Biocompatible Synthetic Polymers for Tissue Engineering Purposes
Synthetic polymers have been an integral part of modern society since the early 1960s. Besides their most well-known applications to the public, such as packaging, construction, textiles and electronics, synthetic polymers have also revolutionized the field of medicine. Starting with the first plast...
Saved in:
Published in | Biomacromolecules Vol. 23; no. 5; pp. 1841 - 1863 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
09.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Synthetic polymers have been an integral part of modern society since the early 1960s. Besides their most well-known applications to the public, such as packaging, construction, textiles and electronics, synthetic polymers have also revolutionized the field of medicine. Starting with the first plastic syringe developed in 1955 to the complex polymeric materials used in the regeneration of tissues, their contributions have never been more prominent. Decades of research on polymeric materials, stem cells, and three-dimensional printing contributed to the rapid progress of tissue engineering and regenerative medicine that envisages the potential future of organ transplantations. This perspective discusses the role of synthetic polymers in tissue engineering, their design and properties in relation to each type of application. Additionally, selected recent achievements of tissue engineering using synthetic polymers are outlined to provide insight into how they will contribute to the advancement of the field in the near future. In this way, we aim to provide a guide that will help scientists with synthetic polymer design and selection for different tissue engineering applications. |
---|---|
AbstractList | Synthetic polymers have been an integral part of modern society since the early 1960s. Besides their most well-known applications to the public, such as packaging, construction, textiles and electronics, synthetic polymers have also revolutionized the field of medicine. Starting with the first plastic syringe developed in 1955 to the complex polymeric materials used in the regeneration of tissues, their contributions have never been more prominent. Decades of research on polymeric materials, stem cells, and three-dimensional printing contributed to the rapid progress of tissue engineering and regenerative medicine that envisages the potential future of organ transplantations. This perspective discusses the role of synthetic polymers in tissue engineering, their design and properties in relation to each type of application. Additionally, selected recent achievements of tissue engineering using synthetic polymers are outlined to provide insight into how they will contribute to the advancement of the field in the near future. In this way, we aim to provide a guide that will help scientists with synthetic polymer design and selection for different tissue engineering applications.Synthetic polymers have been an integral part of modern society since the early 1960s. Besides their most well-known applications to the public, such as packaging, construction, textiles and electronics, synthetic polymers have also revolutionized the field of medicine. Starting with the first plastic syringe developed in 1955 to the complex polymeric materials used in the regeneration of tissues, their contributions have never been more prominent. Decades of research on polymeric materials, stem cells, and three-dimensional printing contributed to the rapid progress of tissue engineering and regenerative medicine that envisages the potential future of organ transplantations. This perspective discusses the role of synthetic polymers in tissue engineering, their design and properties in relation to each type of application. Additionally, selected recent achievements of tissue engineering using synthetic polymers are outlined to provide insight into how they will contribute to the advancement of the field in the near future. In this way, we aim to provide a guide that will help scientists with synthetic polymer design and selection for different tissue engineering applications. Synthetic polymers have been an integral part of modern society since the early 1960s. Besides their most well-known applications to the public, such as packaging, construction, textiles and electronics, synthetic polymers have also revolutionized the field of medicine. Starting with the first plastic syringe developed in 1955 to the complex polymeric materials used in the regeneration of tissues, their contributions have never been more prominent. Decades of research on polymeric materials, stem cells, and three-dimensional printing contributed to the rapid progress of tissue engineering and regenerative medicine that envisages the potential future of organ transplantations. This perspective discusses the role of synthetic polymers in tissue engineering, their design and properties in relation to each type of application. Additionally, selected recent achievements of tissue engineering using synthetic polymers are outlined to provide insight into how they will contribute to the advancement of the field in the near future. In this way, we aim to provide a guide that will help scientists with synthetic polymer design and selection for different tissue engineering applications. |
Author | Noordam, Michiel Jan Koumentakou, Ioanna Bikiaris, Dimitrios N. Zamboulis, Alexandra Terzopoulou, Zoi Michailidou, Georgia |
Author_xml | – sequence: 1 givenname: Zoi orcidid: 0000-0001-7935-2145 surname: Terzopoulou fullname: Terzopoulou, Zoi organization: Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece – sequence: 2 givenname: Alexandra surname: Zamboulis fullname: Zamboulis, Alexandra organization: Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece – sequence: 3 givenname: Ioanna surname: Koumentakou fullname: Koumentakou, Ioanna organization: Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece – sequence: 4 givenname: Georgia surname: Michailidou fullname: Michailidou, Georgia organization: Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece – sequence: 5 givenname: Michiel Jan surname: Noordam fullname: Noordam, Michiel Jan organization: Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece – sequence: 6 givenname: Dimitrios N. orcidid: 0000-0001-8458-4952 surname: Bikiaris fullname: Bikiaris, Dimitrios N. organization: Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35438479$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkTtPwzAUhS1URMvjDzCgjCwpfsSPbDzES0KiEmW2HPsGjJK42MnQf0-g7cKAmO4dvnOG8x2iSRc6QOiU4DnBlFwYm-aVD62xc2oxxoXcQzPCqcgLgenk5-e5lKWcosOUPkakZAU_QFPGC6YKWc7Q5bUPNrQr0_uqgexl3fXv0HubLUKzbiGmrA4xW_qUBshuuzffAUTfvWWLIa5CgnSM9mvTJDjZ3iP0ene7vHnIn57vH2-unnLLmOhzUlalkq4mICommTDYAa0IpdaZklshicPgHCukUrjGTBlOBBGUuYqY2jF2hM43vasYPgdIvW59stA0poMwJE2F5FxRwf-DjrsoSoQa0bMtOlQtOL2KvjVxrXcDjYDaADaGlCLU2vp-HCt0fTS-0QTrbxd6dKE3LvTWxRilv6K79j9CX5axj4o |
CitedBy_id | crossref_primary_10_1021_acs_biomac_2c00737 crossref_primary_10_1039_D3TB01186K crossref_primary_10_3390_polym16121729 crossref_primary_10_1002_pen_26221 crossref_primary_10_3389_fbioe_2022_953555 crossref_primary_10_1093_burnst_tkae036 crossref_primary_10_3390_ijms231911793 crossref_primary_10_1021_acsami_3c06144 crossref_primary_10_1177_20417314241286092 crossref_primary_10_32604_jpm_2024_055887 crossref_primary_10_1016_j_memsci_2024_123224 crossref_primary_10_1021_acs_biomac_3c01232 crossref_primary_10_1177_07316844241256433 crossref_primary_10_1016_j_bej_2022_108545 crossref_primary_10_1108_RPJ_06_2024_0275 crossref_primary_10_1016_j_mtchem_2023_101818 crossref_primary_10_1016_j_oooo_2023_04_015 crossref_primary_10_1088_2053_1591_ada5bd crossref_primary_10_1016_j_ijpx_2024_100313 crossref_primary_10_1088_1758_5090_ad9409 crossref_primary_10_3390_nano14171429 crossref_primary_10_1016_j_carbpol_2023_121484 crossref_primary_10_3390_bioengineering11040332 crossref_primary_10_3390_ijms25052938 crossref_primary_10_1007_s10853_023_08149_4 crossref_primary_10_1038_s41529_024_00487_1 crossref_primary_10_3389_fbioe_2022_1005413 crossref_primary_10_1002_adma_202310040 crossref_primary_10_3390_ma18051035 crossref_primary_10_3390_nano15060470 crossref_primary_10_1016_j_ijbiomac_2025_139846 crossref_primary_10_1016_j_ijbiomac_2024_139426 crossref_primary_10_1016_j_jot_2024_07_007 crossref_primary_10_1016_j_carbpol_2023_121408 crossref_primary_10_3389_fbioe_2024_1509397 crossref_primary_10_3390_polym15193940 crossref_primary_10_1016_j_apmt_2022_101603 crossref_primary_10_1007_s10924_024_03230_8 crossref_primary_10_3390_jfb14020115 crossref_primary_10_3390_polym14214566 crossref_primary_10_15625_2525_2518_19824 crossref_primary_10_3390_biomimetics10030184 crossref_primary_10_3390_biomimetics9070409 crossref_primary_10_1038_s44222_023_00143_4 crossref_primary_10_1038_s41596_024_01066_z crossref_primary_10_1016_j_eurpolymj_2024_113268 crossref_primary_10_1021_acsnano_4c01406 crossref_primary_10_1016_j_rechem_2024_101872 crossref_primary_10_1002_mabi_202200288 crossref_primary_10_1021_acs_jpcb_4c07518 crossref_primary_10_3390_ijms25126556 crossref_primary_10_1088_1758_5090_ad5705 crossref_primary_10_1016_j_aiepr_2024_05_001 crossref_primary_10_1002_adfm_202301062 crossref_primary_10_1007_s10853_023_09132_9 crossref_primary_10_1088_2057_1976_acdb7d crossref_primary_10_1016_j_colsurfb_2024_114342 crossref_primary_10_3390_molecules30030686 crossref_primary_10_1002_smll_202410440 crossref_primary_10_1016_j_ijbiomac_2025_141344 crossref_primary_10_1016_j_heliyon_2024_e33223 crossref_primary_10_3390_gels11020088 crossref_primary_10_1021_acsapm_4c02250 crossref_primary_10_1016_j_mtcomm_2024_109056 crossref_primary_10_1002_adbi_202300118 crossref_primary_10_3390_polym16141998 crossref_primary_10_1146_annurev_bioeng_110222_101045 crossref_primary_10_1016_j_isci_2024_111664 crossref_primary_10_1007_s10853_024_09707_0 crossref_primary_10_1016_j_polymer_2023_126448 crossref_primary_10_1021_acsomega_3c06944 crossref_primary_10_1002_mabi_202300127 crossref_primary_10_3390_ijms25073826 crossref_primary_10_1007_s13340_024_00737_2 crossref_primary_10_1080_00914037_2024_2387026 crossref_primary_10_1039_D4BM01099J crossref_primary_10_1016_j_cis_2024_103317 crossref_primary_10_1002_adhm_202303797 crossref_primary_10_1016_j_apmt_2024_102444 crossref_primary_10_1016_j_eurpolymj_2024_113593 crossref_primary_10_3389_fchem_2024_1417407 crossref_primary_10_1002_adom_202400248 crossref_primary_10_1007_s41779_024_01084_w crossref_primary_10_1016_j_jconrel_2023_07_034 crossref_primary_10_3390_polym15102406 crossref_primary_10_1002_adhm_202402527 crossref_primary_10_1016_j_ijbiomac_2024_131505 crossref_primary_10_1002_adma_202404264 crossref_primary_10_1016_j_ijbiomac_2024_134615 crossref_primary_10_1016_j_pmatsci_2024_101293 crossref_primary_10_1021_acs_biomac_3c00362 crossref_primary_10_1002_inf2_12425 crossref_primary_10_1016_j_colsurfb_2024_114484 crossref_primary_10_1039_D3TB02665E crossref_primary_10_1016_j_jddst_2023_105038 crossref_primary_10_1021_acsmaterialslett_4c00668 crossref_primary_10_1016_j_ijbiomac_2022_07_140 crossref_primary_10_1016_j_mtbio_2023_100870 crossref_primary_10_1016_j_jcou_2024_102697 crossref_primary_10_1016_j_apmt_2024_102261 crossref_primary_10_1002_jbm_b_35520 crossref_primary_10_1016_j_ijbiomac_2022_12_293 crossref_primary_10_1016_j_carbpol_2025_123350 crossref_primary_10_1016_j_ijbiomac_2024_135778 crossref_primary_10_1002_adhm_202401202 crossref_primary_10_3390_ijms232415993 crossref_primary_10_3390_molecules29040883 crossref_primary_10_3390_jfb13040279 crossref_primary_10_1088_1741_2552_ad628d crossref_primary_10_3390_ijms24087319 crossref_primary_10_1016_j_jddst_2024_105702 crossref_primary_10_1016_j_ijbiomac_2025_141896 crossref_primary_10_1002_app_56458 crossref_primary_10_3390_molecules28248025 crossref_primary_10_2147_ORR_S501260 crossref_primary_10_1016_j_scitotenv_2024_170262 crossref_primary_10_1021_acsptsci_4c00679 crossref_primary_10_1002_admi_202300587 crossref_primary_10_1002_jbm_b_35257 crossref_primary_10_1089_ten_teb_2022_0140 crossref_primary_10_1021_acs_biomac_3c00610 crossref_primary_10_3389_fbioe_2024_1342340 crossref_primary_10_3390_fib11100082 crossref_primary_10_3390_jfb15080233 crossref_primary_10_3390_jfb14010005 crossref_primary_10_1002_adma_202413078 crossref_primary_10_1039_D3DT02932H crossref_primary_10_1016_j_ijbiomac_2023_126760 crossref_primary_10_1021_acsami_4c02636 |
Cites_doi | 10.1016/j.msec.2016.10.058 10.1016/j.jconrel.2021.04.003 10.1002/adhm.202100828 10.1002/adhm.202000353 10.1016/j.biomaterials.2019.119584 10.1111/ceo.13978 10.1016/j.addr.2021.113960 10.3389/fcvm.2020.583360 10.1186/ar2180 10.1007/s10439-016-1643-1 10.1016/j.msec.2020.111070 10.1016/j.jconrel.2019.02.024 10.1002/adhm.202100793 10.1002/jbm.820140203 10.1089/ten.teb.2009.0544 10.1038/s41598-018-24842-w 10.1016/j.progpolymsci.2010.04.002 10.1021/acsbiomaterials.8b00552 10.1016/j.actbio.2017.09.007 10.1002/adhm.201701328 10.1039/C8TB01430B 10.1088/1748-605X/ab3344 10.1016/j.athoracsur.2016.01.110 10.3390/polym10101073 10.1080/00914037.2016.1190930 10.1016/j.ijbiomac.2020.06.045 10.3389/fbioe.2020.582646 10.1002/mabi.202000336 10.1002/adhm.202100830 10.1016/j.addr.2016.04.019 10.1039/D0BM01209B 10.1039/D0TB00688B 10.1016/j.msec.2015.11.024 10.1002/jbm.b.32694 10.1016/j.cobme.2018.02.006 10.1021/acsomega.9b03297 10.1021/acsami.9b19715 10.3390/polym13173015 10.1039/D1BM00859E 10.1016/j.mtcomm.2019.100752 10.3389/fnano.2021.643507 10.1002/term.2945 10.1016/j.biomaterials.2020.119921 10.1186/s13287-021-02315-8 10.1088/1748-605X/ab1741 10.1016/j.actbio.2017.11.028 10.1002/jbm.820140314 10.1016/j.msec.2021.112248 10.1016/j.msec.2018.12.067 10.1016/j.msec.2020.111228 10.1016/j.mtcomm.2021.102402 10.1016/j.cis.2021.102451 10.1021/acsami.6b15009 10.1038/s41467-021-23956-6 10.1002/term.3235 10.1016/j.msec.2019.109883 10.1002/jbm.820270207 10.1016/j.biomaterials.2016.12.015 10.33549/physiolres.933983 10.1007/s10856-016-5789-z 10.1021/acs.bioconjchem.0c00270 10.2147/IJN.S114295 10.1002/(SICI)1097-4636(19981205)42:3<396::AID-JBM7>3.0.CO;2-E 10.1016/j.biomaterials.2016.01.020 10.1002/adhm.202101415 10.1002/jbm.b.34542 10.3389/fbioe.2019.00098 10.1002/app.12260 10.1136/bjophthalmol-2018-312055 10.1016/j.matchemphys.2019.122528 10.1002/adhm.202000730 10.3390/polym12071453 10.1111/j.1445-1433.2004.03106.x 10.1016/j.cej.2021.130333 10.1002/jbm.a.37156 10.1002/adhm.202101103 10.1021/acs.biomac.1c00434 10.1007/s10856-018-6133-6 10.1016/j.msec.2021.112020 10.1007/s10853-013-7359-9 10.1038/ncprheum0526 10.1088/1748-605X/aaf31b 10.3390/ijms20030636 10.1038/s41536-017-0023-2 10.1021/acsbiomaterials.0c00550 10.1016/j.actbio.2021.08.052 10.1139/Y10-073 10.1039/C7TB00419B 10.1002/smll.201805530 10.1016/j.actbio.2019.03.040 10.1002/term.348 10.1016/j.actbio.2017.01.013 10.1016/B978-0-12-818471-4.00003-0 10.1039/C5BM00123D 10.1021/bm034247a 10.1177/0885328219855719 10.1002/adhm.202100117 10.1016/j.actbio.2018.02.009 10.1016/j.polymer.2014.08.027 10.1039/b811392k 10.1021/acsbiomaterials.0c01650 10.1016/0032-3861(94)90953-9 10.1002/jbm.a.37174 10.1021/acs.biomac.9b01126 10.1002/jbm.b.34093 10.1021/acs.biomac.9b00745 10.1002/adhm.202100839 10.1021/acs.biomac.9b00159 10.1021/acs.biomac.6b00005 10.1088/1748-605X/ab16be 10.1016/j.jvs.2016.05.096 10.1126/scitranslmed.aax6919 10.1016/j.biomaterials.2020.120251 10.1016/j.progpolymsci.2020.101341 10.1038/s41467-020-20610-5 10.1089/ten.2005.11.847 10.3390/polym13111822 10.1002/jbm.a.31211 10.1002/app.50893 10.1088/1758-5090/ac0ff0 10.1089/ten.tec.2014.0578 10.1038/s41536-021-00162-y 10.1016/j.msec.2015.11.061 10.1016/j.msec.2019.110415 10.1016/j.eurpolymj.2017.08.048 10.3390/ijms19103212 10.1002/smll.201201377 10.1038/s41598-017-03851-1 10.1046/j.1525-1594.2002.06876.x 10.1159/000363693 10.1002/mabi.201900049 10.1016/j.msec.2021.111933 10.1016/j.polymer.2020.123336 10.1039/D1MA00092F 10.1039/C9CS00738E 10.1080/09205063.2017.1303867 10.3390/membranes8010015 10.1016/j.actbio.2019.03.041 10.1016/j.biomaterials.2018.07.037 10.1016/j.biomaterials.2015.10.066 10.1080/21691401.2019.1639723 10.1007/s13770-020-00262-8 10.3390/ma11071116 10.1021/acsbiomaterials.6b00484 10.1021/acsami.8b20323 10.1002/jbm.a.36473 10.3390/ijms20246210 10.1016/j.jobcr.2019.10.003 10.1186/s40824-021-00242-6 10.1002/btm2.10192 10.1016/j.biomaterials.2017.02.007 10.1021/bm050190b 10.1021/ma0705927 10.1016/j.biomaterials.2017.06.005 10.1007/s10439-013-0859-6 10.1002/adfm.201800405 10.1039/c0py00077a 10.1002/adhm.202002153 10.1186/s13287-015-0009-1 10.1039/C8BM00518D 10.1016/B978-0-08-102546-8.00005-4 10.1002/adbi.201700135 10.1039/D1PY01185E 10.1002/mabi.202000101 10.1021/acs.biomac.6b00817 10.3389/fbioe.2019.00135 10.1016/j.biomaterials.2010.02.044 10.1016/j.actbio.2021.09.005 10.1016/B978-012369410-2.50035-8 10.1016/j.msec.2019.110293 10.1038/s41598-021-98426-6 10.1007/s12221-021-1243-z 10.1080/03008207.2018.1424145 10.1515/ntrev-2020-0028 10.1007/BF00701240 10.1002/jbm.820140417 10.1038/s41467-021-24680-x 10.1016/j.progpolymsci.2008.07.006 10.1016/j.biomaterials.2014.07.020 10.1039/C8TB01981A 10.1016/j.bioactmat.2021.01.013 10.1016/j.biomaterials.2020.120231 10.1039/C9PY01021A 10.1016/j.actbio.2016.05.015 10.1080/09205063.2016.1160560 10.1089/ten.tec.2016.0373 10.1088/1741-2552/aa68f0 10.2144/000113754 10.1016/j.actbio.2021.01.016 10.1088/1748-605X/aa8357 10.1126/scitranslmed.aau7411 10.1021/acsami.9b23100 10.1002/adhm.202100107 10.1002/adfm.201000922 10.3390/polym12040844 10.1016/j.actbio.2012.12.007 10.1016/j.actbio.2017.10.037 10.1002/adhm.202100408 10.1088/1758-5090/aa644f 10.1080/09205063.2017.1286184 10.1016/B978-0-08-087780-8.00087-5 10.1146/annurev-matsci-070214-020815 10.1016/j.biomaterials.2010.02.002 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.biomac.2c00047 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Medicine |
EISSN | 1526-4602 |
EndPage | 1863 |
ExternalDocumentID | 35438479 10_1021_acs_biomac_2c00047 |
Genre | Journal Article Review |
GroupedDBID | --- -~X 23N 4.4 53G 55A 5GY 5VS 7~N AABXI AAHBH AAYXX ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CITATION CS3 CUPRZ DU5 EBS ED~ F5P GGK GNL IH9 JG~ P2P RNS ROL TN5 UI2 VF5 VG9 W1F XKZ ZCA ~02 CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c336t-19b987df1e6b3736a0de2b122cda95c671d0edd347880f038a5161623db1afd33 |
IEDL.DBID | ACS |
ISSN | 1525-7797 1526-4602 |
IngestDate | Thu Jul 10 23:09:02 EDT 2025 Fri Jul 11 04:13:20 EDT 2025 Thu Jan 02 22:55:12 EST 2025 Tue Jul 01 04:08:16 EDT 2025 Thu Apr 24 23:01:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-19b987df1e6b3736a0de2b122cda95c671d0edd347880f038a5161623db1afd33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-8458-4952 0000-0001-7935-2145 |
PMID | 35438479 |
PQID | 2652582168 |
PQPubID | 23479 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_2675582653 proquest_miscellaneous_2652582168 pubmed_primary_35438479 crossref_citationtrail_10_1021_acs_biomac_2c00047 crossref_primary_10_1021_acs_biomac_2c00047 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-09 |
PublicationDateYYYYMMDD | 2022-05-09 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biomacromolecules |
PublicationTitleAlternate | Biomacromolecules |
PublicationYear | 2022 |
References | ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref185/cit185 ref23/cit23 ref115/cit115 ref187/cit187 ref181/cit181 ref111/cit111 ref113/cit113 ref183/cit183 ref117/cit117 ref48/cit48 ref74/cit74 ref189/cit189 ref119/cit119 ref10/cit10 ref35/cit35 ref93/cit93 ref42/cit42 ref120/cit120 ref178/cit178 ref122/cit122 ref61/cit61 ref176/cit176 ref67/cit67 ref128/cit128 ref124/cit124 ref126/cit126 ref54/cit54 ref137/cit137 ref11/cit11 ref102/cit102 ref29/cit29 ref174/cit174 ref86/cit86 ref170/cit170 ref43/cit43 ref80/cit80 ref133/cit133 ref207/cit207 ref28/cit28 ref203/cit203 ref148/cit148 ref55/cit55 ref144/cit144 Kondiah P. P. D. (ref177/cit177) 2020 ref167/cit167 ref163/cit163 ref66/cit66 ref22/cit22 ref87/cit87 ref190/cit190 ref140/cit140 ref198/cit198 ref194/cit194 ref98/cit98 ref153/cit153 ref150/cit150 ref63/cit63 ref56/cit56 ref155/cit155 ref156/cit156 ref158/cit158 ref8/cit8 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref17/cit17 ref82/cit82 ref147/cit147 ref145/cit145 ref21/cit21 ref166/cit166 Saltzman W. M. (ref106/cit106) 2013 ref164/cit164 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref139/cit139 ref172/cit172 ref200/cit200 ref14/cit14 ref57/cit57 ref169/cit169 ref134/cit134 ref208/cit208 ref40/cit40 ref131/cit131 ref205/cit205 ref142/cit142 ref15/cit15 ref180/cit180 ref62/cit62 ref41/cit41 ref58/cit58 ref104/cit104 ref84/cit84 ref123/cit123 ref196/cit196 ref45/cit45 Scott Taylor M. (ref7/cit7) 2013 ref52/cit52 ref184/cit184 ref114/cit114 ref186/cit186 ref116/cit116 ref110/cit110 ref182/cit182 ref2/cit2 ref112/cit112 ref77/cit77 ref71/cit71 ref188/cit188 ref20/cit20 ref118/cit118 ref89/cit89 ref19/cit19 ref96/cit96 ref107/cit107 ref191/cit191 ref109/cit109 ref13/cit13 ref193/cit193 ref105/cit105 ref197/cit197 ref38/cit38 ref199/cit199 ref90/cit90 ref195/cit195 ref64/cit64 ref6/cit6 ref18/cit18 ref136/cit136 ref65/cit65 ref171/cit171 ref97/cit97 ref101/cit101 ref76/cit76 ref32/cit32 ref39/cit39 ref202/cit202 ref168/cit168 ref206/cit206 ref132/cit132 ref91/cit91 ref12/cit12 Lee H. (ref5/cit5) 2008 ref179/cit179 ref121/cit121 ref175/cit175 ref33/cit33 ref129/cit129 ref44/cit44 ref70/cit70 ref125/cit125 ref9/cit9 ref152/cit152 ref154/cit154 ref27/cit27 ref151/cit151 ref159/cit159 ref92/cit92 ref157/cit157 ref31/cit31 Kanani G. A. (ref161/cit161) 2010; 24 ref88/cit88 ref160/cit160 ref143/cit143 ref53/cit53 Boccaccini A. R. (ref1/cit1) 2014 ref149/cit149 ref162/cit162 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 ref50/cit50 ref209/cit209 ref138/cit138 Kohli N. (ref26/cit26) 2019 ref100/cit100 ref25/cit25 ref173/cit173 ref103/cit103 ref72/cit72 ref201/cit201 ref51/cit51 ref135/cit135 ref68/cit68 ref94/cit94 ref130/cit130 ref204/cit204 ref146/cit146 ref73/cit73 ref69/cit69 ref165/cit165 ref95/cit95 ref108/cit108 ref192/cit192 ref4/cit4 ref30/cit30 ref47/cit47 ref127/cit127 |
References_xml | – ident: ref48/cit48 doi: 10.1016/j.msec.2016.10.058 – ident: ref146/cit146 doi: 10.1016/j.jconrel.2021.04.003 – ident: ref169/cit169 doi: 10.1002/adhm.202100828 – ident: ref29/cit29 doi: 10.1002/adhm.202000353 – ident: ref117/cit117 doi: 10.1016/j.biomaterials.2019.119584 – ident: ref200/cit200 doi: 10.1111/ceo.13978 – ident: ref204/cit204 doi: 10.1016/j.addr.2021.113960 – ident: ref203/cit203 doi: 10.3389/fcvm.2020.583360 – ident: ref208/cit208 doi: 10.1186/ar2180 – ident: ref88/cit88 doi: 10.1007/s10439-016-1643-1 – ident: ref119/cit119 doi: 10.1016/j.msec.2020.111070 – ident: ref132/cit132 doi: 10.1016/j.jconrel.2019.02.024 – ident: ref162/cit162 doi: 10.1002/adhm.202100793 – ident: ref151/cit151 doi: 10.1002/jbm.820140203 – ident: ref110/cit110 doi: 10.1089/ten.teb.2009.0544 – ident: ref37/cit37 doi: 10.1038/s41598-018-24842-w – ident: ref20/cit20 doi: 10.1016/j.progpolymsci.2010.04.002 – ident: ref181/cit181 doi: 10.1021/acsbiomaterials.8b00552 – ident: ref168/cit168 doi: 10.1016/j.actbio.2017.09.007 – ident: ref191/cit191 doi: 10.1002/adhm.201701328 – ident: ref178/cit178 doi: 10.1039/C8TB01430B – ident: ref45/cit45 doi: 10.1088/1748-605X/ab3344 – ident: ref129/cit129 doi: 10.1016/j.athoracsur.2016.01.110 – ident: ref56/cit56 doi: 10.3390/polym10101073 – ident: ref89/cit89 doi: 10.1080/00914037.2016.1190930 – ident: ref46/cit46 doi: 10.1016/j.ijbiomac.2020.06.045 – ident: ref147/cit147 doi: 10.3389/fbioe.2020.582646 – ident: ref33/cit33 doi: 10.1002/mabi.202000336 – ident: ref149/cit149 doi: 10.1002/adhm.202100830 – ident: ref155/cit155 doi: 10.1016/j.addr.2016.04.019 – ident: ref194/cit194 doi: 10.1039/D0BM01209B – ident: ref165/cit165 doi: 10.1039/D0TB00688B – ident: ref53/cit53 doi: 10.1016/j.msec.2015.11.024 – ident: ref90/cit90 doi: 10.1002/jbm.b.32694 – ident: ref14/cit14 doi: 10.1016/j.cobme.2018.02.006 – ident: ref197/cit197 doi: 10.1021/acsomega.9b03297 – ident: ref40/cit40 doi: 10.1021/acsami.9b19715 – ident: ref3/cit3 doi: 10.3390/polym13173015 – ident: ref187/cit187 doi: 10.1039/D1BM00859E – ident: ref54/cit54 doi: 10.1016/j.mtcomm.2019.100752 – ident: ref140/cit140 doi: 10.3389/fnano.2021.643507 – ident: ref141/cit141 doi: 10.1002/term.2945 – ident: ref84/cit84 doi: 10.1016/j.biomaterials.2020.119921 – ident: ref150/cit150 doi: 10.1186/s13287-021-02315-8 – ident: ref42/cit42 doi: 10.1088/1748-605X/ab1741 – ident: ref58/cit58 doi: 10.1016/j.actbio.2017.11.028 – ident: ref153/cit153 doi: 10.1002/jbm.820140314 – ident: ref49/cit49 doi: 10.1016/j.msec.2021.112248 – ident: ref135/cit135 doi: 10.1016/j.msec.2018.12.067 – ident: ref68/cit68 doi: 10.1016/j.msec.2020.111228 – ident: ref192/cit192 doi: 10.1016/j.mtcomm.2021.102402 – ident: ref19/cit19 doi: 10.1016/j.cis.2021.102451 – ident: ref69/cit69 doi: 10.1021/acsami.6b15009 – ident: ref79/cit79 doi: 10.1038/s41467-021-23956-6 – ident: ref199/cit199 doi: 10.1002/term.3235 – ident: ref27/cit27 doi: 10.1016/j.msec.2019.109883 – ident: ref159/cit159 doi: 10.1002/jbm.820270207 – ident: ref183/cit183 doi: 10.1016/j.biomaterials.2016.12.015 – ident: ref124/cit124 doi: 10.33549/physiolres.933983 – ident: ref34/cit34 doi: 10.1007/s10856-016-5789-z – ident: ref81/cit81 doi: 10.1021/acs.bioconjchem.0c00270 – ident: ref24/cit24 doi: 10.2147/IJN.S114295 – ident: ref156/cit156 doi: 10.1002/(SICI)1097-4636(19981205)42:3<396::AID-JBM7>3.0.CO;2-E – ident: ref179/cit179 doi: 10.1016/j.biomaterials.2016.01.020 – ident: ref17/cit17 doi: 10.1002/adhm.202101415 – ident: ref30/cit30 doi: 10.1002/jbm.b.34542 – ident: ref28/cit28 doi: 10.3389/fbioe.2019.00098 – ident: ref158/cit158 doi: 10.1002/app.12260 – ident: ref198/cit198 doi: 10.1136/bjophthalmol-2018-312055 – ident: ref2/cit2 doi: 10.1016/j.matchemphys.2019.122528 – ident: ref112/cit112 doi: 10.1002/adhm.202000730 – ident: ref55/cit55 doi: 10.3390/polym12071453 – ident: ref206/cit206 doi: 10.1111/j.1445-1433.2004.03106.x – ident: ref120/cit120 doi: 10.1016/j.cej.2021.130333 – ident: ref38/cit38 doi: 10.1002/jbm.a.37156 – ident: ref133/cit133 doi: 10.1002/adhm.202101103 – ident: ref8/cit8 doi: 10.1021/acs.biomac.1c00434 – ident: ref95/cit95 doi: 10.1007/s10856-018-6133-6 – ident: ref66/cit66 doi: 10.1016/j.msec.2021.112020 – ident: ref113/cit113 doi: 10.1007/s10853-013-7359-9 – ident: ref207/cit207 doi: 10.1038/ncprheum0526 – ident: ref87/cit87 doi: 10.1088/1748-605X/aaf31b – ident: ref13/cit13 doi: 10.3390/ijms20030636 – ident: ref18/cit18 doi: 10.1038/s41536-017-0023-2 – ident: ref167/cit167 doi: 10.1021/acsbiomaterials.0c00550 – ident: ref142/cit142 doi: 10.1016/j.actbio.2021.08.052 – volume: 24 start-page: 93 issue: 2 year: 2010 ident: ref161/cit161 publication-title: Trends Biomater. Artif. Organs – ident: ref126/cit126 doi: 10.1139/Y10-073 – ident: ref70/cit70 doi: 10.1039/C7TB00419B – ident: ref121/cit121 doi: 10.1002/smll.201805530 – volume-title: Tissue Engineering Using Ceramics and Polymers year: 2014 ident: ref1/cit1 – ident: ref101/cit101 doi: 10.1016/j.actbio.2019.03.040 – ident: ref114/cit114 doi: 10.1002/term.348 – ident: ref51/cit51 doi: 10.1016/j.actbio.2017.01.013 – start-page: 59 volume-title: Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering year: 2020 ident: ref177/cit177 doi: 10.1016/B978-0-12-818471-4.00003-0 – ident: ref60/cit60 doi: 10.1039/C5BM00123D – ident: ref22/cit22 doi: 10.1021/bm034247a – ident: ref52/cit52 doi: 10.1177/0885328219855719 – ident: ref103/cit103 doi: 10.1002/adhm.202100117 – ident: ref36/cit36 doi: 10.1016/j.actbio.2018.02.009 – ident: ref78/cit78 doi: 10.1016/j.polymer.2014.08.027 – ident: ref105/cit105 doi: 10.1039/b811392k – ident: ref175/cit175 doi: 10.1021/acsbiomaterials.0c01650 – ident: ref157/cit157 doi: 10.1016/0032-3861(94)90953-9 – ident: ref93/cit93 doi: 10.1002/jbm.a.37174 – ident: ref59/cit59 doi: 10.1021/acs.biomac.9b01126 – ident: ref39/cit39 doi: 10.1002/jbm.b.34093 – ident: ref62/cit62 doi: 10.1021/acs.biomac.9b00745 – ident: ref92/cit92 doi: 10.1002/adhm.202100839 – ident: ref10/cit10 doi: 10.1021/acs.biomac.9b00159 – ident: ref64/cit64 doi: 10.1021/acs.biomac.6b00005 – ident: ref171/cit171 doi: 10.1088/1748-605X/ab16be – ident: ref136/cit136 doi: 10.1016/j.jvs.2016.05.096 – ident: ref202/cit202 doi: 10.1126/scitranslmed.aax6919 – ident: ref74/cit74 doi: 10.1016/j.biomaterials.2020.120251 – ident: ref97/cit97 doi: 10.1016/j.progpolymsci.2020.101341 – ident: ref111/cit111 doi: 10.1038/s41467-020-20610-5 – ident: ref160/cit160 doi: 10.1089/ten.2005.11.847 – ident: ref21/cit21 doi: 10.3390/polym13111822 – ident: ref75/cit75 doi: 10.1002/jbm.a.31211 – ident: ref44/cit44 doi: 10.1002/app.50893 – ident: ref85/cit85 doi: 10.1088/1758-5090/ac0ff0 – ident: ref104/cit104 doi: 10.1089/ten.tec.2014.0578 – ident: ref57/cit57 doi: 10.1038/s41536-021-00162-y – ident: ref174/cit174 doi: 10.1016/j.msec.2015.11.061 – ident: ref31/cit31 doi: 10.1016/j.msec.2019.110415 – ident: ref96/cit96 doi: 10.1016/j.eurpolymj.2017.08.048 – ident: ref115/cit115 doi: 10.3390/ijms19103212 – ident: ref144/cit144 doi: 10.1002/smll.201201377 – ident: ref128/cit128 doi: 10.1038/s41598-017-03851-1 – ident: ref107/cit107 doi: 10.1046/j.1525-1594.2002.06876.x – ident: ref23/cit23 doi: 10.1159/000363693 – ident: ref65/cit65 doi: 10.1002/mabi.201900049 – ident: ref186/cit186 doi: 10.1016/j.msec.2021.111933 – ident: ref61/cit61 doi: 10.1016/j.polymer.2020.123336 – ident: ref4/cit4 doi: 10.1039/D1MA00092F – ident: ref98/cit98 doi: 10.1039/C9CS00738E – ident: ref47/cit47 doi: 10.1080/09205063.2017.1303867 – ident: ref123/cit123 doi: 10.3390/membranes8010015 – ident: ref180/cit180 doi: 10.1016/j.actbio.2019.03.041 – ident: ref15/cit15 doi: 10.1016/j.biomaterials.2018.07.037 – ident: ref130/cit130 doi: 10.1016/j.biomaterials.2015.10.066 – ident: ref139/cit139 doi: 10.1080/21691401.2019.1639723 – ident: ref195/cit195 doi: 10.1007/s13770-020-00262-8 – ident: ref122/cit122 doi: 10.3390/ma11071116 – ident: ref91/cit91 doi: 10.1021/acsbiomaterials.6b00484 – ident: ref176/cit176 doi: 10.1021/acsami.8b20323 – ident: ref137/cit137 doi: 10.1002/jbm.a.36473 – ident: ref72/cit72 doi: 10.3390/ijms20246210 – ident: ref25/cit25 doi: 10.1016/j.jobcr.2019.10.003 – ident: ref209/cit209 doi: 10.1186/s40824-021-00242-6 – ident: ref185/cit185 doi: 10.1002/btm2.10192 – ident: ref138/cit138 doi: 10.1016/j.biomaterials.2017.02.007 – ident: ref63/cit63 doi: 10.1021/bm050190b – ident: ref80/cit80 doi: 10.1021/ma0705927 – ident: ref108/cit108 doi: 10.1016/j.biomaterials.2017.06.005 – ident: ref67/cit67 doi: 10.1007/s10439-013-0859-6 – ident: ref41/cit41 doi: 10.1002/adfm.201800405 – ident: ref145/cit145 doi: 10.1039/c0py00077a – ident: ref11/cit11 doi: 10.1002/adhm.202002153 – ident: ref190/cit190 doi: 10.1186/s13287-015-0009-1 – ident: ref9/cit9 doi: 10.1039/C8BM00518D – start-page: 125 volume-title: Biomaterials for Skin Repair and Regeneration year: 2019 ident: ref26/cit26 doi: 10.1016/B978-0-08-102546-8.00005-4 – ident: ref196/cit196 doi: 10.1002/adbi.201700135 – ident: ref116/cit116 doi: 10.1039/D1PY01185E – ident: ref76/cit76 doi: 10.1002/mabi.202000101 – ident: ref99/cit99 doi: 10.1021/acs.biomac.6b00817 – ident: ref188/cit188 doi: 10.3389/fbioe.2019.00135 – ident: ref86/cit86 doi: 10.1016/j.biomaterials.2010.02.044 – ident: ref134/cit134 doi: 10.1016/j.actbio.2021.09.005 – start-page: 580 volume-title: Principles of Regenerative Medicine year: 2008 ident: ref5/cit5 doi: 10.1016/B978-012369410-2.50035-8 – ident: ref73/cit73 doi: 10.1016/j.msec.2019.110293 – ident: ref35/cit35 doi: 10.1038/s41598-021-98426-6 – ident: ref172/cit172 doi: 10.1007/s12221-021-1243-z – ident: ref131/cit131 doi: 10.1080/03008207.2018.1424145 – ident: ref109/cit109 doi: 10.1515/ntrev-2020-0028 – ident: ref6/cit6 doi: 10.1007/BF00701240 – ident: ref152/cit152 doi: 10.1002/jbm.820140417 – ident: ref71/cit71 doi: 10.1038/s41467-021-24680-x – ident: ref102/cit102 doi: 10.1016/j.progpolymsci.2008.07.006 – ident: ref118/cit118 doi: 10.1016/j.biomaterials.2014.07.020 – ident: ref100/cit100 doi: 10.1039/C8TB01981A – ident: ref170/cit170 doi: 10.1016/j.bioactmat.2021.01.013 – ident: ref83/cit83 doi: 10.1016/j.biomaterials.2020.120231 – ident: ref82/cit82 doi: 10.1039/C9PY01021A – ident: ref182/cit182 doi: 10.1016/j.actbio.2016.05.015 – ident: ref43/cit43 doi: 10.1080/09205063.2016.1160560 – ident: ref50/cit50 doi: 10.1089/ten.tec.2016.0373 – ident: ref143/cit143 doi: 10.1088/1741-2552/aa68f0 – start-page: 385 volume-title: Principles of Tissue Engineering year: 2013 ident: ref106/cit106 – ident: ref12/cit12 doi: 10.2144/000113754 – ident: ref16/cit16 doi: 10.1016/j.actbio.2021.01.016 – ident: ref189/cit189 – ident: ref173/cit173 doi: 10.1088/1748-605X/aa8357 – ident: ref166/cit166 doi: 10.1126/scitranslmed.aau7411 – ident: ref205/cit205 – ident: ref32/cit32 doi: 10.1021/acsami.9b23100 – ident: ref148/cit148 doi: 10.1002/adhm.202100107 – ident: ref125/cit125 doi: 10.1002/adfm.201000922 – ident: ref154/cit154 doi: 10.3390/polym12040844 – ident: ref184/cit184 doi: 10.1016/j.actbio.2012.12.007 – ident: ref193/cit193 doi: 10.1016/j.actbio.2017.10.037 – ident: ref164/cit164 doi: 10.1002/adhm.202100408 – ident: ref94/cit94 doi: 10.1088/1758-5090/aa644f – ident: ref163/cit163 doi: 10.1080/09205063.2017.1286184 – start-page: 1010 volume-title: Biomaterials Science year: 2013 ident: ref7/cit7 doi: 10.1016/B978-0-08-087780-8.00087-5 – ident: ref77/cit77 doi: 10.1146/annurev-matsci-070214-020815 – ident: ref201/cit201 – ident: ref127/cit127 doi: 10.1016/j.biomaterials.2010.02.002 |
SSID | ssj0009345 |
Score | 2.6648557 |
SecondaryResourceType | review_article |
Snippet | Synthetic polymers have been an integral part of modern society since the early 1960s. Besides their most well-known applications to the public, such as... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1841 |
SubjectTerms | Biocompatible Materials electronics medicine Polymers Printing, Three-Dimensional Regenerative Medicine syringes Tissue Engineering - methods Tissue Scaffolds |
Title | Biocompatible Synthetic Polymers for Tissue Engineering Purposes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35438479 https://www.proquest.com/docview/2652582168 https://www.proquest.com/docview/2675582653 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KL3rx_agvInjT1O5ussnerMVSBKXQFnoL-woUSyImPdRf72ySVkVb9D7ZXWYG5pvMzDcIXUFU0pY23DUxlZCgMOkKiNuugFAGeD1moSgaZJ9Zb-Q9jv1xDd2sqOATfCtU1rSj6HA8URaCFKPjgWeJ8tudwSfDLi02Ett9PgAZeVBNyPx-xPcotAJaFiGmu42eFoM6ZWfJS3OWy6Z6_8nb-KfX76CtCms67dI5dlHNJHtoo7NY8baP7u4nadGEnk_k1DiDeQJwEISdfjqd2x_aDkBaZ1jYxvnCXOj0wTxpZrIDNOo-DDs9t1qp4CpKWe5iLnkY6BgbJmlAmWhpQyQmRGnBfcUCrFtGa2pJ9Vtxi4bCB0gIEElLLGJN6SGqJ2lijpEDqaEOuAh4qEJPaY-bGMCdhnxRGOFx2UB4oeJIVXzjdu3FNCrq3gRHoJuo1E1U6aaBrpffvJZsG2ulLxeWi0BxttIhEpPOsogw8IKQYBaukwl8kGE-baCj0uzLO6nvUQjb_ORf7zlFm8QOR9h2SH6G6vnbzJwDZMnlReGqH2df590 |
linkProvider | American Chemical Society |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biocompatible+Synthetic+Polymers+for+Tissue+Engineering+Purposes&rft.jtitle=Biomacromolecules&rft.au=Terzopoulou%2C+Zoi&rft.au=Zamboulis%2C+Alexandra&rft.au=Koumentakou%2C+Ioanna&rft.au=Michailidou%2C+Georgia&rft.date=2022-05-09&rft.issn=1526-4602&rft.eissn=1526-4602&rft.volume=23&rft.issue=5&rft.spage=1841&rft_id=info:doi/10.1021%2Facs.biomac.2c00047&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-7797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-7797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-7797&client=summon |