Epitaxially Grown Ru Clusters–Nickel Nitride Heterostructure Advances Water Electrolysis Kinetics in Alkaline and Seawater Media
The epitaxial heterostructure can be rationally designed based on the in situ growth of two compatible phases with lattice similarity, in which the modulated electronic states and tuned adsorption behaviors are conducive to the enhancement of electrocatalytic activity. Herein, theoretical simulation...
Saved in:
Cover
Loading…
Abstract | The epitaxial heterostructure can be rationally designed based on the in situ growth of two compatible phases with lattice similarity, in which the modulated electronic states and tuned adsorption behaviors are conducive to the enhancement of electrocatalytic activity. Herein, theoretical simulations first disclose the charge transfer trend and reinforced inherent electron conduction around the epitaxial heterointerface between Ru clusters and Ni3N substrate (cRu‐Ni3N), thus leading to the optimized adsorption behaviors and reduced activation energy barriers. Subsequently, the defect‐rich nanosheets with the epitaxially grown cRu‐Ni3N heterointerface are successfully constructed. Impressively, by virtue of the superiority of intrinsic activity and reaction kinetics, such unique epitaxial heterostructure exhibits remarkable bifunctional catalytic activity toward electrocatalytic OER (226 mV @ 20 mA cm−2) and HER (32 mV @ 10 mA cm−2) in alkaline media. Furthermore, it also shows great application prospect in alkaline freshwater and seawater splitting, as well as solar‐to‐hydrogen integrated system. This work could provide beneficial enlightenment for the establishment of advanced electrocatalysts with epitaxial heterointerfaces.
The epitaxial heterostructures between Ru clusters and Ni3N substrate (cRu‐Ni3N) are theoretically elucidated and elaborately constructed by virtue of the lattice similarity, which display remarkable electrocatalytic activity for both oxygen and hydrogen evolution, and consequent terrific application prospect in alkaline water splitting, seawater electrolysis, and solar‐to‐hydrogen integrated system. |
---|---|
AbstractList | The epitaxial heterostructure can be rationally designed based on the in situ growth of two compatible phases with lattice similarity, in which the modulated electronic states and tuned adsorption behaviors are conducive to the enhancement of electrocatalytic activity. Herein, theoretical simulations first disclose the charge transfer trend and reinforced inherent electron conduction around the epitaxial heterointerface between Ru clusters and Ni3N substrate (cRu‐Ni3N), thus leading to the optimized adsorption behaviors and reduced activation energy barriers. Subsequently, the defect‐rich nanosheets with the epitaxially grown cRu‐Ni3N heterointerface are successfully constructed. Impressively, by virtue of the superiority of intrinsic activity and reaction kinetics, such unique epitaxial heterostructure exhibits remarkable bifunctional catalytic activity toward electrocatalytic OER (226 mV @ 20 mA cm−2) and HER (32 mV @ 10 mA cm−2) in alkaline media. Furthermore, it also shows great application prospect in alkaline freshwater and seawater splitting, as well as solar‐to‐hydrogen integrated system. This work could provide beneficial enlightenment for the establishment of advanced electrocatalysts with epitaxial heterointerfaces.
The epitaxial heterostructures between Ru clusters and Ni3N substrate (cRu‐Ni3N) are theoretically elucidated and elaborately constructed by virtue of the lattice similarity, which display remarkable electrocatalytic activity for both oxygen and hydrogen evolution, and consequent terrific application prospect in alkaline water splitting, seawater electrolysis, and solar‐to‐hydrogen integrated system. The epitaxial heterostructure can be rationally designed based on the in situ growth of two compatible phases with lattice similarity,in which the modulated electronic states and tuned adsorption behaviors are conducive to the enhancement of electrocatalytic activity.Herein,theoretical simulations first disclose the charge transfer trend and reinforced inherent electron conduction around the epitaxial heterointerface between Ru clusters and Ni3N substrate(cRu-Ni3N),thus leading to the optimized adsorption behaviors and reduced activation energy barriers.Subsequently,the defect-rich nanosheets with the epitaxially grown cRu-Ni3N heterointerface are successfully constructed.Impressively,by virtue of the superiority of intrinsic activity and reaction kinetics,such unique epitaxial heterostructure exhibits remarkable bifunctional catalytic activity toward electrocatalytic OER(226 mV@20 mA cm-2)and HER(32 mV@10 mA cm-2)in alkaline media.Furthermore,it also shows great application prospect in alkaline freshwater and seawater splitting,as well as solar-to-hydrogen integrated system.This work could provide beneficial enlightenment for the establishment of advanced electrocatalysts with epitaxial heterointerfaces. The epitaxial heterostructure can be rationally designed based on the in situ growth of two compatible phases with lattice similarity, in which the modulated electronic states and tuned adsorption behaviors are conducive to the enhancement of electrocatalytic activity. Herein, theoretical simulations first disclose the charge transfer trend and reinforced inherent electron conduction around the epitaxial heterointerface between Ru clusters and Ni3N substrate (cRu‐Ni3N), thus leading to the optimized adsorption behaviors and reduced activation energy barriers. Subsequently, the defect‐rich nanosheets with the epitaxially grown cRu‐Ni3N heterointerface are successfully constructed. Impressively, by virtue of the superiority of intrinsic activity and reaction kinetics, such unique epitaxial heterostructure exhibits remarkable bifunctional catalytic activity toward electrocatalytic OER (226 mV @ 20 mA cm−2) and HER (32 mV @ 10 mA cm−2) in alkaline media. Furthermore, it also shows great application prospect in alkaline freshwater and seawater splitting, as well as solar‐to‐hydrogen integrated system. This work could provide beneficial enlightenment for the establishment of advanced electrocatalysts with epitaxial heterointerfaces. The epitaxial heterostructure can be rationally designed based on the in situ growth of two compatible phases with lattice similarity, in which the modulated electronic states and tuned adsorption behaviors are conducive to the enhancement of electrocatalytic activity. Herein, theoretical simulations first disclose the charge transfer trend and reinforced inherent electron conduction around the epitaxial heterointerface between Ru clusters and Ni 3 N substrate (cRu‐Ni 3 N), thus leading to the optimized adsorption behaviors and reduced activation energy barriers. Subsequently, the defect‐rich nanosheets with the epitaxially grown cRu‐Ni 3 N heterointerface are successfully constructed. Impressively, by virtue of the superiority of intrinsic activity and reaction kinetics, such unique epitaxial heterostructure exhibits remarkable bifunctional catalytic activity toward electrocatalytic OER (226 mV @ 20 mA cm −2 ) and HER (32 mV @ 10 mA cm −2 ) in alkaline media. Furthermore, it also shows great application prospect in alkaline freshwater and seawater splitting, as well as solar‐to‐hydrogen integrated system. This work could provide beneficial enlightenment for the establishment of advanced electrocatalysts with epitaxial heterointerfaces. |
Author | Mu, Shichun Gong, Lei Chen, Ding Wu, Jinsong Lu, Ruihu Chen, Lei Wang, Pengyan Zhao, Yan Zhu, Jiawei Shi, Wenjie |
AuthorAffiliation | State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,China%State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;NRC(Nanostructure Research Centre),Wuhan University of Technology,Wuhan 430070,China |
AuthorAffiliation_xml | – name: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,China%State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;NRC(Nanostructure Research Centre),Wuhan University of Technology,Wuhan 430070,China |
Author_xml | – sequence: 1 givenname: Jiawei surname: Zhu fullname: Zhu, Jiawei organization: Xianhu Hydrogen Valley – sequence: 2 givenname: Ruihu surname: Lu fullname: Lu, Ruihu organization: Wuhan University of Technology – sequence: 3 givenname: Wenjie surname: Shi fullname: Shi, Wenjie organization: Wuhan University of Technology – sequence: 4 givenname: Lei surname: Gong fullname: Gong, Lei organization: Wuhan University of Technology – sequence: 5 givenname: Ding surname: Chen fullname: Chen, Ding organization: Wuhan University of Technology – sequence: 6 givenname: Pengyan surname: Wang fullname: Wang, Pengyan organization: Wuhan University of Technology – sequence: 7 givenname: Lei surname: Chen fullname: Chen, Lei organization: Wuhan University of Technology – sequence: 8 givenname: Jinsong surname: Wu fullname: Wu, Jinsong organization: Wuhan University of Technology – sequence: 9 givenname: Shichun orcidid: 0000-0003-3902-0976 surname: Mu fullname: Mu, Shichun email: msc@whut.edu.cn organization: Xianhu Hydrogen Valley – sequence: 10 givenname: Yan orcidid: 0000-0002-1234-4455 surname: Zhao fullname: Zhao, Yan email: yan2000@whut.edu.cn organization: Wuhan University of Technology |
BookMark | eNp9kc9u1DAQxi1UJErphSewxA1pi_9sEue4WoW2oi0SUPVoTZwJeOs6i-2w5Fb1FfqGPAnebqUihDh57PnNN9b3vSR7fvBIyGvOjjhj4h3ijTjiQnL1jOyLoipmTBbl3h_1C3IY44plmHE55_U-uWvWNsFPC85N9DgMG08_jXTpxpgwxF-39xfWXKOjFzYF2yE9wfw-xBRGk8aAdNH9AG8w0ivIDdo4NCkMboo20g_WY7ImUuvpwl2Dy3cKvqOfETYP-Dl2Fl6R5z24iIeP5wG5fN98WZ7Mzj4eny4XZzMjZalmwABU3VddDRKgajlCi3PRGqznc1WWyFCIWlWmrYuC9arnnSgraAsGklUK5AF5u9PdgO_Bf9WrYQw-b9R-mr6tjNMomJBbb4oMv9nB6zB8HzGmJ1pUqqyUKAvxJGmyJzFgr9fB3kCYNGd6m4neZqIfMskw-ws22fpkB58CWPfvEf74Zetw-o-4bppzsZv5DShBonc |
CitedBy_id | crossref_primary_10_1039_D2GC03351H crossref_primary_10_1002_ange_202312644 crossref_primary_10_1021_acscatal_2c03102 crossref_primary_10_1002_adma_202501586 crossref_primary_10_1016_j_jcis_2024_08_097 crossref_primary_10_1002_eem2_12817 crossref_primary_10_1016_j_jallcom_2024_174896 crossref_primary_10_1016_j_jcis_2024_06_056 crossref_primary_10_1002_adfm_202415058 crossref_primary_10_1002_smtd_202201616 crossref_primary_10_1007_s40843_023_2776_5 crossref_primary_10_1021_acsmaterialslett_4c01327 crossref_primary_10_1002_adfm_202315326 crossref_primary_10_1039_D3EE03363E crossref_primary_10_1002_adfm_202301925 crossref_primary_10_1016_j_ijhydene_2023_12_277 crossref_primary_10_1002_smtd_202401082 crossref_primary_10_1016_j_jcis_2023_08_009 crossref_primary_10_1039_D4EE01693A crossref_primary_10_1002_smll_202308650 crossref_primary_10_1021_acs_energyfuels_4c01543 crossref_primary_10_1039_D3TA06988E crossref_primary_10_1002_slct_202201682 crossref_primary_10_1002_celc_202300835 crossref_primary_10_1016_j_jcis_2025_137309 crossref_primary_10_1021_acssuschemeng_4c07973 crossref_primary_10_1016_j_jallcom_2024_178201 crossref_primary_10_1002_sus2_164 crossref_primary_10_1039_D3TA00797A crossref_primary_10_1002_aenm_202301438 crossref_primary_10_1002_smll_202204155 crossref_primary_10_1002_eem2_12441 crossref_primary_10_1007_s10562_023_04326_x crossref_primary_10_1021_acsmaterialslett_3c01414 crossref_primary_10_3390_catal15010098 crossref_primary_10_1002_aenm_202203568 crossref_primary_10_1016_j_jcis_2023_08_154 crossref_primary_10_1039_D3QI02079G crossref_primary_10_1016_j_apcatb_2023_123578 crossref_primary_10_1016_j_jallcom_2023_170430 crossref_primary_10_1007_s41918_024_00217_w crossref_primary_10_1039_D3IM00071K crossref_primary_10_1016_j_jcis_2024_04_144 crossref_primary_10_1016_j_mattod_2023_08_024 crossref_primary_10_1039_D3TA06083G crossref_primary_10_1002_ange_202500261 crossref_primary_10_1002_eem2_12590 crossref_primary_10_1016_j_ijhydene_2022_11_295 crossref_primary_10_1016_j_ccr_2024_215837 crossref_primary_10_1039_D3QI00117B crossref_primary_10_1002_aenm_202201358 crossref_primary_10_1021_acscatal_2c06340 crossref_primary_10_1002_anie_202312644 crossref_primary_10_1002_adfm_202304296 crossref_primary_10_1016_j_cclet_2023_109105 crossref_primary_10_1002_smll_202301721 crossref_primary_10_1002_sstr_202300192 crossref_primary_10_1016_j_fuel_2024_131716 crossref_primary_10_1016_j_jcis_2024_10_128 crossref_primary_10_1039_D3TA07230D crossref_primary_10_3390_ma17010199 crossref_primary_10_1016_j_ijhydene_2022_12_040 crossref_primary_10_1002_smll_202300030 crossref_primary_10_1021_acsnano_3c08450 crossref_primary_10_1002_anie_202500261 crossref_primary_10_1016_j_nanoen_2023_108349 |
Cites_doi | 10.1002/anie.201915803 10.1016/j.apcatb.2021.120334 10.1021/acscatal.0c03148 10.1002/aenm.201601275 10.1016/j.mtener.2021.100846 10.1126/science.1103197 10.1016/j.chempr.2018.11.010 10.1021/nn800503a 10.1039/D1CC03076K 10.1016/j.jcat.2019.05.031 10.1021/acsami.8b19052 10.1002/anie.202101539 10.1002/adma.202002435 10.1038/s41467-019-13519-1 10.1002/aenm.202000814 10.1016/j.mtener.2020.100524 10.1016/j.jechem.2021.05.033 10.1002/adma.201705516 10.1016/j.nanoen.2020.105355 10.1016/j.nantod.2019.100774 10.1039/C6CS00328A 10.1016/j.jssc.2021.122156 10.1021/jacs.6b11291 10.1038/s41560-019-0402-6 10.1002/eem2.12085 10.1039/C6TA07883D 10.1002/eem2.12031 10.1002/eem2.12112 10.1002/adfm.201502217 10.1016/j.mtener.2021.100741 10.1038/s41467-020-15069-3 10.1016/j.nanoen.2021.105838 10.1021/acs.chemrev.9b00248 10.1038/s41467-021-24322-2 10.1002/aenm.201903120 10.1038/s41467-018-06728-7 10.1016/j.nanoen.2019.02.062 10.1016/j.jcat.2019.08.005 10.1002/anie.202016199 10.1039/C4TA06921H 10.1021/acsami.0c14170 10.1007/s11051-009-9830-8 10.1002/adfm.202004375 10.1016/j.apcatb.2018.05.080 10.1002/adfm.202100698 |
ContentType | Journal Article |
Copyright | 2022 Zhengzhou University 2023 Zhengzhou University Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2022 Zhengzhou University – notice: 2023 Zhengzhou University – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1002/eem2.12318 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Environment Abstracts Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2575-0356 |
EndPage | n/a |
ExternalDocumentID | nyyhjcl_e202302015 10_1002_eem2_12318 EEM212318 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22075223; 22179104 – fundername: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology) funderid: 2021‐ZD‐4 – fundername: Fundamental Research Funds for the Central Universities funderid: 2020‐YB‐012 |
GroupedDBID | 0R~ 1OC 24P ACCMX ACXQS ALMA_UNASSIGNED_HOLDINGS AVUZU EBS EJD OK1 WIN AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI 2B. 4A8 92I 93N PSX TCJ |
ID | FETCH-LOGICAL-c3368-a0aa89f7d9a3aa7b1eabe42bce944866e0e22987cb9550f8f1d267ab50a3078a3 |
IEDL.DBID | 24P |
ISSN | 2575-0356 2575-0348 |
IngestDate | Thu May 29 04:00:40 EDT 2025 Mon Jun 30 12:01:21 EDT 2025 Tue Jul 01 01:03:05 EDT 2025 Thu Apr 24 23:02:38 EDT 2025 Wed Jan 22 16:14:42 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | seawater electrolysis alkaline water electrolysis epitaxial heterostructure solar-to-hydrogen integrated system bifunctional electrocatalyst |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3368-a0aa89f7d9a3aa7b1eabe42bce944866e0e22987cb9550f8f1d267ab50a3078a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1234-4455 0000-0003-3902-0976 |
PQID | 2786782652 |
PQPubID | 5251211 |
PageCount | 9 |
ParticipantIDs | wanfang_journals_nyyhjcl_e202302015 proquest_journals_2786782652 crossref_primary_10_1002_eem2_12318 crossref_citationtrail_10_1002_eem2_12318 wiley_primary_10_1002_eem2_12318_EEM212318 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2023 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Energy & environmental materials (Hoboken, N.J.) |
PublicationTitle_FL | Energy & Environmental Materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,China%State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China NRC(Nanostructure Research Centre),Wuhan University of Technology,Wuhan 430070,China |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: NRC(Nanostructure Research Centre),Wuhan University of Technology,Wuhan 430070,China – name: Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,China%State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China – name: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China |
References | 2010; 12 2017; 7 2019; 4 2021; 21 2021; 4 2021; 22 2019; 5 2015; 3 2020; 120 2019; 2 2019; 11 2019; 10 2017; 46 2019; 59 2020; 59 2020; 78 2020; 12 2022; 65 2020; 11 2020; 10 2020; 32 2008; 2 2004; 305 2020; 18 2016; 4 2021; 57 2018; 9 2015; 25 2021; 31 2021; 12 2020; 30 2018; 239 2019; 28 2019; 377 2021; 296 2018; 30 2016; 138 2021; 298 2021; 83 2021; 60 2019; 375 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 60 start-page: 12328 year: 2021 publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 201 year: 2019 publication-title: Energy Environ. Mater. – volume: 10 start-page: 1903120 year: 2020 publication-title: Adv. Energy Mater. – volume: 10 start-page: 5692 year: 2019 publication-title: Nat. Commun. – volume: 4 start-page: 17363 year: 2016 publication-title: J. Mater. Chem. A – volume: 46 start-page: 337 year: 2017 end-page: 365 publication-title: Chem. Soc. Rev. – volume: 57 start-page: 7869 year: 2021 publication-title: Chem. Commun. – volume: 78 start-page: 105355 year: 2020 publication-title: Nano Energy – volume: 4 start-page: 392 year: 2021 publication-title: Energy Environ. Mater. – volume: 10 start-page: 11751 year: 2020 publication-title: ACS Catal. – volume: 22 start-page: 100846 year: 2021 publication-title: Mater. Today. Energy – volume: 9 start-page: 4531 year: 2018 publication-title: Nat. Commun. – volume: 377 start-page: 600 year: 2019 publication-title: J. Catal. – volume: 10 start-page: 2000814 year: 2020 publication-title: Adv. Energy Mater. – volume: 305 start-page: 972 year: 2004 publication-title: Science – volume: 138 start-page: 16174 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 6432 year: 2015 publication-title: J. Mater. Chem. A – volume: 30 start-page: 2004375 year: 2020 publication-title: Adv. Funct. Mater. – volume: 25 start-page: 5799 year: 2015 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 512 year: 2019 publication-title: Nat. Energy – volume: 31 start-page: 2100698 year: 2021 publication-title: Adv. Funct. Mater. – volume: 296 start-page: 120334 year: 2021 publication-title: Appl. Catal. B – volume: 5 start-page: 445 year: 2019 publication-title: Chem – volume: 2 start-page: 2489 year: 2008 publication-title: ACS Nano – volume: 12 start-page: 4018 year: 2021 publication-title: Nat. Commun. – volume: 65 start-page: 48 year: 2022 publication-title: J. Energy Chem. – volume: 11 start-page: 1278 year: 2020 publication-title: Nat. Commun. – volume: 375 start-page: 164 year: 2019 publication-title: J. Catal. – volume: 239 start-page: 537 year: 2018 publication-title: Appl. Catal. B – volume: 12 start-page: 1249 year: 2010 publication-title: J. Nanopart. Res. – volume: 28 start-page: 100774 year: 2019 publication-title: Nano Today – volume: 59 start-page: 472 year: 2019 publication-title: Nano Energy – volume: 298 start-page: 122156 year: 2021 publication-title: J. Solid State Chem. – volume: 7 start-page: 1601275 year: 2017 publication-title: Adv. Energy Mater. – volume: 11 start-page: 13168 year: 2019 publication-title: Mater. Interfaces – volume: 21 start-page: 100741 year: 2021 publication-title: Mater. Today. Energy – volume: 59 start-page: 8072 year: 2020 publication-title: Angew. Chem. Int. Ed. – volume: 18 start-page: 100524 year: 2020 publication-title: Mater. Today. Energy – volume: 83 start-page: 105838 year: 2021 publication-title: Nano Energy – volume: 32 start-page: 2002435 year: 2020 publication-title: Adv. Mater. – volume: 12 start-page: 48591 year: 2020 publication-title: Mater. Interfaces – volume: 60 start-page: 8243 year: 2021 publication-title: Angew. Chem. Int. Ed. – volume: 120 start-page: 851 year: 2020 publication-title: Chem. Rev. – volume: 30 start-page: 1705516 year: 2018 publication-title: Adv. Mater. – volume: 4 start-page: 5 year: 2021 publication-title: Energy Environ. Mater. – ident: e_1_2_7_42_1 doi: 10.1002/anie.201915803 – ident: e_1_2_7_9_1 doi: 10.1016/j.apcatb.2021.120334 – ident: e_1_2_7_13_1 doi: 10.1021/acscatal.0c03148 – ident: e_1_2_7_23_1 doi: 10.1002/aenm.201601275 – ident: e_1_2_7_12_1 doi: 10.1016/j.mtener.2021.100846 – ident: e_1_2_7_1_1 doi: 10.1126/science.1103197 – ident: e_1_2_7_22_1 doi: 10.1016/j.chempr.2018.11.010 – ident: e_1_2_7_29_1 doi: 10.1021/nn800503a – ident: e_1_2_7_11_1 doi: 10.1039/D1CC03076K – ident: e_1_2_7_10_1 doi: 10.1016/j.jcat.2019.05.031 – ident: e_1_2_7_39_1 doi: 10.1021/acsami.8b19052 – ident: e_1_2_7_14_1 doi: 10.1002/anie.202101539 – ident: e_1_2_7_15_1 doi: 10.1002/adma.202002435 – ident: e_1_2_7_32_1 doi: 10.1038/s41467-019-13519-1 – ident: e_1_2_7_26_1 doi: 10.1002/aenm.202000814 – ident: e_1_2_7_16_1 doi: 10.1016/j.mtener.2020.100524 – ident: e_1_2_7_31_1 doi: 10.1016/j.jechem.2021.05.033 – ident: e_1_2_7_27_1 doi: 10.1002/adma.201705516 – ident: e_1_2_7_28_1 doi: 10.1016/j.nanoen.2020.105355 – ident: e_1_2_7_20_1 doi: 10.1016/j.nantod.2019.100774 – ident: e_1_2_7_18_1 doi: 10.1039/C6CS00328A – ident: e_1_2_7_7_1 doi: 10.1016/j.jssc.2021.122156 – ident: e_1_2_7_19_1 doi: 10.1021/jacs.6b11291 – ident: e_1_2_7_3_1 doi: 10.1038/s41560-019-0402-6 – ident: e_1_2_7_2_1 doi: 10.1002/eem2.12085 – ident: e_1_2_7_40_1 doi: 10.1039/C6TA07883D – ident: e_1_2_7_24_1 doi: 10.1002/eem2.12031 – ident: e_1_2_7_33_1 doi: 10.1002/eem2.12112 – ident: e_1_2_7_35_1 doi: 10.1002/adfm.201502217 – ident: e_1_2_7_5_1 doi: 10.1016/j.mtener.2021.100741 – ident: e_1_2_7_44_1 doi: 10.1038/s41467-020-15069-3 – ident: e_1_2_7_45_1 doi: 10.1016/j.nanoen.2021.105838 – ident: e_1_2_7_17_1 doi: 10.1021/acs.chemrev.9b00248 – ident: e_1_2_7_25_1 doi: 10.1038/s41467-021-24322-2 – ident: e_1_2_7_8_1 doi: 10.1002/aenm.201903120 – ident: e_1_2_7_36_1 doi: 10.1038/s41467-018-06728-7 – ident: e_1_2_7_30_1 doi: 10.1016/j.nanoen.2019.02.062 – ident: e_1_2_7_4_1 doi: 10.1016/j.jcat.2019.08.005 – ident: e_1_2_7_6_1 doi: 10.1002/anie.202016199 – ident: e_1_2_7_34_1 doi: 10.1039/C4TA06921H – ident: e_1_2_7_37_1 doi: 10.1021/acsami.0c14170 – ident: e_1_2_7_21_1 doi: 10.1007/s11051-009-9830-8 – ident: e_1_2_7_43_1 doi: 10.1002/adfm.202004375 – ident: e_1_2_7_41_1 doi: 10.1016/j.apcatb.2018.05.080 – ident: e_1_2_7_38_1 doi: 10.1002/adfm.202100698 |
SSID | ssj0002013419 |
Score | 2.4881206 |
Snippet | The epitaxial heterostructure can be rationally designed based on the in situ growth of two compatible phases with lattice similarity, in which the modulated... The epitaxial heterostructure can be rationally designed based on the in situ growth of two compatible phases with lattice similarity,in which the modulated... |
SourceID | wanfang proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 165 |
SubjectTerms | Adsorption alkaline water electrolysis bifunctional electrocatalyst Catalytic activity Charge transfer Clusters Electrocatalysts Electrolysis Electron states Epitaxial growth epitaxial heterostructure Heterostructures Kinetics Nickel Reaction kinetics Seawater seawater electrolysis solar‐to‐hydrogen integrated system Substrates |
Title | Epitaxially Grown Ru Clusters–Nickel Nitride Heterostructure Advances Water Electrolysis Kinetics in Alkaline and Seawater Media |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12318 https://www.proquest.com/docview/2786782652 https://d.wanfangdata.com.cn/periodical/nyyhjcl-e202302015 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9RAEF5qi-CLKCqe1rKgLwqxuU2y2YAvR0k9lBZRT4svYXZ3Us_GVO561HsT_4L_0F_iTDZ3R0EE3wKZZGG-2Z2Z3Z1vhHiSE8ZAmVXkah9Hqfc-sryJA-C1Uka7UJV2dKzHk_TVSXayJV6samECP8R6w41nRrde8wQHO9_fkIYiflXPad0dmmtih2trmTlfpW_WOyzk2pisjLvLUUwSxUmm1_ykan_z-VWPtAkzr19CW0N7ejVs7fzO4S1xsw8Y5SggfFtsYXtH_Cy52cd3sp1mKV9yJi3fLuRBs2Dag_nvH78I4DNs5PH0Yjb1KMd86eU8cMUuZihH4eR_Lj9SqDmTZeiF07GTyNekGeZultNWjpozYE1JaL18h3DZifPhDtwVk8Py_cE46rspRC5JNGk_BjBFnfsCEoDcDhEspso6LChF0xpjVKowubMFZS21qYde6RxsFgOtAwaSe2K7PW_xvpCYZKCRYkeDXOFPcBfovLHgEkzApQPxdKXRyvVU49zxoqkCSbKqWPtVp_2BeLyW_RYINv4qtbsCpuon2bxSuSFXq3Sm6Cc9WJu37XL5-YtrKuQG8WwM2UA864D8xzhVWR6p7unB_wg_FDd4lHA3bVdsE5z4iIKVC7vX2eSe2Bl9mHya_AHGfOgB |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9RAEF-0IvoiioqnVRf0RSE2t0k2m8ejpJ62d4i22LdlsjvRszGVux713sSv4Df0kziTTe8oiOBbIJMszG9n58_u_kaI5zlhDJRZRa72cZR676OKizgAXitltAu30iZTPT5K3x5nx_3ZHL4LE_gh1gU3toxuvWYD54L0zoY1FPGrekUL79BcFddSrXK2S5W-W5dYyLcxWxm3l6OgJIqTTK8JStXO5vPLLmkTZ14_h7aG9tPluLVzPHu3xa0-YpSjAPEdcQXbu-Jnyd0-vtPkaVbyNafS8v1S7jZL5j1Y_P7xixA-wUZOZ2fzmUc55lMvp4EsdjlHOQpb_wv5kWLNuSxDM5yOnkTuk2qYvFnOWjlqToBVJaH18gPCeSfOuztwTxztlYe746hvpxC5JNGk_hjAFHXuC0gA8mqIUGGqKocF5WhaY4xKFSZ3VUFpS23qoVc6hyqLgRYCA8l9sdWetvhASEwy0EjBo0G-4k94F-i8qcAlmIBLB-LFhUat67nGueVFYwNLsrKsfdtpfyCerWW_BYaNv0ptXwBjeytbWJUb8rVKZ4p-0oO1eduuVp-_uMYid4jnyZANxMsOyH-MY8tyorqnh_8j_FTcGB9ODuzBm-n-I3GTRwwH1bbFFkGLjylyOauedPPzDwAi6a8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwELbGJhAvCASIsgGW4AWksNRpHEfipRophbEKAYWJF-tiX0ZZlk3tqtE3xF_gH_JLuEvSVpMQEm-RcrKl-86-O9v3nRBPEsIYKLMKXOHDoOe9D3I-xAHwWimjXVOVdjDSw3HvzWF8uCFeLGthGn6I1YEbr4x6v-YFfuaL3TVpKOKJek77btdcEVtMk0c2vdX_NP4yXp2xkHNjujLuL0dRSRBGsV4xlKrd9QCXfdI60Lx6AVUB1dHlwLX2PIOb4kYbMsp-g_EtsYHVbfEz43Yf38l6yoV8xbm0fD-Xe-WciQ9mv3_8IoiPsZSjyfl04lEO-dnLacMWO5-i7Dd3_zP5mYLNqcyabjg1P4ncJ90we7OcVLJfHgPrSkLl5QeEi1qcr3fgjhgPso97w6DtpxC4KNKk_xDApEXiU4gAkryLkGNP5Q5TStK0xhCVSk3i8pTylsIUXa90AnkcAu0EBqK7YrM6rfCekBjFoJGiR4Nc40-Ap-i8ycFFGIHrdcTTpUata8nGuedFaRuaZGVZ-7bWfkc8XsmeNRQbf5XaWQJj22U2syox5GyVjhUN0oK1_lstFl-_udIit4hnY4g74lkN5D_msVl2oOqv-_8j_Ehce_dyYN--Hu1vi-s8YfNQbUdsErL4gCKX8_xha6B_AB0-6qc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epitaxially+Grown+Ru+Clusters%E2%80%93Nickel+Nitride+Heterostructure+Advances+Water+Electrolysis+Kinetics+in+Alkaline+and+Seawater+Media&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Zhu%2C+Jiawei&rft.au=Lu%2C+Ruihu&rft.au=Shi%2C+Wenjie&rft.au=Gong%2C+Lei&rft.date=2023-03-01&rft.issn=2575-0356&rft.eissn=2575-0356&rft.volume=6&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Feem2.12318&rft.externalDBID=10.1002%252Feem2.12318&rft.externalDocID=EEM212318 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnyyhjcl-e%2Fnyyhjcl-e.jpg |