A Better Understanding of the Formation of Silica Nanococoons
Silica nanococoons with coiled or concentric circular pore channels in the walls attracted much attention, recently. However, the formation of them is not well illustrated. Herein, hollow silica shells with organized pore channels parallel to the shell surface were prepared through a single-templati...
Saved in:
Published in | Chinese journal of chemistry Vol. 29; no. 8; pp. 1595 - 1600 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
01.08.2011
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1001-604X 1614-7065 |
DOI | 10.1002/cjoc.201180286 |
Cover
Abstract | Silica nanococoons with coiled or concentric circular pore channels in the walls attracted much attention, recently. However, the formation of them is not well illustrated. Herein, hollow silica shells with organized pore channels parallel to the shell surface were prepared through a single-templating method using the self-assemblies of a chiral low-molecular-weight amphiphile, L-18Phe6PyBr, as templates under a dilute concentration. These nano- cocoons were characterized using X-ray diffractometer and N2 sorption. The formation of them was clearly shown in the field-emission electron microscopy images which were taken at a low voltage. Moreover, transmission elec- tron microscopy images taken after different reaction times indicated a cooperative self-assemble mechanism. It was also found that the nanocoons were formed from coiled nanoribbons. |
---|---|
AbstractList | Silica nanococoons with coiled or concentric circular pore channels in the walls attracted much attention, recently. However, the formation of them is not well illustrated. Herein, hollow silica shells with organized pore channels parallel to the shell surface were prepared through a single-templating method using the self-assemblies of a chiral low-molecular-weight amphiphile, L-18Phe6PyBr, as templates under a dilute concentration. These nano- cocoons were characterized using X-ray diffractometer and N2 sorption. The formation of them was clearly shown in the field-emission electron microscopy images which were taken at a low voltage. Moreover, transmission elec- tron microscopy images taken after different reaction times indicated a cooperative self-assemble mechanism. It was also found that the nanocoons were formed from coiled nanoribbons. Silica nanococoons with coiled or concentric circular pore channels in the walls attracted much attention, recently. However, the formation of them is not well illustrated. Herein, hollow silica shells with organized pore channels parallel to the shell surface were prepared through a single‐templating method using the self‐assemblies of a chiral low‐molecular‐weight amphiphile, L ‐18Phe6PyBr, as templates under a dilute concentration. These nanococoons were characterized using X‐ray diffractometer and N 2 sorption. The formation of them was clearly shown in the field‐emission electron microscopy images which were taken at a low voltage. Moreover, transmission electron microscopy images taken after different reaction times indicated a cooperative self‐assemble mechanism. It was also found that the nanocoons were formed from coiled nanoribbons. Silica nanococoons with coiled or concentric circular pore channels in the walls attracted much attention, recently. However, the formation of them is not well illustrated. Herein, hollow silica shells with organized pore channels parallel to the shell surface were prepared through a single‐templating method using the self‐assemblies of a chiral low‐molecular‐weight amphiphile,L‐18Phe6PyBr, as templates under a dilute concentration. These nanococoons were characterized using X‐ray diffractometer and N2 sorption. The formation of them was clearly shown in the field‐emission electron microscopy images which were taken at a low voltage. Moreover, transmission electron microscopy images taken after different reaction times indicated a cooperative self‐assemble mechanism. It was also found that the nanocoons were formed from coiled nanoribbons. Hollow silica shells with organized pore channels parallel to the shell surface were prepared through a single‐templating method using the self‐assemblies of a chiral low‐molecular‐weight amphiphile,L‐18Phe6PyBr, as templates under a dilute concentration. These nanococoons were characterized using X‐ray diffractometer and N2 sorption. Silica nanococoons with coiled or concentric circular pore channels in the walls attracted much attention, recently. However, the formation of them is not well illustrated. Herein, hollow silica shells with organized pore channels parallel to the shell surface were prepared through a single-templating method using the self-assemblies of a chiral low-molecular-weight amphiphile,L-18Phe6PyBr, as templates under a dilute concentration. These nanococoons were characterized using X-ray diffractometer and N2 sorption. The formation of them was clearly shown in the field-emission electron microscopy images which were taken at a low voltage. Moreover, transmission electron microscopy images taken after different reaction times indicated a cooperative self-assemble mechanism. It was also found that the nanocoons were formed from coiled nanoribbons. |
Author | Yang, Yonggang Zhao, Huanyu Chen, Yuanli Xu, Zhen Wang, Sibing Li, Yi Yan, Zhuojun Li, Baozong |
AuthorAffiliation | Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China |
Author_xml | – sequence: 1 fullname: 许臻 赵环宇 闫卓君 王思兵 陈媛丽 李宝宗 李艺 杨永刚 |
BookMark | eNqFkE1PwzAMhiMEEtvgyrmIc4eTtEl74LAVGJ_jAAhuUZomo2NLICmC_XtabZq4IUu2Zb2Pbb19tGud1QgdYRhiAHKq5k4NCWCcAcnYDuphhpOYA0t32x4AxwyS133UD2He6jknrIfORtFYN4320bOttA-NtFVtZ5EzUfOmo0vnl7Kpne0Gj_WiVjKaSutUG86GA7Rn5CLow00doOfLi6fiKr57mFwXo7tYUcpYXGpglEJCKqMVJ8BZlZZK4hIoloS2mVYca24gzStVSZNVKTXalCbLSVKmdIBO1ns_vPv80qERc_flbXtSYM5YBjlhuFUN1yrlXQheG_Hh66X0K4FBdBaJziKxtagF8jXwXS_06h-1KG4eir9svGbr0OifLSv9u2Cc8lS8TCeiuD2f3o9TLrrnjjfPvTk7-2w93jI0x0DSJKG_pL2Flw |
Cites_doi | 10.1038/nature02529 10.1039/b206020e 10.1002/anie.200390284 10.1002/chem.200500588 10.1016/S1005-0302(10)60054-0 10.1016/j.solidstatesciences.2009.11.005 10.1021/cr8002328 10.1021/ar000074f 10.1126/science.282.5392.1302 10.1088/0957-4484/21/2/025601 10.1002/chem.200305009 10.1039/b917426e 10.1039/c0cc03568h 10.1126/science.271.5253.1267 10.1021/ja073804o 10.1088/0957-4484/16/11/027 10.1021/cm048486w 10.1021/cm021243o 10.1002/anie.200703752 10.1021/cr030072j 10.1021/cm0202299 10.1021/cg100544w 10.1179/174328406X79289 10.1039/b602374f 10.1021/la052129y 10.1016/j.materresbull.2008.06.006 10.1021/cr078253z 10.1039/a802829j 10.1021/la0629835 10.1002/smll.200400048 10.1038/47229 10.1002/anie.200461296 10.1002/1521-3773(20020902)41:17<3167::AID-ANIE3167>3.0.CO;2-R 10.1021/la020727w 10.1039/b104879c 10.1021/cm803124a 10.1088/0957-4484/19/31/315602 10.1021/jp0707889 10.1002/anie.200703628 10.1021/nl034134x 10.1039/b817937a 10.1002/anie.200453804 10.1039/b104600b 10.1016/j.pmatsci.2010.10.001 10.1073/pnas.260496497 10.1002/anie.200460510 10.1021/ja0158758 10.1007/s00339-004-2769-9 |
ContentType | Journal Article |
Copyright | Copyright © 2011 SIOC, CAS, Shanghai & WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2011 SIOC, CAS, Shanghai & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2011 SIOC, CAS, Shanghai & WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2011 SIOC, CAS, Shanghai & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 2RA 92L CQIGP ~WA BSCLL AAYXX CITATION |
DOI | 10.1002/cjoc.201180286 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 Istex CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | A Better Understanding of the Formation of Silica Nanococoons |
EISSN | 1614-7065 |
EndPage | 1600 |
ExternalDocumentID | 3957985961 10_1002_cjoc_201180286 CJOC201180286 ark_67375_WNG_CKDNMB57_1 39102544 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: the Program of Innovative Research Team of Soochow University funderid: 2 – fundername: the Jiangsu Planned Projects for Postdoctoral Research Funds funderid: 0902027C – fundername: Program for New Century Excellent Talents in University funderid: NCET‐08‐0698 – fundername: the National Natural Science Foundation of China funderid: 20871087 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 29B 2RA 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VR 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 92L AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABHUG ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFUIB AFVGU AGJLS AHBTC AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 BZXJU CCEZO CDRFL CHBEP CQIGP CS3 CW9 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 FA0 FEDTE G-S G.N GODZA H.T H.X HF~ HVGLF HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- P2W P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RK2 RNS ROL RWI RX1 RYL SAMSI SUPJJ W8V W99 WBFHL WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WA ~WT -SB -S~ 5XA 5XC AAXDM AITYG BSCLL CAJEB HGLYW OIG Q-- U1G U5L AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION TGP AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3366-be0633042dfec72076d5bca1b031a230313d71e7f059dcdaf8d53fefbf8924b53 |
IEDL.DBID | DR2 |
ISSN | 1001-604X |
IngestDate | Fri Jul 25 11:17:28 EDT 2025 Tue Jul 01 03:35:09 EDT 2025 Wed Jan 22 16:42:52 EST 2025 Wed Oct 30 09:56:11 EDT 2024 Wed Feb 14 09:54:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3366-be0633042dfec72076d5bca1b031a230313d71e7f059dcdaf8d53fefbf8924b53 |
Notes | 31-1547/O6 Xu, Zhen Zhao, Huanyu Yan, Zhuojun Wang, Sibing Chen, Yuanli Li, Baozong Li, Yi Yang, Yonggang( Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China) mesoporous, helicity, silica, surfactants, sol-gel processes Silica nanococoons with coiled or concentric circular pore channels in the walls attracted much attention, recently. However, the formation of them is not well illustrated. Herein, hollow silica shells with organized pore channels parallel to the shell surface were prepared through a single-templating method using the self-assemblies of a chiral low-molecular-weight amphiphile, L-18Phe6PyBr, as templates under a dilute concentration. These nano- cocoons were characterized using X-ray diffractometer and N2 sorption. The formation of them was clearly shown in the field-emission electron microscopy images which were taken at a low voltage. Moreover, transmission elec- tron microscopy images taken after different reaction times indicated a cooperative self-assemble mechanism. It was also found that the nanocoons were formed from coiled nanoribbons. istex:DEF8686DE118E982CE9338C32DE2B8599D6984AD the National Natural Science Foundation of China - No. 20871087 Program for New Century Excellent Talents in University - No. NCET-08-0698 the Program of Innovative Research Team of Soochow University - No. 2 ark:/67375/WNG-CKDNMB57-1 ArticleID:CJOC201180286 the Jiangsu Planned Projects for Postdoctoral Research Funds - No. 0902027C ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1766809261 |
PQPubID | 986331 |
PageCount | 6 |
ParticipantIDs | proquest_journals_1766809261 crossref_primary_10_1002_cjoc_201180286 wiley_primary_10_1002_cjoc_201180286_CJOC201180286 istex_primary_ark_67375_WNG_CKDNMB57_1 chongqing_primary_39102544 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August, 2011 |
PublicationDateYYYYMMDD | 2011-08-01 |
PublicationDate_xml | – month: 08 year: 2011 text: August, 2011 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Shanghai |
PublicationTitle | Chinese journal of chemistry |
PublicationTitleAlternate | Chinese Journal of Chemistry |
PublicationYear | 2011 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | Yang, S.; Zhou, X.; Yuan, P.; Yu, M.; Xie, S.; Zou, J.; Lu, G. Q.; Yu, C.. Angew. Chem., Int. Ed., 2007, 46,8579. Wan, X.; Pei, X.; Zhao, H.; Chen, Y.; Guo, Y.; Li, B.; Hanabusa, K.; Yang, Y.. Nanotechnology, 2008, 19, 315602. Yuan, P.; Zhao, L.; Liu, N.; Wei, G.; Wang, Y.; Auchterlonie, G. J.; Drennan, J.; Lu, G. Q.; Zou, J.; Yu, C.. Chem. Commun., 2010, 46,1688. Hentze, H.-P.; Raghavan, S. R.; McKelvey, C. A.; Kaler, E. W.. Langmuir, 2003, 19,1069. KrÖger, N.; Deutzmann, R.; Bergsdorf, C.; Sumper, M.. Proc. Natl. Acad. Sci. U. S. A., 2000, 97,14133. Sun, J.; Ma, D.; Zhang, H.; Wang, C.; Bao, X.; Su, D. S.; Klein-Hoffmann, A.; Weinberg, G.; Mann, S.. J. Mater. Chem., 2006, 16,1507. Sumper, M.. Angew. Chem., Int. Ed., 2004, 43,2251. Lin, H.-P.; Mou, C.-Y.. Acc. Chem. Res., 2002, 35,927. Fang, X.; Zhang, L.. J. Mater. Sci. Technol., 2006, 22, 1. Yu, J.-H.; Lee, J.-S.; Choa, Y.-H.; Hofmann, H.. J. Mater. Sci. Technol., 2010, 26,333. Antonietti, M.; Ozin, G. A.. Chem. Eur. J., 2004, 10,28. Ohsuna, T.; Liu, Z.; Che, S.; Terasaki, O.. Small, 2005, 1,233. Shimizu, T.; Masuda, M.; Minamikawa, H.. Chem. Rev., 2005, 105,1401. Li, W.; Sha, X.; Dong, W.; Wang, Z.. Chem. Commun., 2002, 2434. Li, B.; Pei, X.; Wang, S.; Chen, Y.; Zhang, M.; Li, Y.; Yang, Y.. Nanotechnology, 2010, 21, 025601. Kim, S. S.; Zhang, W.; Pinnavaia, T. J.. Science, 1998, 282,1302. Tanev, P. T.; Pinnavaia, T. J.. Science, 1996, 271,1267. Zhu, Y.; Shi, J.; Shen, W.; Chen, H.; Dong, X.; Ruan, M.. Nanotechnology, 2005, 16,2633. Li, Y.; Shi, J.; Hua, Z.; Chen, H.; Ruan, M.; Yan, D.. Nano Lett., 2003, 3,609. Underhill, R. S.; Jovanovic, A. V.; Carino, S. R.; Varshney, M.; Shah, D. O.; Dennis, D. M.; Morey, T. E.; Duran, R. S.. Chem. Mater., 2002, 14,4919. Yuwono, V. M.; Hartgerink, J. D.. Langmuir, 2007, 23, 5033. Fang, X. S.; Ye, C. H.; Xie, T.; Wang, Y. H.; Zhang, L. D.. Appl. Phys. A, 2005, 80,423. Cai, W.; Yu, J.; Gu, S.; Jaroniec, M.. Cryst. Growth Des., 2010, 10,3977. Botterhuis, N. E.; Sun, Q.; Magusin, P. C. M. M.; van Santen, R. A.; Sommerdijk, N. A. J. M.. Chem. Eur. J., 2006, 12,1448. Lin, H.-P.; Mou, C.-Y.; Liu, S.-B.; Tang, C.-Y.. Chem. Commun., 2001, 1970. Dong, W.; Sun, Y.; Lee, C. W.; Hua, W.; Lu, X.; Shi, Y.; Zhang, S.; Chen, J.; Zhao, D.. J. Am. Chem. Soc., 2007, 129, 13894. Che, S.; Liu, Z.; Ohsuna, T.; Sakamoto, K.; Terasaki, O.; Tatsumi, T.. Nature (London), 2004, 429,281. Li, W.; Coppen, M.-O.. Chem. Mater., 2005, 17, 2241. Pan, W.; Ye, J.; Ning, G.; Lin, Y.; Wang, J.. Mater. Res. Bull., 2009, 44, 280. Wang, J.-G.; Li, F.; Zhou, H.-J.; Sun, P.-C.; Ding, D.-T.; Chen, T.-H.. Chem. Mater., 2009, 21,612. Zhang, J.; Liu, M.; Zhang, A.; Lin, K.; Song, C.; Guo, X.. Solid State Sci., 2010, 12, 267. Dickerson, M. B.; Sandhage, K. H.; Naik, R. R.. Chem. Rev., 2008, 108,4935. Yan, Z.; Li, Y.; Wang, S.; Xu, Z.; Chen, Y.; Li, B.; Zhu, X.; Zhu, G.; Yang, Y.. Chem. Commun., 2010, 46, 8410. Kessel, S.; Thomas, A.; BÖrner, H. G.. Angew. Chem., Int. Ed., 2007, 46,9023. Li, L.; Choo, E. S.; Tang, X.; Ding, J.; Xue, J.. Chem. Commun., 2009, 938. Ono, Y.; Nakashima, K.; Sano, M.; Kanekiyo, Y.; Inoue, K.; Hojo, J.; Shinkai, S.. Chem. Commun., 1998, 1477. van Bommel, K. J. C.; Friggeri, A.; Shinkai, S.. Angew. Chem., Int. Ed., 2003, 42,980. Zhu, G.; Qiu, S.; Terasaki, O.; Wei, Y.. J. Am. Chem. Soc., 2001, 123,7723. McKenna, B. J.; Birkedal, H.; Bartl, M. H.; Deming, T. J.; Stucky, G. D.. Angew. Chem., Int. Ed., 2004, 43,5652. Yeh, Y.-O.; Chen, B.-C.; Lin, H.-P.; Tang, C.-Y.. Langmuir, 2006, 22,6. Wang, J.; Tsung, C.-K.; Hayward, R. C.; Wu, Y.; Stucky, G. D.. Angew. Chem., Int. Ed., 2005, 44, 332. Pohnert, G.. Angew. Chem., Int. Ed., 2002, 41,3167. Asefa, T.; MacLachlan, M. J.; Coombs, N.; Ozin, G. A.. Nature (London), 1999, 402, 867. Hildebrand, M.. Chem. Rev., 2008, 108,4855. Fowler, C. E.; Khushalani, D.; Man, S.. Chem. Commun., 2001, 2028. Lind, A.; Spliethoff, B.; Lindén, M.. Chem. Mater., 2003, 15,813. Fang, X.; Zhai, T.; Gautam, U. K.; Li, L.; Wu, L.; Bando, Y.; Golberg, D.. Prog. Mater. Sci., 2011, 56,175. Yu, J.; Zhang, L.; Cheng, B.; Su, Y.. J. Phys. Chem. C, 2007, 111,10582. 2010; 12 2004; 43 2009; 44 2002; 14 2010; 10 2001; 123 2007; 129 2009; 21 2006; 12 2006; 16 2002; 35 2008; 19 1998 2009 2008; 108 2003; 15 2005; 80 2011; 56 2003; 19 2002 1999; 402 2005; 44 2004; 429 2004; 10 2010; 21 2010; 26 2010; 46 2001 2002; 41 2006; 22 2007; 111 2005; 105 2000; 97 2003; 3 1996; 271 2005; 1 2005; 16 2005; 17 2007; 23 2007; 46 2003; 42 1998; 282 e_1_2_1_41_2 e_1_2_1_40_2 e_1_2_1_22_2 e_1_2_1_45_2 e_1_2_1_23_2 e_1_2_1_44_2 e_1_2_1_20_2 e_1_2_1_43_2 e_1_2_1_21_2 e_1_2_1_42_2 e_1_2_1_26_2 e_1_2_1_49_2 e_1_2_1_27_2 e_1_2_1_48_2 e_1_2_1_24_2 e_1_2_1_47_2 e_1_2_1_25_2 e_1_2_1_46_2 e_1_2_1_28_2 e_1_2_1_29_2 e_1_2_1_6_2 e_1_2_1_30_2 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_2_2 e_1_2_1_11_2 e_1_2_1_34_2 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_33_2 e_1_2_1_32_2 e_1_2_1_10_2 e_1_2_1_31_2 e_1_2_1_15_2 e_1_2_1_38_2 e_1_2_1_16_2 e_1_2_1_37_2 e_1_2_1_13_2 e_1_2_1_36_2 e_1_2_1_14_2 e_1_2_1_35_2 e_1_2_1_19_2 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 e_1_2_1_39_2 |
References_xml | – reference: Asefa, T.; MacLachlan, M. J.; Coombs, N.; Ozin, G. A.. Nature (London), 1999, 402, 867. – reference: Kessel, S.; Thomas, A.; BÖrner, H. G.. Angew. Chem., Int. Ed., 2007, 46,9023. – reference: Kim, S. S.; Zhang, W.; Pinnavaia, T. J.. Science, 1998, 282,1302. – reference: Lin, H.-P.; Mou, C.-Y.; Liu, S.-B.; Tang, C.-Y.. Chem. Commun., 2001, 1970. – reference: Fang, X.; Zhai, T.; Gautam, U. K.; Li, L.; Wu, L.; Bando, Y.; Golberg, D.. Prog. Mater. Sci., 2011, 56,175. – reference: Yu, J.-H.; Lee, J.-S.; Choa, Y.-H.; Hofmann, H.. J. Mater. Sci. Technol., 2010, 26,333. – reference: Antonietti, M.; Ozin, G. A.. Chem. Eur. J., 2004, 10,28. – reference: KrÖger, N.; Deutzmann, R.; Bergsdorf, C.; Sumper, M.. Proc. Natl. Acad. Sci. U. S. A., 2000, 97,14133. – reference: Hentze, H.-P.; Raghavan, S. R.; McKelvey, C. A.; Kaler, E. W.. Langmuir, 2003, 19,1069. – reference: Tanev, P. T.; Pinnavaia, T. J.. Science, 1996, 271,1267. – reference: Yuwono, V. M.; Hartgerink, J. D.. Langmuir, 2007, 23, 5033. – reference: McKenna, B. J.; Birkedal, H.; Bartl, M. H.; Deming, T. J.; Stucky, G. D.. Angew. Chem., Int. Ed., 2004, 43,5652. – reference: van Bommel, K. J. C.; Friggeri, A.; Shinkai, S.. Angew. Chem., Int. Ed., 2003, 42,980. – reference: Dong, W.; Sun, Y.; Lee, C. W.; Hua, W.; Lu, X.; Shi, Y.; Zhang, S.; Chen, J.; Zhao, D.. J. Am. Chem. Soc., 2007, 129, 13894. – reference: Cai, W.; Yu, J.; Gu, S.; Jaroniec, M.. Cryst. Growth Des., 2010, 10,3977. – reference: Che, S.; Liu, Z.; Ohsuna, T.; Sakamoto, K.; Terasaki, O.; Tatsumi, T.. Nature (London), 2004, 429,281. – reference: Lin, H.-P.; Mou, C.-Y.. Acc. Chem. Res., 2002, 35,927. – reference: Yeh, Y.-O.; Chen, B.-C.; Lin, H.-P.; Tang, C.-Y.. Langmuir, 2006, 22,6. – reference: Zhu, G.; Qiu, S.; Terasaki, O.; Wei, Y.. J. Am. Chem. Soc., 2001, 123,7723. – reference: Shimizu, T.; Masuda, M.; Minamikawa, H.. Chem. Rev., 2005, 105,1401. – reference: Sumper, M.. Angew. Chem., Int. Ed., 2004, 43,2251. – reference: Fang, X. S.; Ye, C. H.; Xie, T.; Wang, Y. H.; Zhang, L. D.. Appl. Phys. A, 2005, 80,423. – reference: Ono, Y.; Nakashima, K.; Sano, M.; Kanekiyo, Y.; Inoue, K.; Hojo, J.; Shinkai, S.. Chem. Commun., 1998, 1477. – reference: Yan, Z.; Li, Y.; Wang, S.; Xu, Z.; Chen, Y.; Li, B.; Zhu, X.; Zhu, G.; Yang, Y.. Chem. Commun., 2010, 46, 8410. – reference: Li, L.; Choo, E. S.; Tang, X.; Ding, J.; Xue, J.. Chem. Commun., 2009, 938. – reference: Li, B.; Pei, X.; Wang, S.; Chen, Y.; Zhang, M.; Li, Y.; Yang, Y.. Nanotechnology, 2010, 21, 025601. – reference: Ohsuna, T.; Liu, Z.; Che, S.; Terasaki, O.. Small, 2005, 1,233. – reference: Wang, J.; Tsung, C.-K.; Hayward, R. C.; Wu, Y.; Stucky, G. D.. Angew. Chem., Int. Ed., 2005, 44, 332. – reference: Pohnert, G.. Angew. Chem., Int. Ed., 2002, 41,3167. – reference: Pan, W.; Ye, J.; Ning, G.; Lin, Y.; Wang, J.. Mater. Res. Bull., 2009, 44, 280. – reference: Fang, X.; Zhang, L.. J. Mater. Sci. Technol., 2006, 22, 1. – reference: Yuan, P.; Zhao, L.; Liu, N.; Wei, G.; Wang, Y.; Auchterlonie, G. J.; Drennan, J.; Lu, G. Q.; Zou, J.; Yu, C.. Chem. Commun., 2010, 46,1688. – reference: Wan, X.; Pei, X.; Zhao, H.; Chen, Y.; Guo, Y.; Li, B.; Hanabusa, K.; Yang, Y.. Nanotechnology, 2008, 19, 315602. – reference: Underhill, R. S.; Jovanovic, A. V.; Carino, S. R.; Varshney, M.; Shah, D. O.; Dennis, D. M.; Morey, T. E.; Duran, R. S.. Chem. Mater., 2002, 14,4919. – reference: Dickerson, M. B.; Sandhage, K. H.; Naik, R. R.. Chem. Rev., 2008, 108,4935. – reference: Lind, A.; Spliethoff, B.; Lindén, M.. Chem. Mater., 2003, 15,813. – reference: Sun, J.; Ma, D.; Zhang, H.; Wang, C.; Bao, X.; Su, D. S.; Klein-Hoffmann, A.; Weinberg, G.; Mann, S.. J. Mater. Chem., 2006, 16,1507. – reference: Yang, S.; Zhou, X.; Yuan, P.; Yu, M.; Xie, S.; Zou, J.; Lu, G. Q.; Yu, C.. Angew. Chem., Int. Ed., 2007, 46,8579. – reference: Hildebrand, M.. Chem. Rev., 2008, 108,4855. – reference: Zhang, J.; Liu, M.; Zhang, A.; Lin, K.; Song, C.; Guo, X.. Solid State Sci., 2010, 12, 267. – reference: Li, W.; Coppen, M.-O.. Chem. Mater., 2005, 17, 2241. – reference: Wang, J.-G.; Li, F.; Zhou, H.-J.; Sun, P.-C.; Ding, D.-T.; Chen, T.-H.. Chem. Mater., 2009, 21,612. – reference: Li, Y.; Shi, J.; Hua, Z.; Chen, H.; Ruan, M.; Yan, D.. Nano Lett., 2003, 3,609. – reference: Zhu, Y.; Shi, J.; Shen, W.; Chen, H.; Dong, X.; Ruan, M.. Nanotechnology, 2005, 16,2633. – reference: Botterhuis, N. E.; Sun, Q.; Magusin, P. C. M. M.; van Santen, R. A.; Sommerdijk, N. A. J. M.. Chem. Eur. J., 2006, 12,1448. – reference: Li, W.; Sha, X.; Dong, W.; Wang, Z.. Chem. Commun., 2002, 2434. – reference: Yu, J.; Zhang, L.; Cheng, B.; Su, Y.. J. Phys. Chem. C, 2007, 111,10582. – reference: Fowler, C. E.; Khushalani, D.; Man, S.. Chem. Commun., 2001, 2028. – volume: 80 start-page: 423 year: 2005 publication-title: Appl. Phys. A – volume: 108 start-page: 4855 year: 2008 publication-title: Chem. Rev. – volume: 129 start-page: 13894 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 813 year: 2003 publication-title: Chem. Mater. – volume: 16 start-page: 2633 year: 2005 publication-title: Nanotechnology – volume: 17 start-page: 2241 year: 2005 publication-title: Chem. Mater. – volume: 271 start-page: 1267 year: 1996 publication-title: Science – volume: 43 start-page: 5652 year: 2004 publication-title: Angew. Chem., Int. Ed. – volume: 19 start-page: 1069 year: 2003 publication-title: Langmuir – volume: 21 start-page: 612 year: 2009 publication-title: Chem. Mater. – volume: 56 start-page: 175 year: 2011 publication-title: Prog. Mater. Sci. – volume: 12 start-page: 1448 year: 2006 publication-title: Chem. Eur. J. – volume: 26 start-page: 333 year: 2010 publication-title: J. Mater. Sci. Technol. – volume: 19 start-page: 315602 year: 2008 publication-title: Nanotechnology – volume: 111 start-page: 10582 year: 2007 publication-title: J. Phys. Chem. C – volume: 46 start-page: 9023 year: 2007 publication-title: Angew. Chem., Int. Ed. – volume: 41 start-page: 3167 year: 2002 publication-title: Angew. Chem., Int. Ed. – volume: 429 start-page: 281 year: 2004 publication-title: Nature (London) – volume: 46 start-page: 8579 year: 2007 publication-title: Angew. Chem., Int. Ed. – volume: 35 start-page: 927 year: 2002 publication-title: Acc. Chem. Res. – volume: 42 start-page: 980 year: 2003 publication-title: Angew. Chem., Int. Ed. – start-page: 2028 year: 2001 publication-title: Chem. Commun. – volume: 12 start-page: 267 year: 2010 publication-title: Solid State Sci. – volume: 3 start-page: 609 year: 2003 publication-title: Nano Lett. – volume: 105 start-page: 1401 year: 2005 publication-title: Chem. Rev. – volume: 44 start-page: 280 year: 2009 publication-title: Mater. Res. Bull. – volume: 22 start-page: 1 year: 2006 publication-title: J. Mater. Sci. Technol. – volume: 123 start-page: 7723 year: 2001 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 3977 year: 2010 publication-title: Cryst. Growth Des. – volume: 97 start-page: 14133 year: 2000 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 43 start-page: 2251 year: 2004 publication-title: Angew. Chem., Int. Ed. – volume: 16 start-page: 1507 year: 2006 publication-title: J. Mater. Chem. – start-page: 1477 year: 1998 publication-title: Chem. Commun. – volume: 14 start-page: 4919 year: 2002 publication-title: Chem. Mater. – volume: 21 start-page: 025601 year: 2010 publication-title: Nanotechnology – volume: 46 start-page: 8410 year: 2010 publication-title: Chem. Commun. – start-page: 2434 year: 2002 publication-title: Chem. Commun. – volume: 46 start-page: 1688 year: 2010 publication-title: Chem. Commun. – volume: 402 start-page: 867 year: 1999 publication-title: Nature (London) – volume: 23 start-page: 5033 year: 2007 publication-title: Langmuir – volume: 108 start-page: 4935 year: 2008 publication-title: Chem. Rev. – volume: 44 start-page: 332 year: 2005 publication-title: Angew. Chem., Int. Ed. – volume: 22 start-page: 6 year: 2006 publication-title: Langmuir – start-page: 1970 year: 2001 publication-title: Chem. Commun. – volume: 1 start-page: 233 year: 2005 publication-title: Small – start-page: 938 year: 2009 publication-title: Chem. Commun. – volume: 10 start-page: 28 year: 2004 publication-title: Chem. Eur. J. – volume: 282 start-page: 1302 year: 1998 publication-title: Science – ident: e_1_2_1_47_2 doi: 10.1038/nature02529 – ident: e_1_2_1_23_2 doi: 10.1039/b206020e – ident: e_1_2_1_11_2 doi: 10.1002/anie.200390284 – ident: e_1_2_1_14_2 doi: 10.1002/chem.200500588 – ident: e_1_2_1_31_2 doi: 10.1016/S1005-0302(10)60054-0 – ident: e_1_2_1_21_2 doi: 10.1016/j.solidstatesciences.2009.11.005 – ident: e_1_2_1_39_2 doi: 10.1021/cr8002328 – ident: e_1_2_1_5_2 doi: 10.1021/ar000074f – ident: e_1_2_1_25_2 doi: 10.1126/science.282.5392.1302 – ident: e_1_2_1_35_2 doi: 10.1088/0957-4484/21/2/025601 – ident: e_1_2_1_37_2 doi: 10.1002/chem.200305009 – ident: e_1_2_1_49_2 doi: 10.1039/b917426e – ident: e_1_2_1_45_2 doi: 10.1039/c0cc03568h – ident: e_1_2_1_27_2 doi: 10.1126/science.271.5253.1267 – ident: e_1_2_1_2_2 doi: 10.1021/ja073804o – ident: e_1_2_1_12_2 doi: 10.1088/0957-4484/16/11/027 – ident: e_1_2_1_24_2 doi: 10.1021/cm048486w – ident: e_1_2_1_20_2 doi: 10.1021/cm021243o – ident: e_1_2_1_8_2 doi: 10.1002/anie.200703752 – ident: e_1_2_1_7_2 doi: 10.1021/cr030072j – ident: e_1_2_1_30_2 doi: 10.1021/cm0202299 – ident: e_1_2_1_44_2 doi: 10.1021/cg100544w – ident: e_1_2_1_32_2 doi: 10.1179/174328406X79289 – ident: e_1_2_1_28_2 doi: 10.1039/b602374f – ident: e_1_2_1_15_2 doi: 10.1021/la052129y – ident: e_1_2_1_22_2 doi: 10.1016/j.materresbull.2008.06.006 – ident: e_1_2_1_38_2 doi: 10.1021/cr078253z – ident: e_1_2_1_10_2 doi: 10.1039/a802829j – ident: e_1_2_1_9_2 doi: 10.1021/la0629835 – ident: e_1_2_1_48_2 doi: 10.1002/smll.200400048 – ident: e_1_2_1_4_2 doi: 10.1038/47229 – ident: e_1_2_1_3_2 doi: 10.1002/anie.200461296 – ident: e_1_2_1_43_2 doi: 10.1002/1521-3773(20020902)41:17<3167::AID-ANIE3167>3.0.CO;2-R – ident: e_1_2_1_6_2 doi: 10.1021/la020727w – ident: e_1_2_1_19_2 doi: 10.1039/b104879c – ident: e_1_2_1_16_2 doi: 10.1021/cm803124a – ident: e_1_2_1_36_2 doi: 10.1088/0957-4484/19/31/315602 – ident: e_1_2_1_46_2 doi: 10.1021/jp0707889 – ident: e_1_2_1_17_2 doi: 10.1002/anie.200703628 – ident: e_1_2_1_26_2 doi: 10.1021/nl034134x – ident: e_1_2_1_13_2 doi: 10.1039/b817937a – ident: e_1_2_1_41_2 doi: 10.1002/anie.200453804 – ident: e_1_2_1_18_2 doi: 10.1039/b104600b – ident: e_1_2_1_33_2 doi: 10.1016/j.pmatsci.2010.10.001 – ident: e_1_2_1_40_2 doi: 10.1073/pnas.260496497 – ident: e_1_2_1_42_2 doi: 10.1002/anie.200460510 – ident: e_1_2_1_29_2 doi: 10.1021/ja0158758 – ident: e_1_2_1_34_2 doi: 10.1007/s00339-004-2769-9 |
SSID | ssj0027726 |
Score | 1.8414279 |
Snippet | Silica nanococoons with coiled or concentric circular pore channels in the walls attracted much attention, recently. However, the formation of them is not well... |
SourceID | proquest crossref wiley istex chongqing |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1595 |
SubjectTerms | helicity mesoporous Microscopy Silica sol-gel processes surfactants X射线衍射 两亲分子 二氧化硅 低分子量 图像显示 场发射电子显微镜 稀释浓度 透射电子显微镜 |
Title | A Better Understanding of the Formation of Silica Nanococoons |
URI | http://lib.cqvip.com/qk/84126X/201108/39102544.html https://api.istex.fr/ark:/67375/WNG-CKDNMB57-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjoc.201180286 https://www.proquest.com/docview/1766809261 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LT9wwEIdHFRzKpdAW1ACtcqjgFIjjxM4eOEBgQVRspZYVe7PiFy1IGx6LhPjrO5Nswi4XJHrMS0k8tuc3I89ngO8lcbOYtJHk2kep7fmoR1UgzKUx96m3qaMC57OBOBmmp6NsNFPF3_AhuoQbjYx6vqYBXur73WdoqLmqTI3gzNFFEnObcUHw_MNfyXPEJev91ogzFIk4HbXUxjjZnX-cyAp_qvHlLfqLOQ-1SI39OCc_Z0Vs7YX6y1C2398sPrneeZjoHfP0Au34Pz-4Ah-mEjXcb_rUR3jnxp_gfdHuDPcZ9vbDg7oKKBzOlsaElQ9RTob9th6STvz-S1nBECfxCqfeCvv4Kgz7R-fFSTTdhiEynAsRaYcyhrIe1jsjk1gKm2lTMo3zQYkRDGfcSuakR6VmjS19bjPundc-x-BOZ3wNFsbV2H2BMEGXjDGZdlK4tJfn2qB684YLJlweOxvAemcGddPgNhRHRUMgtQC2W7t01xrocqKorVTXVgFs1WbrbivvrmkBm8zUxeBYFT8OB2cHmVQsgM3Wrmo6du8VITPzuIehZQBJbaBXXqeK059Fd7T-loc2YKlNVsdsExYmdw_uK6qdif5W9-h_XIn0aw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4VOMClLX0Ih7T4gNqTwfbau86hh2CahkeCBETltvK-2oIUAw1S1V_fGTs2hEslONrelbU7r29GO98CbBfEmxUJEwimXJCYngt61AUS2SRkLnEmsdTgPBrz4SQ5vEib04TUC1PzQ7QFN7KMyl-TgVNBeveeNVRflrri4MwwRvIlWEkQbVD-tX8a3-dcorpxjZiGAh4mFw1vYxjvLs4nboWf5fTHDUaMhRi1Qtv9ZwGAPoSxVRwavALVrKA-fnK1czdTO_rvI3LHZy3xNbyco1S_X6vVOryw0zewmjeXw72FL31_r2oE8icPu2P80vmIKP1B0xJJL85-UWHQRz9eovctUc3fwWTw9TwfBvObGALNGOeBsohkqPBhnNUiDgU3qdJFpNAlFJjEsIgZEVnhEKwZbQqXmZQ565TLML9TKXsPy9NyajfAjzEqY1qmrOA26WWZ0gjgnGY84jYLrfGg08pBXteMG5IhqCEuNQ8-N4Jpv9W8y7GkvZLtXnnwqZJbO6y4vaIzbCKV38ffZH60Px7tpUJGHnQbwcq5-f6WxJqZhT3MLj2IKwn953cyPzzJ26fOUyZtwerwfHQsjw_GR5uw1tSuw6gLy7PbO_sBwc9MfazU-x-7x_iK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BkYALy1ME2CUHBKdAEid2euAAYcu7IKCiNyt-7QOp4VEkxK9nnDSh5YIExyS2Ins8M9-MPN8AbGSWNytgymNEGC9STeM1bRVIoCOfmMioSNsC5_M2PepEJ924O1TFX_JD1Ak3qxmFvbYKfq_MzjtpqPyfy4KCM0EXScdhIqIIJywsugrfQy5WNFyzREMe9aNuRdvohzuj8y21wt-89-cBHcaIi5qwu_0ygj-HUWzhhlo_IKsWUN4-udt-7ott-fqB2_E7K5yFmQFGdffKQzUHY7o3D1Np1RpuAXb33P2iDMjtDNfGuLlxEU-6raog0r64_mfTgi5a8Rxtb46HfBE6rd836ZE36MPgSUIo9YRGHGPTHspoyUKfURULmQUCDUKGIQwJiGKBZgahmpIqM4mKidFGmASjOxGTJWj08p5eBjdEn4xBmdCM6qiZJEIifDOS0IDqxNfKgZVaDPy-5NvgBCGNZVJzYKuSS_2tZF0Oud0rXu-VA5uF2Oph2eOdvcHGYn7bPuTp6UH7fD9mPHBgrZIrHyjvE7ecmYnfxNjSgbAQ0Ce_4-nJRVo_rXxl0jpMXh60-Nlx-3QVpqvEtR-sQaP_-Kx_IvLpi1_F4X4D0Bv3OQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Better+Understanding+of+the+Formation+of+Silica+Nanococoons&rft.jtitle=Chinese+journal+of+chemistry&rft.au=Xu%2C+Zhen&rft.au=Zhao%2C+Huanyu&rft.au=Yan%2C+Zhuojun&rft.au=Wang%2C+Sibing&rft.date=2011-08-01&rft.pub=WILEY-VCH+Verlag&rft.issn=1001-604X&rft.eissn=1614-7065&rft.volume=29&rft.issue=8&rft.spage=1595&rft.epage=1600&rft_id=info:doi/10.1002%2Fcjoc.201180286&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_CKDNMB57_1 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84126X%2F84126X.jpg |