb-KfX76CtCms67dI5dlHNJHtoo7NY8baP7u4nadGEnk_k1DiDeQJwEISdfjqd2x_aDkBaZ1jYxvnCXOj0wTxpZrIDNOo-DDs9t1qp4CpKWe5iLnkY6BgbJmlAmWhpQyQmRGnBfcUCrFtGa2pJ9Vtxi4bCB0gIEElLLGJN6SGqJ2lijpEDqaEOuAh4qEJPaY-bGMCdhnxRGOFx2UB4oeJIVXzjdu3FNCrq3gRHoJuo1E1U6aaBrpffvJZsG2ulLxeWi0BxttIhEpPOsogw8IKQYBaukwl8kGE-baCj0uzLO6nvUQjb_ORf7zlFm8QOR9h2SH6G6vnbzJwDZMnlReGqH2df590
linkProvider American Chemical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biocompatible+Synthetic+Polymers+for+Tissue+Engineering+Purposes&rft.jtitle=Biomacromolecules&rft.au=Terzopoulou%2C+Zoi&rft.au=Zamboulis%2C+Alexandra&rft.au=Koumentakou%2C+Ioanna&rft.au=Michailidou%2C+Georgia&rft.date=2022-05-09&rft.issn=1526-4602&rft.eissn=1526-4602&rft.volume=23&rft.issue=5&rft.spage=1841&rft_id=info:doi/10.1021%2Facs.biomac.2c00047&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-7797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-7797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-7797&client=summon