An improved method for searching plant functional types by numerical analysis

. The use of plant functional types (PFTs) to describe patterns and processes in plant communities has become essential to study and predict consequences of global change on vegetation and ecosystem processes. A PFT is a group of plants that, irrespective of phylogeny, are similar in a given set of...

Full description

Saved in:
Bibliographic Details
Published inJournal of vegetation science Vol. 14; no. 3; pp. 323 - 332
Main Authors Pillar, Valério DePatta, Sosinski Jr, Enio E.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.06.2003
Subjects
Online AccessGet full text

Cover

Loading…
Abstract . The use of plant functional types (PFTs) to describe patterns and processes in plant communities has become essential to study and predict consequences of global change on vegetation and ecosystem processes. A PFT is a group of plants that, irrespective of phylogeny, are similar in a given set of traits and similar in their association to certain variables, which may be factors to which the plants are responding or effects of the plants in the ecosystem. To define PFTs relevant traits must be selected and an appropriate method must be used to classify plants into types. We critically review methods used for the analysis of PFT‐based data and describe a new recursive algorithm to numerically search for traits and find optimal PFTs. The algorithm uses three data matrices: describing populations by traits, communities by these populations and community sites by environmental factors or effects. It defines PFTs polythetically by cluster analysis, revealing plant types whose performance in communities is maximally associated to the specified environmental variables. We test the method with data from natural grassland communities of southern Brazil, which were experimentally subjected to combinations of grazing levels and N‐fertilizer. The new method is found to be better than similar analytical procedures previously described. Redundancy among traits is discussed and a procedure for comparing alternative solutions is presented based on the similarity in terms of PFT responses between different trait subsets. The concept of PFT response group is illustrated by example.
AbstractList The use of plant functional types (PFTs) to describe patterns and processes in plant communities has become essential to study and predict consequences of global change on vegetation and ecosystem processes. A PFT is a group of plants that, irrespective of phylogeny, are similar in a given set of traits and similar in their association to certain variables, which may be factors to which the plants are responding or effects of the plants in the ecosystem. To define PFTs relevant traits must be selected and an appropriate method must be used to classify plants into types. We critically review methods used for the analysis of PFT‐based data and describe a new recursive algorithm to numerically search for traits and find optimal PFTs. The algorithm uses three data matrices: describing populations by traits, communities by these populations and community sites by environmental factors or effects. It defines PFTs polythetically by cluster analysis, revealing plant types whose performance in communities is maximally associated to the specified environmental variables. We test the method with data from natural grassland communities of southern Brazil, which were experimentally subjected to combinations of grazing levels and N‐fertilizer. The new method is found to be better than similar analytical procedures previously described. Redundancy among traits is discussed and a procedure for comparing alternative solutions is presented based on the similarity in terms of PFT responses between different trait subsets. The concept of PFT response group is illustrated by example.
. The use of plant functional types (PFTs) to describe patterns and processes in plant communities has become essential to study and predict consequences of global change on vegetation and ecosystem processes. A PFT is a group of plants that, irrespective of phylogeny, are similar in a given set of traits and similar in their association to certain variables, which may be factors to which the plants are responding or effects of the plants in the ecosystem. To define PFTs relevant traits must be selected and an appropriate method must be used to classify plants into types. We critically review methods used for the analysis of PFT‐based data and describe a new recursive algorithm to numerically search for traits and find optimal PFTs. The algorithm uses three data matrices: describing populations by traits, communities by these populations and community sites by environmental factors or effects. It defines PFTs polythetically by cluster analysis, revealing plant types whose performance in communities is maximally associated to the specified environmental variables. We test the method with data from natural grassland communities of southern Brazil, which were experimentally subjected to combinations of grazing levels and N‐fertilizer. The new method is found to be better than similar analytical procedures previously described. Redundancy among traits is discussed and a procedure for comparing alternative solutions is presented based on the similarity in terms of PFT responses between different trait subsets. The concept of PFT response group is illustrated by example.
Author Sosinski Jr, Enio E.
Pillar, Valério DePatta
Author_xml – sequence: 1
  givenname: Valério DePatta
  surname: Pillar
  fullname: Pillar, Valério DePatta
  organization: Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91540-000, Brazil; Fax +555133167307; E-mail vpillar@ecologia.ufrgs.br; http://ecoqua.ecologia.ufrgs.br
– sequence: 2
  givenname: Enio E.
  surname: Sosinski Jr
  fullname: Sosinski Jr, Enio E.
  organization: Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91540-000, Brazil; Fax +555133167307; E-mail vpillar@ecologia.ufrgs.br; http://ecoqua.ecologia.ufrgs.br
BookMark eNqVkEFPwjAUxxuDiYB-h8b7sG_dus2LAipoQA8qHJuu66Q4tqUdyr69WyAcPGkPry_v5f_Ly6-HOnmRK4QugQygeVfrATDfcwAIHbikKVVMXPDDwe4EdY-rTtMDIU7kUnqGetauCYEgYtBF82GO9aY0xZdK8EZVqyLBaWGwVcLIlc4_cJmJvMLpNpeVLnKR4aoulcVxjfPtRhktm5Fo5rXV9hydpiKz6uLw99H7w_3beOrMXiaP4-HMkZSy0IliD0CyxPXCSBIIXZr6inlCgUfThAkS-cwNCGFunEYiUSSWXui5ABSkr1JJ--h2z5WmsNaolEtdifa-ygidcSC81cPXvHXAWwe81cMPeviuQVz_QpRGb4Sp_xa-2Ye_dabqfyT50-K17RqCsydoW6ndkSDMJ2cBDXy-fJ7w0V2wWI5gzqf0BwPOkPw
CitedBy_id crossref_primary_10_1590_2175_7860200657308
crossref_primary_10_1111_j_1654_1103_2011_01273_x
crossref_primary_10_1111_j_1654_1103_2011_01339_x
crossref_primary_10_1016_j_ecolind_2024_112370
crossref_primary_10_1590_S0103_84782012005000054
crossref_primary_10_1007_s10651_008_0098_4
crossref_primary_10_1111_j_1466_822X_2004_00120_x
crossref_primary_10_1111_1365_2435_12718
crossref_primary_10_1017_S0376892914000307
crossref_primary_10_1111_nph_13623
crossref_primary_10_1007_s11258_006_9162_z
crossref_primary_10_1590_S1516_35982006000700004
crossref_primary_10_1111_geb_13790
crossref_primary_10_5194_bg_8_667_2011
crossref_primary_10_1111_een_12158
crossref_primary_10_1016_j_apsoil_2016_09_021
crossref_primary_10_5194_bg_14_3371_2017
crossref_primary_10_1111_jvs_12190
crossref_primary_10_1111_j_1654_1103_2006_tb02498_x
crossref_primary_10_1111_j_1654_1103_2012_01402_x
crossref_primary_10_2111_08_016_1
crossref_primary_10_3389_fmicb_2014_00324
crossref_primary_10_1111_1365_2664_12874
crossref_primary_10_1111_geb_12299
crossref_primary_10_1111_1365_2435_12845
crossref_primary_10_1111_j_1600_0587_2011_07068_x
crossref_primary_10_1016_j_ppees_2011_11_001
crossref_primary_10_1111_j_1654_1103_2003_tb02156_x
crossref_primary_10_1007_s10530_018_1883_0
crossref_primary_10_1590_S0102_33062009000200021
crossref_primary_10_1556_ComEc_8_2007_1_8
crossref_primary_10_1590_S1676_06032009000300008
crossref_primary_10_1038_s41559_021_01616_8
crossref_primary_10_1590_0102_33062017abb0018
crossref_primary_10_1111_j_1461_0248_2010_01456_x
crossref_primary_10_1111_jvs_12047
crossref_primary_10_1111_j_1600_0706_2009_18202_x
crossref_primary_10_1007_s10750_018_3650_8
crossref_primary_10_1038_nature16489
crossref_primary_10_1590_1519_6984_18812
crossref_primary_10_1111_jvs_12009
crossref_primary_10_1038_s41559_018_0694_0
crossref_primary_10_1111_j_1654_109X_2005_tb00621_x
crossref_primary_10_1016_j_jaridenv_2006_03_007
crossref_primary_10_1111_brv_12275
crossref_primary_10_1111_j_1365_2486_2011_02451_x
crossref_primary_10_1590_S0103_84782013000300021
crossref_primary_10_1111_j_1526_100X_2011_00828_x
crossref_primary_10_1371_journal_pone_0060207
crossref_primary_10_1038_s41597_022_01774_9
crossref_primary_10_1111_geb_12557
crossref_primary_10_1111_j_1654_1103_2005_tb02350_x
crossref_primary_10_1007_s10530_022_02991_4
crossref_primary_10_1007_s00334_010_0265_z
crossref_primary_10_1029_2021JG006606
crossref_primary_10_1590_S0103_90162007000400016
crossref_primary_10_1016_j_flora_2019_04_001
crossref_primary_10_1016_j_baae_2004_06_005
crossref_primary_10_1111_j_1365_2486_2012_02783_x
crossref_primary_10_3390_f12050649
crossref_primary_10_1007_s00376_024_4034_9
crossref_primary_10_1007_s00442_011_1965_5
crossref_primary_10_3170_2008_8_18436
crossref_primary_10_1007_s11430_012_4381_8
crossref_primary_10_1007_s12224_010_9058_5
crossref_primary_10_1016_j_ecolmodel_2014_05_002
crossref_primary_10_1111_j_1654_1103_2009_05666_x
crossref_primary_10_1111_j_0030_1299_2008_16776_x
crossref_primary_10_1016_j_flora_2019_03_013
Cites_doi 10.2307/3237078
10.2307/2528823
10.1046/j.1365-2745.2001.00535.x
10.1046/j.1365-2435.2002.00664.x
10.1007/978-94-011-3418-7_9
10.2307/3236562
10.2307/3546011
10.2307/3235837
10.2307/3237198
10.2307/3237079
ContentType Journal Article
Copyright 2003 IAVS ‐ the International Association of Vegetation Science
Copyright_xml – notice: 2003 IAVS ‐ the International Association of Vegetation Science
DBID BSCLL
AAYXX
CITATION
DOI 10.1111/j.1654-1103.2003.tb02158.x
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1654-1103
EndPage 332
ExternalDocumentID 10_1111_j_1654_1103_2003_tb02158_x
JVS2158
ark_67375_WNG_BD7VWB1M_H
Genre article
GroupedDBID -JH
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
29L
2~F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AANLZ
AAONW
AAPSS
AASGY
AAXRX
AAXTN
AAZKR
ABBHK
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPLY
ABPVW
ABTLG
ABXSQ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADHSS
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEJZ
AEEZP
AEIGN
AEIMD
AENEX
AEPYG
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFFIJ
AFFPM
AFGKR
AFNWH
AFPWT
AFRAH
AGUYK
AHBTC
AHXOZ
AI.
AICQM
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKPMI
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANHSF
AQVQM
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
CBGCD
COF
CS3
D-E
D-F
DATOO
DC7
DCZOG
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
EQZMY
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
H13
HF~
HGD
HGLYW
HTVGU
HVGLF
HZ~
IAG
IAO
IEP
IHR
IPSME
ITC
J0M
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P4D
PQ0
Q.N
Q11
Q5J
QB0
R.K
RBO
ROL
RWI
RX1
SA0
SUPJJ
TEORI
TUS
UB1
VH1
VOH
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~02
~8M
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACHIC
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
ID FETCH-LOGICAL-c3368-9b411c6d2489c01823f5e64ae143fd6a0956270062bf9ade0bc48421131c5efc3
IEDL.DBID DR2
ISSN 1100-9233
IngestDate Tue Jul 01 03:14:51 EDT 2025
Thu Apr 24 22:53:44 EDT 2025
Wed Jan 22 16:32:59 EST 2025
Wed Oct 30 10:04:54 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3368-9b411c6d2489c01823f5e64ae143fd6a0956270062bf9ade0bc48421131c5efc3
Notes ark:/67375/WNG-BD7VWB1M-H
istex:9A0AFE5375033CFCF8D737454656F2143CB581EE
ArticleID:JVS2158
PageCount 10
ParticipantIDs crossref_citationtrail_10_1111_j_1654_1103_2003_tb02158_x
crossref_primary_10_1111_j_1654_1103_2003_tb02158_x
wiley_primary_10_1111_j_1654_1103_2003_tb02158_x_JVS2158
istex_primary_ark_67375_WNG_BD7VWB1M_H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2003
PublicationDateYYYYMMDD 2003-06-01
PublicationDate_xml – month: 06
  year: 2003
  text: June 2003
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
PublicationTitle Journal of vegetation science
PublicationYear 2003
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Pillar, V.D. 1999. On the identification of optimal plant functional types. J. Veg. Sci. 10: 631-640.
Lavorel, S. & Garnier, E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits - revisiting the Holy Grail. Funct. Ecol. 16: 545-556.
Pillar, V.D. & Orlóci, L. 1993b. Taxonomy and perception in vegetation analysis. Coenoses 8: 53-66.
Pillar, V.D. & Orlóci, L. 1993a. Character-based community analysis: The theory and application program. SPB, The Hague , NL .
Semenova, G.V. & van der Maarel, E. 2000. Plant functional types - a strategic perspective. J. Veg. Sci. 11: 917-922.
Feoli, E. & Scimone, M. 1984. A quantitative view of textural analysis of vegetation and examples of application of some methods. Arch. Bot. Biogeogr. Ital. 60: 72-94.
Grime, J.P., Thompson, K., Hunt, R., Hodgson, J.G., Cornelissen, J.H.C., Rorison, I.H. et al. 1997. Integrated screening validates primary axes of specialization in plants. Oikos 79: 259-281.
McIntyre, S. & Lavorel, S. 2001. Livestock grazing in subtropical pastures: steps in the analysis of attribute response and plant functional types. J. Ecol. 89: 209-226.
Gower, J.C. 1971. A general coefficient of similarity and some of its properties. Biometrics 27: 857-874.
Orlóci, L. & Orlóci, M. 1985. Comparison of communities without the use of species: model and example. Ann. Bot. (Roma) 43: 275-285.
Gitay, H., Noble, I.R. & Connell, J.H. 1999. Deriving functional types for rain-forest trees. J. Veg. Sci. 10: 641-650.
Steffen, W.L., Walker, B.H., Ingram, J.S.I. & Koch, G.W. 1992. Global change and terrestrial ecosystems; The operational plan. International Geosphere-Biosphere Programme. IGBP Report, No. 21, Stockholm , SE .
Díaz, S. & Cabido, M. 1997. Plant functional types and ecosystem function in relation to global change. J. Veg. Sci. 8: 463-474.
Podani, J. 2000. Introduction to the exploration of multivariate biological data, Backhuys, Leiden , NL .
Díaz, S., Acosta, A. & Cabido, M. 1992. Morphological analysis of herbaceous communities under different grazing regimes. J. Veg. Sci. 3: 689-696.
2002; 16
1984; 60
2001
1971; 27
2000
2000; 11
1997; 79
1993b; 8
1993a
1999; 10
1895
1992
1991
2001; 89
1985; 43
1992; 3
1934
1997; 8
Steffen W.L. (e_1_2_1_20_1) 1992
Podani J. (e_1_2_1_16_1) 2000
Orlóci L. (e_1_2_1_10_1) 1985; 43
Feoli E. (e_1_2_1_4_1) 1984; 60
Warming E. (e_1_2_1_21_1) 1895
Pillar V.D. (e_1_2_1_15_1) 1993; 8
e_1_2_1_7_1
e_1_2_1_8_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_13_1
e_1_2_1_2_1
e_1_2_1_11_1
Pillar V.D. (e_1_2_1_14_1) 1993
Raunkiaer C. (e_1_2_1_17_1) 1934
e_1_2_1_9_1
e_1_2_1_18_1
e_1_2_1_19_1
References_xml – reference: Feoli, E. & Scimone, M. 1984. A quantitative view of textural analysis of vegetation and examples of application of some methods. Arch. Bot. Biogeogr. Ital. 60: 72-94.
– reference: Gitay, H., Noble, I.R. & Connell, J.H. 1999. Deriving functional types for rain-forest trees. J. Veg. Sci. 10: 641-650.
– reference: Pillar, V.D. 1999. On the identification of optimal plant functional types. J. Veg. Sci. 10: 631-640.
– reference: Pillar, V.D. & Orlóci, L. 1993b. Taxonomy and perception in vegetation analysis. Coenoses 8: 53-66.
– reference: Lavorel, S. & Garnier, E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits - revisiting the Holy Grail. Funct. Ecol. 16: 545-556.
– reference: Gower, J.C. 1971. A general coefficient of similarity and some of its properties. Biometrics 27: 857-874.
– reference: Díaz, S., Acosta, A. & Cabido, M. 1992. Morphological analysis of herbaceous communities under different grazing regimes. J. Veg. Sci. 3: 689-696.
– reference: Orlóci, L. & Orlóci, M. 1985. Comparison of communities without the use of species: model and example. Ann. Bot. (Roma) 43: 275-285.
– reference: McIntyre, S. & Lavorel, S. 2001. Livestock grazing in subtropical pastures: steps in the analysis of attribute response and plant functional types. J. Ecol. 89: 209-226.
– reference: Podani, J. 2000. Introduction to the exploration of multivariate biological data, Backhuys, Leiden , NL .
– reference: Semenova, G.V. & van der Maarel, E. 2000. Plant functional types - a strategic perspective. J. Veg. Sci. 11: 917-922.
– reference: Pillar, V.D. & Orlóci, L. 1993a. Character-based community analysis: The theory and application program. SPB, The Hague , NL .
– reference: Díaz, S. & Cabido, M. 1997. Plant functional types and ecosystem function in relation to global change. J. Veg. Sci. 8: 463-474.
– reference: Steffen, W.L., Walker, B.H., Ingram, J.S.I. & Koch, G.W. 1992. Global change and terrestrial ecosystems; The operational plan. International Geosphere-Biosphere Programme. IGBP Report, No. 21, Stockholm , SE .
– reference: Grime, J.P., Thompson, K., Hunt, R., Hodgson, J.G., Cornelissen, J.H.C., Rorison, I.H. et al. 1997. Integrated screening validates primary axes of specialization in plants. Oikos 79: 259-281.
– start-page: 87
  year: 1991
  end-page: 93
– volume: 60
  start-page: 72
  year: 1984
  end-page: 94
  article-title: A quantitative view of textural analysis of vegetation and examples of application of some methods
  publication-title: Arch. Bot. Biogeogr. Ital.
– year: 1895
– volume: 3
  start-page: 689
  year: 1992
  end-page: 696
  article-title: Morphological analysis of herbaceous communities under different grazing regimes
  publication-title: J. Veg. Sci.
– volume: 16
  start-page: 545
  year: 2002
  end-page: 556
  article-title: Predicting changes in community composition and ecosystem functioning from plant traits – revisiting the Holy Grail
  publication-title: Funct. Ecol.
– volume: 11
  start-page: 917
  year: 2000
  end-page: 922
  article-title: Plant functional types – a strategic perspective
  publication-title: J. Veg. Sci.
– year: 2001
– volume: 79
  start-page: 259
  year: 1997
  end-page: 281
  article-title: Integrated screening validates primary axes of specialization in plants
  publication-title: Oikos
– volume: 89
  start-page: 209
  year: 2001
  end-page: 226
  article-title: Livestock grazing in subtropical pastures: steps in the analysis of attribute response and plant functional types
  publication-title: J. Ecol.
– year: 2000
– volume: 10
  start-page: 641
  year: 1999
  end-page: 650
  article-title: Deriving functional types for rain‐forest trees
  publication-title: J. Veg. Sci.
– start-page: 111
  year: 1934
  end-page: 147
– volume: 27
  start-page: 857
  year: 1971
  end-page: 874
  article-title: A general coefficient of similarity and some of its properties
  publication-title: Biometrics
– volume: 8
  start-page: 53
  year: 1993b
  end-page: 66
  article-title: Taxonomy and perception in vegetation analysis
  publication-title: Coenoses
– volume: 43
  start-page: 275
  year: 1985
  end-page: 285
  article-title: Comparison of communities without the use of species: model and example
  publication-title: Ann. Bot. (Roma)
– volume: 10
  start-page: 631
  year: 1999
  end-page: 640
  article-title: On the identification of optimal plant functional types
  publication-title: J. Veg. Sci.
– year: 1992
– volume: 8
  start-page: 463
  year: 1997
  end-page: 474
  article-title: Plant functional types and ecosystem function in relation to global change
  publication-title: J. Veg. Sci.
– year: 1993a
– ident: e_1_2_1_11_1
  doi: 10.2307/3237078
– volume-title: Global change and terrestrial ecosystems; The operational plan
  year: 1992
  ident: e_1_2_1_20_1
– ident: e_1_2_1_6_1
  doi: 10.2307/2528823
– volume: 43
  start-page: 275
  year: 1985
  ident: e_1_2_1_10_1
  article-title: Comparison of communities without the use of species: model and example
  publication-title: Ann. Bot. (Roma)
– ident: e_1_2_1_9_1
  doi: 10.1046/j.1365-2745.2001.00535.x
– ident: e_1_2_1_8_1
  doi: 10.1046/j.1365-2435.2002.00664.x
– volume-title: Character‐based community analysis: The theory and application program
  year: 1993
  ident: e_1_2_1_14_1
– volume: 8
  start-page: 53
  year: 1993
  ident: e_1_2_1_15_1
  article-title: Taxonomy and perception in vegetation analysis
  publication-title: Coenoses
– ident: e_1_2_1_13_1
  doi: 10.1007/978-94-011-3418-7_9
– ident: e_1_2_1_19_1
– ident: e_1_2_1_18_1
  doi: 10.2307/3236562
– volume-title: Oecology of Plants: An Introduction to the Study of Plant Communities
  year: 1895
  ident: e_1_2_1_21_1
– ident: e_1_2_1_7_1
  doi: 10.2307/3546011
– start-page: 111
  volume-title: The life forms of plants and statistical plant geography; the collected papers of C. Raunkiaer
  year: 1934
  ident: e_1_2_1_17_1
– ident: e_1_2_1_3_1
  doi: 10.2307/3235837
– ident: e_1_2_1_2_1
  doi: 10.2307/3237198
– ident: e_1_2_1_12_1
– volume-title: Introduction to the exploration of multivariate biological data
  year: 2000
  ident: e_1_2_1_16_1
– volume: 60
  start-page: 72
  year: 1984
  ident: e_1_2_1_4_1
  article-title: A quantitative view of textural analysis of vegetation and examples of application of some methods
  publication-title: Arch. Bot. Biogeogr. Ital.
– ident: e_1_2_1_5_1
  doi: 10.2307/3237079
SSID ssj0017961
Score 1.9810901
Snippet . The use of plant functional types (PFTs) to describe patterns and processes in plant communities has become essential to study and predict consequences of...
The use of plant functional types (PFTs) to describe patterns and processes in plant communities has become essential to study and predict consequences of...
SourceID crossref
wiley
istex
SourceType Enrichment Source
Index Database
Publisher
StartPage 323
SubjectTerms Congruence
Grassland
Grazing
Nitrogen
Optimization
Plant form
Redundancy
Response group
Trait
Title An improved method for searching plant functional types by numerical analysis
URI https://api.istex.fr/ark:/67375/WNG-BD7VWB1M-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1654-1103.2003.tb02158.x
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7Q4MCFN2K8lAPi1qld0q49bsCYkLYDsMctatIUoY1u2kPa-PXYTTYxJCRA3HpxpdhO_MV2PhNyJVkl5ADrHV8l0uEQQp0w0VFeKYQbUaiVxMfJzVbQaPOHnt-zz6PxLYzhh1gl3HBn5Oc1bvBYTtY3eeBzB8IXy2k9MccJ8SssIaLE5i1ESI8rLilwPEOe6rmuA6iGWQZS29bzza_WotUmKn6-jmLzMFTfJW_LBZjuk35pNpUl9f6F2_G_VrhHdixepVXjYPtkQ2cHZKs2BEy5OCTNakZf87SETqgZRk0BBVNboMhe6GgApqMYPU3SkWLOd0LlgmYzUywa0NgSoxyRdv3u-abh2AENjmIsgINScs9TQVLmYaRcuKmw1NcBjzWAsDQJYiQ5xMJ2UJZpFCfalYqDZ3ge85SvU8WOSSEbZvqE0CjSceorACSpy3mUhAyQZKiwMUcFSqdFEi0NIZRlL8chGgPx6RYD2hKoLZytyYTVlpgXCVvJjgyHx4-krnN7r0TicR-74Cq-6LbuRe220unWvKZoFEmYW_EX_xYPnSf8Ov276BnZLptJkI7rnZPCdDzTF4CPpvIy9_sPbfP_Jg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7xqEQv0BaqhtJ2D9CbI9u7duxDD6QphEdyaHndFu96XaFEBkEikv63_hV-CzPeTdQgIbWVOHDzZSzvzozn25nZbwA2FW8kAmG9F-lceQJDqJfkJq0qhXgiSoxWdDm5043bx2L_LDqbg9-TuzCWH2KacCPPqP7X5OCUkJ718jgSHsYvXvF6UpITA1hSH7keywMzvsUT3M2XvRaqeysMd74dfW17bsiApzmP0dmVCAId56FIUu0j2uZFZGKRGQQSRR5nRNRHxdk4VEWa5cZXWuDqgoAHOjKF5vjeeVikkeJE3d_6PmWvQlO3dK2B73uIo7jjPHWNRI98-0x8XCRVj2ZxcxX4dlbgbrJltt-lVx8OVF3_esAm-Wz39BUsO0jOtq0PvYY5U76BF81LhM3jVehsl-yiyryYnNl52wyBPnM1mPInu-qjdTICCDavyiitfcPUmJVDWw_rs8xxv6zB8ZMs5S0slJeleQcsTU1WRBoxV-ELkeYJR7CcaOo90rE2RQ3SiealdgTtNCekL_84qKF2JGmHxody6bQjRzXgU9krS1PyV1KfKwObimTXPWr0a0TytLsrm63GyWkz6Mh2DZLKbP7h3XL_5Ac9rf-_6CdYah91DuXhXvfgPbwM7eBLzw82YGFwPTQfEA4O1MfK6RicP7VF3gOpfFsl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB7RgKpeaKFFDf1hDy03R7Z3vbEPHEjTNEATIf5vi3e9RojIRCERSZ-tr9J36ax3E5FKSIDEoTdfxvLuzHi-nZn9BuCLpPWYIaz3IpVJj2EI9eJMJ2WlEE9EsVbSXE7udHn7mO2eRWcL8Ht6F8byQ8wSbsYzyv-1cfB-ls87OY-Yh-GLlrSeJseJ8SuujV2L5Z6e3OIB7mZrp4na_hqGre9H39qemzHgKUo5-rpkQaB4FrI4UT6CbZpHmrNUI47IM54anj5Tm-WhzJM0075UDBcXBDRQkc4Vxfe-gEXG_cQMjmgezMir0NItW2vg-x7CKOooT10f0T3fPhceF42mx_OwuYx7rdfwZ7pjtt3lqjYaypr69Q-Z5P-6pW9g2QFysm09aAUWdLEKS41rBM2Tt9DZLshlmXfRGbHTtgnCfOIqMMUF6ffQNomBBzarSkxS-4bICSlGthrWI6ljfnkHx8-ylDWoFNeFfg8kSXSaRwoRV-4zlmQxRagcK9N5pLjSeRWSqeKFcvTsZkpIT9w5pqF2hNGOGR5KhdOOGFeBzmT7lqTkQVKbpX3NRNLBlWnzq0fitPtDNJr1k9NG0BHtKsSl1Tzi3WL35NA8rT9ddANe7jdb4udOd-8DvArt1EvPDz5CZTgY6U-IBYfyc-lyBM6f2yD_AgUMWdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+method+for+searching+plant+functional+types+by+numerical+analysis&rft.jtitle=Journal+of+vegetation+science&rft.au=Pillar%2C+Val%C3%A9rio+DePatta&rft.au=Sosinski%2C+Enio+E.&rft.date=2003-06-01&rft.issn=1100-9233&rft.eissn=1654-1103&rft.volume=14&rft.issue=3&rft.spage=323&rft.epage=332&rft_id=info:doi/10.1111%2Fj.1654-1103.2003.tb02158.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1654_1103_2003_tb02158_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1100-9233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1100-9233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1100-9233&client=summon