Using ensemble techniques to advance adaptive one-factor-at-a-time experimentation
Ensemble Methods are proposed as a means to extendbiAdaptive One‐Factor‐at‐a‐Time (aOFAT) experimentation. The proposed method executes multiple aOFAT experiments on the same system with minor differences in experimental setup, such as ‘starting points’. Experimental conclusions are arrived at by ag...
Saved in:
Published in | Quality and reliability engineering international Vol. 27; no. 7; pp. 947 - 957 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.11.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ensemble Methods are proposed as a means to extendbiAdaptive One‐Factor‐at‐a‐Time (aOFAT) experimentation. The proposed method executes multiple aOFAT experiments on the same system with minor differences in experimental setup, such as ‘starting points’. Experimental conclusions are arrived at by aggregating the multiple, individual aOFATs. A comparison is made to test the performance of the new method with that of a traditional form of experimentation, namely a single fractional factorial design which is equally resource intensive. The comparisons between the two experimental algorithms are conducted using a hierarchical probability meta‐model and an illustrative case study. The case is a wet clutch system with the goal of minimizing drag torque. In this study, the proposed procedure was superior in performance to using fractional factorial arrays consistently across various experimental settings. At the best, the proposed algorithm provides an expected value of improvement that is 15% higher than the traditional approach; at the worst, the two methods are equally effective, and on average the improvement is about 10% higher with the new method. These findings suggest that running multiple adaptive experiments in parallel can be an effective way to make improvements in quality and performance of engineering systems and also provides a reasonable aggregation procedure by which to bring together the results of the many separate experiments. Copyright © 2011 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Abstract
Ensemble Methods are proposed as a means to extendbiAdaptive One‐Factor‐at‐a‐Time (
a
OFAT) experimentation. The proposed method executes multiple
a
OFAT experiments on the same system with minor differences in experimental setup, such as ‘starting points’. Experimental conclusions are arrived at by aggregating the multiple, individual
a
OFATs. A comparison is made to test the performance of the new method with that of a traditional form of experimentation, namely a single fractional factorial design which is equally resource intensive. The comparisons between the two experimental algorithms are conducted using a hierarchical probability meta‐model and an illustrative case study. The case is a wet clutch system with the goal of minimizing drag torque. In this study, the proposed procedure was superior in performance to using fractional factorial arrays consistently across various experimental settings. At the best, the proposed algorithm provides an expected value of improvement that is 15% higher than the traditional approach; at the worst, the two methods are equally effective, and on average the improvement is about 10% higher with the new method. These findings suggest that running multiple adaptive experiments in parallel can be an effective way to make improvements in quality and performance of engineering systems and also provides a reasonable aggregation procedure by which to bring together the results of the many separate experiments. Copyright © 2011 John Wiley & Sons, Ltd. Ensemble Methods are proposed as a means to extendbiAdaptive One-Factor-at-a-Time (aOFAT) experimentation. The proposed method executes multiple aOFAT experiments on the same system with minor differences in experimental setup, such as 'starting points'. Experimental conclusions are arrived at by aggregating the multiple, individual aOFATs. A comparison is made to test the performance of the new method with that of a traditional form of experimentation, namely a single fractional factorial design which is equally resource intensive. The comparisons between the two experimental algorithms are conducted using a hierarchical probability meta-model and an illustrative case study. The case is a wet clutch system with the goal of minimizing drag torque. In this study, the proposed procedure was superior in performance to using fractional factorial arrays consistently across various experimental settings. At the best, the proposed algorithm provides an expected value of improvement that is 15% higher than the traditional approach; at the worst, the two methods are equally effective, and on average the improvement is about 10% higher with the new method. These findings suggest that running multiple adaptive experiments in parallel can be an effective way to make improvements in quality and performance of engineering systems and also provides a reasonable aggregation procedure by which to bring together the results of the many separate experiments. Ensemble Methods are proposed as a means to extendbiAdaptive One‐Factor‐at‐a‐Time (aOFAT) experimentation. The proposed method executes multiple aOFAT experiments on the same system with minor differences in experimental setup, such as ‘starting points’. Experimental conclusions are arrived at by aggregating the multiple, individual aOFATs. A comparison is made to test the performance of the new method with that of a traditional form of experimentation, namely a single fractional factorial design which is equally resource intensive. The comparisons between the two experimental algorithms are conducted using a hierarchical probability meta‐model and an illustrative case study. The case is a wet clutch system with the goal of minimizing drag torque. In this study, the proposed procedure was superior in performance to using fractional factorial arrays consistently across various experimental settings. At the best, the proposed algorithm provides an expected value of improvement that is 15% higher than the traditional approach; at the worst, the two methods are equally effective, and on average the improvement is about 10% higher with the new method. These findings suggest that running multiple adaptive experiments in parallel can be an effective way to make improvements in quality and performance of engineering systems and also provides a reasonable aggregation procedure by which to bring together the results of the many separate experiments. Copyright © 2011 John Wiley & Sons, Ltd. |
Author | Sudarsanam, Nandan Frey, Daniel D. |
Author_xml | – sequence: 1 givenname: Nandan surname: Sudarsanam fullname: Sudarsanam, Nandan organization: Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, U.S.A – sequence: 2 givenname: Daniel D. surname: Frey fullname: Frey, Daniel D. email: danfrey@mit.edu organization: Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, U.S.A |
BookMark | eNp10FtPwjAUB_DGYCKgiR9hj74U23Vbu0dDEC_EC4H42HTdmVZHB2tB-PaWYDQ--HTOwy_n8u-hjm0sIHROyYASEl-uWhhQKvgR6lKS55hmTHRQl_BEYEEoP0E9594JCTgXXTSdO2NfI7AOFkUNkQf9Zs1qDS7yTaTKjbIaQlVLbzYQhV24Uto3LVYeK-zNAiLYLqENjfXKm8aeouNK1Q7Ovmsfza9Hs-ENnjyOb4dXE6wZyzguKas0LWlaiEQwnmrgIuOCpJTGKUsKnVakUCIvFCuFImXCRVxkVU5LViUFY6yPLg5zl22zP9jLhXEa6lpZaNZOUsJoLATJ4l-q28a5Fiq5DAerdheQ3McmQ2xyH1ug-EA_TQ27f518no7-euM8bH-8aj9kxsNb8uVhLNlslt3fxU9yyL4AaPR_Qw |
CitedBy_id | crossref_primary_10_1039_C7RA06080G crossref_primary_10_3390_lubricants10110286 |
Cites_doi | 10.1137/1.9780898719765.ch17 10.1177/0049124105283119 10.2307/3315687 10.1080/00224065.1999.11979889 10.1162/neco.1997.9.7.1545 10.2307/1266725 10.1115/1.2216733 10.1109/34.709601 10.1080/00224065.2008.11917713 10.2307/1268198 10.1007/s00163-002-0026-9 10.1214/ss/1009213726 10.1007/978-0-387-21606-5 10.1016/j.jspi.2006.06.002 10.1002/cplx.20123 10.1109/34.58871 10.1023/A:1007607513941 10.2307/3001968 10.1080/00224065.1992.11979383 10.1002/9780470316467 10.1115/1.2748450 10.1007/978-3-540-30115-8_34 10.2307/2281648 10.2307/2685731 10.2307/2284076 10.1007/BF00058655 10.1198/004017006000000075 10.1080/00401706.1997.10485156 10.1007/3-540-45014-9_1 10.1080/00401706.1986.10488093 10.1023/A:1010933404324 |
ContentType | Journal Article |
Copyright | Copyright © 2011 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2011 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION 7TB 8FD FR3 |
DOI | 10.1002/qre.1187 |
DatabaseName | Istex CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-1638 |
EndPage | 957 |
ExternalDocumentID | 10_1002_qre_1187 QRE1187 ark_67375_WNG_3TT6KJ2P_C |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADMGS ADOZA ADXAS AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX CITATION 7TB 8FD FR3 |
ID | FETCH-LOGICAL-c3367-d13fc1d15b848375ce7867805112534bc5f0ba89ba3d8a0d4782b6f91d3f4b333 |
IEDL.DBID | DR2 |
ISSN | 0748-8017 1099-1638 |
IngestDate | Fri Aug 16 07:13:06 EDT 2024 Fri Aug 23 01:42:29 EDT 2024 Sat Aug 24 01:04:20 EDT 2024 Wed Oct 30 09:52:06 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3367-d13fc1d15b848375ce7867805112534bc5f0ba89ba3d8a0d4782b6f91d3f4b333 |
Notes | ArticleID:QRE1187 istex:AE9477A6B72FA06157D98EF2051539A24D1691BC ark:/67375/WNG-3TT6KJ2P-C ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1031288062 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1031288062 crossref_primary_10_1002_qre_1187 wiley_primary_10_1002_qre_1187_QRE1187 istex_primary_ark_67375_WNG_3TT6KJ2P_C |
PublicationCentury | 2000 |
PublicationDate | 2011-11 November 2011 2011-11-00 20111101 |
PublicationDateYYYYMMDD | 2011-11-01 |
PublicationDate_xml | – month: 11 year: 2011 text: 2011-11 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK |
PublicationTitle | Quality and reliability engineering international |
PublicationTitleAlternate | Qual. Reliab. Engng. Int |
PublicationYear | 2011 |
Publisher | John Wiley & Sons, Ltd |
Publisher_xml | – name: John Wiley & Sons, Ltd |
References | Frey DD, Sudarsanam N. An adaptive one-factor-at-a-time method for robust parameter design: Comparison with crossed arrays via case studies. Journal of Mechanical Design (ASME) 2008; 130(2):021401-0214014. Chipman H. Bayesian variable selection with related predictors. Canadian Journal of Statistics 1996; 24:17-36. Box GEP, Hunter JS. The 2k − p fractional factorial design. Technometrics 1961; 3:311-351, 449-458. Draper NR, Smith H. Applied Regression Analysis. Wiley: New York, 1981. Box GEP, Meyer RD. An analysis for unreplicated fractional factorials. Technometrics 1986; 28(1):11-18. Frey DD, Li X. Using hierarchical probability models to evaluate robust parameter design methods. Journal of Quality Technology 2007; 40(1):59-77. Ho TK. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 1998; 20(8):832-844. Wu CFJ, Hamada M. Experiments: Planning, Design, and Parameter Optimization. Wiley: New York, 2000. Dietterich TG. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Machine Learning 2000; 40(2):139-158. Daniel C. Sequences of fractional replicates in a 2p − q series. Journal of American Statistical Association 1962; 63:403-429. Breiman L. Statistical modeling: Two cultures (with Discussion). Statistical Science 2001; 16:199-231. Box GEP, Liu PYT. Statistics as a catalyst to learning by scientific method part I-An example. Journal of Quality Technology 1999; 31:1-15. Box GEP, Draper NR. Emperical Model-Building and Response Surfaces. Wiley: New York, 1987. Fries A, Hunter WG. Minimum abberation 2k − p designs. Technometrics 1980; 22:601-608. Box GEP, Wilson KB. On the experimental attainment of optimum conditions. Journal of Royal Statistical Society B 1951; 13:1-38. Daniel C. Application of Statistics to Industrial Experimentation. Wiley: New York, 1976. Hansen LK, Salamon P. Neural network ensembles. IEEE Transactions in Pattern Analysis and Machine Intelligence 1990; 12(10):993-1001. Chipman H, Hamada M, Wu CFJ. A Bayesian variable selection for analyzing designed experiments with complex aliasing. Technometrics 1997; 39:372-382. Lloyd FA. Parameters contributing to power loss in disengaged wet clutches. Society of Automotive Engineers Transactions 1974; 83:2498-2507. Frey DD, Engelhardt F, Greitzer EM. A role for one factor at a time experimentation in parameter design. Research in Engineering Design 2003; 14:65-74. Frey DD, Wang H. Adaptive One-factor-at-a-time experimentation and expected value of improvement. Technometrics 2006; 48:418-431. Hand DJ, Mannila K, Smyth P. Principles of Data Mining (Adaptive Computation and Machine Learning). MIT Press: Cambridge, 2001. Box GEP, Hunter JS, Hunter WG. Statistics for Experimenters. Wiley: New York, 1978. Breiman L, Friedman J, Olshen R, Stone C. Classification and Regression Trees. Wadsworth: Belmont, 1984. Czitrom V. One-factor-at-a-time versus designed experiments. American Statistician 1999; 53:2. Friedman JH, Hall P. On bagging and nonlinear estimation. Journal of Statistical Planning and Inference 2007; 137(3):669-683. Hamada M, Wu CFJ. Analysis of designed experiments with complex aliasing. Journal of Quality Technology 1992; 24(3):130-137. Amit Y, Geman D. Shape quantization and recognition with randomized trees. Neural Computation 1997; 9:1545-1588. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inferences, and Prediction. Springer: New York, 2001. Breiman L. Bagging predictors. Machine Learning 1996; 26:123-140. Frey DD, Jugulum R. The mechanisms by which adaptive one-factor-at-a-time experimentation leads to improvement. Journal of Mechanical Design (ASME) 2006; 128:1050-1060. Berk RA. An introduction to ensemble methods for data analysis. Sociological Methods and Research 2006; 34:263. Daniel C. One-at-a-time plans. Journal of American Statistical Association 1973; 68:353-360. Li X, Sudarsanam N, Frey DD. Regularities in data from factorial experiments. Complexity 2006; 11:32-45. Wilcoxon F. Individual comparisons by ranking methods. Biometrics 1945; 1:80-83. Breiman L. Random forests. Machine Learning 2001; 45:5-32. Logothetis N, Wynn HP. Quality Through Design. Clarendon: Oxford, 1994. Quinlan JR. C4.5: Programs for Machine Learning. Morgan Kaufmann: San Mateo, CA, 1993. 1990; 12 2006; 34 1945; 1 2006; 11 1980; 22 1976 2003; 14 1997 1994 1993 2001; 45 1998; 20 1997; 9 1978 2007; 137 2001 2000 1973; 68 1974; 83 1961; 3 2006; 48 1987 1951; 13 2000; 40 1986; 28 1997; 39 1984 1999; 53 1999; 31 1992; 24 2001; 16 1981 2007; 40 1962; 63 1996; 24 2006; 128 1996; 26 2008; 130 1947 Quinlan JR (e_1_2_11_28_2) 1993 Wu CFJ (e_1_2_11_5_2) 2000 e_1_2_11_31_2 e_1_2_11_30_2 e_1_2_11_13_2 e_1_2_11_35_2 e_1_2_11_12_2 e_1_2_11_34_2 e_1_2_11_33_2 e_1_2_11_32_2 e_1_2_11_6_2 e_1_2_11_4_2 e_1_2_11_26_2 e_1_2_11_3_2 e_1_2_11_25_2 e_1_2_11_2_2 e_1_2_11_29_2 Draper NR (e_1_2_11_36_2) 1981 Lloyd FA (e_1_2_11_43_2) 1974; 83 Breiman L (e_1_2_11_27_2) 1984 Box GEP (e_1_2_11_10_2) 1978 Logothetis N (e_1_2_11_11_2) 1994 Frey DD (e_1_2_11_42_2) 2007; 40 Hastie T (e_1_2_11_20_2) 2001 Box GEP (e_1_2_11_15_2) 1987 e_1_2_11_24_2 e_1_2_11_9_2 e_1_2_11_23_2 e_1_2_11_40_2 e_1_2_11_8_2 e_1_2_11_22_2 e_1_2_11_41_2 e_1_2_11_7_2 e_1_2_11_21_2 e_1_2_11_16_2 Hand DJ (e_1_2_11_19_2) 2001 e_1_2_11_37_2 e_1_2_11_38_2 e_1_2_11_18_2 e_1_2_11_39_2 Box GEP (e_1_2_11_17_2) 1951; 13 Friedman M (e_1_2_11_14_2) 1947 |
References_xml | – volume: 24 start-page: 17 year: 1996 end-page: 36 article-title: Bayesian variable selection with related predictors publication-title: Canadian Journal of Statistics – volume: 3 start-page: 311 year: 1961 end-page: 351 article-title: The 2 fractional factorial design publication-title: Technometrics – year: 1981 – volume: 20 start-page: 832 issue: 8 year: 1998 end-page: 844 article-title: The random subspace method for constructing decision forests publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 28 start-page: 11 issue: 1 year: 1986 end-page: 18 article-title: An analysis for unreplicated fractional factorials publication-title: Technometrics – volume: 40 start-page: 59 issue: 1 year: 2007 end-page: 77 article-title: Using hierarchical probability models to evaluate robust parameter design methods publication-title: Journal of Quality Technology – year: 1987 – year: 2001 – volume: 40 start-page: 139 issue: 2 year: 2000 end-page: 158 article-title: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization publication-title: Machine Learning – year: 2000 – volume: 12 start-page: 993 issue: 10 year: 1990 end-page: 1001 article-title: Neural network ensembles publication-title: IEEE Transactions in Pattern Analysis and Machine Intelligence – volume: 128 start-page: 1050 year: 2006 end-page: 1060 article-title: The mechanisms by which adaptive one‐factor‐at‐a‐time experimentation leads to improvement publication-title: Journal of Mechanical Design – volume: 9 start-page: 1545 year: 1997 end-page: 1588 article-title: Shape quantization and recognition with randomized trees publication-title: Neural Computation – start-page: 365 year: 1947 end-page: 372 – volume: 45 start-page: 5 year: 2001 end-page: 32 article-title: Random forests publication-title: Machine Learning – volume: 137 start-page: 669 issue: 3 year: 2007 end-page: 683 article-title: On bagging and nonlinear estimation publication-title: Journal of Statistical Planning and Inference – volume: 34 start-page: 263 year: 2006 article-title: An introduction to ensemble methods for data analysis publication-title: Sociological Methods and Research – volume: 26 start-page: 123 year: 1996 end-page: 140 article-title: Bagging predictors publication-title: Machine Learning – year: 1994 – volume: 13 start-page: 1 year: 1951 end-page: 38 article-title: On the experimental attainment of optimum conditions publication-title: Journal of Royal Statistical Society B – year: 1984 – start-page: 235 year: 1997 end-page: 250 – volume: 68 start-page: 353 year: 1973 end-page: 360 article-title: One‐at‐a‐time plans publication-title: Journal of American Statistical Association – volume: 22 start-page: 601 year: 1980 end-page: 608 article-title: Minimum abberation 2 designs publication-title: Technometrics – volume: 39 start-page: 372 year: 1997 end-page: 382 article-title: A Bayesian variable selection for analyzing designed experiments with complex aliasing publication-title: Technometrics – volume: 130 start-page: 021401 issue: 2 year: 2008 end-page: 0214014 article-title: An adaptive one‐factor‐at‐a‐time method for robust parameter design: Comparison with crossed arrays via case studies publication-title: Journal of Mechanical Design – volume: 53 start-page: 2 year: 1999 article-title: One‐factor‐at‐a‐time versus designed experiments publication-title: American Statistician – volume: 16 start-page: 199 year: 2001 end-page: 231 article-title: Statistical modeling: Two cultures (with Discussion) publication-title: Statistical Science – start-page: 359 end-page: 370 – volume: 83 start-page: 2498 year: 1974 end-page: 2507 article-title: Parameters contributing to power loss in disengaged wet clutches publication-title: Society of Automotive Engineers Transactions – volume: 14 start-page: 65 year: 2003 end-page: 74 article-title: A role for one factor at a time experimentation in parameter design publication-title: Research in Engineering Design – volume: 1 start-page: 80 year: 1945 end-page: 83 article-title: Individual comparisons by ranking methods publication-title: Biometrics – volume: 24 start-page: 130 issue: 3 year: 1992 end-page: 137 article-title: Analysis of designed experiments with complex aliasing publication-title: Journal of Quality Technology – year: 1978 – volume: 11 start-page: 32 year: 2006 end-page: 45 article-title: Regularities in data from factorial experiments publication-title: Complexity – volume: 63 start-page: 403 year: 1962 end-page: 429 article-title: Sequences of fractional replicates in a 2 series publication-title: Journal of American Statistical Association – year: 1976 – year: 1993 – volume: 31 start-page: 1 year: 1999 end-page: 15 article-title: Statistics as a catalyst to learning by scientific method part I—An example publication-title: Journal of Quality Technology – volume: 48 start-page: 418 year: 2006 end-page: 431 article-title: Adaptive One‐factor‐at‐a‐time experimentation and expected value of improvement publication-title: Technometrics – start-page: 1 year: 2000 end-page: 15 – ident: e_1_2_11_9_2 doi: 10.1137/1.9780898719765.ch17 – ident: e_1_2_11_22_2 doi: 10.1177/0049124105283119 – volume: 83 start-page: 2498 year: 1974 ident: e_1_2_11_43_2 article-title: Parameters contributing to power loss in disengaged wet clutches publication-title: Society of Automotive Engineers Transactions contributor: fullname: Lloyd FA – ident: e_1_2_11_38_2 doi: 10.2307/3315687 – volume-title: Principles of Data Mining (Adaptive Computation and Machine Learning) year: 2001 ident: e_1_2_11_19_2 contributor: fullname: Hand DJ – ident: e_1_2_11_16_2 doi: 10.1080/00224065.1999.11979889 – ident: e_1_2_11_32_2 doi: 10.1162/neco.1997.9.7.1545 – volume-title: Applied Regression Analysis year: 1981 ident: e_1_2_11_36_2 contributor: fullname: Draper NR – volume-title: C4.5: Programs for Machine Learning year: 1993 ident: e_1_2_11_28_2 contributor: fullname: Quinlan JR – ident: e_1_2_11_6_2 doi: 10.2307/1266725 – ident: e_1_2_11_18_2 doi: 10.1115/1.2216733 – ident: e_1_2_11_30_2 doi: 10.1109/34.709601 – start-page: 365 volume-title: Techniques of Statistical Analysis year: 1947 ident: e_1_2_11_14_2 contributor: fullname: Friedman M – volume: 40 start-page: 59 issue: 1 year: 2007 ident: e_1_2_11_42_2 article-title: Using hierarchical probability models to evaluate robust parameter design methods publication-title: Journal of Quality Technology doi: 10.1080/00224065.2008.11917713 contributor: fullname: Frey DD – ident: e_1_2_11_35_2 doi: 10.2307/1268198 – ident: e_1_2_11_2_2 doi: 10.1007/s00163-002-0026-9 – ident: e_1_2_11_21_2 doi: 10.1214/ss/1009213726 – volume-title: The Elements of Statistical Learning: Data Mining, Inferences, and Prediction year: 2001 ident: e_1_2_11_20_2 doi: 10.1007/978-0-387-21606-5 contributor: fullname: Hastie T – ident: e_1_2_11_26_2 doi: 10.1016/j.jspi.2006.06.002 – ident: e_1_2_11_41_2 doi: 10.1002/cplx.20123 – ident: e_1_2_11_24_2 doi: 10.1109/34.58871 – ident: e_1_2_11_31_2 doi: 10.1023/A:1007607513941 – ident: e_1_2_11_34_2 doi: 10.2307/3001968 – ident: e_1_2_11_39_2 doi: 10.1080/00224065.1992.11979383 – ident: e_1_2_11_8_2 doi: 10.1002/9780470316467 – volume-title: Emperical Model‐Building and Response Surfaces year: 1987 ident: e_1_2_11_15_2 contributor: fullname: Box GEP – volume: 13 start-page: 1 year: 1951 ident: e_1_2_11_17_2 article-title: On the experimental attainment of optimum conditions publication-title: Journal of Royal Statistical Society B contributor: fullname: Box GEP – volume-title: Statistics for Experimenters year: 1978 ident: e_1_2_11_10_2 contributor: fullname: Box GEP – volume-title: Classification and Regression Trees year: 1984 ident: e_1_2_11_27_2 contributor: fullname: Breiman L – ident: e_1_2_11_4_2 doi: 10.1115/1.2748450 – ident: e_1_2_11_33_2 doi: 10.1007/978-3-540-30115-8_34 – ident: e_1_2_11_7_2 doi: 10.2307/2281648 – ident: e_1_2_11_12_2 doi: 10.2307/2685731 – ident: e_1_2_11_13_2 doi: 10.2307/2284076 – ident: e_1_2_11_29_2 doi: 10.1007/BF00058655 – ident: e_1_2_11_3_2 doi: 10.1198/004017006000000075 – ident: e_1_2_11_40_2 doi: 10.1080/00401706.1997.10485156 – volume-title: Quality Through Design year: 1994 ident: e_1_2_11_11_2 contributor: fullname: Logothetis N – volume-title: Experiments: Planning, Design, and Parameter Optimization year: 2000 ident: e_1_2_11_5_2 contributor: fullname: Wu CFJ – ident: e_1_2_11_23_2 doi: 10.1007/3-540-45014-9_1 – ident: e_1_2_11_37_2 doi: 10.1080/00401706.1986.10488093 – ident: e_1_2_11_25_2 doi: 10.1023/A:1010933404324 |
SSID | ssj0010098 |
Score | 1.9429512 |
Snippet | Ensemble Methods are proposed as a means to extendbiAdaptive One‐Factor‐at‐a‐Time (aOFAT) experimentation. The proposed method executes multiple aOFAT... Abstract Ensemble Methods are proposed as a means to extendbiAdaptive One‐Factor‐at‐a‐Time ( a OFAT) experimentation. The proposed method executes multiple a... Ensemble Methods are proposed as a means to extendbiAdaptive One-Factor-at-a-Time (aOFAT) experimentation. The proposed method executes multiple aOFAT... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 947 |
SubjectTerms | Adaptive systems Agglomeration Algorithms Arrays data mining design of experiments ensemble methods Experimentation Factorials hierarchical probability models Running Wet clutches |
Title | Using ensemble techniques to advance adaptive one-factor-at-a-time experimentation |
URI | https://api.istex.fr/ark:/67375/WNG-3TT6KJ2P-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqre.1187 https://search.proquest.com/docview/1031288062 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PT8IwFG8MXvTgfyP-y0yMt8HWdus4GgQJJkQJRKKHpt26CzoQRmI8-RH8jH4S-zo2wcTEeNi6Q9d2fe3rW_t7v4fQeaxc35FRbEe0FthUEQl60AEvEOVRBidXBuXb8Vt92h54gzmqEnxhMn6IYsMNZobR1zDBhZxWv0lDXyaqArGytfp1CQM011W3YI5ygSczY-AMoHKW8846uJq_uLQSrUKnvi6ZmYvGqlltmpvoMW9nBjIZVmaprIRvPygc__chW2hjboRal9mo2UYrKtlB6wvUhLvowWAJLP2Tq57lk7IKrteplY6sOXJAp2IM-tIaJerz_SML3qMfRAo3fUHoemshigAMgz3UbzZ69ZY9j8Ngh4RoPRq5JA7dyPVkAPzzXqhY4EMsBG2reYTK0IsdKYKaFCQKhBNRbXVIP665EYmpJITso1Ki23GArJg5IQNGGqxCylQssIdrNGSERlJgFpTRWS4TPs7oNnhGrIy57icO_VRGF0ZYRQYxGQI8jXn8vnPNSa_n37TxLa_rwnJpcj1p4CREJGo0m3KIbYG15vKxLszI5tfa-F23AenhXzMeoTWz72z8FY9RKZ3M1Ik2XFJ5aoboF0m27bU |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHIADO6KsQULcWhLbiVNxQtBStgpQEQghWXbiXAptKamEOPEJfCNfgsdpSkFCQhwS5-DYjsczntjj9wC2E-0FroqTYszKYZFpqtAOungKRPuM486VjfKtB7VrdnLr347AXn4WJsOHGCy4oWZYe40KjgvSu1-ooU9dXUKy7FEYN9pOkbfh8GqAHeUhUmaGwRli9TxHnnXJbv7mt7loHLv15ZujOeyu2vmmOgP3eUuzMJNmqZeqUvT6A8Txn58yC9N9P9TZzwbOHIzo1jxMDaETLsCdDSdwzH-uflQP2hnAvT47advpBw-YVHbQZDrtlv54e8_4e8yDTPFmLmSvd4aIBHAkLMJ1tdI4qBX7VAzFiFJjSmOPJpEXe74KEYLejzQPA6RDMO6aT5mK_MRVMiwrSeNQujEzjocKkrIX04QpSukSjLVMO5bBSbgbcQSlITpiXCeS-KTMIk5ZrCThYQG2cqGIToa4ITJsZSJMPwnspwLsWGkNMshuEyPUuC9u6keCNhrB6Qm5EAemsFycwugNbobIlm73ngXSWxBjvAJiCrPC-bU2cXlVwXTlrxk3YaLWOD8TZ8f101WYtMvQ9vjiGoyl3Z5eN35MqjbseP0ECVnxzQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8MgFCa6JUYfvBvv1sT4ttkCLd2jUec1y1xmNPpAoMCLus2tS4xP_gR_o79EDl3nZmJifGjpAwXKgcNXOOc7CO0ZHUS-VKakaCUuUU0k6EEfvEB0SBmcXDkr31p0dkMv7sK7gVUl-MJk_BDDDTeYGU5fwwTvKHPwTRr60tVliJU9iYo0ssAXAFFjSB0VAFFmRsEZQ-0sJ5718UH-5thSVIRefR3DmaNo1S031Tn0kDc0szJ5LPdTWU7efnA4_u9L5tHsAIV6h9mwWUATurWIZka4CZfQvTMm8Oxfrn6WT9obkr32vLTtDUwHbCo6oDC9dkt_vn9k0Xvsg0jhZi-IXe-NhBGAcbCMbqonzaOz0iAQQykhxCpSFRCTBCoIZQwE9GGiWRxBMAQL1kJCZRIaX4q4IgVRsfAVtbBDRqYSKGKoJISsoELLtmMVeYb5CQNKGqwTyrQROMQVmjBClRSYxWtoN5cJ72R8GzxjVsbc9hOHflpD-05Ywwyi-wj2aSzkt7VTTprN6PIC1_mRLSyXJrezBo5CREu3-z0OwS2wVV0RtoU52fxaG79unEC6_teMO2iqflzlV-e1yw007fagne_iJiqk3b7esiAmldtutH4BU1PwfA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+ensemble+techniques+to+advance+adaptive+one-factor-at-a-time+experimentation&rft.jtitle=Quality+and+reliability+engineering+international&rft.au=Sudarsanam%2C+Nandan&rft.au=Frey%2C+Daniel+D.&rft.date=2011-11-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0748-8017&rft.eissn=1099-1638&rft.volume=27&rft.issue=7&rft.spage=947&rft.epage=957&rft_id=info:doi/10.1002%2Fqre.1187&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_3TT6KJ2P_C |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0748-8017&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0748-8017&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0748-8017&client=summon |