Deriving the relationship among discharge, biomass and Manning's coefficient through a calibration approach

The subject of environmental engineering is currently of great interest. Field experiments as well as numerical models have proven their worth in this research field. An introduction to hydrodynamic modelling, coupled to the modelling of vegetation biomass is described. The developed Strive (STream...

Full description

Saved in:
Bibliographic Details
Published inHydrological processes Vol. 25; no. 12; pp. 1979 - 1995
Main Authors De Doncker, L., Troch, P., Verhoeven, R., Buis, K.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 15.06.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The subject of environmental engineering is currently of great interest. Field experiments as well as numerical models have proven their worth in this research field. An introduction to hydrodynamic modelling, coupled to the modelling of vegetation biomass is described. The developed Strive (STream RIVer Ecosystem) model is set up in the Femme (‘Flexible Environment for Mathematically Modelling the Environment’) environment and has already proven its worth in a large number of calculations (De Doncker et al., 2006, 2008b). Discharges and water levels are modelled together with modelling of electrical conductivity (EC). Extensive measurement campaigns are carried out to collect a large number of observations and calibration of the model is based on this data set. Furthermore, calibration methods and the discussion of this process are displayed. As a result, it is seen that the developed Strive model can model both, hydrodynamic and ecological processes, in an accurate way. The work highlights the importance of detailed determination of Manning's coefficient, dependent on discharge and amount of biomass, as an important calibration parameter for accurate modelling. Copyright © 2011 John Wiley & Sons, Ltd.
AbstractList The subject of environmental engineering is currently of great interest. Field experiments as well as numerical models have proven their worth in this research field. An introduction to hydrodynamic modelling, coupled to the modelling of vegetation biomass is described. The developed Strive (STream RIVer Ecosystem) model is set up in the Femme (‘Flexible Environment for Mathematically Modelling the Environment’) environment and has already proven its worth in a large number of calculations (De Doncker et al., 2006, 2008b). Discharges and water levels are modelled together with modelling of electrical conductivity (EC). Extensive measurement campaigns are carried out to collect a large number of observations and calibration of the model is based on this data set. Furthermore, calibration methods and the discussion of this process are displayed. As a result, it is seen that the developed Strive model can model both, hydrodynamic and ecological processes, in an accurate way. The work highlights the importance of detailed determination of Manning's coefficient, dependent on discharge and amount of biomass, as an important calibration parameter for accurate modelling. Copyright © 2011 John Wiley & Sons, Ltd.
Abstract The subject of environmental engineering is currently of great interest. Field experiments as well as numerical models have proven their worth in this research field. An introduction to hydrodynamic modelling, coupled to the modelling of vegetation biomass is described. The developed Strive (STream RIVer Ecosystem) model is set up in the Femme (‘Flexible Environment for Mathematically Modelling the Environment’) environment and has already proven its worth in a large number of calculations (De Doncker et al. , 2006 , 2008b ). Discharges and water levels are modelled together with modelling of electrical conductivity (EC). Extensive measurement campaigns are carried out to collect a large number of observations and calibration of the model is based on this data set. Furthermore, calibration methods and the discussion of this process are displayed. As a result, it is seen that the developed Strive model can model both, hydrodynamic and ecological processes, in an accurate way. The work highlights the importance of detailed determination of Manning's coefficient, dependent on discharge and amount of biomass, as an important calibration parameter for accurate modelling. Copyright © 2011 John Wiley & Sons, Ltd.
The subject of environmental engineering is currently of great interest. Field experiments as well as numerical models have proven their worth in this research field. An introduction to hydrodynamic modelling, coupled to the modelling of vegetation biomass is described. The developed Strive (STream RIVer Ecosystem) model is set up in the Femme ('Flexible Environment for Mathematically Modelling the Environment') environment and has already proven its worth in a large number of calculations (De Doncker et al., 2006, 2008b). Discharges and water levels are modelled together with modelling of electrical conductivity (EC). Extensive measurement campaigns are carried out to collect a large number of observations and calibration of the model is based on this data set. Furthermore, calibration methods and the discussion of this process are displayed. As a result, it is seen that the developed Strive model can model both, hydrodynamic and ecological processes, in an accurate way. The work highlights the importance of detailed determination of Manning's coefficient, dependent on discharge and amount of biomass, as an important calibration parameter for accurate modelling.
Author Buis, K.
Verhoeven, R.
Troch, P.
De Doncker, L.
Author_xml – sequence: 1
  givenname: L.
  surname: De Doncker
  fullname: De Doncker, L.
  email: liesbet.dedoncker@ugent.be
  organization: Department of Civil Engineering, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium
– sequence: 2
  givenname: P.
  surname: Troch
  fullname: Troch, P.
  organization: Department of Civil Engineering, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium
– sequence: 3
  givenname: R.
  surname: Verhoeven
  fullname: Verhoeven, R.
  organization: Department of Civil Engineering, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium
– sequence: 4
  givenname: K.
  surname: Buis
  fullname: Buis, K.
  organization: Ecosystem Management Research Group, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
BookMark eNp1kE1PGzEQhi1EpYZQqT_BN3pgYbyO195jxUeCFKCtqKqerInjzbps7MXeQPPvMQVF6oHTSKNn3tH7HJB9H7wl5DODEwZQnrbb_kTWUu2REYO6LhgosU9GoJQoKlDyIzlI6Q8ATEDBiNyf2-genV_RobU02g4HF3xqXU9xHfJ66ZJpMa7sMV24sMaUKPolvUbv89VRoibYpnHGWT_kjBg2q5YiNdi5RfwXRrHvY0DTHpIPDXbJfnqbY_Lz8uLubFbMb6dXZ1_nheG8UoXEUi4BalUqUwouyopLRFazpZWTpqwaYE1ZG4mNQgO1FNwKqXKbihsBE87H5Mtrbn77sLFp0OtcwnYdehs2STNg2RCIHL5DTQwpRdvoPro1xm2G9ItPnX3qF58ZLV7RJ9fZ7bucnv3-9j_v0mD_7niM97qSXAr962aq5-o7u5uzH7rkz9C3h8w
CitedBy_id crossref_primary_10_3390_w10070953
crossref_primary_10_1007_s11269_017_1656_z
crossref_primary_10_1016_j_advwatres_2012_02_002
crossref_primary_10_1007_s11356_021_16623_2
crossref_primary_10_1080_15715124_2014_999782
crossref_primary_10_3390_w13213002
Cites_doi 10.3354/meps271013
10.1007/s10652-009-9149-0
10.1016/j.flowmeasinst.2007.08.007
10.1016/j.jhydrol.2007.01.015
10.1016/j.advwatres.2005.05.010
10.1098/rstb.1995.0062
10.1002/rra.1240
10.1023/A:1015822011358
10.1016/S0955-5986(02)00047-X
10.2495/AFM080321
10.1023/A:1017517303221
10.1111/j.1753-318X.2008.00004.x
10.1080/00221686.2008.9521855
10.1016/S0304-3800(01)00469-0
10.1680/wama.2009.162.6.353
10.1016/j.jhydrol.2004.06.036
10.1016/j.jmarsys.2008.01.002
ContentType Journal Article
Copyright Copyright © 2011 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2011 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
8FD
FR3
KR7
DOI 10.1002/hyp.7978
DatabaseName Istex
CrossRef
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1099-1085
EndPage 1995
ExternalDocumentID 10_1002_hyp_7978
HYP7978
ark_67375_WNG_L8Q1TL1R_2
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABHUG
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWD
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AITYG
HGLYW
OIG
AAYXX
CITATION
8FD
FR3
KR7
ID FETCH-LOGICAL-c3368-7a27d009828c25352637aa191de74f26f01f29c7af8ac09753e57808063c50433
IEDL.DBID DR2
ISSN 0885-6087
1099-1085
IngestDate Fri Aug 16 05:16:24 EDT 2024
Fri Aug 23 01:53:16 EDT 2024
Sat Aug 24 00:58:33 EDT 2024
Wed Jan 17 05:14:53 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3368-7a27d009828c25352637aa191de74f26f01f29c7af8ac09753e57808063c50433
Notes ArticleID:HYP7978
ark:/67375/WNG-L8Q1TL1R-2
istex:D589F2C92C4E1F7954A8DD590FF41A579EFF7CAE
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1017970525
PQPubID 23500
PageCount 17
ParticipantIDs proquest_miscellaneous_1017970525
crossref_primary_10_1002_hyp_7978
wiley_primary_10_1002_hyp_7978_HYP7978
istex_primary_ark_67375_WNG_L8Q1TL1R_2
PublicationCentury 2000
PublicationDate 2011-06-15
15 June 2011
20110615
PublicationDateYYYYMMDD 2011-06-15
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06-15
  day: 15
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Hydrological processes
PublicationTitleAlternate Hydrol. Process
PublicationYear 2011
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References De Doncker L, Troch P, Verhoeven R, Bal K, Meire P. 2009a. Determination of the Manning roughness coefficient influenced by vegetation in the river Aa and Biebrza river. Environmental Fluid Mechanics 9(5): 549-567.
Marshall T, Lee P. 1994. An inexpensive and lightweight sampler for the rapid collection of aquatic macrophytes. Journal of Aquatic Plant Management (32): 77-79.
Herschy R. 1978. Hydrometry: Principles and Practices. Wiley Interscience Publication: ISBN 0471996491, New Jersey.
McGahey C, Knight D, Samuels P. 2009. Advice, methods and tools for estimating channel roughness. Proceedings of the ICE-Water management 162(6): 353-362.
Morvan H, Knight D, Wright NG, Tang X, Crossley A. 2008. The concept of roughness in fluvial hydraulics and its formulation in 1-D, 2-D and 3-D numerical simulation models. Journal of Hydraulic Research 46(2): 191-208.
Champion P, Tanner C. 2000. Seasonality of macrophytes and interaction with flow in a New Zealand lowland stream. Hydrobiologia 441: 1-12.
Herschy R. 2002. The uncertainty in a current meter measurement. Flow Measurement and Instrumentation 13(5-6): 281-284.
Navidi W. 2010. Statistics for Engineers and Scientists, 3rd edn, McGraw-Hill Science/Engineering/Math: ISBN-13: 978-0073376332, New York.
Soetaert K, de Clippele V, Herman P. 2002. Femme: A Flexible Environment for Mathematically Modelling the Environment. Ecological Modelling 151(2-3): 177-193.
Pappenberger F, Beven K, Morrit H, Blazkova S. 2005. Uncertainty in the calibration of effective roughness parameters in hec-ras using inundation and downstream level observations. Journal of Hydrology 302(1-4): 46-69.
De Doncker L, Troch P, Verhoeven R, Desmet N, Meire P. 2009b. Relation between resistance characteristics due to aquatic weed growth and the hydraulic capacity of the river Aa. River Research and Application 25(10): 1287-1303.
Arhonditsis G. 2004. Evaluation of the current state of mechanistic aquatic biogeochemical modeling. Marine Ecology Progress Series 271: 13-26.
De Doncker L, Troch P, Verhoeven R. 2008a. Accuracy of discharge measurements in a vegetated river. Flow Measurement and Instrumentation 19: 29-40.
Chow VT. 1959. Open Channel Hydraulics, McGrawHill: New-York.
Fasham M, Evans G, Kiefer D, Creasey M, Leach H. 1995. The use of optimization techniques to model marine ecosystem dynamics at the JGOFS station. Philosophical Transactions: Biological Sciences 348(1324): 203-209.
Hicks D, Mason P. 1998. Roughness Characteristics of New Zealand Rivers. Water Resources Publications: ISBN 0-477-02608-7, Colorado.
Kawamiya M. 2002. Numerical model approaches to address recent problems on pelagic ecosystems. Journal of Oceanography 58: 365-378.
Knight D, Mc Gahey C, Lamb R, Samuels P. 2010. Practical Channel Hydraulics: Roughness, Conveyance and Afflux. Balkema: ISBN 978-0-415-54974-5, London.
Desmet N, Van Belleghem S, Seuntjens P, Bouma T, Buis K, Meire P. 2008. Quantification of the impact of macrophytes on oxygen dynamics and nitrogen retention in a vegetated lowland river. Physics and Chemistry of the Earth DOI:10.1016/j.pce.2008.06.002, in press.
De Doncker L, Troch P, Verhoeven R, Buis K, Desmet N, Meire P. 2010. Validation of the STRIVE model for coupling ecological processes and surface water flow. Journal of Hydroinformatics, DOI:10.2166/hydro.2010.067, in press.
Chow VT, Maidment DR, Mays LW. 1988. Applied Hydrology, McGrawHill: New-York.
Jinkang D, Shunping X, Youpeng X, Chong-yu X, Vijay PS. 2007. Development and testing of a simple physically-based distributed rainfall-runoff model for storm runoff simulation in humid forested basins. Journal of Hydrology 336(3-4): 334-346.
McGahey C, Samuels P, Knight D, O'Hare M. 2008. Estimating river flow capacity in practice. Journal of Flood Risk Management 1(1): 23-33.
Cowan W. 1956. Estimating hydraulic roughness coefficients. Agricultural Engineering 37(7): 473-475.
Los F, Villars M, van der Tol M. 2008. A 3-dimensional primary production model (bloom/gem) and its applications to the southern north sea (coupled physical-chemical-ecological model). Journal of Marine Systems 74(1-2): 259-294.
Green J. 2005. Effect of macrophyte spatial variability on channel resistance. Advances in Water Resources 29(3): 426-438.
2002; 58
2009a; 9
2009b; 25
2008a; 19
2010
2002; 151
2008b
2002; 13
2009
1998
2008
2007
1956; 37
2006
1994
2004
2003
2008; 74
2002
2008; 1
1959
2005; 29
1978
2007; 336
2000
2005; 302
2004; 271
1995; 348
2008; 46
2009; 162
2000; 441
1967
1988
Chow VT (e_1_2_6_10_1) 1988
Herschy R. (e_1_2_6_22_1) 1978
e_1_2_6_31_1
Cowan W. (e_1_2_6_11_1) 1956; 37
Knight D (e_1_2_6_30_1) 2010
e_1_2_6_19_1
e_1_2_6_13_1
Marshall T (e_1_2_6_32_1) 1994
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
Chow VT. (e_1_2_6_9_1) 1959
Hicks D (e_1_2_6_25_1) 1998
e_1_2_6_8_1
Desmet N (e_1_2_6_18_1) 2008
e_1_2_6_5_1
e_1_2_6_4_1
De Doncker L (e_1_2_6_17_1) 2010
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
Navidi W. (e_1_2_6_36_1) 2010
References_xml – start-page: 1
  year: 2007
  end-page: 4
– volume: 336
  start-page: 334
  issue: 3–4
  year: 2007
  end-page: 346
  article-title: Development and testing of a simple physically‐based distributed rainfall‐runoff model for storm runoff simulation in humid forested basins
  publication-title: Journal of Hydrology
– volume: 25
  start-page: 1287
  issue: 10
  year: 2009b
  end-page: 1303
  article-title: Relation between resistance characteristics due to aquatic weed growth and the hydraulic capacity of the river Aa
  publication-title: River Research and Application
– year: 2009
– volume: 37
  start-page: 473
  issue: 7
  year: 1956
  end-page: 475
  article-title: Estimating hydraulic roughness coefficients
  publication-title: Agricultural Engineering
– volume: 151
  start-page: 177
  issue: 2–3
  year: 2002
  end-page: 193
  publication-title: Ecological Modelling
– start-page: 331
  year: 2008b
  end-page: 340
– volume: 348
  start-page: 203
  issue: 1324
  year: 1995
  end-page: 209
  article-title: The use of optimization techniques to model marine ecosystem dynamics at the JGOFS station
  publication-title: Philosophical Transactions: Biological Sciences
– year: 2003
– volume: 29
  start-page: 426
  issue: 3
  year: 2005
  end-page: 438
  article-title: Effect of macrophyte spatial variability on channel resistance
  publication-title: Advances in Water Resources
– year: 2000
– volume: 271
  start-page: 13
  year: 2004
  end-page: 26
  article-title: Evaluation of the current state of mechanistic aquatic biogeochemical modeling
  publication-title: Marine Ecology Progress Series
– start-page: 593
  year: 2006
  end-page: 602
– volume: 58
  start-page: 365
  year: 2002
  end-page: 378
  article-title: Numerical model approaches to address recent problems on pelagic ecosystems
  publication-title: Journal of Oceanography
– year: 1998
– year: 2010
– volume: 19
  start-page: 29
  year: 2008a
  end-page: 40
  article-title: Accuracy of discharge measurements in a vegetated river
  publication-title: Flow Measurement and Instrumentation
– year: 1959
– year: 2010
  article-title: Validation of the STRIVE model for coupling ecological processes and surface water flow
  publication-title: Journal of Hydroinformatics
– volume: 13
  start-page: 281
  issue: 5–6
  year: 2002
  end-page: 284
  article-title: The uncertainty in a current meter measurement
  publication-title: Flow Measurement and Instrumentation
– year: 1967
– start-page: 77
  issue: 32
  year: 1994
  end-page: 79
  article-title: An inexpensive and lightweight sampler for the rapid collection of aquatic macrophytes
  publication-title: Journal of Aquatic Plant Management
– year: 2002
– year: 1988
– year: 2008
  article-title: Quantification of the impact of macrophytes on oxygen dynamics and nitrogen retention in a vegetated lowland river
  publication-title: Physics and Chemistry of the Earth
– volume: 302
  start-page: 46
  issue: 1–4
  year: 2005
  end-page: 69
  article-title: Uncertainty in the calibration of effective roughness parameters in hec‐ras using inundation and downstream level observations
  publication-title: Journal of Hydrology
– year: 2006
– volume: 1
  start-page: 23
  issue: 1
  year: 2008
  end-page: 33
  article-title: Estimating river flow capacity in practice
  publication-title: Journal of Flood Risk Management
– year: 2004
– volume: 9
  start-page: 549
  issue: 5
  year: 2009a
  end-page: 567
  article-title: Determination of the Manning roughness coefficient influenced by vegetation in the river Aa and Biebrza river
  publication-title: Environmental Fluid Mechanics
– volume: 46
  start-page: 191
  issue: 2
  year: 2008
  end-page: 208
  article-title: The concept of roughness in fluvial hydraulics and its formulation in 1‐D, 2‐D and 3‐D numerical simulation models
  publication-title: Journal of Hydraulic Research
– volume: 441
  start-page: 1
  year: 2000
  end-page: 12
  article-title: Seasonality of macrophytes and interaction with flow in a New Zealand lowland stream
  publication-title: Hydrobiologia
– year: 1978
– volume: 74
  start-page: 259
  issue: 1–2
  year: 2008
  end-page: 294
  article-title: A 3‐dimensional primary production model (bloom/gem) and its applications to the southern north sea (coupled physical‐chemical‐ecological model)
  publication-title: Journal of Marine Systems
– volume: 162
  start-page: 353
  issue: 6
  year: 2009
  end-page: 362
  article-title: Advice, methods and tools for estimating channel roughness
  publication-title: Proceedings of the ICE—Water management
– year: 2008
  ident: e_1_2_6_18_1
  article-title: Quantification of the impact of macrophytes on oxygen dynamics and nitrogen retention in a vegetated lowland river
  publication-title: Physics and Chemistry of the Earth
  contributor:
    fullname: Desmet N
– ident: e_1_2_6_20_1
– ident: e_1_2_6_3_1
  doi: 10.3354/meps271013
– ident: e_1_2_6_26_1
– ident: e_1_2_6_15_1
  doi: 10.1007/s10652-009-9149-0
– year: 2010
  ident: e_1_2_6_17_1
  article-title: Validation of the STRIVE model for coupling ecological processes and surface water flow
  publication-title: Journal of Hydroinformatics
  contributor:
    fullname: De Doncker L
– ident: e_1_2_6_13_1
  doi: 10.1016/j.flowmeasinst.2007.08.007
– ident: e_1_2_6_28_1
  doi: 10.1016/j.jhydrol.2007.01.015
– ident: e_1_2_6_21_1
  doi: 10.1016/j.advwatres.2005.05.010
– volume-title: Practical Channel Hydraulics: Roughness, Conveyance and Afflux
  year: 2010
  ident: e_1_2_6_30_1
  contributor:
    fullname: Knight D
– ident: e_1_2_6_19_1
  doi: 10.1098/rstb.1995.0062
– ident: e_1_2_6_16_1
  doi: 10.1002/rra.1240
– volume-title: Open Channel Hydraulics
  year: 1959
  ident: e_1_2_6_9_1
  contributor:
    fullname: Chow VT.
– start-page: 77
  issue: 32
  year: 1994
  ident: e_1_2_6_32_1
  article-title: An inexpensive and lightweight sampler for the rapid collection of aquatic macrophytes
  publication-title: Journal of Aquatic Plant Management
  contributor:
    fullname: Marshall T
– ident: e_1_2_6_29_1
  doi: 10.1023/A:1015822011358
– volume-title: Applied Hydrology
  year: 1988
  ident: e_1_2_6_10_1
  contributor:
    fullname: Chow VT
– ident: e_1_2_6_23_1
  doi: 10.1016/S0955-5986(02)00047-X
– ident: e_1_2_6_14_1
  doi: 10.2495/AFM080321
– ident: e_1_2_6_39_1
– ident: e_1_2_6_7_1
– ident: e_1_2_6_8_1
  doi: 10.1023/A:1017517303221
– ident: e_1_2_6_4_1
– ident: e_1_2_6_33_1
  doi: 10.1111/j.1753-318X.2008.00004.x
– ident: e_1_2_6_35_1
  doi: 10.1080/00221686.2008.9521855
– ident: e_1_2_6_38_1
  doi: 10.1016/S0304-3800(01)00469-0
– ident: e_1_2_6_5_1
– ident: e_1_2_6_2_1
– ident: e_1_2_6_34_1
  doi: 10.1680/wama.2009.162.6.353
– ident: e_1_2_6_27_1
– ident: e_1_2_6_24_1
– volume-title: Hydrometry: Principles and Practices
  year: 1978
  ident: e_1_2_6_22_1
  contributor:
    fullname: Herschy R.
– ident: e_1_2_6_37_1
  doi: 10.1016/j.jhydrol.2004.06.036
– volume-title: Roughness Characteristics of New Zealand Rivers
  year: 1998
  ident: e_1_2_6_25_1
  contributor:
    fullname: Hicks D
– ident: e_1_2_6_6_1
– ident: e_1_2_6_31_1
  doi: 10.1016/j.jmarsys.2008.01.002
– volume: 37
  start-page: 473
  issue: 7
  year: 1956
  ident: e_1_2_6_11_1
  article-title: Estimating hydraulic roughness coefficients
  publication-title: Agricultural Engineering
  contributor:
    fullname: Cowan W.
– ident: e_1_2_6_12_1
– volume-title: Statistics for Engineers and Scientists
  year: 2010
  ident: e_1_2_6_36_1
  contributor:
    fullname: Navidi W.
SSID ssj0004080
Score 2.0660815
Snippet The subject of environmental engineering is currently of great interest. Field experiments as well as numerical models have proven their worth in this research...
Abstract The subject of environmental engineering is currently of great interest. Field experiments as well as numerical models have proven their worth in this...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 1979
SubjectTerms Biomass
Calibration
Coefficients
environmental engineering
flood routing
Fluid flow
Hydrodynamics
Mathematical models
Modelling
vegetated rivers
Title Deriving the relationship among discharge, biomass and Manning's coefficient through a calibration approach
URI https://api.istex.fr/ark:/67375/WNG-L8Q1TL1R-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.7978
https://search.proquest.com/docview/1017970525
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHOilFGjVpQUZCcGlXhw7ic0R8VohQIBAperBsh1Hi1bKrvYhFX49M07Co1KlilMujuN4Hv5sz3xDyBaXIiTKcWalyljqypLpwmmWa59lTnqpY_rY-UXeu01P77K7JqoSc2FqfojnAze0jOiv0cCtm-y-kIb2H0ZdBXsgcL_Io4d46PqFOSrlsWga2FDGcq5VyzvLxW774puVaAEn9c8bmPkarMbV5niJ_G7HWQeZDLqzqev6x78oHN_3I5_IxwaE0v1aa5bJXKhWyGJTD73_sEoGh6CYeNRAAR_ScRsw178f0VidiGIyL3IshR8UE_gBgVNbFfS8roC0M6F-GCI5BaxptKkFRC0FhcChYme0ZTP_TG6Pj24Oeqwpy8C8lLlmygpVIA-p0F5Efn2prIV9XxFUWoq85Ekp9ryypbaeY-JuALcA8silj3xpX8h8NazCV0KldolXARxu6VLYqzifJM4WpeeBq70gO2SzFZEZ1ewbpuZZFgamzeC0dch2lN1zAzseYLSayszPixNzpq-Sm7Pk2gjorBWuARvCixFbheFsYqJbUljRDzqLovrn10zv1yU-1_634TfyoT6GzlmSfSfz0_EsrAOOmbqNqLFPmW3vkQ
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N7WG8MD7FGB9GQvCCO8dOYk88IcYo0FYwdWJISJbtOCqqlFZdKzH-eu6cZmNISIinvDiO4_vw-ez7_QCeCSVjpr3gTumC576uuam84aUJReFVUCaVjw1HZf8k_3BanG7Aq64WpsWHuEi4kWUkf00GTgnp_UvU0Mn5vKdxE3QNttDaC7LKw-NL7KhcJNo0tKKCl8LoDnlWyP3uzStr0RZN648rgebv4Wpab4524Fs30vaaybS3Wvpe-PkHiON__spNuLGOQ9nrVnFuwUZsbsP2mhJ9cn4Hpoeom5RtYBgiskV3Z27yfc4SQRGjel6CWYovGdXwYxDOXFOxYUuC9OKMhVlM-BS4rLE1HRBzDHWCxkqdsQ7Q_C6cHL0dv-nzNTMDD0qVhmsndUVQpNIEmSD2lXYOt35V1Hkty1pktTwI2tXGBUG1uxE9AwqkVCFBpt2DzWbWxPvAlPFZ0BF9bu1z3K74kGXeVXUQUeiDqHbhaScjO28BOGwLtSwtTpuladuF50l4Fw3cYkoX1nRhv4ze2YH5nI0H2bGV2FknXYtmRGcjromz1ZlNnkkTqR92lmT116_Z_tdP9Hzwrw2fwHZ_PBzYwfvRxz243malS54VD2FzuVjFRxjWLP3jpL6_AJgv87E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgk4AXxqfYGGAkBC-4c-wk9h4nSinQVWPaxCYeLNux1alSWnWtxPjrd-ckG0NCQjzlxXES34fvnLvfj5A3XIqQKceZlapguYuR6cppVmpfFE56qVP72P64HB7nX06Kk7aqEnthGnyIqwM3tIzkr9HA51XcuQYNnVzMewpyoNtkPS-lwMSrf3gNHZXzxJoGRlSwkmvVAc9ysdPdeWMrWsdV_Xkjzvw9Wk3bzWCD_OhetKkymfZWS9fzv_7AcPy_L3lA7rdRKN1r1OYhuRXqR-RuS4g-uXhMpn3QTDxroBAg0kVXMTc5m9NET0SxmxdBlsJ7ih38EIJTW1d0v6FAendO_SwkdArY1GhLBkQtBY3AV8XJaAdn_oQcDz4efRiylpeBeSlLzZQVqkIgUqG9SAD7UlkLiV8VVB5FGXkWxa5XNmrrOXbuBvALII9S-gSY9pSs1bM6PCNUapd5FcDjRpdDsuJ8ljlbRc8DV7tBbpLXnYjMvIHfMA3QsjCwbAaXbZO8TbK7GmAXUyxXU4X5Pv5kRvpbdjTKDo2AyTrhGjAi_DNi6zBbnZvklxRS-sFkSVR_fZoZnh7gdetfB74idw76AzP6PP76nNxrjqRLlhXbZG25WIUXENMs3cukvJfRB_Jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deriving+the+relationship+among+discharge%2C+biomass+and+Manning%27s+coefficient+through+a+calibration+approach&rft.jtitle=Hydrological+processes&rft.au=De+Doncker%2C+L.&rft.au=Troch%2C+P.&rft.au=Verhoeven%2C+R.&rft.au=Buis%2C+K.&rft.date=2011-06-15&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0885-6087&rft.eissn=1099-1085&rft.volume=25&rft.issue=12&rft.spage=1979&rft.epage=1995&rft_id=info:doi/10.1002%2Fhyp.7978&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_L8Q1TL1R_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon