Using ensemble techniques to advance adaptive one-factor-at-a-time experimentation

Ensemble Methods are proposed as a means to extendbiAdaptive One‐Factor‐at‐a‐Time (aOFAT) experimentation. The proposed method executes multiple aOFAT experiments on the same system with minor differences in experimental setup, such as ‘starting points’. Experimental conclusions are arrived at by ag...

Full description

Saved in:
Bibliographic Details
Published inQuality and reliability engineering international Vol. 27; no. 7; pp. 947 - 957
Main Authors Sudarsanam, Nandan, Frey, Daniel D.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.11.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ensemble Methods are proposed as a means to extendbiAdaptive One‐Factor‐at‐a‐Time (aOFAT) experimentation. The proposed method executes multiple aOFAT experiments on the same system with minor differences in experimental setup, such as ‘starting points’. Experimental conclusions are arrived at by aggregating the multiple, individual aOFATs. A comparison is made to test the performance of the new method with that of a traditional form of experimentation, namely a single fractional factorial design which is equally resource intensive. The comparisons between the two experimental algorithms are conducted using a hierarchical probability meta‐model and an illustrative case study. The case is a wet clutch system with the goal of minimizing drag torque. In this study, the proposed procedure was superior in performance to using fractional factorial arrays consistently across various experimental settings. At the best, the proposed algorithm provides an expected value of improvement that is 15% higher than the traditional approach; at the worst, the two methods are equally effective, and on average the improvement is about 10% higher with the new method. These findings suggest that running multiple adaptive experiments in parallel can be an effective way to make improvements in quality and performance of engineering systems and also provides a reasonable aggregation procedure by which to bring together the results of the many separate experiments. Copyright © 2011 John Wiley & Sons, Ltd.
AbstractList Abstract Ensemble Methods are proposed as a means to extendbiAdaptive One‐Factor‐at‐a‐Time ( a OFAT) experimentation. The proposed method executes multiple a OFAT experiments on the same system with minor differences in experimental setup, such as ‘starting points’. Experimental conclusions are arrived at by aggregating the multiple, individual a OFATs. A comparison is made to test the performance of the new method with that of a traditional form of experimentation, namely a single fractional factorial design which is equally resource intensive. The comparisons between the two experimental algorithms are conducted using a hierarchical probability meta‐model and an illustrative case study. The case is a wet clutch system with the goal of minimizing drag torque. In this study, the proposed procedure was superior in performance to using fractional factorial arrays consistently across various experimental settings. At the best, the proposed algorithm provides an expected value of improvement that is 15% higher than the traditional approach; at the worst, the two methods are equally effective, and on average the improvement is about 10% higher with the new method. These findings suggest that running multiple adaptive experiments in parallel can be an effective way to make improvements in quality and performance of engineering systems and also provides a reasonable aggregation procedure by which to bring together the results of the many separate experiments. Copyright © 2011 John Wiley & Sons, Ltd.
Ensemble Methods are proposed as a means to extendbiAdaptive One-Factor-at-a-Time (aOFAT) experimentation. The proposed method executes multiple aOFAT experiments on the same system with minor differences in experimental setup, such as 'starting points'. Experimental conclusions are arrived at by aggregating the multiple, individual aOFATs. A comparison is made to test the performance of the new method with that of a traditional form of experimentation, namely a single fractional factorial design which is equally resource intensive. The comparisons between the two experimental algorithms are conducted using a hierarchical probability meta-model and an illustrative case study. The case is a wet clutch system with the goal of minimizing drag torque. In this study, the proposed procedure was superior in performance to using fractional factorial arrays consistently across various experimental settings. At the best, the proposed algorithm provides an expected value of improvement that is 15% higher than the traditional approach; at the worst, the two methods are equally effective, and on average the improvement is about 10% higher with the new method. These findings suggest that running multiple adaptive experiments in parallel can be an effective way to make improvements in quality and performance of engineering systems and also provides a reasonable aggregation procedure by which to bring together the results of the many separate experiments.
Ensemble Methods are proposed as a means to extendbiAdaptive One‐Factor‐at‐a‐Time (aOFAT) experimentation. The proposed method executes multiple aOFAT experiments on the same system with minor differences in experimental setup, such as ‘starting points’. Experimental conclusions are arrived at by aggregating the multiple, individual aOFATs. A comparison is made to test the performance of the new method with that of a traditional form of experimentation, namely a single fractional factorial design which is equally resource intensive. The comparisons between the two experimental algorithms are conducted using a hierarchical probability meta‐model and an illustrative case study. The case is a wet clutch system with the goal of minimizing drag torque. In this study, the proposed procedure was superior in performance to using fractional factorial arrays consistently across various experimental settings. At the best, the proposed algorithm provides an expected value of improvement that is 15% higher than the traditional approach; at the worst, the two methods are equally effective, and on average the improvement is about 10% higher with the new method. These findings suggest that running multiple adaptive experiments in parallel can be an effective way to make improvements in quality and performance of engineering systems and also provides a reasonable aggregation procedure by which to bring together the results of the many separate experiments. Copyright © 2011 John Wiley & Sons, Ltd.
Author Sudarsanam, Nandan
Frey, Daniel D.
Author_xml – sequence: 1
  givenname: Nandan
  surname: Sudarsanam
  fullname: Sudarsanam, Nandan
  organization: Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, U.S.A
– sequence: 2
  givenname: Daniel D.
  surname: Frey
  fullname: Frey, Daniel D.
  email: danfrey@mit.edu
  organization: Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, U.S.A
BookMark eNp10FtPwjAUB_DGYCKgiR9hj74U23Vbu0dDEC_EC4H42HTdmVZHB2tB-PaWYDQ--HTOwy_n8u-hjm0sIHROyYASEl-uWhhQKvgR6lKS55hmTHRQl_BEYEEoP0E9594JCTgXXTSdO2NfI7AOFkUNkQf9Zs1qDS7yTaTKjbIaQlVLbzYQhV24Uto3LVYeK-zNAiLYLqENjfXKm8aeouNK1Q7Ovmsfza9Hs-ENnjyOb4dXE6wZyzguKas0LWlaiEQwnmrgIuOCpJTGKUsKnVakUCIvFCuFImXCRVxkVU5LViUFY6yPLg5zl22zP9jLhXEa6lpZaNZOUsJoLATJ4l-q28a5Fiq5DAerdheQ3McmQ2xyH1ug-EA_TQ27f518no7-euM8bH-8aj9kxsNb8uVhLNlslt3fxU9yyL4AaPR_Qw
CitedBy_id crossref_primary_10_1039_C7RA06080G
crossref_primary_10_3390_lubricants10110286
Cites_doi 10.1137/1.9780898719765.ch17
10.1177/0049124105283119
10.2307/3315687
10.1080/00224065.1999.11979889
10.1162/neco.1997.9.7.1545
10.2307/1266725
10.1115/1.2216733
10.1109/34.709601
10.1080/00224065.2008.11917713
10.2307/1268198
10.1007/s00163-002-0026-9
10.1214/ss/1009213726
10.1007/978-0-387-21606-5
10.1016/j.jspi.2006.06.002
10.1002/cplx.20123
10.1109/34.58871
10.1023/A:1007607513941
10.2307/3001968
10.1080/00224065.1992.11979383
10.1002/9780470316467
10.1115/1.2748450
10.1007/978-3-540-30115-8_34
10.2307/2281648
10.2307/2685731
10.2307/2284076
10.1007/BF00058655
10.1198/004017006000000075
10.1080/00401706.1997.10485156
10.1007/3-540-45014-9_1
10.1080/00401706.1986.10488093
10.1023/A:1010933404324
ContentType Journal Article
Copyright Copyright © 2011 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2011 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7TB
8FD
FR3
DOI 10.1002/qre.1187
DatabaseName Istex
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1638
EndPage 957
ExternalDocumentID 10_1002_qre_1187
QRE1187
ark_67375_WNG_3TT6KJ2P_C
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADOZA
ADXAS
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
7TB
8FD
FR3
ID FETCH-LOGICAL-c3367-d13fc1d15b848375ce7867805112534bc5f0ba89ba3d8a0d4782b6f91d3f4b333
IEDL.DBID DR2
ISSN 0748-8017
1099-1638
IngestDate Fri Aug 16 07:13:06 EDT 2024
Fri Aug 23 01:42:29 EDT 2024
Sat Aug 24 01:04:20 EDT 2024
Wed Oct 30 09:52:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3367-d13fc1d15b848375ce7867805112534bc5f0ba89ba3d8a0d4782b6f91d3f4b333
Notes ArticleID:QRE1187
istex:AE9477A6B72FA06157D98EF2051539A24D1691BC
ark:/67375/WNG-3TT6KJ2P-C
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1031288062
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1031288062
crossref_primary_10_1002_qre_1187
wiley_primary_10_1002_qre_1187_QRE1187
istex_primary_ark_67375_WNG_3TT6KJ2P_C
PublicationCentury 2000
PublicationDate 2011-11
November 2011
2011-11-00
20111101
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Quality and reliability engineering international
PublicationTitleAlternate Qual. Reliab. Engng. Int
PublicationYear 2011
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Frey DD, Sudarsanam N. An adaptive one-factor-at-a-time method for robust parameter design: Comparison with crossed arrays via case studies. Journal of Mechanical Design (ASME) 2008; 130(2):021401-0214014.
Chipman H. Bayesian variable selection with related predictors. Canadian Journal of Statistics 1996; 24:17-36.
Box GEP, Hunter JS. The 2k − p fractional factorial design. Technometrics 1961; 3:311-351, 449-458.
Draper NR, Smith H. Applied Regression Analysis. Wiley: New York, 1981.
Box GEP, Meyer RD. An analysis for unreplicated fractional factorials. Technometrics 1986; 28(1):11-18.
Frey DD, Li X. Using hierarchical probability models to evaluate robust parameter design methods. Journal of Quality Technology 2007; 40(1):59-77.
Ho TK. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 1998; 20(8):832-844.
Wu CFJ, Hamada M. Experiments: Planning, Design, and Parameter Optimization. Wiley: New York, 2000.
Dietterich TG. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Machine Learning 2000; 40(2):139-158.
Daniel C. Sequences of fractional replicates in a 2p − q series. Journal of American Statistical Association 1962; 63:403-429.
Breiman L. Statistical modeling: Two cultures (with Discussion). Statistical Science 2001; 16:199-231.
Box GEP, Liu PYT. Statistics as a catalyst to learning by scientific method part I-An example. Journal of Quality Technology 1999; 31:1-15.
Box GEP, Draper NR. Emperical Model-Building and Response Surfaces. Wiley: New York, 1987.
Fries A, Hunter WG. Minimum abberation 2k − p designs. Technometrics 1980; 22:601-608.
Box GEP, Wilson KB. On the experimental attainment of optimum conditions. Journal of Royal Statistical Society B 1951; 13:1-38.
Daniel C. Application of Statistics to Industrial Experimentation. Wiley: New York, 1976.
Hansen LK, Salamon P. Neural network ensembles. IEEE Transactions in Pattern Analysis and Machine Intelligence 1990; 12(10):993-1001.
Chipman H, Hamada M, Wu CFJ. A Bayesian variable selection for analyzing designed experiments with complex aliasing. Technometrics 1997; 39:372-382.
Lloyd FA. Parameters contributing to power loss in disengaged wet clutches. Society of Automotive Engineers Transactions 1974; 83:2498-2507.
Frey DD, Engelhardt F, Greitzer EM. A role for one factor at a time experimentation in parameter design. Research in Engineering Design 2003; 14:65-74.
Frey DD, Wang H. Adaptive One-factor-at-a-time experimentation and expected value of improvement. Technometrics 2006; 48:418-431.
Hand DJ, Mannila K, Smyth P. Principles of Data Mining (Adaptive Computation and Machine Learning). MIT Press: Cambridge, 2001.
Box GEP, Hunter JS, Hunter WG. Statistics for Experimenters. Wiley: New York, 1978.
Breiman L, Friedman J, Olshen R, Stone C. Classification and Regression Trees. Wadsworth: Belmont, 1984.
Czitrom V. One-factor-at-a-time versus designed experiments. American Statistician 1999; 53:2.
Friedman JH, Hall P. On bagging and nonlinear estimation. Journal of Statistical Planning and Inference 2007; 137(3):669-683.
Hamada M, Wu CFJ. Analysis of designed experiments with complex aliasing. Journal of Quality Technology 1992; 24(3):130-137.
Amit Y, Geman D. Shape quantization and recognition with randomized trees. Neural Computation 1997; 9:1545-1588.
Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inferences, and Prediction. Springer: New York, 2001.
Breiman L. Bagging predictors. Machine Learning 1996; 26:123-140.
Frey DD, Jugulum R. The mechanisms by which adaptive one-factor-at-a-time experimentation leads to improvement. Journal of Mechanical Design (ASME) 2006; 128:1050-1060.
Berk RA. An introduction to ensemble methods for data analysis. Sociological Methods and Research 2006; 34:263.
Daniel C. One-at-a-time plans. Journal of American Statistical Association 1973; 68:353-360.
Li X, Sudarsanam N, Frey DD. Regularities in data from factorial experiments. Complexity 2006; 11:32-45.
Wilcoxon F. Individual comparisons by ranking methods. Biometrics 1945; 1:80-83.
Breiman L. Random forests. Machine Learning 2001; 45:5-32.
Logothetis N, Wynn HP. Quality Through Design. Clarendon: Oxford, 1994.
Quinlan JR. C4.5: Programs for Machine Learning. Morgan Kaufmann: San Mateo, CA, 1993.
1990; 12
2006; 34
1945; 1
2006; 11
1980; 22
1976
2003; 14
1997
1994
1993
2001; 45
1998; 20
1997; 9
1978
2007; 137
2001
2000
1973; 68
1974; 83
1961; 3
2006; 48
1987
1951; 13
2000; 40
1986; 28
1997; 39
1984
1999; 53
1999; 31
1992; 24
2001; 16
1981
2007; 40
1962; 63
1996; 24
2006; 128
1996; 26
2008; 130
1947
Quinlan JR (e_1_2_11_28_2) 1993
Wu CFJ (e_1_2_11_5_2) 2000
e_1_2_11_31_2
e_1_2_11_30_2
e_1_2_11_13_2
e_1_2_11_35_2
e_1_2_11_12_2
e_1_2_11_34_2
e_1_2_11_33_2
e_1_2_11_32_2
e_1_2_11_6_2
e_1_2_11_4_2
e_1_2_11_26_2
e_1_2_11_3_2
e_1_2_11_25_2
e_1_2_11_2_2
e_1_2_11_29_2
Draper NR (e_1_2_11_36_2) 1981
Lloyd FA (e_1_2_11_43_2) 1974; 83
Breiman L (e_1_2_11_27_2) 1984
Box GEP (e_1_2_11_10_2) 1978
Logothetis N (e_1_2_11_11_2) 1994
Frey DD (e_1_2_11_42_2) 2007; 40
Hastie T (e_1_2_11_20_2) 2001
Box GEP (e_1_2_11_15_2) 1987
e_1_2_11_24_2
e_1_2_11_9_2
e_1_2_11_23_2
e_1_2_11_40_2
e_1_2_11_8_2
e_1_2_11_22_2
e_1_2_11_41_2
e_1_2_11_7_2
e_1_2_11_21_2
e_1_2_11_16_2
Hand DJ (e_1_2_11_19_2) 2001
e_1_2_11_37_2
e_1_2_11_38_2
e_1_2_11_18_2
e_1_2_11_39_2
Box GEP (e_1_2_11_17_2) 1951; 13
Friedman M (e_1_2_11_14_2) 1947
References_xml – volume: 24
  start-page: 17
  year: 1996
  end-page: 36
  article-title: Bayesian variable selection with related predictors
  publication-title: Canadian Journal of Statistics
– volume: 3
  start-page: 311
  year: 1961
  end-page: 351
  article-title: The 2 fractional factorial design
  publication-title: Technometrics
– year: 1981
– volume: 20
  start-page: 832
  issue: 8
  year: 1998
  end-page: 844
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 28
  start-page: 11
  issue: 1
  year: 1986
  end-page: 18
  article-title: An analysis for unreplicated fractional factorials
  publication-title: Technometrics
– volume: 40
  start-page: 59
  issue: 1
  year: 2007
  end-page: 77
  article-title: Using hierarchical probability models to evaluate robust parameter design methods
  publication-title: Journal of Quality Technology
– year: 1987
– year: 2001
– volume: 40
  start-page: 139
  issue: 2
  year: 2000
  end-page: 158
  article-title: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
  publication-title: Machine Learning
– year: 2000
– volume: 12
  start-page: 993
  issue: 10
  year: 1990
  end-page: 1001
  article-title: Neural network ensembles
  publication-title: IEEE Transactions in Pattern Analysis and Machine Intelligence
– volume: 128
  start-page: 1050
  year: 2006
  end-page: 1060
  article-title: The mechanisms by which adaptive one‐factor‐at‐a‐time experimentation leads to improvement
  publication-title: Journal of Mechanical Design
– volume: 9
  start-page: 1545
  year: 1997
  end-page: 1588
  article-title: Shape quantization and recognition with randomized trees
  publication-title: Neural Computation
– start-page: 365
  year: 1947
  end-page: 372
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine Learning
– volume: 137
  start-page: 669
  issue: 3
  year: 2007
  end-page: 683
  article-title: On bagging and nonlinear estimation
  publication-title: Journal of Statistical Planning and Inference
– volume: 34
  start-page: 263
  year: 2006
  article-title: An introduction to ensemble methods for data analysis
  publication-title: Sociological Methods and Research
– volume: 26
  start-page: 123
  year: 1996
  end-page: 140
  article-title: Bagging predictors
  publication-title: Machine Learning
– year: 1994
– volume: 13
  start-page: 1
  year: 1951
  end-page: 38
  article-title: On the experimental attainment of optimum conditions
  publication-title: Journal of Royal Statistical Society B
– year: 1984
– start-page: 235
  year: 1997
  end-page: 250
– volume: 68
  start-page: 353
  year: 1973
  end-page: 360
  article-title: One‐at‐a‐time plans
  publication-title: Journal of American Statistical Association
– volume: 22
  start-page: 601
  year: 1980
  end-page: 608
  article-title: Minimum abberation 2 designs
  publication-title: Technometrics
– volume: 39
  start-page: 372
  year: 1997
  end-page: 382
  article-title: A Bayesian variable selection for analyzing designed experiments with complex aliasing
  publication-title: Technometrics
– volume: 130
  start-page: 021401
  issue: 2
  year: 2008
  end-page: 0214014
  article-title: An adaptive one‐factor‐at‐a‐time method for robust parameter design: Comparison with crossed arrays via case studies
  publication-title: Journal of Mechanical Design
– volume: 53
  start-page: 2
  year: 1999
  article-title: One‐factor‐at‐a‐time versus designed experiments
  publication-title: American Statistician
– volume: 16
  start-page: 199
  year: 2001
  end-page: 231
  article-title: Statistical modeling: Two cultures (with Discussion)
  publication-title: Statistical Science
– start-page: 359
  end-page: 370
– volume: 83
  start-page: 2498
  year: 1974
  end-page: 2507
  article-title: Parameters contributing to power loss in disengaged wet clutches
  publication-title: Society of Automotive Engineers Transactions
– volume: 14
  start-page: 65
  year: 2003
  end-page: 74
  article-title: A role for one factor at a time experimentation in parameter design
  publication-title: Research in Engineering Design
– volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  article-title: Individual comparisons by ranking methods
  publication-title: Biometrics
– volume: 24
  start-page: 130
  issue: 3
  year: 1992
  end-page: 137
  article-title: Analysis of designed experiments with complex aliasing
  publication-title: Journal of Quality Technology
– year: 1978
– volume: 11
  start-page: 32
  year: 2006
  end-page: 45
  article-title: Regularities in data from factorial experiments
  publication-title: Complexity
– volume: 63
  start-page: 403
  year: 1962
  end-page: 429
  article-title: Sequences of fractional replicates in a 2 series
  publication-title: Journal of American Statistical Association
– year: 1976
– year: 1993
– volume: 31
  start-page: 1
  year: 1999
  end-page: 15
  article-title: Statistics as a catalyst to learning by scientific method part I—An example
  publication-title: Journal of Quality Technology
– volume: 48
  start-page: 418
  year: 2006
  end-page: 431
  article-title: Adaptive One‐factor‐at‐a‐time experimentation and expected value of improvement
  publication-title: Technometrics
– start-page: 1
  year: 2000
  end-page: 15
– ident: e_1_2_11_9_2
  doi: 10.1137/1.9780898719765.ch17
– ident: e_1_2_11_22_2
  doi: 10.1177/0049124105283119
– volume: 83
  start-page: 2498
  year: 1974
  ident: e_1_2_11_43_2
  article-title: Parameters contributing to power loss in disengaged wet clutches
  publication-title: Society of Automotive Engineers Transactions
  contributor:
    fullname: Lloyd FA
– ident: e_1_2_11_38_2
  doi: 10.2307/3315687
– volume-title: Principles of Data Mining (Adaptive Computation and Machine Learning)
  year: 2001
  ident: e_1_2_11_19_2
  contributor:
    fullname: Hand DJ
– ident: e_1_2_11_16_2
  doi: 10.1080/00224065.1999.11979889
– ident: e_1_2_11_32_2
  doi: 10.1162/neco.1997.9.7.1545
– volume-title: Applied Regression Analysis
  year: 1981
  ident: e_1_2_11_36_2
  contributor:
    fullname: Draper NR
– volume-title: C4.5: Programs for Machine Learning
  year: 1993
  ident: e_1_2_11_28_2
  contributor:
    fullname: Quinlan JR
– ident: e_1_2_11_6_2
  doi: 10.2307/1266725
– ident: e_1_2_11_18_2
  doi: 10.1115/1.2216733
– ident: e_1_2_11_30_2
  doi: 10.1109/34.709601
– start-page: 365
  volume-title: Techniques of Statistical Analysis
  year: 1947
  ident: e_1_2_11_14_2
  contributor:
    fullname: Friedman M
– volume: 40
  start-page: 59
  issue: 1
  year: 2007
  ident: e_1_2_11_42_2
  article-title: Using hierarchical probability models to evaluate robust parameter design methods
  publication-title: Journal of Quality Technology
  doi: 10.1080/00224065.2008.11917713
  contributor:
    fullname: Frey DD
– ident: e_1_2_11_35_2
  doi: 10.2307/1268198
– ident: e_1_2_11_2_2
  doi: 10.1007/s00163-002-0026-9
– ident: e_1_2_11_21_2
  doi: 10.1214/ss/1009213726
– volume-title: The Elements of Statistical Learning: Data Mining, Inferences, and Prediction
  year: 2001
  ident: e_1_2_11_20_2
  doi: 10.1007/978-0-387-21606-5
  contributor:
    fullname: Hastie T
– ident: e_1_2_11_26_2
  doi: 10.1016/j.jspi.2006.06.002
– ident: e_1_2_11_41_2
  doi: 10.1002/cplx.20123
– ident: e_1_2_11_24_2
  doi: 10.1109/34.58871
– ident: e_1_2_11_31_2
  doi: 10.1023/A:1007607513941
– ident: e_1_2_11_34_2
  doi: 10.2307/3001968
– ident: e_1_2_11_39_2
  doi: 10.1080/00224065.1992.11979383
– ident: e_1_2_11_8_2
  doi: 10.1002/9780470316467
– volume-title: Emperical Model‐Building and Response Surfaces
  year: 1987
  ident: e_1_2_11_15_2
  contributor:
    fullname: Box GEP
– volume: 13
  start-page: 1
  year: 1951
  ident: e_1_2_11_17_2
  article-title: On the experimental attainment of optimum conditions
  publication-title: Journal of Royal Statistical Society B
  contributor:
    fullname: Box GEP
– volume-title: Statistics for Experimenters
  year: 1978
  ident: e_1_2_11_10_2
  contributor:
    fullname: Box GEP
– volume-title: Classification and Regression Trees
  year: 1984
  ident: e_1_2_11_27_2
  contributor:
    fullname: Breiman L
– ident: e_1_2_11_4_2
  doi: 10.1115/1.2748450
– ident: e_1_2_11_33_2
  doi: 10.1007/978-3-540-30115-8_34
– ident: e_1_2_11_7_2
  doi: 10.2307/2281648
– ident: e_1_2_11_12_2
  doi: 10.2307/2685731
– ident: e_1_2_11_13_2
  doi: 10.2307/2284076
– ident: e_1_2_11_29_2
  doi: 10.1007/BF00058655
– ident: e_1_2_11_3_2
  doi: 10.1198/004017006000000075
– ident: e_1_2_11_40_2
  doi: 10.1080/00401706.1997.10485156
– volume-title: Quality Through Design
  year: 1994
  ident: e_1_2_11_11_2
  contributor:
    fullname: Logothetis N
– volume-title: Experiments: Planning, Design, and Parameter Optimization
  year: 2000
  ident: e_1_2_11_5_2
  contributor:
    fullname: Wu CFJ
– ident: e_1_2_11_23_2
  doi: 10.1007/3-540-45014-9_1
– ident: e_1_2_11_37_2
  doi: 10.1080/00401706.1986.10488093
– ident: e_1_2_11_25_2
  doi: 10.1023/A:1010933404324
SSID ssj0010098
Score 1.9429512
Snippet Ensemble Methods are proposed as a means to extendbiAdaptive One‐Factor‐at‐a‐Time (aOFAT) experimentation. The proposed method executes multiple aOFAT...
Abstract Ensemble Methods are proposed as a means to extendbiAdaptive One‐Factor‐at‐a‐Time ( a OFAT) experimentation. The proposed method executes multiple a...
Ensemble Methods are proposed as a means to extendbiAdaptive One-Factor-at-a-Time (aOFAT) experimentation. The proposed method executes multiple aOFAT...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 947
SubjectTerms Adaptive systems
Agglomeration
Algorithms
Arrays
data mining
design of experiments
ensemble methods
Experimentation
Factorials
hierarchical probability models
Running
Wet clutches
Title Using ensemble techniques to advance adaptive one-factor-at-a-time experimentation
URI https://api.istex.fr/ark:/67375/WNG-3TT6KJ2P-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqre.1187
https://search.proquest.com/docview/1031288062
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PT8IwFG8MXvTgfyP-y0yMt8HWdus4GgQJJkQJRKKHpt26CzoQRmI8-RH8jH4S-zo2wcTEeNi6Q9d2fe3rW_t7v4fQeaxc35FRbEe0FthUEQl60AEvEOVRBidXBuXb8Vt92h54gzmqEnxhMn6IYsMNZobR1zDBhZxWv0lDXyaqArGytfp1CQM011W3YI5ygSczY-AMoHKW8846uJq_uLQSrUKnvi6ZmYvGqlltmpvoMW9nBjIZVmaprIRvPygc__chW2hjboRal9mo2UYrKtlB6wvUhLvowWAJLP2Tq57lk7IKrteplY6sOXJAp2IM-tIaJerz_SML3qMfRAo3fUHoemshigAMgz3UbzZ69ZY9j8Ngh4RoPRq5JA7dyPVkAPzzXqhY4EMsBG2reYTK0IsdKYKaFCQKhBNRbXVIP665EYmpJITso1Ki23GArJg5IQNGGqxCylQssIdrNGSERlJgFpTRWS4TPs7oNnhGrIy57icO_VRGF0ZYRQYxGQI8jXn8vnPNSa_n37TxLa_rwnJpcj1p4CREJGo0m3KIbYG15vKxLszI5tfa-F23AenhXzMeoTWz72z8FY9RKZ3M1Ik2XFJ5aoboF0m27bU
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHIADO6KsQULcWhLbiVNxQtBStgpQEQghWXbiXAptKamEOPEJfCNfgsdpSkFCQhwS5-DYjsczntjj9wC2E-0FroqTYszKYZFpqtAOungKRPuM486VjfKtB7VrdnLr347AXn4WJsOHGCy4oWZYe40KjgvSu1-ooU9dXUKy7FEYN9pOkbfh8GqAHeUhUmaGwRli9TxHnnXJbv7mt7loHLv15ZujOeyu2vmmOgP3eUuzMJNmqZeqUvT6A8Txn58yC9N9P9TZzwbOHIzo1jxMDaETLsCdDSdwzH-uflQP2hnAvT47advpBw-YVHbQZDrtlv54e8_4e8yDTPFmLmSvd4aIBHAkLMJ1tdI4qBX7VAzFiFJjSmOPJpEXe74KEYLejzQPA6RDMO6aT5mK_MRVMiwrSeNQujEzjocKkrIX04QpSukSjLVMO5bBSbgbcQSlITpiXCeS-KTMIk5ZrCThYQG2cqGIToa4ITJsZSJMPwnspwLsWGkNMshuEyPUuC9u6keCNhrB6Qm5EAemsFycwugNbobIlm73ngXSWxBjvAJiCrPC-bU2cXlVwXTlrxk3YaLWOD8TZ8f101WYtMvQ9vjiGoyl3Z5eN35MqjbseP0ECVnxzQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8MgFCa6JUYfvBvv1sT4ttkCLd2jUec1y1xmNPpAoMCLus2tS4xP_gR_o79EDl3nZmJifGjpAwXKgcNXOOc7CO0ZHUS-VKakaCUuUU0k6EEfvEB0SBmcXDkr31p0dkMv7sK7gVUl-MJk_BDDDTeYGU5fwwTvKHPwTRr60tVliJU9iYo0ssAXAFFjSB0VAFFmRsEZQ-0sJ5718UH-5thSVIRefR3DmaNo1S031Tn0kDc0szJ5LPdTWU7efnA4_u9L5tHsAIV6h9mwWUATurWIZka4CZfQvTMm8Oxfrn6WT9obkr32vLTtDUwHbCo6oDC9dkt_vn9k0Xvsg0jhZi-IXe-NhBGAcbCMbqonzaOz0iAQQykhxCpSFRCTBCoIZQwE9GGiWRxBMAQL1kJCZRIaX4q4IgVRsfAVtbBDRqYSKGKoJISsoELLtmMVeYb5CQNKGqwTyrQROMQVmjBClRSYxWtoN5cJ72R8GzxjVsbc9hOHflpD-05Ywwyi-wj2aSzkt7VTTprN6PIC1_mRLSyXJrezBo5CREu3-z0OwS2wVV0RtoU52fxaG79unEC6_teMO2iqflzlV-e1yw007fagne_iJiqk3b7esiAmldtutH4BU1PwfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+ensemble+techniques+to+advance+adaptive+one-factor-at-a-time+experimentation&rft.jtitle=Quality+and+reliability+engineering+international&rft.au=Sudarsanam%2C+Nandan&rft.au=Frey%2C+Daniel+D.&rft.date=2011-11-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0748-8017&rft.eissn=1099-1638&rft.volume=27&rft.issue=7&rft.spage=947&rft.epage=957&rft_id=info:doi/10.1002%2Fqre.1187&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_3TT6KJ2P_C
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0748-8017&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0748-8017&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0748-8017&client=summon