Data‐driven learning and planning for environmental sampling
Robots such as autonomous underwater vehicles (AUVs) and autonomous surface vehicles (ASVs) have been used for sensing and monitoring aquatic environments such as oceans and lakes. Environmental sampling is a challenging task because the environmental attributes to be observed can vary both spatiall...
Saved in:
Published in | Journal of field robotics Vol. 35; no. 5; pp. 643 - 661 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Robots such as autonomous underwater vehicles (AUVs) and autonomous surface vehicles (ASVs) have been used for sensing and monitoring aquatic environments such as oceans and lakes. Environmental sampling is a challenging task because the environmental attributes to be observed can vary both spatially and temporally, and the target environment is usually a large and continuous domain whereas the sampling data are typically sparse and limited. The challenges require that the sampling method must be informative and efficient enough to catch up with the environmental dynamics. In this paper, we present a planning and learning method that enables a sampling robot to perform persistent monitoring tasks by learning and refining a dynamic “data map” that models a spatiotemporal environment attribute such as ocean salinity content. Our environmental sampling framework consists of two components: To maximize the information collected, we propose an informative planning component that efficiently generates sampling waypoints that contain the maximal information; to alleviate the computational bottleneck caused by large‐scale data accumulated, we develop a component based on a sparse Gaussian process whose hyperparameters are learned online by taking advantage of only a subset of data that provides the greatest contribution. We validate our method with both simulations running on real ocean data and field trials with an ASV in a lake environment. Our experiments show that the proposed framework is both accurate in learning the environmental data map and efficient in catching up with the dynamic environmental changes. |
---|---|
AbstractList | Robots such as autonomous underwater vehicles (AUVs) and autonomous surface vehicles (ASVs) have been used for sensing and monitoring aquatic environments such as oceans and lakes. Environmental sampling is a challenging task because the environmental attributes to be observed can vary both spatially and temporally, and the target environment is usually a large and continuous domain whereas the sampling data are typically sparse and limited. The challenges require that the sampling method must be informative and efficient enough to catch up with the environmental dynamics. In this paper, we present a planning and learning method that enables a sampling robot to perform persistent monitoring tasks by learning and refining a dynamic “data map” that models a spatiotemporal environment attribute such as ocean salinity content. Our environmental sampling framework consists of two components: To maximize the information collected, we propose an informative planning component that efficiently generates sampling waypoints that contain the maximal information; to alleviate the computational bottleneck caused by large‐scale data accumulated, we develop a component based on a sparse Gaussian process whose hyperparameters are learned online by taking advantage of only a subset of data that provides the greatest contribution. We validate our method with both simulations running on real ocean data and field trials with an ASV in a lake environment. Our experiments show that the proposed framework is both accurate in learning the environmental data map and efficient in catching up with the dynamic environmental changes. |
Author | Liu, Lantao Heidarsson, Hordur K. Ma, Kai‐Chieh Sukhatme, Gaurav S. |
Author_xml | – sequence: 1 givenname: Kai‐Chieh surname: Ma fullname: Ma, Kai‐Chieh organization: University of Southern California – sequence: 2 givenname: Lantao surname: Liu fullname: Liu, Lantao email: lantao@iu.edu organization: Indiana University – sequence: 3 givenname: Hordur K. surname: Heidarsson fullname: Heidarsson, Hordur K. organization: University of Southern California – sequence: 4 givenname: Gaurav S. surname: Sukhatme fullname: Sukhatme, Gaurav S. organization: University of Southern California |
BookMark | eNp9kM1KAzEUhYNUsK0ufIMBVy6mzc8k6WwErb9QKIiuQzKTSEqajJlpS3c-gs_okxhbcSHo6t7L-c65cAag54PXAJwiOEIQ4nEMaoQRZ_wA9BGlLC9Kxns_Oy2PwKBtFxAWZFLSPri4lp38eHuvo11rnzkto7f-JZO-zhon_e4wIWbar20Mfql9J13WymXjknQMDo10rT75nkPwfHvzNL3PZ_O7h-nlLK8IYTwnite8MARpJbGkuK4qXXLFjWGc1QSXUFIOIaNJKipoJqbGyLACa6UUSsYhONvnNjG8rnTbiUVYRZ9eCgwZI5zSkiXqfE9VMbRt1EY00S5l3AoExVc9ItUjdvUkdvyLrWwnOxt8F6V1_zk21unt39HicX61d3wCbtZ5rg |
CitedBy_id | crossref_primary_10_1016_j_ifacol_2019_12_327 crossref_primary_10_1002_rob_22014 crossref_primary_10_1109_ACCESS_2021_3117343 crossref_primary_10_1002_rob_22237 crossref_primary_10_1109_ACCESS_2024_3425430 crossref_primary_10_3934_fods_2024050 crossref_primary_10_1109_TCYB_2018_2879905 crossref_primary_10_1109_LRA_2023_3264720 crossref_primary_10_1016_j_aei_2020_101229 crossref_primary_10_1109_TCST_2021_3139307 crossref_primary_10_1002_rob_21927 crossref_primary_10_1002_rob_21807 crossref_primary_10_1016_j_oceaneng_2025_120761 crossref_primary_10_1109_JSEN_2020_3007369 crossref_primary_10_1007_s10514_019_09836_5 crossref_primary_10_1007_s43154_021_00045_6 crossref_primary_10_1109_TSMC_2020_3036120 crossref_primary_10_1007_s11432_018_9653_7 crossref_primary_10_1007_s10846_020_01155_7 crossref_primary_10_1002_rob_22005 crossref_primary_10_1007_s10514_023_10095_8 crossref_primary_10_1371_journal_pone_0271751 crossref_primary_10_1016_j_robot_2023_104449 crossref_primary_10_1109_LRA_2020_3009066 crossref_primary_10_1109_TSMC_2019_2920390 crossref_primary_10_3390_jmse9111183 crossref_primary_10_1177_02783649231184498 crossref_primary_10_3390_jmse10050664 crossref_primary_10_3389_frobt_2022_910113 crossref_primary_10_1109_ACCESS_2024_3524917 crossref_primary_10_3390_s20092515 crossref_primary_10_1146_annurev_control_073119_090634 crossref_primary_10_1016_j_knosys_2025_113261 crossref_primary_10_1109_JSYST_2019_2939250 |
Cites_doi | 10.1109/TAC.2004.832203 10.1007/978-1-4612-0745-0 10.15607/RSS.2008.IV.040 10.1109/IROS.2008.4650755 10.1109/CDC.2013.6760598 10.1109/IROS.2014.6942582 10.3390/rs4061671 10.1145/1102351.1102385 10.1162/089976602317250933 10.1109/MRA.2011.2181683 10.1002/rob.20364 10.1002/rob.20366 10.1016/j.ocemod.2004.08.002 10.1109/IROS.2016.7759330 10.1177/0278364913488427 10.1109/IROS.2011.6095069 10.1007/978-3-642-55029-4_5 10.1109/ROBOT.2010.5509714 10.1002/rob.20405 10.7551/mitpress/1120.003.0052 10.1002/rob.21613 10.1109/TAC.2012.2186927 10.1016/j.compag.2012.07.003 10.1109/ICRA.2017.7989494 10.1109/ICRA.2013.6631380 10.1016/j.reseneeco.2013.12.005 10.7551/mitpress/3206.001.0001 10.1109/CDC.2007.4434518 10.1109/TRO.2008.2004887 10.1109/TCST.2007.912238 10.3390/s91108722 10.1016/0377-2217(92)90138-Y 10.1109/IROS.2016.7759289 10.1890/120150 10.1109/OCEANSSYD.2010.5603852 10.4304/jcm.6.2.143-151 10.1109/IROS.2012.6385730 10.1109/ACC.2012.6315170 10.1109/ICRA.2012.6224713 10.1109/MFI.2015.7295810 10.1109/MASCOTS.2016.45 10.1109/ICRA.2013.6630683 10.1109/JOE.2004.838066 10.1109/SSRR.2015.7442994 10.1109/TIP.2010.2066984 10.1109/ACC.2007.4283016 |
ContentType | Journal Article |
Copyright | 2017 Wiley Periodicals, Inc. 2018 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2017 Wiley Periodicals, Inc. – notice: 2018 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1002/rob.21767 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1556-4967 |
EndPage | 661 |
ExternalDocumentID | 10_1002_rob_21767 ROB21767 |
Genre | article |
GrantInformation_xml | – fundername: NIFA funderid: 2017‐67007‐26154 – fundername: ONR funderid: N00014‐14‐1‐0536 – fundername: USDA – fundername: NSF funderid: IIS‐1619319 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 FEDTE G-S GNP GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ I-F IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ~02 ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION 1OB 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3367-3b7d74f31eba2a52dcce97b7ff676d3290a57006552d4c0f8fd21f642ebbb14f3 |
IEDL.DBID | DR2 |
ISSN | 1556-4959 |
IngestDate | Wed Aug 13 08:16:11 EDT 2025 Thu Jul 03 08:36:03 EDT 2025 Thu Apr 24 23:09:27 EDT 2025 Wed Jan 22 16:42:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3367-3b7d74f31eba2a52dcce97b7ff676d3290a57006552d4c0f8fd21f642ebbb14f3 |
Notes | This work is an extension of a proceeding paper. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2066375596 |
PQPubID | 1006410 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2066375596 crossref_primary_10_1002_rob_21767 crossref_citationtrail_10_1002_rob_21767 wiley_primary_10_1002_rob_21767_ROB21767 |
PublicationCentury | 2000 |
PublicationDate | August 2018 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Journal of field robotics |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2002; 14 2012 2011 2004; 49 2010 2015; 123 2008; 16 2009 1998 2008 2007 1996 2012; 19 2006 2005 2003 2008; 3 1992; 59 2012; 57 2011; 6 2016; 33 2010; 27 2013; 11 2001 2013; 32 2005; 9 2011; 20 2005; 30 2014; 37 2009; 9 2017 2008; 24 2016 2015 2014 2013 2011; 28 2012; 4 1996; 2 2012; 88 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 Opper M (e_1_2_9_62_1) 1998 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_43_1 Nguyen‐tuong D (e_1_2_9_56_1) 2009 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 Press WH (e_1_2_9_61_1) 1996 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Lichtenstern A (e_1_2_9_45_1) 2013 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 Hengl T (e_1_2_9_44_1) 2009 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_59_1 e_1_2_9_19_1 Low KH (e_1_2_9_36_1) 2009 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 Miles T (e_1_2_9_11_1) 2015; 123 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Smola AJ (e_1_2_9_58_1) 2001 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – year: 2009 – volume: 30 start-page: 428 issue: 2 year: 2005 end-page: 442 article-title: Chemical plume tracing via an autonomous underwater vehicle publication-title: IEEE J Ocean Eng – volume: 19 start-page: 24 issue: 1 year: 2012 end-page: 39 article-title: Robotics for environmental monitoring: significant advancements and applications publication-title: IEEE Robot Autom Mag – year: 2005 – start-page: 457 year: 2016 end-page: 462 – start-page: 1 year: 2015 end-page: 8 – volume: 27 start-page: 718 issue: 6 year: 2010 end-page: 740 article-title: Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey bay publication-title: J Field Robot – start-page: 4292 year: 2017 end-page: 4298 – start-page: 4791 year: 2010 end-page: 4796 – volume: 49 start-page: 1292 issue: 8 year: 2004 end-page: 1302 article-title: Cooperative control of mobile sensor networks:adaptive gradient climbing in a distributed environment publication-title: Automat Control IEEE Trans Automat Control – volume: 88 start-page: 13 year: 2012 end-page: 24 article-title: A high‐resolution airborne four‐camera imaging system for agricultural remote sensing publication-title: Comput Electron Agric – start-page: 2204 year: 2007 end-page: 2211 – start-page: 1 year: 2010 end-page: 10 – start-page: 3120 year: 2007 end-page: 3126 – start-page: 265 year: 2005 end-page: 272 – volume: 59 start-page: 231 issue: 2 year: 1992 end-page: 247 article-title: The traveling salesman problem: an overview of exact and approximate algorithms publication-title: Eur J Oper Res – start-page: 381 year: 2006 end-page: 396 – start-page: 87 year: 2014 end-page: 113 – start-page: 4571 year: 2013 end-page: 4578 – start-page: 2102 year: 2016 end-page: 2108 – volume: 11 start-page: 138 issue: 3 year: 2013 end-page: 146 article-title: Lightweight unmanned aerial vehicles will revolutionize spatial ecology publication-title: Front Ecol Environ – start-page: 573 year: 2014 end-page: 580 – start-page: 2352 year: 2011 end-page: 2358 – start-page: 1107 year: 2012 end-page: 1112 – start-page: 1185 year: 2007 end-page: 1190 – start-page: 4192 year: 2012 end-page: 4197 – volume: 27 start-page: 779 issue: 6 year: 2010 end-page: 789 article-title: A robotic system for monitoring carp in minnesota lakes publication-title: J Field Robot – start-page: 2210 year: 2008 end-page: 2215 – start-page: 619 year: 2001 end-page: 625 – start-page: 363 year: 1998 end-page: 378 – start-page: 753 year: 2011 end-page: 760 – start-page: 208 year: 2015 end-page: 213 – start-page: 7 year: 2013 end-page: 14 – volume: 32 start-page: 873 issue: 8 year: 2013 end-page: 888 article-title: Optimizing waypoints for monitoring spatiotemporal phenomena publication-title: Int J Robot Res – start-page: 921 year: 2013 end-page: 926 – volume: 4 start-page: 1671 issue: 6 year: 2012 end-page: 1692 article-title: Unmanned aircraft systems in remote sensing and scientific research: classification and considerations of use publication-title: Remote Sensing – volume: 3 year: 2008 – volume: 33 start-page: 47 issue: 1 year: 2016 end-page: 66 article-title: Learning uncertainty in ocean current predictions for safe and reliable navigation of underwater vehicles publication-title: J Field Robot – year: 1996 – volume: 2 year: 1996 – year: 2016 – volume: 9 start-page: 347 issue: 4 year: 2005 end-page: 404 article-title: The regional oceanic modeling system (ROMS): a split‐explicit, free‐surface, topography‐following‐coordinate oceanic model publication-title: Ocean Modell – volume: 57 start-page: 2308 issue: 9 year: 2012 end-page: 2321 article-title: Stochastic source seeking by mobile robots publication-title: IEEE Trand Automat Control – start-page: 1 year: 2003 end-page: 16 – volume: 16 start-page: 735 issue: 4 year: 2008 end-page: 744 article-title: Glider control for ocean sampling: the glider coordinated control system publication-title: IEEE Trans Control Syst Technol – volume: 24 start-page: 1341 issue: 6 year: 2008 end-page: 1351 article-title: Gaussian process models for indoor and outdoor sensor‐centric robot localization publication-title: IEEE Trans Robot – volume: 6 start-page: 143 year: 2011 end-page: 151 article-title: Wireless sensor networks: a survey on environmental monitoring publication-title: J Commun – volume: 14 start-page: 641 issue: 3 year: 2002 end-page: 668 article-title: Sparse on‐line Gaussian processes publication-title: Neural Comput – start-page: 5593 year: 2013 end-page: 5599 – volume: 28 start-page: 714 issue: 5 year: 2011 end-page: 741 article-title: Persistent ocean monitoring with underwater gliders: adapting sampling resolution publication-title: J Field Robot – start-page: 367 year: 2001 end-page: 373 – start-page: 1816 year: 2016 end-page: 1822 – volume: 37 start-page: 226 year: 2014 end-page: 241 article-title: Monitoring as a partially observable decision problem publication-title: Resour Energy Econ – volume: 9 start-page: 8722 issue: 11 year: 2009 end-page: 8747 article-title: A wireless sensor network deployment for rural and forest fire detection and verification publication-title: Sensors – start-page: 342 year: 2014 end-page: 349 – volume: 20 start-page: 391 issue: 2 year: 2011 end-page: 404 article-title: Online sparse Gaussian process regression and its applications publication-title: IEEE Trans Image Process – start-page: 1193 year: 2009 end-page: 1200 – volume: 123 start-page: 16 issue: 10 year: 2015 end-page: 29 article-title: Glider observations of the dotson ice shelf outflow publication-title: Deep Sea Res Part II: Top Studi Oceanogra – start-page: 602 year: 2007 end-page: 607 – start-page: 2172 year: 2012 end-page: 2179 – year: 2013 – ident: e_1_2_9_29_1 doi: 10.1109/TAC.2004.832203 – ident: e_1_2_9_60_1 doi: 10.1007/978-1-4612-0745-0 – ident: e_1_2_9_49_1 doi: 10.15607/RSS.2008.IV.040 – ident: e_1_2_9_9_1 doi: 10.1109/IROS.2008.4650755 – ident: e_1_2_9_34_1 doi: 10.1109/CDC.2013.6760598 – ident: e_1_2_9_41_1 doi: 10.1109/IROS.2014.6942582 – ident: e_1_2_9_8_1 doi: 10.3390/rs4061671 – ident: e_1_2_9_46_1 doi: 10.1145/1102351.1102385 – ident: e_1_2_9_57_1 doi: 10.1162/089976602317250933 – volume-title: Multi‐robot Adaptive Exploration and Mapping for Environmental Sensing Applications year: 2009 ident: e_1_2_9_36_1 – ident: e_1_2_9_3_1 doi: 10.1109/MRA.2011.2181683 – ident: e_1_2_9_25_1 doi: 10.1002/rob.20364 – volume-title: A Practical Guide to Geostatistical Mapping year: 2009 ident: e_1_2_9_44_1 – ident: e_1_2_9_13_1 doi: 10.1002/rob.20366 – ident: e_1_2_9_4_1 doi: 10.1016/j.ocemod.2004.08.002 – ident: e_1_2_9_39_1 doi: 10.1109/IROS.2016.7759330 – ident: e_1_2_9_16_1 doi: 10.1177/0278364913488427 – ident: e_1_2_9_19_1 doi: 10.1109/IROS.2011.6095069 – ident: e_1_2_9_38_1 – ident: e_1_2_9_42_1 doi: 10.1007/978-3-642-55029-4_5 – ident: e_1_2_9_5_1 – ident: e_1_2_9_35_1 doi: 10.1109/ROBOT.2010.5509714 – ident: e_1_2_9_22_1 doi: 10.1002/rob.20405 – volume-title: Kriging methods in spatial statistics year: 2013 ident: e_1_2_9_45_1 – ident: e_1_2_9_55_1 doi: 10.7551/mitpress/1120.003.0052 – ident: e_1_2_9_53_1 doi: 10.1002/rob.21613 – ident: e_1_2_9_26_1 doi: 10.1109/TAC.2012.2186927 – ident: e_1_2_9_20_1 doi: 10.1016/j.compag.2012.07.003 – ident: e_1_2_9_2_1 doi: 10.1109/ICRA.2017.7989494 – ident: e_1_2_9_52_1 doi: 10.1109/ICRA.2013.6631380 – ident: e_1_2_9_43_1 doi: 10.1016/j.reseneeco.2013.12.005 – ident: e_1_2_9_14_1 doi: 10.7551/mitpress/3206.001.0001 – ident: e_1_2_9_30_1 doi: 10.1109/CDC.2007.4434518 – volume: 123 start-page: 16 issue: 10 year: 2015 ident: e_1_2_9_11_1 article-title: Glider observations of the dotson ice shelf outflow publication-title: Deep Sea Res Part II: Top Studi Oceanogra – ident: e_1_2_9_50_1 doi: 10.1109/TRO.2008.2004887 – ident: e_1_2_9_12_1 doi: 10.1109/TCST.2007.912238 – ident: e_1_2_9_6_1 – ident: e_1_2_9_17_1 doi: 10.3390/s91108722 – ident: e_1_2_9_63_1 doi: 10.1016/0377-2217(92)90138-Y – ident: e_1_2_9_51_1 doi: 10.1109/IROS.2016.7759289 – ident: e_1_2_9_21_1 doi: 10.1890/120150 – ident: e_1_2_9_32_1 doi: 10.1109/OCEANSSYD.2010.5603852 – ident: e_1_2_9_7_1 – ident: e_1_2_9_54_1 – ident: e_1_2_9_10_1 doi: 10.4304/jcm.6.2.143-151 – ident: e_1_2_9_40_1 doi: 10.1109/IROS.2012.6385730 – ident: e_1_2_9_27_1 doi: 10.1109/ACC.2012.6315170 – ident: e_1_2_9_31_1 doi: 10.1109/ICRA.2012.6224713 – ident: e_1_2_9_47_1 doi: 10.1109/MFI.2015.7295810 – ident: e_1_2_9_48_1 doi: 10.1109/MASCOTS.2016.45 – ident: e_1_2_9_33_1 doi: 10.1109/ICRA.2013.6630683 – ident: e_1_2_9_23_1 doi: 10.1109/JOE.2004.838066 – ident: e_1_2_9_24_1 doi: 10.1109/SSRR.2015.7442994 – start-page: 1193 volume-title: Advances in Neural Information Processing Systems year: 2009 ident: e_1_2_9_56_1 – volume-title: Numerical Recipes in C year: 1996 ident: e_1_2_9_61_1 – start-page: 619 volume-title: Advances in Neural Information Processing Systems year: 2001 ident: e_1_2_9_58_1 – ident: e_1_2_9_59_1 doi: 10.1109/TIP.2010.2066984 – ident: e_1_2_9_15_1 – ident: e_1_2_9_18_1 – ident: e_1_2_9_37_1 – ident: e_1_2_9_64_1 – start-page: 363 volume-title: On‐line Learning in Neural Networks year: 1998 ident: e_1_2_9_62_1 – ident: e_1_2_9_28_1 doi: 10.1109/ACC.2007.4283016 |
SSID | ssj0043895 |
Score | 2.460164 |
Snippet | Robots such as autonomous underwater vehicles (AUVs) and autonomous surface vehicles (ASVs) have been used for sensing and monitoring aquatic environments such... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 643 |
SubjectTerms | Aquatic environment Autonomous underwater vehicles Computer simulation Distance learning Environment models environmental monitoring Gaussian process informative planning Lakes learning marine robotics Monitoring Ocean models Oceans Sampling Surface vehicles Waypoints |
Title | Data‐driven learning and planning for environmental sampling |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.21767 https://www.proquest.com/docview/2066375596 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KT3rwLVarBPHgJW2zm-wmCIKvUgQVioUehLDPHpS0tOnFkz_B3-gvcTavVlEQcwpkdpNMdma_CTPfIHSiQ0IECbQrA2xcHxvjCk9KFxPFiNahVtoWON_d097Avx0Gwxo6K2thcn6I6oebtYzMX1sD52LWXpCGTseiBXia2kpym6tlAVG_oo6yTb2DjCs1oC4EAVHJKtTB7Wrk171oATCXYWq2z3TX0VP5hHl6yXNrnoqWfP1G3vjPV9hAawX-dC7yBbOJajrZQqtLrITb6Pyap_zj7V1NrSd0ir4SI4cnypkUPY4cwLrOUpEcTDnjNjk9Ge2gQffm8arnFm0WXEkIuEkimGK-IZ4WHPMAKyl1xAQzhjKqCI463JLg0wAu-bJjQqOwZyBu0UIIDwbuonoyTvQeciIT2qIGQo0xfoglh4NBTKRkCM5B8QY6LRUey4KD3LbCeIlz9mQcg0riTCUNdFyJTnLijZ-EmuVXiwvbm8WWoJ4wiJQo3C5T_-8TxP2Hy-xk_--iB2gFUFOYZwE2UT2dzvUhIJNUHGVL8BM8iuFx |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH32K1ahAPXtLHbpJNQQSfVG0rlBZ6kbDPHpS0tOnFkz_B3-gvcTePtoqCmFMgu5vNZGf2m2XmG4AT6WPMsCtt7iJlO0gpm1U5txEWBEvpSyFNgnOz5dW7zn3P7eXgLMuFSfghpgduRjNie20U3BxIl2esoaMBK2lA7ZEFWDQVvWOHqj0ljzJlvd2YLdX1bO0G1DJeoQoqT7t-3Y1mEHMeqMY7ze0aPGVzTAJMnkuTiJX46zf6xv9-xDqsphDUukjWzAbkZLgJK3PEhFtwfk0j-vH2LkbGGFppaYm-RUNhDdMyR5aGu9ZcnpweckxNfHrY34bu7U3nqm6nlRZsjrG2lJgRQRyFq5JRRF0kOJc1wohSHvEERrUKNTz4nqsfObyifCVQVWnXRTLGqrrjDuTDQSh3waop3-Q1YE8p5fiIU30R7RYJ7mv7IGgBTjOJBzylITfVMF6ChEAZBVokQSySAhxPmw4T7o2fGhWz3xak6jcODEc9JtpZ8vTrYvn_PkDQfryMb_b-3vQIluqdZiNo3LUe9mFZgyg_CQosQj4aTeSBBioRO4zX4ydRM-WM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6qgujBt1ifQTx4SU13k90EQVBrqW8RCx6EsM8elLTUevHkT_A3-kvczatVFMScAtndJJOZ2W_CzDcAOyrEmONAuSJA2vWR1i6vC-EiLClWKlRS2QLnyyvSavtn98F9BfaLWpiMH6L84WYtI_XX1sB7Uu8NSUP7XV4zeJrQMZjwiRdalW7cltxRtqt3kJKlBsQ1UUBU0Ap5aK-c-nUzGiLMUZyabjTNWXgoHjHLL3msvQx4Tbx-Y2_85zvMwUwOQJ3DTGPmoaKSBZgeoSVchIMGG7CPt3fZt67QyRtLdByWSKeXNzlyDNh1RqrkzJLPzGanJ50laDdP7o5bbt5nwRUYGz-JOZXU17iuOEMsQFIIFVFOtSaUSIwij1kWfBKYS77wdKglqmsTuCjOed1MXIbxpJuoFXAiHdqqBky01n6IBDMHNUGRFKHxDpJVYbcQeCxyEnLbC-MpzuiTUWxEEqciqcJ2ObSXMW_8NGi9-GpxbnzPsWWox9SESsTcLhX_7wvEt9dH6cnq34duweRNoxlfnF6dr8GUQVBhlhG4DuOD_ovaMChlwDdTbfwE2FDkRA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data%E2%80%90driven+learning+and+planning+for+environmental+sampling&rft.jtitle=Journal+of+field+robotics&rft.au=Ma%2C+Kai%E2%80%90Chieh&rft.au=Liu%2C+Lantao&rft.au=Heidarsson%2C+Hordur+K.&rft.au=Sukhatme%2C+Gaurav+S.&rft.date=2018-08-01&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=35&rft.issue=5&rft.spage=643&rft.epage=661&rft_id=info:doi/10.1002%2Frob.21767&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rob_21767 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon |