Epitaxially Grown Ru Clusters–Nickel Nitride Heterostructure Advances Water Electrolysis Kinetics in Alkaline and Seawater Media

The epitaxial heterostructure can be rationally designed based on the in situ growth of two compatible phases with lattice similarity, in which the modulated electronic states and tuned adsorption behaviors are conducive to the enhancement of electrocatalytic activity. Herein, theoretical simulation...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental materials (Hoboken, N.J.) Vol. 6; no. 2; pp. 165 - n/a
Main Authors Zhu, Jiawei, Lu, Ruihu, Shi, Wenjie, Gong, Lei, Chen, Ding, Wang, Pengyan, Chen, Lei, Wu, Jinsong, Mu, Shichun, Zhao, Yan
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.03.2023
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,China%State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China
NRC(Nanostructure Research Centre),Wuhan University of Technology,Wuhan 430070,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The epitaxial heterostructure can be rationally designed based on the in situ growth of two compatible phases with lattice similarity, in which the modulated electronic states and tuned adsorption behaviors are conducive to the enhancement of electrocatalytic activity. Herein, theoretical simulations first disclose the charge transfer trend and reinforced inherent electron conduction around the epitaxial heterointerface between Ru clusters and Ni3N substrate (cRu‐Ni3N), thus leading to the optimized adsorption behaviors and reduced activation energy barriers. Subsequently, the defect‐rich nanosheets with the epitaxially grown cRu‐Ni3N heterointerface are successfully constructed. Impressively, by virtue of the superiority of intrinsic activity and reaction kinetics, such unique epitaxial heterostructure exhibits remarkable bifunctional catalytic activity toward electrocatalytic OER (226 mV @ 20 mA cm−2) and HER (32 mV @ 10 mA cm−2) in alkaline media. Furthermore, it also shows great application prospect in alkaline freshwater and seawater splitting, as well as solar‐to‐hydrogen integrated system. This work could provide beneficial enlightenment for the establishment of advanced electrocatalysts with epitaxial heterointerfaces. The epitaxial heterostructures between Ru clusters and Ni3N substrate (cRu‐Ni3N) are theoretically elucidated and elaborately constructed by virtue of the lattice similarity, which display remarkable electrocatalytic activity for both oxygen and hydrogen evolution, and consequent terrific application prospect in alkaline water splitting, seawater electrolysis, and solar‐to‐hydrogen integrated system.
AbstractList The epitaxial heterostructure can be rationally designed based on the in situ growth of two compatible phases with lattice similarity, in which the modulated electronic states and tuned adsorption behaviors are conducive to the enhancement of electrocatalytic activity. Herein, theoretical simulations first disclose the charge transfer trend and reinforced inherent electron conduction around the epitaxial heterointerface between Ru clusters and Ni3N substrate (cRu‐Ni3N), thus leading to the optimized adsorption behaviors and reduced activation energy barriers. Subsequently, the defect‐rich nanosheets with the epitaxially grown cRu‐Ni3N heterointerface are successfully constructed. Impressively, by virtue of the superiority of intrinsic activity and reaction kinetics, such unique epitaxial heterostructure exhibits remarkable bifunctional catalytic activity toward electrocatalytic OER (226 mV @ 20 mA cm−2) and HER (32 mV @ 10 mA cm−2) in alkaline media. Furthermore, it also shows great application prospect in alkaline freshwater and seawater splitting, as well as solar‐to‐hydrogen integrated system. This work could provide beneficial enlightenment for the establishment of advanced electrocatalysts with epitaxial heterointerfaces. The epitaxial heterostructures between Ru clusters and Ni3N substrate (cRu‐Ni3N) are theoretically elucidated and elaborately constructed by virtue of the lattice similarity, which display remarkable electrocatalytic activity for both oxygen and hydrogen evolution, and consequent terrific application prospect in alkaline water splitting, seawater electrolysis, and solar‐to‐hydrogen integrated system.
The epitaxial heterostructure can be rationally designed based on the in situ growth of two compatible phases with lattice similarity,in which the modulated electronic states and tuned adsorption behaviors are conducive to the enhancement of electrocatalytic activity.Herein,theoretical simulations first disclose the charge transfer trend and reinforced inherent electron conduction around the epitaxial heterointerface between Ru clusters and Ni3N substrate(cRu-Ni3N),thus leading to the optimized adsorption behaviors and reduced activation energy barriers.Subsequently,the defect-rich nanosheets with the epitaxially grown cRu-Ni3N heterointerface are successfully constructed.Impressively,by virtue of the superiority of intrinsic activity and reaction kinetics,such unique epitaxial heterostructure exhibits remarkable bifunctional catalytic activity toward electrocatalytic OER(226 mV@20 mA cm-2)and HER(32 mV@10 mA cm-2)in alkaline media.Furthermore,it also shows great application prospect in alkaline freshwater and seawater splitting,as well as solar-to-hydrogen integrated system.This work could provide beneficial enlightenment for the establishment of advanced electrocatalysts with epitaxial heterointerfaces.
The epitaxial heterostructure can be rationally designed based on the in situ growth of two compatible phases with lattice similarity, in which the modulated electronic states and tuned adsorption behaviors are conducive to the enhancement of electrocatalytic activity. Herein, theoretical simulations first disclose the charge transfer trend and reinforced inherent electron conduction around the epitaxial heterointerface between Ru clusters and Ni3N substrate (cRu‐Ni3N), thus leading to the optimized adsorption behaviors and reduced activation energy barriers. Subsequently, the defect‐rich nanosheets with the epitaxially grown cRu‐Ni3N heterointerface are successfully constructed. Impressively, by virtue of the superiority of intrinsic activity and reaction kinetics, such unique epitaxial heterostructure exhibits remarkable bifunctional catalytic activity toward electrocatalytic OER (226 mV @ 20 mA cm−2) and HER (32 mV @ 10 mA cm−2) in alkaline media. Furthermore, it also shows great application prospect in alkaline freshwater and seawater splitting, as well as solar‐to‐hydrogen integrated system. This work could provide beneficial enlightenment for the establishment of advanced electrocatalysts with epitaxial heterointerfaces.
The epitaxial heterostructure can be rationally designed based on the in situ growth of two compatible phases with lattice similarity, in which the modulated electronic states and tuned adsorption behaviors are conducive to the enhancement of electrocatalytic activity. Herein, theoretical simulations first disclose the charge transfer trend and reinforced inherent electron conduction around the epitaxial heterointerface between Ru clusters and Ni 3 N substrate (cRu‐Ni 3 N), thus leading to the optimized adsorption behaviors and reduced activation energy barriers. Subsequently, the defect‐rich nanosheets with the epitaxially grown cRu‐Ni 3 N heterointerface are successfully constructed. Impressively, by virtue of the superiority of intrinsic activity and reaction kinetics, such unique epitaxial heterostructure exhibits remarkable bifunctional catalytic activity toward electrocatalytic OER (226 mV @ 20 mA cm −2 ) and HER (32 mV @ 10 mA cm −2 ) in alkaline media. Furthermore, it also shows great application prospect in alkaline freshwater and seawater splitting, as well as solar‐to‐hydrogen integrated system. This work could provide beneficial enlightenment for the establishment of advanced electrocatalysts with epitaxial heterointerfaces.
Author Mu, Shichun
Gong, Lei
Chen, Ding
Wu, Jinsong
Lu, Ruihu
Chen, Lei
Wang, Pengyan
Zhao, Yan
Zhu, Jiawei
Shi, Wenjie
AuthorAffiliation State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,China%State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;NRC(Nanostructure Research Centre),Wuhan University of Technology,Wuhan 430070,China
AuthorAffiliation_xml – name: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,China%State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;NRC(Nanostructure Research Centre),Wuhan University of Technology,Wuhan 430070,China
Author_xml – sequence: 1
  givenname: Jiawei
  surname: Zhu
  fullname: Zhu, Jiawei
  organization: Xianhu Hydrogen Valley
– sequence: 2
  givenname: Ruihu
  surname: Lu
  fullname: Lu, Ruihu
  organization: Wuhan University of Technology
– sequence: 3
  givenname: Wenjie
  surname: Shi
  fullname: Shi, Wenjie
  organization: Wuhan University of Technology
– sequence: 4
  givenname: Lei
  surname: Gong
  fullname: Gong, Lei
  organization: Wuhan University of Technology
– sequence: 5
  givenname: Ding
  surname: Chen
  fullname: Chen, Ding
  organization: Wuhan University of Technology
– sequence: 6
  givenname: Pengyan
  surname: Wang
  fullname: Wang, Pengyan
  organization: Wuhan University of Technology
– sequence: 7
  givenname: Lei
  surname: Chen
  fullname: Chen, Lei
  organization: Wuhan University of Technology
– sequence: 8
  givenname: Jinsong
  surname: Wu
  fullname: Wu, Jinsong
  organization: Wuhan University of Technology
– sequence: 9
  givenname: Shichun
  orcidid: 0000-0003-3902-0976
  surname: Mu
  fullname: Mu, Shichun
  email: msc@whut.edu.cn
  organization: Xianhu Hydrogen Valley
– sequence: 10
  givenname: Yan
  orcidid: 0000-0002-1234-4455
  surname: Zhao
  fullname: Zhao, Yan
  email: yan2000@whut.edu.cn
  organization: Wuhan University of Technology
BookMark eNp9kc9u1DAQxi1UJErphSewxA1pi_9sEue4WoW2oi0SUPVoTZwJeOs6i-2w5Fb1FfqGPAnebqUihDh57PnNN9b3vSR7fvBIyGvOjjhj4h3ijTjiQnL1jOyLoipmTBbl3h_1C3IY44plmHE55_U-uWvWNsFPC85N9DgMG08_jXTpxpgwxF-39xfWXKOjFzYF2yE9wfw-xBRGk8aAdNH9AG8w0ivIDdo4NCkMboo20g_WY7ImUuvpwl2Dy3cKvqOfETYP-Dl2Fl6R5z24iIeP5wG5fN98WZ7Mzj4eny4XZzMjZalmwABU3VddDRKgajlCi3PRGqznc1WWyFCIWlWmrYuC9arnnSgraAsGklUK5AF5u9PdgO_Bf9WrYQw-b9R-mr6tjNMomJBbb4oMv9nB6zB8HzGmJ1pUqqyUKAvxJGmyJzFgr9fB3kCYNGd6m4neZqIfMskw-ws22fpkB58CWPfvEf74Zetw-o-4bppzsZv5DShBonc
CitedBy_id crossref_primary_10_1039_D2GC03351H
crossref_primary_10_1002_ange_202312644
crossref_primary_10_1021_acscatal_2c03102
crossref_primary_10_1002_adma_202501586
crossref_primary_10_1016_j_jcis_2024_08_097
crossref_primary_10_1002_eem2_12817
crossref_primary_10_1016_j_jallcom_2024_174896
crossref_primary_10_1016_j_jcis_2024_06_056
crossref_primary_10_1002_adfm_202415058
crossref_primary_10_1002_smtd_202201616
crossref_primary_10_1007_s40843_023_2776_5
crossref_primary_10_1021_acsmaterialslett_4c01327
crossref_primary_10_1002_adfm_202315326
crossref_primary_10_1039_D3EE03363E
crossref_primary_10_1002_adfm_202301925
crossref_primary_10_1016_j_ijhydene_2023_12_277
crossref_primary_10_1002_smtd_202401082
crossref_primary_10_1016_j_jcis_2023_08_009
crossref_primary_10_1039_D4EE01693A
crossref_primary_10_1002_smll_202308650
crossref_primary_10_1021_acs_energyfuels_4c01543
crossref_primary_10_1039_D3TA06988E
crossref_primary_10_1002_slct_202201682
crossref_primary_10_1002_celc_202300835
crossref_primary_10_1016_j_jcis_2025_137309
crossref_primary_10_1021_acssuschemeng_4c07973
crossref_primary_10_1016_j_jallcom_2024_178201
crossref_primary_10_1002_sus2_164
crossref_primary_10_1039_D3TA00797A
crossref_primary_10_1002_aenm_202301438
crossref_primary_10_1002_smll_202204155
crossref_primary_10_1002_eem2_12441
crossref_primary_10_1007_s10562_023_04326_x
crossref_primary_10_1021_acsmaterialslett_3c01414
crossref_primary_10_3390_catal15010098
crossref_primary_10_1002_aenm_202203568
crossref_primary_10_1016_j_jcis_2023_08_154
crossref_primary_10_1039_D3QI02079G
crossref_primary_10_1016_j_apcatb_2023_123578
crossref_primary_10_1016_j_jallcom_2023_170430
crossref_primary_10_1007_s41918_024_00217_w
crossref_primary_10_1039_D3IM00071K
crossref_primary_10_1016_j_jcis_2024_04_144
crossref_primary_10_1016_j_mattod_2023_08_024
crossref_primary_10_1039_D3TA06083G
crossref_primary_10_1002_ange_202500261
crossref_primary_10_1002_eem2_12590
crossref_primary_10_1016_j_ijhydene_2022_11_295
crossref_primary_10_1016_j_ccr_2024_215837
crossref_primary_10_1039_D3QI00117B
crossref_primary_10_1002_aenm_202201358
crossref_primary_10_1021_acscatal_2c06340
crossref_primary_10_1002_anie_202312644
crossref_primary_10_1002_adfm_202304296
crossref_primary_10_1016_j_cclet_2023_109105
crossref_primary_10_1002_smll_202301721
crossref_primary_10_1002_sstr_202300192
crossref_primary_10_1016_j_fuel_2024_131716
crossref_primary_10_1016_j_jcis_2024_10_128
crossref_primary_10_1039_D3TA07230D
crossref_primary_10_3390_ma17010199
crossref_primary_10_1016_j_ijhydene_2022_12_040
crossref_primary_10_1002_smll_202300030
crossref_primary_10_1021_acsnano_3c08450
crossref_primary_10_1002_anie_202500261
crossref_primary_10_1016_j_nanoen_2023_108349
Cites_doi 10.1002/anie.201915803
10.1016/j.apcatb.2021.120334
10.1021/acscatal.0c03148
10.1002/aenm.201601275
10.1016/j.mtener.2021.100846
10.1126/science.1103197
10.1016/j.chempr.2018.11.010
10.1021/nn800503a
10.1039/D1CC03076K
10.1016/j.jcat.2019.05.031
10.1021/acsami.8b19052
10.1002/anie.202101539
10.1002/adma.202002435
10.1038/s41467-019-13519-1
10.1002/aenm.202000814
10.1016/j.mtener.2020.100524
10.1016/j.jechem.2021.05.033
10.1002/adma.201705516
10.1016/j.nanoen.2020.105355
10.1016/j.nantod.2019.100774
10.1039/C6CS00328A
10.1016/j.jssc.2021.122156
10.1021/jacs.6b11291
10.1038/s41560-019-0402-6
10.1002/eem2.12085
10.1039/C6TA07883D
10.1002/eem2.12031
10.1002/eem2.12112
10.1002/adfm.201502217
10.1016/j.mtener.2021.100741
10.1038/s41467-020-15069-3
10.1016/j.nanoen.2021.105838
10.1021/acs.chemrev.9b00248
10.1038/s41467-021-24322-2
10.1002/aenm.201903120
10.1038/s41467-018-06728-7
10.1016/j.nanoen.2019.02.062
10.1016/j.jcat.2019.08.005
10.1002/anie.202016199
10.1039/C4TA06921H
10.1021/acsami.0c14170
10.1007/s11051-009-9830-8
10.1002/adfm.202004375
10.1016/j.apcatb.2018.05.080
10.1002/adfm.202100698
ContentType Journal Article
Copyright 2022 Zhengzhou University
2023 Zhengzhou University
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2022 Zhengzhou University
– notice: 2023 Zhengzhou University
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1002/eem2.12318
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Environment Abstracts
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2575-0356
EndPage n/a
ExternalDocumentID nyyhjcl_e202302015
10_1002_eem2_12318
EEM212318
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22075223; 22179104
– fundername: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology)
  funderid: 2021‐ZD‐4
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2020‐YB‐012
GroupedDBID 0R~
1OC
24P
ACCMX
ACXQS
ALMA_UNASSIGNED_HOLDINGS
AVUZU
EBS
EJD
OK1
WIN
AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c3368-a0aa89f7d9a3aa7b1eabe42bce944866e0e22987cb9550f8f1d267ab50a3078a3
IEDL.DBID 24P
ISSN 2575-0356
2575-0348
IngestDate Thu May 29 04:00:40 EDT 2025
Mon Jun 30 12:01:21 EDT 2025
Tue Jul 01 01:03:05 EDT 2025
Thu Apr 24 23:02:38 EDT 2025
Wed Jan 22 16:14:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords seawater electrolysis
alkaline water electrolysis
epitaxial heterostructure
solar-to-hydrogen integrated system
bifunctional electrocatalyst
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3368-a0aa89f7d9a3aa7b1eabe42bce944866e0e22987cb9550f8f1d267ab50a3078a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1234-4455
0000-0003-3902-0976
PQID 2786782652
PQPubID 5251211
PageCount 9
ParticipantIDs wanfang_journals_nyyhjcl_e202302015
proquest_journals_2786782652
crossref_primary_10_1002_eem2_12318
crossref_citationtrail_10_1002_eem2_12318
wiley_primary_10_1002_eem2_12318_EEM212318
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2023
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Energy & environmental materials (Hoboken, N.J.)
PublicationTitle_FL Energy & Environmental Materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,China%State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China
NRC(Nanostructure Research Centre),Wuhan University of Technology,Wuhan 430070,China
Publisher_xml – name: Wiley Subscription Services, Inc
– name: NRC(Nanostructure Research Centre),Wuhan University of Technology,Wuhan 430070,China
– name: Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,China%State Key Laboratory of Silicate Materials for Architectures,International School of Materials Science and Engineering,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China
– name: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China
References 2010; 12
2017; 7
2019; 4
2021; 21
2021; 4
2021; 22
2019; 5
2015; 3
2020; 120
2019; 2
2019; 11
2019; 10
2017; 46
2019; 59
2020; 59
2020; 78
2020; 12
2022; 65
2020; 11
2020; 10
2020; 32
2008; 2
2004; 305
2020; 18
2016; 4
2021; 57
2018; 9
2015; 25
2021; 31
2021; 12
2020; 30
2018; 239
2019; 28
2019; 377
2021; 296
2018; 30
2016; 138
2021; 298
2021; 83
2021; 60
2019; 375
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 60
  start-page: 12328
  year: 2021
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 201
  year: 2019
  publication-title: Energy Environ. Mater.
– volume: 10
  start-page: 1903120
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 5692
  year: 2019
  publication-title: Nat. Commun.
– volume: 4
  start-page: 17363
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 46
  start-page: 337
  year: 2017
  end-page: 365
  publication-title: Chem. Soc. Rev.
– volume: 57
  start-page: 7869
  year: 2021
  publication-title: Chem. Commun.
– volume: 78
  start-page: 105355
  year: 2020
  publication-title: Nano Energy
– volume: 4
  start-page: 392
  year: 2021
  publication-title: Energy Environ. Mater.
– volume: 10
  start-page: 11751
  year: 2020
  publication-title: ACS Catal.
– volume: 22
  start-page: 100846
  year: 2021
  publication-title: Mater. Today. Energy
– volume: 9
  start-page: 4531
  year: 2018
  publication-title: Nat. Commun.
– volume: 377
  start-page: 600
  year: 2019
  publication-title: J. Catal.
– volume: 10
  start-page: 2000814
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 305
  start-page: 972
  year: 2004
  publication-title: Science
– volume: 138
  start-page: 16174
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 6432
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 30
  start-page: 2004375
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 25
  start-page: 5799
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 512
  year: 2019
  publication-title: Nat. Energy
– volume: 31
  start-page: 2100698
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 296
  start-page: 120334
  year: 2021
  publication-title: Appl. Catal. B
– volume: 5
  start-page: 445
  year: 2019
  publication-title: Chem
– volume: 2
  start-page: 2489
  year: 2008
  publication-title: ACS Nano
– volume: 12
  start-page: 4018
  year: 2021
  publication-title: Nat. Commun.
– volume: 65
  start-page: 48
  year: 2022
  publication-title: J. Energy Chem.
– volume: 11
  start-page: 1278
  year: 2020
  publication-title: Nat. Commun.
– volume: 375
  start-page: 164
  year: 2019
  publication-title: J. Catal.
– volume: 239
  start-page: 537
  year: 2018
  publication-title: Appl. Catal. B
– volume: 12
  start-page: 1249
  year: 2010
  publication-title: J. Nanopart. Res.
– volume: 28
  start-page: 100774
  year: 2019
  publication-title: Nano Today
– volume: 59
  start-page: 472
  year: 2019
  publication-title: Nano Energy
– volume: 298
  start-page: 122156
  year: 2021
  publication-title: J. Solid State Chem.
– volume: 7
  start-page: 1601275
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 13168
  year: 2019
  publication-title: Mater. Interfaces
– volume: 21
  start-page: 100741
  year: 2021
  publication-title: Mater. Today. Energy
– volume: 59
  start-page: 8072
  year: 2020
  publication-title: Angew. Chem. Int. Ed.
– volume: 18
  start-page: 100524
  year: 2020
  publication-title: Mater. Today. Energy
– volume: 83
  start-page: 105838
  year: 2021
  publication-title: Nano Energy
– volume: 32
  start-page: 2002435
  year: 2020
  publication-title: Adv. Mater.
– volume: 12
  start-page: 48591
  year: 2020
  publication-title: Mater. Interfaces
– volume: 60
  start-page: 8243
  year: 2021
  publication-title: Angew. Chem. Int. Ed.
– volume: 120
  start-page: 851
  year: 2020
  publication-title: Chem. Rev.
– volume: 30
  start-page: 1705516
  year: 2018
  publication-title: Adv. Mater.
– volume: 4
  start-page: 5
  year: 2021
  publication-title: Energy Environ. Mater.
– ident: e_1_2_7_42_1
  doi: 10.1002/anie.201915803
– ident: e_1_2_7_9_1
  doi: 10.1016/j.apcatb.2021.120334
– ident: e_1_2_7_13_1
  doi: 10.1021/acscatal.0c03148
– ident: e_1_2_7_23_1
  doi: 10.1002/aenm.201601275
– ident: e_1_2_7_12_1
  doi: 10.1016/j.mtener.2021.100846
– ident: e_1_2_7_1_1
  doi: 10.1126/science.1103197
– ident: e_1_2_7_22_1
  doi: 10.1016/j.chempr.2018.11.010
– ident: e_1_2_7_29_1
  doi: 10.1021/nn800503a
– ident: e_1_2_7_11_1
  doi: 10.1039/D1CC03076K
– ident: e_1_2_7_10_1
  doi: 10.1016/j.jcat.2019.05.031
– ident: e_1_2_7_39_1
  doi: 10.1021/acsami.8b19052
– ident: e_1_2_7_14_1
  doi: 10.1002/anie.202101539
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.202002435
– ident: e_1_2_7_32_1
  doi: 10.1038/s41467-019-13519-1
– ident: e_1_2_7_26_1
  doi: 10.1002/aenm.202000814
– ident: e_1_2_7_16_1
  doi: 10.1016/j.mtener.2020.100524
– ident: e_1_2_7_31_1
  doi: 10.1016/j.jechem.2021.05.033
– ident: e_1_2_7_27_1
  doi: 10.1002/adma.201705516
– ident: e_1_2_7_28_1
  doi: 10.1016/j.nanoen.2020.105355
– ident: e_1_2_7_20_1
  doi: 10.1016/j.nantod.2019.100774
– ident: e_1_2_7_18_1
  doi: 10.1039/C6CS00328A
– ident: e_1_2_7_7_1
  doi: 10.1016/j.jssc.2021.122156
– ident: e_1_2_7_19_1
  doi: 10.1021/jacs.6b11291
– ident: e_1_2_7_3_1
  doi: 10.1038/s41560-019-0402-6
– ident: e_1_2_7_2_1
  doi: 10.1002/eem2.12085
– ident: e_1_2_7_40_1
  doi: 10.1039/C6TA07883D
– ident: e_1_2_7_24_1
  doi: 10.1002/eem2.12031
– ident: e_1_2_7_33_1
  doi: 10.1002/eem2.12112
– ident: e_1_2_7_35_1
  doi: 10.1002/adfm.201502217
– ident: e_1_2_7_5_1
  doi: 10.1016/j.mtener.2021.100741
– ident: e_1_2_7_44_1
  doi: 10.1038/s41467-020-15069-3
– ident: e_1_2_7_45_1
  doi: 10.1016/j.nanoen.2021.105838
– ident: e_1_2_7_17_1
  doi: 10.1021/acs.chemrev.9b00248
– ident: e_1_2_7_25_1
  doi: 10.1038/s41467-021-24322-2
– ident: e_1_2_7_8_1
  doi: 10.1002/aenm.201903120
– ident: e_1_2_7_36_1
  doi: 10.1038/s41467-018-06728-7
– ident: e_1_2_7_30_1
  doi: 10.1016/j.nanoen.2019.02.062
– ident: e_1_2_7_4_1
  doi: 10.1016/j.jcat.2019.08.005
– ident: e_1_2_7_6_1
  doi: 10.1002/anie.202016199
– ident: e_1_2_7_34_1
  doi: 10.1039/C4TA06921H
– ident: e_1_2_7_37_1
  doi: 10.1021/acsami.0c14170
– ident: e_1_2_7_21_1
  doi: 10.1007/s11051-009-9830-8
– ident: e_1_2_7_43_1
  doi: 10.1002/adfm.202004375
– ident: e_1_2_7_41_1
  doi: 10.1016/j.apcatb.2018.05.080
– ident: e_1_2_7_38_1
  doi: 10.1002/adfm.202100698
SSID ssj0002013419
Score 2.4881206
Snippet The epitaxial heterostructure can be rationally designed based on the in situ growth of two compatible phases with lattice similarity, in which the modulated...
The epitaxial heterostructure can be rationally designed based on the in situ growth of two compatible phases with lattice similarity,in which the modulated...
SourceID wanfang
proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 165
SubjectTerms Adsorption
alkaline water electrolysis
bifunctional electrocatalyst
Catalytic activity
Charge transfer
Clusters
Electrocatalysts
Electrolysis
Electron states
Epitaxial growth
epitaxial heterostructure
Heterostructures
Kinetics
Nickel
Reaction kinetics
Seawater
seawater electrolysis
solar‐to‐hydrogen integrated system
Substrates
Title Epitaxially Grown Ru Clusters–Nickel Nitride Heterostructure Advances Water Electrolysis Kinetics in Alkaline and Seawater Media
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12318
https://www.proquest.com/docview/2786782652
https://d.wanfangdata.com.cn/periodical/nyyhjcl-e202302015
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9RAEF5qi-CLKCqe1rKgLwqxuU2y2YAvR0k9lBZRT4svYXZ3Us_GVO561HsT_4L_0F_iTDZ3R0EE3wKZZGG-2Z2Z3Z1vhHiSE8ZAmVXkah9Hqfc-sryJA-C1Uka7UJV2dKzHk_TVSXayJV6samECP8R6w41nRrde8wQHO9_fkIYiflXPad0dmmtih2trmTlfpW_WOyzk2pisjLvLUUwSxUmm1_ykan_z-VWPtAkzr19CW0N7ejVs7fzO4S1xsw8Y5SggfFtsYXtH_Cy52cd3sp1mKV9yJi3fLuRBs2Dag_nvH78I4DNs5PH0Yjb1KMd86eU8cMUuZihH4eR_Lj9SqDmTZeiF07GTyNekGeZultNWjpozYE1JaL18h3DZifPhDtwVk8Py_cE46rspRC5JNGk_BjBFnfsCEoDcDhEspso6LChF0xpjVKowubMFZS21qYde6RxsFgOtAwaSe2K7PW_xvpCYZKCRYkeDXOFPcBfovLHgEkzApQPxdKXRyvVU49zxoqkCSbKqWPtVp_2BeLyW_RYINv4qtbsCpuon2bxSuSFXq3Sm6Cc9WJu37XL5-YtrKuQG8WwM2UA864D8xzhVWR6p7unB_wg_FDd4lHA3bVdsE5z4iIKVC7vX2eSe2Bl9mHya_AHGfOgB
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9RAEF-0IvoiioqnVRf0RSE2t0k2m8ejpJ62d4i22LdlsjvRszGVux713sSv4Df0kziTTe8oiOBbIJMszG9n58_u_kaI5zlhDJRZRa72cZR676OKizgAXitltAu30iZTPT5K3x5nx_3ZHL4LE_gh1gU3toxuvWYD54L0zoY1FPGrekUL79BcFddSrXK2S5W-W5dYyLcxWxm3l6OgJIqTTK8JStXO5vPLLmkTZ14_h7aG9tPluLVzPHu3xa0-YpSjAPEdcQXbu-Jnyd0-vtPkaVbyNafS8v1S7jZL5j1Y_P7xixA-wUZOZ2fzmUc55lMvp4EsdjlHOQpb_wv5kWLNuSxDM5yOnkTuk2qYvFnOWjlqToBVJaH18gPCeSfOuztwTxztlYe746hvpxC5JNGk_hjAFHXuC0gA8mqIUGGqKocF5WhaY4xKFSZ3VUFpS23qoVc6hyqLgRYCA8l9sdWetvhASEwy0EjBo0G-4k94F-i8qcAlmIBLB-LFhUat67nGueVFYwNLsrKsfdtpfyCerWW_BYaNv0ptXwBjeytbWJUb8rVKZ4p-0oO1eduuVp-_uMYid4jnyZANxMsOyH-MY8tyorqnh_8j_FTcGB9ODuzBm-n-I3GTRwwH1bbFFkGLjylyOauedPPzDwAi6a8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwELbGJhAvCASIsgGW4AWksNRpHEfipRophbEKAYWJF-tiX0ZZlk3tqtE3xF_gH_JLuEvSVpMQEm-RcrKl-86-O9v3nRBPEsIYKLMKXOHDoOe9D3I-xAHwWimjXVOVdjDSw3HvzWF8uCFeLGthGn6I1YEbr4x6v-YFfuaL3TVpKOKJek77btdcEVtMk0c2vdX_NP4yXp2xkHNjujLuL0dRSRBGsV4xlKrd9QCXfdI60Lx6AVUB1dHlwLX2PIOb4kYbMsp-g_EtsYHVbfEz43Yf38l6yoV8xbm0fD-Xe-WciQ9mv3_8IoiPsZSjyfl04lEO-dnLacMWO5-i7Dd3_zP5mYLNqcyabjg1P4ncJ90we7OcVLJfHgPrSkLl5QeEi1qcr3fgjhgPso97w6DtpxC4KNKk_xDApEXiU4gAkryLkGNP5Q5TStK0xhCVSk3i8pTylsIUXa90AnkcAu0EBqK7YrM6rfCekBjFoJGiR4Nc40-Ap-i8ycFFGIHrdcTTpUata8nGuedFaRuaZGVZ-7bWfkc8XsmeNRQbf5XaWQJj22U2syox5GyVjhUN0oK1_lstFl-_udIit4hnY4g74lkN5D_msVl2oOqv-_8j_Ehce_dyYN--Hu1vi-s8YfNQbUdsErL4gCKX8_xha6B_AB0-6qc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epitaxially+Grown+Ru+Clusters%E2%80%93Nickel+Nitride+Heterostructure+Advances+Water+Electrolysis+Kinetics+in+Alkaline+and+Seawater+Media&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Zhu%2C+Jiawei&rft.au=Lu%2C+Ruihu&rft.au=Shi%2C+Wenjie&rft.au=Gong%2C+Lei&rft.date=2023-03-01&rft.issn=2575-0356&rft.eissn=2575-0356&rft.volume=6&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Feem2.12318&rft.externalDBID=10.1002%252Feem2.12318&rft.externalDocID=EEM212318
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnyyhjcl-e%2Fnyyhjcl-e.jpg