An improved method for searching plant functional types by numerical analysis
. The use of plant functional types (PFTs) to describe patterns and processes in plant communities has become essential to study and predict consequences of global change on vegetation and ecosystem processes. A PFT is a group of plants that, irrespective of phylogeny, are similar in a given set of...
Saved in:
Published in | Journal of vegetation science Vol. 14; no. 3; pp. 323 - 332 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.06.2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | . The use of plant functional types (PFTs) to describe patterns and processes in plant communities has become essential to study and predict consequences of global change on vegetation and ecosystem processes. A PFT is a group of plants that, irrespective of phylogeny, are similar in a given set of traits and similar in their association to certain variables, which may be factors to which the plants are responding or effects of the plants in the ecosystem. To define PFTs relevant traits must be selected and an appropriate method must be used to classify plants into types. We critically review methods used for the analysis of PFT‐based data and describe a new recursive algorithm to numerically search for traits and find optimal PFTs. The algorithm uses three data matrices: describing populations by traits, communities by these populations and community sites by environmental factors or effects. It defines PFTs polythetically by cluster analysis, revealing plant types whose performance in communities is maximally associated to the specified environmental variables. We test the method with data from natural grassland communities of southern Brazil, which were experimentally subjected to combinations of grazing levels and N‐fertilizer. The new method is found to be better than similar analytical procedures previously described. Redundancy among traits is discussed and a procedure for comparing alternative solutions is presented based on the similarity in terms of PFT responses between different trait subsets. The concept of PFT response group is illustrated by example. |
---|---|
AbstractList | The use of plant functional types (PFTs) to describe patterns and processes in plant communities has become essential to study and predict consequences of global change on vegetation and ecosystem processes. A PFT is a group of plants that, irrespective of phylogeny, are similar in a given set of traits and similar in their association to certain variables, which may be factors to which the plants are responding or effects of the plants in the ecosystem. To define PFTs relevant traits must be selected and an appropriate method must be used to classify plants into types. We critically review methods used for the analysis of PFT‐based data and describe a new recursive algorithm to numerically search for traits and find optimal PFTs. The algorithm uses three data matrices: describing populations by traits, communities by these populations and community sites by environmental factors or effects. It defines PFTs polythetically by cluster analysis, revealing plant types whose performance in communities is maximally associated to the specified environmental variables. We test the method with data from natural grassland communities of southern Brazil, which were experimentally subjected to combinations of grazing levels and N‐fertilizer. The new method is found to be better than similar analytical procedures previously described. Redundancy among traits is discussed and a procedure for comparing alternative solutions is presented based on the similarity in terms of PFT responses between different trait subsets. The concept of PFT response group is illustrated by example. . The use of plant functional types (PFTs) to describe patterns and processes in plant communities has become essential to study and predict consequences of global change on vegetation and ecosystem processes. A PFT is a group of plants that, irrespective of phylogeny, are similar in a given set of traits and similar in their association to certain variables, which may be factors to which the plants are responding or effects of the plants in the ecosystem. To define PFTs relevant traits must be selected and an appropriate method must be used to classify plants into types. We critically review methods used for the analysis of PFT‐based data and describe a new recursive algorithm to numerically search for traits and find optimal PFTs. The algorithm uses three data matrices: describing populations by traits, communities by these populations and community sites by environmental factors or effects. It defines PFTs polythetically by cluster analysis, revealing plant types whose performance in communities is maximally associated to the specified environmental variables. We test the method with data from natural grassland communities of southern Brazil, which were experimentally subjected to combinations of grazing levels and N‐fertilizer. The new method is found to be better than similar analytical procedures previously described. Redundancy among traits is discussed and a procedure for comparing alternative solutions is presented based on the similarity in terms of PFT responses between different trait subsets. The concept of PFT response group is illustrated by example. |
Author | Sosinski Jr, Enio E. Pillar, Valério DePatta |
Author_xml | – sequence: 1 givenname: Valério DePatta surname: Pillar fullname: Pillar, Valério DePatta organization: Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91540-000, Brazil; Fax +555133167307; E-mail vpillar@ecologia.ufrgs.br; http://ecoqua.ecologia.ufrgs.br – sequence: 2 givenname: Enio E. surname: Sosinski Jr fullname: Sosinski Jr, Enio E. organization: Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91540-000, Brazil; Fax +555133167307; E-mail vpillar@ecologia.ufrgs.br; http://ecoqua.ecologia.ufrgs.br |
BookMark | eNqVkEFPwjAUxxuDiYB-h8b7sG_dus2LAipoQA8qHJuu66Q4tqUdyr69WyAcPGkPry_v5f_Ly6-HOnmRK4QugQygeVfrATDfcwAIHbikKVVMXPDDwe4EdY-rTtMDIU7kUnqGetauCYEgYtBF82GO9aY0xZdK8EZVqyLBaWGwVcLIlc4_cJmJvMLpNpeVLnKR4aoulcVxjfPtRhktm5Fo5rXV9hydpiKz6uLw99H7w_3beOrMXiaP4-HMkZSy0IliD0CyxPXCSBIIXZr6inlCgUfThAkS-cwNCGFunEYiUSSWXui5ABSkr1JJ--h2z5WmsNaolEtdifa-ygidcSC81cPXvHXAWwe81cMPeviuQVz_QpRGb4Sp_xa-2Ye_dabqfyT50-K17RqCsydoW6ndkSDMJ2cBDXy-fJ7w0V2wWI5gzqf0BwPOkPw |
CitedBy_id | crossref_primary_10_1590_2175_7860200657308 crossref_primary_10_1111_j_1654_1103_2011_01273_x crossref_primary_10_1111_j_1654_1103_2011_01339_x crossref_primary_10_1016_j_ecolind_2024_112370 crossref_primary_10_1590_S0103_84782012005000054 crossref_primary_10_1007_s10651_008_0098_4 crossref_primary_10_1111_j_1466_822X_2004_00120_x crossref_primary_10_1111_1365_2435_12718 crossref_primary_10_1017_S0376892914000307 crossref_primary_10_1111_nph_13623 crossref_primary_10_1007_s11258_006_9162_z crossref_primary_10_1590_S1516_35982006000700004 crossref_primary_10_1111_geb_13790 crossref_primary_10_5194_bg_8_667_2011 crossref_primary_10_1111_een_12158 crossref_primary_10_1016_j_apsoil_2016_09_021 crossref_primary_10_5194_bg_14_3371_2017 crossref_primary_10_1111_jvs_12190 crossref_primary_10_1111_j_1654_1103_2006_tb02498_x crossref_primary_10_1111_j_1654_1103_2012_01402_x crossref_primary_10_2111_08_016_1 crossref_primary_10_3389_fmicb_2014_00324 crossref_primary_10_1111_1365_2664_12874 crossref_primary_10_1111_geb_12299 crossref_primary_10_1111_1365_2435_12845 crossref_primary_10_1111_j_1600_0587_2011_07068_x crossref_primary_10_1016_j_ppees_2011_11_001 crossref_primary_10_1111_j_1654_1103_2003_tb02156_x crossref_primary_10_1007_s10530_018_1883_0 crossref_primary_10_1590_S0102_33062009000200021 crossref_primary_10_1556_ComEc_8_2007_1_8 crossref_primary_10_1590_S1676_06032009000300008 crossref_primary_10_1038_s41559_021_01616_8 crossref_primary_10_1590_0102_33062017abb0018 crossref_primary_10_1111_j_1461_0248_2010_01456_x crossref_primary_10_1111_jvs_12047 crossref_primary_10_1111_j_1600_0706_2009_18202_x crossref_primary_10_1007_s10750_018_3650_8 crossref_primary_10_1038_nature16489 crossref_primary_10_1590_1519_6984_18812 crossref_primary_10_1111_jvs_12009 crossref_primary_10_1038_s41559_018_0694_0 crossref_primary_10_1111_j_1654_109X_2005_tb00621_x crossref_primary_10_1016_j_jaridenv_2006_03_007 crossref_primary_10_1111_brv_12275 crossref_primary_10_1111_j_1365_2486_2011_02451_x crossref_primary_10_1590_S0103_84782013000300021 crossref_primary_10_1111_j_1526_100X_2011_00828_x crossref_primary_10_1371_journal_pone_0060207 crossref_primary_10_1038_s41597_022_01774_9 crossref_primary_10_1111_geb_12557 crossref_primary_10_1111_j_1654_1103_2005_tb02350_x crossref_primary_10_1007_s10530_022_02991_4 crossref_primary_10_1007_s00334_010_0265_z crossref_primary_10_1029_2021JG006606 crossref_primary_10_1590_S0103_90162007000400016 crossref_primary_10_1016_j_flora_2019_04_001 crossref_primary_10_1016_j_baae_2004_06_005 crossref_primary_10_1111_j_1365_2486_2012_02783_x crossref_primary_10_3390_f12050649 crossref_primary_10_1007_s00376_024_4034_9 crossref_primary_10_1007_s00442_011_1965_5 crossref_primary_10_3170_2008_8_18436 crossref_primary_10_1007_s11430_012_4381_8 crossref_primary_10_1007_s12224_010_9058_5 crossref_primary_10_1016_j_ecolmodel_2014_05_002 crossref_primary_10_1111_j_1654_1103_2009_05666_x crossref_primary_10_1111_j_0030_1299_2008_16776_x crossref_primary_10_1016_j_flora_2019_03_013 |
Cites_doi | 10.2307/3237078 10.2307/2528823 10.1046/j.1365-2745.2001.00535.x 10.1046/j.1365-2435.2002.00664.x 10.1007/978-94-011-3418-7_9 10.2307/3236562 10.2307/3546011 10.2307/3235837 10.2307/3237198 10.2307/3237079 |
ContentType | Journal Article |
Copyright | 2003 IAVS ‐ the International Association of Vegetation Science |
Copyright_xml | – notice: 2003 IAVS ‐ the International Association of Vegetation Science |
DBID | BSCLL AAYXX CITATION |
DOI | 10.1111/j.1654-1103.2003.tb02158.x |
DatabaseName | Istex CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1654-1103 |
EndPage | 332 |
ExternalDocumentID | 10_1111_j_1654_1103_2003_tb02158_x JVS2158 ark_67375_WNG_BD7VWB1M_H |
Genre | article |
GroupedDBID | -JH .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 29L 2~F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AANLZ AAONW AAPSS AASGY AAXRX AAXTN AAZKR ABBHK ABCQN ABCUV ABDBF ABEML ABJNI ABPLY ABPVW ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADACV ADBBV ADEOM ADHSS ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEJZ AEEZP AEIGN AEIMD AENEX AEPYG AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFFIJ AFFPM AFGKR AFNWH AFPWT AFRAH AGUYK AHBTC AHXOZ AI. AICQM AITYG AIURR AIWBW AJBDE AJXKR AKPMI ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG CBGCD COF CS3 D-E D-F DATOO DC7 DCZOG DOOOF DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBD EBS ECGQY EDH EJD EMK EQZMY ESX F00 F01 F04 FEDTE G-S G.N GODZA GTFYD H.T H.X H13 HF~ HGD HGLYW HTVGU HVGLF HZ~ IAG IAO IEP IHR IPSME ITC J0M JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OVD P2P P2W P2X P4D PQ0 Q.N Q11 Q5J QB0 R.K RBO ROL RWI RX1 SA0 SUPJJ TEORI TUS UB1 VH1 VOH W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~02 ~8M ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACHIC ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION |
ID | FETCH-LOGICAL-c3368-9b411c6d2489c01823f5e64ae143fd6a0956270062bf9ade0bc48421131c5efc3 |
IEDL.DBID | DR2 |
ISSN | 1100-9233 |
IngestDate | Tue Jul 01 03:14:51 EDT 2025 Thu Apr 24 22:53:44 EDT 2025 Wed Jan 22 16:32:59 EST 2025 Wed Oct 30 10:04:54 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3368-9b411c6d2489c01823f5e64ae143fd6a0956270062bf9ade0bc48421131c5efc3 |
Notes | ark:/67375/WNG-BD7VWB1M-H istex:9A0AFE5375033CFCF8D737454656F2143CB581EE ArticleID:JVS2158 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1111_j_1654_1103_2003_tb02158_x crossref_primary_10_1111_j_1654_1103_2003_tb02158_x wiley_primary_10_1111_j_1654_1103_2003_tb02158_x_JVS2158 istex_primary_ark_67375_WNG_BD7VWB1M_H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2003 |
PublicationDateYYYYMMDD | 2003-06-01 |
PublicationDate_xml | – month: 06 year: 2003 text: June 2003 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK |
PublicationTitle | Journal of vegetation science |
PublicationYear | 2003 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Pillar, V.D. 1999. On the identification of optimal plant functional types. J. Veg. Sci. 10: 631-640. Lavorel, S. & Garnier, E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits - revisiting the Holy Grail. Funct. Ecol. 16: 545-556. Pillar, V.D. & Orlóci, L. 1993b. Taxonomy and perception in vegetation analysis. Coenoses 8: 53-66. Pillar, V.D. & Orlóci, L. 1993a. Character-based community analysis: The theory and application program. SPB, The Hague , NL . Semenova, G.V. & van der Maarel, E. 2000. Plant functional types - a strategic perspective. J. Veg. Sci. 11: 917-922. Feoli, E. & Scimone, M. 1984. A quantitative view of textural analysis of vegetation and examples of application of some methods. Arch. Bot. Biogeogr. Ital. 60: 72-94. Grime, J.P., Thompson, K., Hunt, R., Hodgson, J.G., Cornelissen, J.H.C., Rorison, I.H. et al. 1997. Integrated screening validates primary axes of specialization in plants. Oikos 79: 259-281. McIntyre, S. & Lavorel, S. 2001. Livestock grazing in subtropical pastures: steps in the analysis of attribute response and plant functional types. J. Ecol. 89: 209-226. Gower, J.C. 1971. A general coefficient of similarity and some of its properties. Biometrics 27: 857-874. Orlóci, L. & Orlóci, M. 1985. Comparison of communities without the use of species: model and example. Ann. Bot. (Roma) 43: 275-285. Gitay, H., Noble, I.R. & Connell, J.H. 1999. Deriving functional types for rain-forest trees. J. Veg. Sci. 10: 641-650. Steffen, W.L., Walker, B.H., Ingram, J.S.I. & Koch, G.W. 1992. Global change and terrestrial ecosystems; The operational plan. International Geosphere-Biosphere Programme. IGBP Report, No. 21, Stockholm , SE . Díaz, S. & Cabido, M. 1997. Plant functional types and ecosystem function in relation to global change. J. Veg. Sci. 8: 463-474. Podani, J. 2000. Introduction to the exploration of multivariate biological data, Backhuys, Leiden , NL . Díaz, S., Acosta, A. & Cabido, M. 1992. Morphological analysis of herbaceous communities under different grazing regimes. J. Veg. Sci. 3: 689-696. 2002; 16 1984; 60 2001 1971; 27 2000 2000; 11 1997; 79 1993b; 8 1993a 1999; 10 1895 1992 1991 2001; 89 1985; 43 1992; 3 1934 1997; 8 Steffen W.L. (e_1_2_1_20_1) 1992 Podani J. (e_1_2_1_16_1) 2000 Orlóci L. (e_1_2_1_10_1) 1985; 43 Feoli E. (e_1_2_1_4_1) 1984; 60 Warming E. (e_1_2_1_21_1) 1895 Pillar V.D. (e_1_2_1_15_1) 1993; 8 e_1_2_1_7_1 e_1_2_1_8_1 e_1_2_1_5_1 e_1_2_1_6_1 e_1_2_1_3_1 e_1_2_1_12_1 e_1_2_1_13_1 e_1_2_1_2_1 e_1_2_1_11_1 Pillar V.D. (e_1_2_1_14_1) 1993 Raunkiaer C. (e_1_2_1_17_1) 1934 e_1_2_1_9_1 e_1_2_1_18_1 e_1_2_1_19_1 |
References_xml | – reference: Feoli, E. & Scimone, M. 1984. A quantitative view of textural analysis of vegetation and examples of application of some methods. Arch. Bot. Biogeogr. Ital. 60: 72-94. – reference: Gitay, H., Noble, I.R. & Connell, J.H. 1999. Deriving functional types for rain-forest trees. J. Veg. Sci. 10: 641-650. – reference: Pillar, V.D. 1999. On the identification of optimal plant functional types. J. Veg. Sci. 10: 631-640. – reference: Pillar, V.D. & Orlóci, L. 1993b. Taxonomy and perception in vegetation analysis. Coenoses 8: 53-66. – reference: Lavorel, S. & Garnier, E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits - revisiting the Holy Grail. Funct. Ecol. 16: 545-556. – reference: Gower, J.C. 1971. A general coefficient of similarity and some of its properties. Biometrics 27: 857-874. – reference: Díaz, S., Acosta, A. & Cabido, M. 1992. Morphological analysis of herbaceous communities under different grazing regimes. J. Veg. Sci. 3: 689-696. – reference: Orlóci, L. & Orlóci, M. 1985. Comparison of communities without the use of species: model and example. Ann. Bot. (Roma) 43: 275-285. – reference: McIntyre, S. & Lavorel, S. 2001. Livestock grazing in subtropical pastures: steps in the analysis of attribute response and plant functional types. J. Ecol. 89: 209-226. – reference: Podani, J. 2000. Introduction to the exploration of multivariate biological data, Backhuys, Leiden , NL . – reference: Semenova, G.V. & van der Maarel, E. 2000. Plant functional types - a strategic perspective. J. Veg. Sci. 11: 917-922. – reference: Pillar, V.D. & Orlóci, L. 1993a. Character-based community analysis: The theory and application program. SPB, The Hague , NL . – reference: Díaz, S. & Cabido, M. 1997. Plant functional types and ecosystem function in relation to global change. J. Veg. Sci. 8: 463-474. – reference: Steffen, W.L., Walker, B.H., Ingram, J.S.I. & Koch, G.W. 1992. Global change and terrestrial ecosystems; The operational plan. International Geosphere-Biosphere Programme. IGBP Report, No. 21, Stockholm , SE . – reference: Grime, J.P., Thompson, K., Hunt, R., Hodgson, J.G., Cornelissen, J.H.C., Rorison, I.H. et al. 1997. Integrated screening validates primary axes of specialization in plants. Oikos 79: 259-281. – start-page: 87 year: 1991 end-page: 93 – volume: 60 start-page: 72 year: 1984 end-page: 94 article-title: A quantitative view of textural analysis of vegetation and examples of application of some methods publication-title: Arch. Bot. Biogeogr. Ital. – year: 1895 – volume: 3 start-page: 689 year: 1992 end-page: 696 article-title: Morphological analysis of herbaceous communities under different grazing regimes publication-title: J. Veg. Sci. – volume: 16 start-page: 545 year: 2002 end-page: 556 article-title: Predicting changes in community composition and ecosystem functioning from plant traits – revisiting the Holy Grail publication-title: Funct. Ecol. – volume: 11 start-page: 917 year: 2000 end-page: 922 article-title: Plant functional types – a strategic perspective publication-title: J. Veg. Sci. – year: 2001 – volume: 79 start-page: 259 year: 1997 end-page: 281 article-title: Integrated screening validates primary axes of specialization in plants publication-title: Oikos – volume: 89 start-page: 209 year: 2001 end-page: 226 article-title: Livestock grazing in subtropical pastures: steps in the analysis of attribute response and plant functional types publication-title: J. Ecol. – year: 2000 – volume: 10 start-page: 641 year: 1999 end-page: 650 article-title: Deriving functional types for rain‐forest trees publication-title: J. Veg. Sci. – start-page: 111 year: 1934 end-page: 147 – volume: 27 start-page: 857 year: 1971 end-page: 874 article-title: A general coefficient of similarity and some of its properties publication-title: Biometrics – volume: 8 start-page: 53 year: 1993b end-page: 66 article-title: Taxonomy and perception in vegetation analysis publication-title: Coenoses – volume: 43 start-page: 275 year: 1985 end-page: 285 article-title: Comparison of communities without the use of species: model and example publication-title: Ann. Bot. (Roma) – volume: 10 start-page: 631 year: 1999 end-page: 640 article-title: On the identification of optimal plant functional types publication-title: J. Veg. Sci. – year: 1992 – volume: 8 start-page: 463 year: 1997 end-page: 474 article-title: Plant functional types and ecosystem function in relation to global change publication-title: J. Veg. Sci. – year: 1993a – ident: e_1_2_1_11_1 doi: 10.2307/3237078 – volume-title: Global change and terrestrial ecosystems; The operational plan year: 1992 ident: e_1_2_1_20_1 – ident: e_1_2_1_6_1 doi: 10.2307/2528823 – volume: 43 start-page: 275 year: 1985 ident: e_1_2_1_10_1 article-title: Comparison of communities without the use of species: model and example publication-title: Ann. Bot. (Roma) – ident: e_1_2_1_9_1 doi: 10.1046/j.1365-2745.2001.00535.x – ident: e_1_2_1_8_1 doi: 10.1046/j.1365-2435.2002.00664.x – volume-title: Character‐based community analysis: The theory and application program year: 1993 ident: e_1_2_1_14_1 – volume: 8 start-page: 53 year: 1993 ident: e_1_2_1_15_1 article-title: Taxonomy and perception in vegetation analysis publication-title: Coenoses – ident: e_1_2_1_13_1 doi: 10.1007/978-94-011-3418-7_9 – ident: e_1_2_1_19_1 – ident: e_1_2_1_18_1 doi: 10.2307/3236562 – volume-title: Oecology of Plants: An Introduction to the Study of Plant Communities year: 1895 ident: e_1_2_1_21_1 – ident: e_1_2_1_7_1 doi: 10.2307/3546011 – start-page: 111 volume-title: The life forms of plants and statistical plant geography; the collected papers of C. Raunkiaer year: 1934 ident: e_1_2_1_17_1 – ident: e_1_2_1_3_1 doi: 10.2307/3235837 – ident: e_1_2_1_2_1 doi: 10.2307/3237198 – ident: e_1_2_1_12_1 – volume-title: Introduction to the exploration of multivariate biological data year: 2000 ident: e_1_2_1_16_1 – volume: 60 start-page: 72 year: 1984 ident: e_1_2_1_4_1 article-title: A quantitative view of textural analysis of vegetation and examples of application of some methods publication-title: Arch. Bot. Biogeogr. Ital. – ident: e_1_2_1_5_1 doi: 10.2307/3237079 |
SSID | ssj0017961 |
Score | 1.9810901 |
Snippet | . The use of plant functional types (PFTs) to describe patterns and processes in plant communities has become essential to study and predict consequences of... The use of plant functional types (PFTs) to describe patterns and processes in plant communities has become essential to study and predict consequences of... |
SourceID | crossref wiley istex |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 323 |
SubjectTerms | Congruence Grassland Grazing Nitrogen Optimization Plant form Redundancy Response group Trait |
Title | An improved method for searching plant functional types by numerical analysis |
URI | https://api.istex.fr/ark:/67375/WNG-BD7VWB1M-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1654-1103.2003.tb02158.x |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7Q4MCFN2K8lAPi1qld0q49bsCYkLYDsMctatIUoY1u2kPa-PXYTTYxJCRA3HpxpdhO_MV2PhNyJVkl5ADrHV8l0uEQQp0w0VFeKYQbUaiVxMfJzVbQaPOHnt-zz6PxLYzhh1gl3HBn5Oc1bvBYTtY3eeBzB8IXy2k9MccJ8SssIaLE5i1ESI8rLilwPEOe6rmuA6iGWQZS29bzza_WotUmKn6-jmLzMFTfJW_LBZjuk35pNpUl9f6F2_G_VrhHdixepVXjYPtkQ2cHZKs2BEy5OCTNakZf87SETqgZRk0BBVNboMhe6GgApqMYPU3SkWLOd0LlgmYzUywa0NgSoxyRdv3u-abh2AENjmIsgINScs9TQVLmYaRcuKmw1NcBjzWAsDQJYiQ5xMJ2UJZpFCfalYqDZ3ge85SvU8WOSSEbZvqE0CjSceorACSpy3mUhAyQZKiwMUcFSqdFEi0NIZRlL8chGgPx6RYD2hKoLZytyYTVlpgXCVvJjgyHx4-krnN7r0TicR-74Cq-6LbuRe220unWvKZoFEmYW_EX_xYPnSf8Ov276BnZLptJkI7rnZPCdDzTF4CPpvIy9_sPbfP_Jg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7xqEQv0BaqhtJ2D9CbI9u7duxDD6QphEdyaHndFu96XaFEBkEikv63_hV-CzPeTdQgIbWVOHDzZSzvzozn25nZbwA2FW8kAmG9F-lceQJDqJfkJq0qhXgiSoxWdDm5043bx2L_LDqbg9-TuzCWH2KacCPPqP7X5OCUkJ718jgSHsYvXvF6UpITA1hSH7keywMzvsUT3M2XvRaqeysMd74dfW17bsiApzmP0dmVCAId56FIUu0j2uZFZGKRGQQSRR5nRNRHxdk4VEWa5cZXWuDqgoAHOjKF5vjeeVikkeJE3d_6PmWvQlO3dK2B73uIo7jjPHWNRI98-0x8XCRVj2ZxcxX4dlbgbrJltt-lVx8OVF3_esAm-Wz39BUsO0jOtq0PvYY5U76BF81LhM3jVehsl-yiyryYnNl52wyBPnM1mPInu-qjdTICCDavyiitfcPUmJVDWw_rs8xxv6zB8ZMs5S0slJeleQcsTU1WRBoxV-ELkeYJR7CcaOo90rE2RQ3SiealdgTtNCekL_84qKF2JGmHxody6bQjRzXgU9krS1PyV1KfKwObimTXPWr0a0TytLsrm63GyWkz6Mh2DZLKbP7h3XL_5Ac9rf-_6CdYah91DuXhXvfgPbwM7eBLzw82YGFwPTQfEA4O1MfK6RicP7VF3gOpfFsl |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB7RgKpeaKFFDf1hDy03R7Z3vbEPHEjTNEATIf5vi3e9RojIRCERSZ-tr9J36ax3E5FKSIDEoTdfxvLuzHi-nZn9BuCLpPWYIaz3IpVJj2EI9eJMJ2WlEE9EsVbSXE7udHn7mO2eRWcL8Ht6F8byQ8wSbsYzyv-1cfB-ls87OY-Yh-GLlrSeJseJ8SuujV2L5Z6e3OIB7mZrp4na_hqGre9H39qemzHgKUo5-rpkQaB4FrI4UT6CbZpHmrNUI47IM54anj5Tm-WhzJM0075UDBcXBDRQkc4Vxfe-gEXG_cQMjmgezMir0NItW2vg-x7CKOooT10f0T3fPhceF42mx_OwuYx7rdfwZ7pjtt3lqjYaypr69Q-Z5P-6pW9g2QFysm09aAUWdLEKS41rBM2Tt9DZLshlmXfRGbHTtgnCfOIqMMUF6ffQNomBBzarSkxS-4bICSlGthrWI6ljfnkHx8-ylDWoFNeFfg8kSXSaRwoRV-4zlmQxRagcK9N5pLjSeRWSqeKFcvTsZkpIT9w5pqF2hNGOGR5KhdOOGFeBzmT7lqTkQVKbpX3NRNLBlWnzq0fitPtDNJr1k9NG0BHtKsSl1Tzi3WL35NA8rT9ddANe7jdb4udOd-8DvArt1EvPDz5CZTgY6U-IBYfyc-lyBM6f2yD_AgUMWdQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+method+for+searching+plant+functional+types+by+numerical+analysis&rft.jtitle=Journal+of+vegetation+science&rft.au=Pillar%2C+Val%C3%A9rio+DePatta&rft.au=Sosinski%2C+Enio+E.&rft.date=2003-06-01&rft.issn=1100-9233&rft.eissn=1654-1103&rft.volume=14&rft.issue=3&rft.spage=323&rft.epage=332&rft_id=info:doi/10.1111%2Fj.1654-1103.2003.tb02158.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1654_1103_2003_tb02158_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1100-9233&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1100-9233&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1100-9233&client=summon |