Data‐driven learning and planning for environmental sampling

Robots such as autonomous underwater vehicles (AUVs) and autonomous surface vehicles (ASVs) have been used for sensing and monitoring aquatic environments such as oceans and lakes. Environmental sampling is a challenging task because the environmental attributes to be observed can vary both spatiall...

Full description

Saved in:
Bibliographic Details
Published inJournal of field robotics Vol. 35; no. 5; pp. 643 - 661
Main Authors Ma, Kai‐Chieh, Liu, Lantao, Heidarsson, Hordur K., Sukhatme, Gaurav S.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Robots such as autonomous underwater vehicles (AUVs) and autonomous surface vehicles (ASVs) have been used for sensing and monitoring aquatic environments such as oceans and lakes. Environmental sampling is a challenging task because the environmental attributes to be observed can vary both spatially and temporally, and the target environment is usually a large and continuous domain whereas the sampling data are typically sparse and limited. The challenges require that the sampling method must be informative and efficient enough to catch up with the environmental dynamics. In this paper, we present a planning and learning method that enables a sampling robot to perform persistent monitoring tasks by learning and refining a dynamic “data map” that models a spatiotemporal environment attribute such as ocean salinity content. Our environmental sampling framework consists of two components: To maximize the information collected, we propose an informative planning component that efficiently generates sampling waypoints that contain the maximal information; to alleviate the computational bottleneck caused by large‐scale data accumulated, we develop a component based on a sparse Gaussian process whose hyperparameters are learned online by taking advantage of only a subset of data that provides the greatest contribution. We validate our method with both simulations running on real ocean data and field trials with an ASV in a lake environment. Our experiments show that the proposed framework is both accurate in learning the environmental data map and efficient in catching up with the dynamic environmental changes.
AbstractList Robots such as autonomous underwater vehicles (AUVs) and autonomous surface vehicles (ASVs) have been used for sensing and monitoring aquatic environments such as oceans and lakes. Environmental sampling is a challenging task because the environmental attributes to be observed can vary both spatially and temporally, and the target environment is usually a large and continuous domain whereas the sampling data are typically sparse and limited. The challenges require that the sampling method must be informative and efficient enough to catch up with the environmental dynamics. In this paper, we present a planning and learning method that enables a sampling robot to perform persistent monitoring tasks by learning and refining a dynamic “data map” that models a spatiotemporal environment attribute such as ocean salinity content. Our environmental sampling framework consists of two components: To maximize the information collected, we propose an informative planning component that efficiently generates sampling waypoints that contain the maximal information; to alleviate the computational bottleneck caused by large‐scale data accumulated, we develop a component based on a sparse Gaussian process whose hyperparameters are learned online by taking advantage of only a subset of data that provides the greatest contribution. We validate our method with both simulations running on real ocean data and field trials with an ASV in a lake environment. Our experiments show that the proposed framework is both accurate in learning the environmental data map and efficient in catching up with the dynamic environmental changes.
Author Liu, Lantao
Heidarsson, Hordur K.
Ma, Kai‐Chieh
Sukhatme, Gaurav S.
Author_xml – sequence: 1
  givenname: Kai‐Chieh
  surname: Ma
  fullname: Ma, Kai‐Chieh
  organization: University of Southern California
– sequence: 2
  givenname: Lantao
  surname: Liu
  fullname: Liu, Lantao
  email: lantao@iu.edu
  organization: Indiana University
– sequence: 3
  givenname: Hordur K.
  surname: Heidarsson
  fullname: Heidarsson, Hordur K.
  organization: University of Southern California
– sequence: 4
  givenname: Gaurav S.
  surname: Sukhatme
  fullname: Sukhatme, Gaurav S.
  organization: University of Southern California
BookMark eNp9kM1KAzEUhYNUsK0ufIMBVy6mzc8k6WwErb9QKIiuQzKTSEqajJlpS3c-gs_okxhbcSHo6t7L-c65cAag54PXAJwiOEIQ4nEMaoQRZ_wA9BGlLC9Kxns_Oy2PwKBtFxAWZFLSPri4lp38eHuvo11rnzkto7f-JZO-zhon_e4wIWbar20Mfql9J13WymXjknQMDo10rT75nkPwfHvzNL3PZ_O7h-nlLK8IYTwnite8MARpJbGkuK4qXXLFjWGc1QSXUFIOIaNJKipoJqbGyLACa6UUSsYhONvnNjG8rnTbiUVYRZ9eCgwZI5zSkiXqfE9VMbRt1EY00S5l3AoExVc9ItUjdvUkdvyLrWwnOxt8F6V1_zk21unt39HicX61d3wCbtZ5rg
CitedBy_id crossref_primary_10_1016_j_ifacol_2019_12_327
crossref_primary_10_1002_rob_22014
crossref_primary_10_1109_ACCESS_2021_3117343
crossref_primary_10_1002_rob_22237
crossref_primary_10_1109_ACCESS_2024_3425430
crossref_primary_10_3934_fods_2024050
crossref_primary_10_1109_TCYB_2018_2879905
crossref_primary_10_1109_LRA_2023_3264720
crossref_primary_10_1016_j_aei_2020_101229
crossref_primary_10_1109_TCST_2021_3139307
crossref_primary_10_1002_rob_21927
crossref_primary_10_1002_rob_21807
crossref_primary_10_1016_j_oceaneng_2025_120761
crossref_primary_10_1109_JSEN_2020_3007369
crossref_primary_10_1007_s10514_019_09836_5
crossref_primary_10_1007_s43154_021_00045_6
crossref_primary_10_1109_TSMC_2020_3036120
crossref_primary_10_1007_s11432_018_9653_7
crossref_primary_10_1007_s10846_020_01155_7
crossref_primary_10_1002_rob_22005
crossref_primary_10_1007_s10514_023_10095_8
crossref_primary_10_1371_journal_pone_0271751
crossref_primary_10_1016_j_robot_2023_104449
crossref_primary_10_1109_LRA_2020_3009066
crossref_primary_10_1109_TSMC_2019_2920390
crossref_primary_10_3390_jmse9111183
crossref_primary_10_1177_02783649231184498
crossref_primary_10_3390_jmse10050664
crossref_primary_10_3389_frobt_2022_910113
crossref_primary_10_1109_ACCESS_2024_3524917
crossref_primary_10_3390_s20092515
crossref_primary_10_1146_annurev_control_073119_090634
crossref_primary_10_1016_j_knosys_2025_113261
crossref_primary_10_1109_JSYST_2019_2939250
Cites_doi 10.1109/TAC.2004.832203
10.1007/978-1-4612-0745-0
10.15607/RSS.2008.IV.040
10.1109/IROS.2008.4650755
10.1109/CDC.2013.6760598
10.1109/IROS.2014.6942582
10.3390/rs4061671
10.1145/1102351.1102385
10.1162/089976602317250933
10.1109/MRA.2011.2181683
10.1002/rob.20364
10.1002/rob.20366
10.1016/j.ocemod.2004.08.002
10.1109/IROS.2016.7759330
10.1177/0278364913488427
10.1109/IROS.2011.6095069
10.1007/978-3-642-55029-4_5
10.1109/ROBOT.2010.5509714
10.1002/rob.20405
10.7551/mitpress/1120.003.0052
10.1002/rob.21613
10.1109/TAC.2012.2186927
10.1016/j.compag.2012.07.003
10.1109/ICRA.2017.7989494
10.1109/ICRA.2013.6631380
10.1016/j.reseneeco.2013.12.005
10.7551/mitpress/3206.001.0001
10.1109/CDC.2007.4434518
10.1109/TRO.2008.2004887
10.1109/TCST.2007.912238
10.3390/s91108722
10.1016/0377-2217(92)90138-Y
10.1109/IROS.2016.7759289
10.1890/120150
10.1109/OCEANSSYD.2010.5603852
10.4304/jcm.6.2.143-151
10.1109/IROS.2012.6385730
10.1109/ACC.2012.6315170
10.1109/ICRA.2012.6224713
10.1109/MFI.2015.7295810
10.1109/MASCOTS.2016.45
10.1109/ICRA.2013.6630683
10.1109/JOE.2004.838066
10.1109/SSRR.2015.7442994
10.1109/TIP.2010.2066984
10.1109/ACC.2007.4283016
ContentType Journal Article
Copyright 2017 Wiley Periodicals, Inc.
2018 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 Wiley Periodicals, Inc.
– notice: 2018 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1002/rob.21767
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1556-4967
EndPage 661
ExternalDocumentID 10_1002_rob_21767
ROB21767
Genre article
GrantInformation_xml – fundername: NIFA
  funderid: 2017‐67007‐26154
– fundername: ONR
  funderid: N00014‐14‐1‐0536
– fundername: USDA
– fundername: NSF
  funderid: IIS‐1619319
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
I-F
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
~02
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
1OB
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3367-3b7d74f31eba2a52dcce97b7ff676d3290a57006552d4c0f8fd21f642ebbb14f3
IEDL.DBID DR2
ISSN 1556-4959
IngestDate Wed Aug 13 08:16:11 EDT 2025
Thu Jul 03 08:36:03 EDT 2025
Thu Apr 24 23:09:27 EDT 2025
Wed Jan 22 16:42:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3367-3b7d74f31eba2a52dcce97b7ff676d3290a57006552d4c0f8fd21f642ebbb14f3
Notes This work is an extension of a proceeding paper.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2066375596
PQPubID 1006410
PageCount 19
ParticipantIDs proquest_journals_2066375596
crossref_primary_10_1002_rob_21767
crossref_citationtrail_10_1002_rob_21767
wiley_primary_10_1002_rob_21767_ROB21767
PublicationCentury 2000
PublicationDate August 2018
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of field robotics
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 14
2012
2011
2004; 49
2010
2015; 123
2008; 16
2009
1998
2008
2007
1996
2012; 19
2006
2005
2003
2008; 3
1992; 59
2012; 57
2011; 6
2016; 33
2010; 27
2013; 11
2001
2013; 32
2005; 9
2011; 20
2005; 30
2014; 37
2009; 9
2017
2008; 24
2016
2015
2014
2013
2011; 28
2012; 4
1996; 2
2012; 88
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
Opper M (e_1_2_9_62_1) 1998
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_43_1
Nguyen‐tuong D (e_1_2_9_56_1) 2009
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Press WH (e_1_2_9_61_1) 1996
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Lichtenstern A (e_1_2_9_45_1) 2013
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Hengl T (e_1_2_9_44_1) 2009
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_59_1
e_1_2_9_19_1
Low KH (e_1_2_9_36_1) 2009
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
Miles T (e_1_2_9_11_1) 2015; 123
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Smola AJ (e_1_2_9_58_1) 2001
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – year: 2009
– volume: 30
  start-page: 428
  issue: 2
  year: 2005
  end-page: 442
  article-title: Chemical plume tracing via an autonomous underwater vehicle
  publication-title: IEEE J Ocean Eng
– volume: 19
  start-page: 24
  issue: 1
  year: 2012
  end-page: 39
  article-title: Robotics for environmental monitoring: significant advancements and applications
  publication-title: IEEE Robot Autom Mag
– year: 2005
– start-page: 457
  year: 2016
  end-page: 462
– start-page: 1
  year: 2015
  end-page: 8
– volume: 27
  start-page: 718
  issue: 6
  year: 2010
  end-page: 740
  article-title: Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey bay
  publication-title: J Field Robot
– start-page: 4292
  year: 2017
  end-page: 4298
– start-page: 4791
  year: 2010
  end-page: 4796
– volume: 49
  start-page: 1292
  issue: 8
  year: 2004
  end-page: 1302
  article-title: Cooperative control of mobile sensor networks:adaptive gradient climbing in a distributed environment
  publication-title: Automat Control IEEE Trans Automat Control
– volume: 88
  start-page: 13
  year: 2012
  end-page: 24
  article-title: A high‐resolution airborne four‐camera imaging system for agricultural remote sensing
  publication-title: Comput Electron Agric
– start-page: 2204
  year: 2007
  end-page: 2211
– start-page: 1
  year: 2010
  end-page: 10
– start-page: 3120
  year: 2007
  end-page: 3126
– start-page: 265
  year: 2005
  end-page: 272
– volume: 59
  start-page: 231
  issue: 2
  year: 1992
  end-page: 247
  article-title: The traveling salesman problem: an overview of exact and approximate algorithms
  publication-title: Eur J Oper Res
– start-page: 381
  year: 2006
  end-page: 396
– start-page: 87
  year: 2014
  end-page: 113
– start-page: 4571
  year: 2013
  end-page: 4578
– start-page: 2102
  year: 2016
  end-page: 2108
– volume: 11
  start-page: 138
  issue: 3
  year: 2013
  end-page: 146
  article-title: Lightweight unmanned aerial vehicles will revolutionize spatial ecology
  publication-title: Front Ecol Environ
– start-page: 573
  year: 2014
  end-page: 580
– start-page: 2352
  year: 2011
  end-page: 2358
– start-page: 1107
  year: 2012
  end-page: 1112
– start-page: 1185
  year: 2007
  end-page: 1190
– start-page: 4192
  year: 2012
  end-page: 4197
– volume: 27
  start-page: 779
  issue: 6
  year: 2010
  end-page: 789
  article-title: A robotic system for monitoring carp in minnesota lakes
  publication-title: J Field Robot
– start-page: 2210
  year: 2008
  end-page: 2215
– start-page: 619
  year: 2001
  end-page: 625
– start-page: 363
  year: 1998
  end-page: 378
– start-page: 753
  year: 2011
  end-page: 760
– start-page: 208
  year: 2015
  end-page: 213
– start-page: 7
  year: 2013
  end-page: 14
– volume: 32
  start-page: 873
  issue: 8
  year: 2013
  end-page: 888
  article-title: Optimizing waypoints for monitoring spatiotemporal phenomena
  publication-title: Int J Robot Res
– start-page: 921
  year: 2013
  end-page: 926
– volume: 4
  start-page: 1671
  issue: 6
  year: 2012
  end-page: 1692
  article-title: Unmanned aircraft systems in remote sensing and scientific research: classification and considerations of use
  publication-title: Remote Sensing
– volume: 3
  year: 2008
– volume: 33
  start-page: 47
  issue: 1
  year: 2016
  end-page: 66
  article-title: Learning uncertainty in ocean current predictions for safe and reliable navigation of underwater vehicles
  publication-title: J Field Robot
– year: 1996
– volume: 2
  year: 1996
– year: 2016
– volume: 9
  start-page: 347
  issue: 4
  year: 2005
  end-page: 404
  article-title: The regional oceanic modeling system (ROMS): a split‐explicit, free‐surface, topography‐following‐coordinate oceanic model
  publication-title: Ocean Modell
– volume: 57
  start-page: 2308
  issue: 9
  year: 2012
  end-page: 2321
  article-title: Stochastic source seeking by mobile robots
  publication-title: IEEE Trand Automat Control
– start-page: 1
  year: 2003
  end-page: 16
– volume: 16
  start-page: 735
  issue: 4
  year: 2008
  end-page: 744
  article-title: Glider control for ocean sampling: the glider coordinated control system
  publication-title: IEEE Trans Control Syst Technol
– volume: 24
  start-page: 1341
  issue: 6
  year: 2008
  end-page: 1351
  article-title: Gaussian process models for indoor and outdoor sensor‐centric robot localization
  publication-title: IEEE Trans Robot
– volume: 6
  start-page: 143
  year: 2011
  end-page: 151
  article-title: Wireless sensor networks: a survey on environmental monitoring
  publication-title: J Commun
– volume: 14
  start-page: 641
  issue: 3
  year: 2002
  end-page: 668
  article-title: Sparse on‐line Gaussian processes
  publication-title: Neural Comput
– start-page: 5593
  year: 2013
  end-page: 5599
– volume: 28
  start-page: 714
  issue: 5
  year: 2011
  end-page: 741
  article-title: Persistent ocean monitoring with underwater gliders: adapting sampling resolution
  publication-title: J Field Robot
– start-page: 367
  year: 2001
  end-page: 373
– start-page: 1816
  year: 2016
  end-page: 1822
– volume: 37
  start-page: 226
  year: 2014
  end-page: 241
  article-title: Monitoring as a partially observable decision problem
  publication-title: Resour Energy Econ
– volume: 9
  start-page: 8722
  issue: 11
  year: 2009
  end-page: 8747
  article-title: A wireless sensor network deployment for rural and forest fire detection and verification
  publication-title: Sensors
– start-page: 342
  year: 2014
  end-page: 349
– volume: 20
  start-page: 391
  issue: 2
  year: 2011
  end-page: 404
  article-title: Online sparse Gaussian process regression and its applications
  publication-title: IEEE Trans Image Process
– start-page: 1193
  year: 2009
  end-page: 1200
– volume: 123
  start-page: 16
  issue: 10
  year: 2015
  end-page: 29
  article-title: Glider observations of the dotson ice shelf outflow
  publication-title: Deep Sea Res Part II: Top Studi Oceanogra
– start-page: 602
  year: 2007
  end-page: 607
– start-page: 2172
  year: 2012
  end-page: 2179
– year: 2013
– ident: e_1_2_9_29_1
  doi: 10.1109/TAC.2004.832203
– ident: e_1_2_9_60_1
  doi: 10.1007/978-1-4612-0745-0
– ident: e_1_2_9_49_1
  doi: 10.15607/RSS.2008.IV.040
– ident: e_1_2_9_9_1
  doi: 10.1109/IROS.2008.4650755
– ident: e_1_2_9_34_1
  doi: 10.1109/CDC.2013.6760598
– ident: e_1_2_9_41_1
  doi: 10.1109/IROS.2014.6942582
– ident: e_1_2_9_8_1
  doi: 10.3390/rs4061671
– ident: e_1_2_9_46_1
  doi: 10.1145/1102351.1102385
– ident: e_1_2_9_57_1
  doi: 10.1162/089976602317250933
– volume-title: Multi‐robot Adaptive Exploration and Mapping for Environmental Sensing Applications
  year: 2009
  ident: e_1_2_9_36_1
– ident: e_1_2_9_3_1
  doi: 10.1109/MRA.2011.2181683
– ident: e_1_2_9_25_1
  doi: 10.1002/rob.20364
– volume-title: A Practical Guide to Geostatistical Mapping
  year: 2009
  ident: e_1_2_9_44_1
– ident: e_1_2_9_13_1
  doi: 10.1002/rob.20366
– ident: e_1_2_9_4_1
  doi: 10.1016/j.ocemod.2004.08.002
– ident: e_1_2_9_39_1
  doi: 10.1109/IROS.2016.7759330
– ident: e_1_2_9_16_1
  doi: 10.1177/0278364913488427
– ident: e_1_2_9_19_1
  doi: 10.1109/IROS.2011.6095069
– ident: e_1_2_9_38_1
– ident: e_1_2_9_42_1
  doi: 10.1007/978-3-642-55029-4_5
– ident: e_1_2_9_5_1
– ident: e_1_2_9_35_1
  doi: 10.1109/ROBOT.2010.5509714
– ident: e_1_2_9_22_1
  doi: 10.1002/rob.20405
– volume-title: Kriging methods in spatial statistics
  year: 2013
  ident: e_1_2_9_45_1
– ident: e_1_2_9_55_1
  doi: 10.7551/mitpress/1120.003.0052
– ident: e_1_2_9_53_1
  doi: 10.1002/rob.21613
– ident: e_1_2_9_26_1
  doi: 10.1109/TAC.2012.2186927
– ident: e_1_2_9_20_1
  doi: 10.1016/j.compag.2012.07.003
– ident: e_1_2_9_2_1
  doi: 10.1109/ICRA.2017.7989494
– ident: e_1_2_9_52_1
  doi: 10.1109/ICRA.2013.6631380
– ident: e_1_2_9_43_1
  doi: 10.1016/j.reseneeco.2013.12.005
– ident: e_1_2_9_14_1
  doi: 10.7551/mitpress/3206.001.0001
– ident: e_1_2_9_30_1
  doi: 10.1109/CDC.2007.4434518
– volume: 123
  start-page: 16
  issue: 10
  year: 2015
  ident: e_1_2_9_11_1
  article-title: Glider observations of the dotson ice shelf outflow
  publication-title: Deep Sea Res Part II: Top Studi Oceanogra
– ident: e_1_2_9_50_1
  doi: 10.1109/TRO.2008.2004887
– ident: e_1_2_9_12_1
  doi: 10.1109/TCST.2007.912238
– ident: e_1_2_9_6_1
– ident: e_1_2_9_17_1
  doi: 10.3390/s91108722
– ident: e_1_2_9_63_1
  doi: 10.1016/0377-2217(92)90138-Y
– ident: e_1_2_9_51_1
  doi: 10.1109/IROS.2016.7759289
– ident: e_1_2_9_21_1
  doi: 10.1890/120150
– ident: e_1_2_9_32_1
  doi: 10.1109/OCEANSSYD.2010.5603852
– ident: e_1_2_9_7_1
– ident: e_1_2_9_54_1
– ident: e_1_2_9_10_1
  doi: 10.4304/jcm.6.2.143-151
– ident: e_1_2_9_40_1
  doi: 10.1109/IROS.2012.6385730
– ident: e_1_2_9_27_1
  doi: 10.1109/ACC.2012.6315170
– ident: e_1_2_9_31_1
  doi: 10.1109/ICRA.2012.6224713
– ident: e_1_2_9_47_1
  doi: 10.1109/MFI.2015.7295810
– ident: e_1_2_9_48_1
  doi: 10.1109/MASCOTS.2016.45
– ident: e_1_2_9_33_1
  doi: 10.1109/ICRA.2013.6630683
– ident: e_1_2_9_23_1
  doi: 10.1109/JOE.2004.838066
– ident: e_1_2_9_24_1
  doi: 10.1109/SSRR.2015.7442994
– start-page: 1193
  volume-title: Advances in Neural Information Processing Systems
  year: 2009
  ident: e_1_2_9_56_1
– volume-title: Numerical Recipes in C
  year: 1996
  ident: e_1_2_9_61_1
– start-page: 619
  volume-title: Advances in Neural Information Processing Systems
  year: 2001
  ident: e_1_2_9_58_1
– ident: e_1_2_9_59_1
  doi: 10.1109/TIP.2010.2066984
– ident: e_1_2_9_15_1
– ident: e_1_2_9_18_1
– ident: e_1_2_9_37_1
– ident: e_1_2_9_64_1
– start-page: 363
  volume-title: On‐line Learning in Neural Networks
  year: 1998
  ident: e_1_2_9_62_1
– ident: e_1_2_9_28_1
  doi: 10.1109/ACC.2007.4283016
SSID ssj0043895
Score 2.460164
Snippet Robots such as autonomous underwater vehicles (AUVs) and autonomous surface vehicles (ASVs) have been used for sensing and monitoring aquatic environments such...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 643
SubjectTerms Aquatic environment
Autonomous underwater vehicles
Computer simulation
Distance learning
Environment models
environmental monitoring
Gaussian process
informative planning
Lakes
learning
marine robotics
Monitoring
Ocean models
Oceans
Sampling
Surface vehicles
Waypoints
Title Data‐driven learning and planning for environmental sampling
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.21767
https://www.proquest.com/docview/2066375596
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KT3rwLVarBPHgJW2zm-wmCIKvUgQVioUehLDPHpS0tOnFkz_B3-gvcTavVlEQcwpkdpNMdma_CTPfIHSiQ0IECbQrA2xcHxvjCk9KFxPFiNahVtoWON_d097Avx0Gwxo6K2thcn6I6oebtYzMX1sD52LWXpCGTseiBXia2kpym6tlAVG_oo6yTb2DjCs1oC4EAVHJKtTB7Wrk171oATCXYWq2z3TX0VP5hHl6yXNrnoqWfP1G3vjPV9hAawX-dC7yBbOJajrZQqtLrITb6Pyap_zj7V1NrSd0ir4SI4cnypkUPY4cwLrOUpEcTDnjNjk9Ge2gQffm8arnFm0WXEkIuEkimGK-IZ4WHPMAKyl1xAQzhjKqCI463JLg0wAu-bJjQqOwZyBu0UIIDwbuonoyTvQeciIT2qIGQo0xfoglh4NBTKRkCM5B8QY6LRUey4KD3LbCeIlz9mQcg0riTCUNdFyJTnLijZ-EmuVXiwvbm8WWoJ4wiJQo3C5T_-8TxP2Hy-xk_--iB2gFUFOYZwE2UT2dzvUhIJNUHGVL8BM8iuFx
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH32K1ahAPXtLHbpJNQQSfVG0rlBZ6kbDPHpS0tOnFkz_B3-gvcTePtoqCmFMgu5vNZGf2m2XmG4AT6WPMsCtt7iJlO0gpm1U5txEWBEvpSyFNgnOz5dW7zn3P7eXgLMuFSfghpgduRjNie20U3BxIl2esoaMBK2lA7ZEFWDQVvWOHqj0ljzJlvd2YLdX1bO0G1DJeoQoqT7t-3Y1mEHMeqMY7ze0aPGVzTAJMnkuTiJX46zf6xv9-xDqsphDUukjWzAbkZLgJK3PEhFtwfk0j-vH2LkbGGFppaYm-RUNhDdMyR5aGu9ZcnpweckxNfHrY34bu7U3nqm6nlRZsjrG2lJgRQRyFq5JRRF0kOJc1wohSHvEERrUKNTz4nqsfObyifCVQVWnXRTLGqrrjDuTDQSh3waop3-Q1YE8p5fiIU30R7RYJ7mv7IGgBTjOJBzylITfVMF6ChEAZBVokQSySAhxPmw4T7o2fGhWz3xak6jcODEc9JtpZ8vTrYvn_PkDQfryMb_b-3vQIluqdZiNo3LUe9mFZgyg_CQosQj4aTeSBBioRO4zX4ydRM-WM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6qgujBt1ifQTx4SU13k90EQVBrqW8RCx6EsM8elLTUevHkT_A3-kvczatVFMScAtndJJOZ2W_CzDcAOyrEmONAuSJA2vWR1i6vC-EiLClWKlRS2QLnyyvSavtn98F9BfaLWpiMH6L84WYtI_XX1sB7Uu8NSUP7XV4zeJrQMZjwiRdalW7cltxRtqt3kJKlBsQ1UUBU0Ap5aK-c-nUzGiLMUZyabjTNWXgoHjHLL3msvQx4Tbx-Y2_85zvMwUwOQJ3DTGPmoaKSBZgeoSVchIMGG7CPt3fZt67QyRtLdByWSKeXNzlyDNh1RqrkzJLPzGanJ50laDdP7o5bbt5nwRUYGz-JOZXU17iuOEMsQFIIFVFOtSaUSIwij1kWfBKYS77wdKglqmsTuCjOed1MXIbxpJuoFXAiHdqqBky01n6IBDMHNUGRFKHxDpJVYbcQeCxyEnLbC-MpzuiTUWxEEqciqcJ2ObSXMW_8NGi9-GpxbnzPsWWox9SESsTcLhX_7wvEt9dH6cnq34duweRNoxlfnF6dr8GUQVBhlhG4DuOD_ovaMChlwDdTbfwE2FDkRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data%E2%80%90driven+learning+and+planning+for+environmental+sampling&rft.jtitle=Journal+of+field+robotics&rft.au=Ma%2C+Kai%E2%80%90Chieh&rft.au=Liu%2C+Lantao&rft.au=Heidarsson%2C+Hordur+K.&rft.au=Sukhatme%2C+Gaurav+S.&rft.date=2018-08-01&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=35&rft.issue=5&rft.spage=643&rft.epage=661&rft_id=info:doi/10.1002%2Frob.21767&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rob_21767
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon