Stripe‐based fragility analysis of multispan concrete bridge classes using machine learning techniques

Summary A framework for the generation of bridge‐specific fragility curves utilizing the capabilities of machine learning and stripe‐based approach is presented in this paper. The proposed methodology using random forests helps to generate or update fragility curves for a new set of input parameters...

Full description

Saved in:
Bibliographic Details
Published inEarthquake engineering & structural dynamics Vol. 48; no. 11; pp. 1238 - 1255
Main Authors Mangalathu, Sujith, Jeon, Jong‐Su
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary A framework for the generation of bridge‐specific fragility curves utilizing the capabilities of machine learning and stripe‐based approach is presented in this paper. The proposed methodology using random forests helps to generate or update fragility curves for a new set of input parameters with less computational effort and expensive resimulation. The methodology does not place any assumptions on the demand model of various components and helps to identify the relative importance of each uncertain variable in their seismic demand model. The methodology is demonstrated through the case study of a multispan concrete bridge class in California. Geometric, material, and structural uncertainties are accounted for in the generation of bridge numerical models and their fragility curves. It is also noted that the traditional lognormality assumption on the demand model leads to unrealistic fragility estimates. Fragility results obtained by the proposed methodology can be deployed in a risk assessment platform such as HAZUS for regional loss estimation.
AbstractList A framework for the generation of bridge‐specific fragility curves utilizing the capabilities of machine learning and stripe‐based approach is presented in this paper. The proposed methodology using random forests helps to generate or update fragility curves for a new set of input parameters with less computational effort and expensive resimulation. The methodology does not place any assumptions on the demand model of various components and helps to identify the relative importance of each uncertain variable in their seismic demand model. The methodology is demonstrated through the case study of a multispan concrete bridge class in California. Geometric, material, and structural uncertainties are accounted for in the generation of bridge numerical models and their fragility curves. It is also noted that the traditional lognormality assumption on the demand model leads to unrealistic fragility estimates. Fragility results obtained by the proposed methodology can be deployed in a risk assessment platform such as HAZUS for regional loss estimation.
Summary A framework for the generation of bridge‐specific fragility curves utilizing the capabilities of machine learning and stripe‐based approach is presented in this paper. The proposed methodology using random forests helps to generate or update fragility curves for a new set of input parameters with less computational effort and expensive resimulation. The methodology does not place any assumptions on the demand model of various components and helps to identify the relative importance of each uncertain variable in their seismic demand model. The methodology is demonstrated through the case study of a multispan concrete bridge class in California. Geometric, material, and structural uncertainties are accounted for in the generation of bridge numerical models and their fragility curves. It is also noted that the traditional lognormality assumption on the demand model leads to unrealistic fragility estimates. Fragility results obtained by the proposed methodology can be deployed in a risk assessment platform such as HAZUS for regional loss estimation.
Author Mangalathu, Sujith
Jeon, Jong‐Su
Author_xml – sequence: 1
  givenname: Sujith
  orcidid: 0000-0001-8435-3919
  surname: Mangalathu
  fullname: Mangalathu, Sujith
  organization: University of California
– sequence: 2
  givenname: Jong‐Su
  orcidid: 0000-0001-6657-7265
  surname: Jeon
  fullname: Jeon, Jong‐Su
  email: jongsujeon@hanyang.ac.kr
  organization: Hanyang University
BookMark eNp1kM1Kw0AUhQdRsK2CjzDgxk3q_CSTZCml_kBBRF2Hm8mddko6aWemSHc-gs_ok5haV6KrC_d-51zOGZJj1zkk5IKzMWdMXOMGx5IX8ogMOCtVUhZpdkwGjJVFUhRpfkqGISwZY1KxfEAWz9HbNX6-f9QQsKHGw9y2Nu4oOGh3wQbaGbrattGGNTiqO6c9RqS1t80cqW4hBAx0G6yb0xXohXVIWwTv9ouIeuHsZovhjJwYaAOe_8wReb2dvkzuk9nj3cPkZpZoKZVMSm6MFtAA8LQ0NcNcASpV9Edu0iLXPFeNaIRSEpqMgxCKlSZrRKYyYDXKEbk8-K59t_8bq2W39X2WUPVsITLBZNZTVwdK-y4Ej6Zae7sCv6s4q_Y9Vn2P1b7HHh3_QrWNEG3nogfb_iVIDoI32-LuX-Nq-jT95r8AIsSIDQ
CitedBy_id crossref_primary_10_1016_j_jobe_2024_110772
crossref_primary_10_1785_0120240108
crossref_primary_10_1016_j_engstruct_2024_117534
crossref_primary_10_1016_j_istruc_2024_106726
crossref_primary_10_1016_j_istruc_2024_106845
crossref_primary_10_1016_j_soildyn_2023_108036
crossref_primary_10_1016_j_istruc_2023_02_036
crossref_primary_10_1061__ASCE_CF_1943_5509_0001746
crossref_primary_10_1016_j_engstruct_2021_112883
crossref_primary_10_3390_infrastructures9020019
crossref_primary_10_1080_15732479_2021_1979600
crossref_primary_10_1007_s10694_024_01550_8
crossref_primary_10_1177_8755293020919419
crossref_primary_10_1088_1742_6596_2327_1_012068
crossref_primary_10_1002_eqe_4218
crossref_primary_10_1111_mice_13175
crossref_primary_10_1002_suco_202300375
crossref_primary_10_1016_j_advengsoft_2022_103373
crossref_primary_10_1016_j_istruc_2024_107927
crossref_primary_10_3390_infrastructures7050064
crossref_primary_10_1016_j_istruc_2021_12_058
crossref_primary_10_3390_app13148194
crossref_primary_10_1016_j_jobe_2022_105465
crossref_primary_10_1016_j_soildyn_2024_109011
crossref_primary_10_1016_j_engstruct_2022_114395
crossref_primary_10_1016_j_jobe_2020_102118
crossref_primary_10_1002_eqe_3699
crossref_primary_10_1115_1_4063242
crossref_primary_10_1016_j_cscm_2024_e03162
crossref_primary_10_1016_j_engstruct_2021_112975
crossref_primary_10_1016_j_engstruct_2022_113949
crossref_primary_10_1016_j_istruc_2021_12_024
crossref_primary_10_1016_j_engstruct_2023_116739
crossref_primary_10_3390_buildings15050694
crossref_primary_10_1061__ASCE_BE_1943_5592_0001711
crossref_primary_10_1155_2021_6663767
crossref_primary_10_1016_j_engstruct_2021_112067
crossref_primary_10_1002_eqe_4021
crossref_primary_10_1007_s40996_025_01795_5
crossref_primary_10_1016_j_engstruct_2022_115290
crossref_primary_10_1007_s10518_023_01825_5
crossref_primary_10_1016_j_engstruct_2020_110927
crossref_primary_10_1016_j_jobe_2024_111398
crossref_primary_10_1061__ASCE_ST_1943_541X_0002831
crossref_primary_10_1016_j_engstruct_2022_114889
crossref_primary_10_1155_2024_5872960
crossref_primary_10_1016_j_engstruct_2023_116976
crossref_primary_10_1108_IR_11_2019_0233
crossref_primary_10_1016_j_engstruct_2021_112212
crossref_primary_10_1016_j_scitotenv_2020_141001
crossref_primary_10_1016_j_istruc_2024_107780
crossref_primary_10_1007_s43452_023_00631_9
crossref_primary_10_1002_eqe_3582
crossref_primary_10_1016_j_engstruct_2023_116295
crossref_primary_10_1016_j_jobe_2022_104438
crossref_primary_10_1016_j_istruc_2022_05_056
crossref_primary_10_1002_eqe_3839
crossref_primary_10_1016_j_soildyn_2021_106967
crossref_primary_10_1016_j_istruc_2021_10_085
crossref_primary_10_1016_j_jobe_2021_102300
crossref_primary_10_1016_j_compstruc_2023_106991
crossref_primary_10_1016_j_compstruc_2020_106355
crossref_primary_10_1080_13632469_2020_1835753
crossref_primary_10_1016_j_ymssp_2024_111856
crossref_primary_10_1177_87552930211036164
crossref_primary_10_5459_bnzsee_54_2_58_68
crossref_primary_10_1016_j_engappai_2023_106976
crossref_primary_10_1016_j_strusafe_2023_102330
crossref_primary_10_1016_j_jobe_2020_101905
crossref_primary_10_1016_j_compstruc_2023_107150
crossref_primary_10_1016_j_engstruct_2021_112820
crossref_primary_10_1016_j_engstruct_2021_111979
crossref_primary_10_1016_j_engstruct_2022_113898
crossref_primary_10_3390_su16135491
crossref_primary_10_1016_j_conbuildmat_2021_125088
crossref_primary_10_1016_j_istruc_2021_08_088
crossref_primary_10_1016_j_istruc_2022_03_066
crossref_primary_10_1080_17445302_2025_2472259
crossref_primary_10_1061__ASCE_BE_1943_5592_0001919
crossref_primary_10_1061__ASCE_ST_1943_541X_0003392
crossref_primary_10_1016_j_compstruc_2024_107580
crossref_primary_10_1016_j_istruc_2021_06_110
crossref_primary_10_1080_19648189_2024_2393881
crossref_primary_10_1016_j_ijdrr_2024_105084
crossref_primary_10_1016_j_engstruct_2022_114566
crossref_primary_10_1061__ASCE_BE_1943_5592_0001873
crossref_primary_10_1016_j_prostr_2024_09_097
crossref_primary_10_1177_1369433221997722
crossref_primary_10_1061__ASCE_BE_1943_5592_0001917
crossref_primary_10_1016_j_istruc_2025_108441
crossref_primary_10_1007_s10518_023_01783_y
crossref_primary_10_1016_j_engstruct_2020_110204
crossref_primary_10_1177_87552930211033309
crossref_primary_10_1016_j_engstruct_2021_112250
crossref_primary_10_1016_j_engstruct_2023_115600
crossref_primary_10_1016_j_istruc_2024_106653
crossref_primary_10_1016_j_ymssp_2023_110873
crossref_primary_10_1016_j_engstruct_2020_110331
crossref_primary_10_1016_j_engstruct_2023_116257
crossref_primary_10_1002_eqe_4230
crossref_primary_10_1016_j_istruc_2023_02_105
Cites_doi 10.1002/eqe.2567
10.1016/j.strusafe.2009.10.002
10.1016/j.engstruct.2016.03.068
10.1016/j.probengmech.2007.08.001
10.1016/j.engstruct.2009.02.017
10.1080/13632469.2017.1342291
10.1007/BF00058655
10.1193/1.3155405
10.1002/eqe.141
10.1061/40753(171)184
10.1080/13632469.2017.1387188
10.1186/1471-2105-7-3
10.1002/eqe.557
10.1016/j.engstruct.2017.07.019
10.1007/978-1-4614-0394-4
10.1002/eqe.534
10.1002/eqe.2991
10.1021/ci034160g
10.1109/MCSE.2011.66
10.1016/j.engstruct.2016.05.054
10.1061/(ASCE)BE.1943-5592.0000058
10.1023/A:1010933404324
10.2307/1403680
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
DOI 10.1002/eqe.3183
DatabaseName CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-9845
EndPage 1255
ExternalDocumentID 10_1002_eqe_3183
EQE3183
Genre article
GrantInformation_xml – fundername: National Research Foundation of Korea (NRF)
– fundername: Korea government (MSIT)
  funderid: NRF‐2019R1C1C1007780
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AABCJ
AAESR
AAEVG
AAHHS
AAHQN
AAIKC
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACKIV
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CKXBT
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M58
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7ST
7TG
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
ID FETCH-LOGICAL-c3363-91ffc2adaa149fb0e76ae6683361f487c176d2d2663ad51a22609f5d2565a0be3
IEDL.DBID DR2
ISSN 0098-8847
IngestDate Fri Jul 25 22:25:58 EDT 2025
Tue Jul 01 02:21:57 EDT 2025
Thu Apr 24 23:08:15 EDT 2025
Wed Jan 22 16:39:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3363-91ffc2adaa149fb0e76ae6683361f487c176d2d2663ad51a22609f5d2565a0be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6657-7265
0000-0001-8435-3919
PQID 2268252035
PQPubID 866380
PageCount 18
ParticipantIDs proquest_journals_2268252035
crossref_primary_10_1002_eqe_3183
crossref_citationtrail_10_1002_eqe_3183
wiley_primary_10_1002_eqe_3183_EQE3183
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2019
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September 2019
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Earthquake engineering & structural dynamics
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 32
2009; 25
2017; 63
2010; 15
2012
2006; 35
2002; 31
2011
2006; 7
2016; 123
2002; 2
2007
2005
2011; 13
1992
2001; 45
2018; 47
2009; 31
2001
2016; 118
2015; 44
2008; 23
2017
2010; 271
2015
2013
1996; 24
1979; 21
2017; 148
2003; 43
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
McKay MD (e_1_2_8_36_1) 1979; 21
e_1_2_8_5_1
Jeon J‐S (e_1_2_8_33_1) 2017; 63
e_1_2_8_6_1
Friedman J (e_1_2_8_21_1) 2001
e_1_2_8_20_1
Nielson BG (e_1_2_8_2_1) 2005
e_1_2_8_22_1
e_1_2_8_23_1
LPILE (e_1_2_8_34_1) 2012
e_1_2_8_17_1
e_1_2_8_18_1
Ramanathan KN (e_1_2_8_8_1) 2012
e_1_2_8_19_1
e_1_2_8_14_1
e_1_2_8_15_1
Rokneddin K (e_1_2_8_24_1) 2013
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Ghosh J (e_1_2_8_9_1) 2013
Padgett JE (e_1_2_8_4_1) 2007
Liaw A (e_1_2_8_28_1) 2002; 2
Vosooghi A (e_1_2_8_7_1) 2010; 271
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
Baker JW (e_1_2_8_35_1) 2011
Mangalathu S (e_1_2_8_13_1) 2017
e_1_2_8_30_1
References_xml – year: 2011
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Mach Learn
– volume: 35
  start-page: 811
  issue: 7
  year: 2006
  end-page: 828
  article-title: A Hertz contact model with non‐linear damping for pounding simulation
  publication-title: Earthq Eng Struct Dyn
– year: 2005
– volume: 23
  start-page: 12
  issue: 1
  year: 2008
  end-page: 22
  article-title: Mechanistic quantification of RC bridge damage states under earthquake through fragility analysis
  publication-title: Probab Eng Mech
– volume: 7
  start-page: 3
  issue: 1
  year: 2006
  article-title: Gene selection and classification of microarray data using random forest
  publication-title: BMC Bioinf
– year: 2007
– year: 2001
– volume: 31
  start-page: 1648
  issue: 8
  year: 2009
  end-page: 1660
  article-title: Evaluating effectiveness and optimum design of isolation devices for highway bridges using the fragility function method
  publication-title: Eng Struct
– volume: 118
  start-page: 407
  year: 2016
  end-page: 420
  article-title: Sampling based numerical seismic assessment of continuous span RC bridges
  publication-title: Eng Struct
– volume: 63
  start-page: 647
  issue: 5
  year: 2017
  end-page: 657
  article-title: Fragility characteristics of skewed concrete bridges accounting for ground motion directionality
  publication-title: Struct Eng Mech
– start-page: 1
  year: 2017
  end-page: 26
  article-title: Parameterized seismic fragility curves for curved multi‐frame concrete box‐girder bridges using Bayesian parameter estimation
  publication-title: J Earthq Eng
– volume: 47
  start-page: 784
  issue: 3
  year: 2018
  end-page: 801
  article-title: Critical uncertainty parameters influencing seismic performance of bridges using Lasso regression
  publication-title: Earthq Eng Struct Dyn
– start-page: 291
  year: 1992
  end-page: 319
– volume: 148
  start-page: 755
  year: 2017
  end-page: 766
  article-title: Bridge classes for regional seismic risk assessment: improving HAZUS models
  publication-title: Eng Struct
– year: 2012
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  end-page: 22
  article-title: Classification and regression by random forest
  publication-title: R News
– volume: 123
  start-page: 379
  year: 2016
  end-page: 394
  article-title: ANCOVA‐based grouping of bridge classes for seismic fragility assessment
  publication-title: Eng Struct
– start-page: 1
  year: 2005
  end-page: 11
– volume: 271
  start-page: 29
  year: 2010
  end-page: 46
  article-title: Seismic damage states and response parameters for bridge columns
  publication-title: ACI Spec Publ
– volume: 32
  start-page: 154
  issue: 2
  year: 2010
  end-page: 164
  article-title: Earthquake induced damage classification for reinforced concrete buildings
  publication-title: Struct Saf
– volume: 44
  start-page: 1959
  issue: 12
  year: 2015
  end-page: 1978
  article-title: Computation of bridge seismic fragility by large‐scale simulation for probabilistic resilience analysis
  publication-title: Earthq Eng Struct Dyn
– start-page: 1
  year: 2017
  end-page: 17
  article-title: Derivation of fragility functions for seismic assessment of RC bridge portfolios using different intensity measures
  publication-title: J Earthq Eng
– volume: 25
  start-page: 643
  issue: 3
  year: 2009
  end-page: 664
  article-title: Seismic performance of sacrificial exterior shear keys in bridge abutments
  publication-title: Earthq Spectra
– volume: 35
  start-page: 77
  issue: 1
  year: 2006
  end-page: 93
  article-title: Post‐earthquake functionality of highway overpass bridges
  publication-title: Earthq Eng Struct Dyn
– volume: 21
  start-page: 239
  issue: 2
  year: 1979
  end-page: 245
  article-title: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Dent Tech
– volume: 31
  start-page: 491
  issue: 3
  year: 2002
  end-page: 514
  article-title: Incremental dynamic analysis
  publication-title: Earthq Eng Struct Dyn
– year: 2017
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  end-page: 140
  article-title: Bagging predictors
  publication-title: Mach Learn
– volume: 43
  start-page: 1947
  issue: 6
  year: 2003
  end-page: 1958
  article-title: Random forest: a classification and regression tool for compound classification and QSAR modeling
  publication-title: J Chem Inf Comput Sci
– volume: 13
  start-page: 58
  issue: 4
  year: 2011
  end-page: 66
  article-title: OpenSees: a framework for earthquake engineering simulation
  publication-title: Comput Sci Eng
– year: 2015
– year: 2013
– volume: 15
  start-page: 302
  issue: 3
  year: 2010
  end-page: 311
  article-title: Validated simulation models for lateral response of bridge abutments with typical backfills
  publication-title: J Bridg Eng
– volume-title: Reliability and Risk Assessment of Networked Urban Infrastructure Systems Under Natural Hazards
  year: 2013
  ident: e_1_2_8_24_1
– volume-title: Parameterized Seismic Fragility Assessment and Life‐Cycle Analysis of Aging Highway Bridges
  year: 2013
  ident: e_1_2_8_9_1
– ident: e_1_2_8_19_1
  doi: 10.1002/eqe.2567
– volume: 63
  start-page: 647
  issue: 5
  year: 2017
  ident: e_1_2_8_33_1
  article-title: Fragility characteristics of skewed concrete bridges accounting for ground motion directionality
  publication-title: Struct Eng Mech
– ident: e_1_2_8_25_1
  doi: 10.1016/j.strusafe.2009.10.002
– ident: e_1_2_8_11_1
  doi: 10.1016/j.engstruct.2016.03.068
– ident: e_1_2_8_5_1
  doi: 10.1016/j.probengmech.2007.08.001
– ident: e_1_2_8_6_1
  doi: 10.1016/j.engstruct.2009.02.017
– ident: e_1_2_8_17_1
  doi: 10.1080/13632469.2017.1342291
– volume: 21
  start-page: 239
  issue: 2
  year: 1979
  ident: e_1_2_8_36_1
  article-title: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Dent Tech
– ident: e_1_2_8_27_1
  doi: 10.1007/BF00058655
– ident: e_1_2_8_32_1
  doi: 10.1193/1.3155405
– ident: e_1_2_8_15_1
  doi: 10.1002/eqe.141
– ident: e_1_2_8_16_1
  doi: 10.1061/40753(171)184
– ident: e_1_2_8_14_1
  doi: 10.1080/13632469.2017.1387188
– ident: e_1_2_8_22_1
  doi: 10.1186/1471-2105-7-3
– volume-title: Seismic Vulnerability Assessment of Retrofitted Bridges Using Probabilistic Methods
  year: 2007
  ident: e_1_2_8_4_1
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: e_1_2_8_28_1
  article-title: Classification and regression by random forest
  publication-title: R News
– ident: e_1_2_8_30_1
  doi: 10.1002/eqe.557
– ident: e_1_2_8_10_1
– ident: e_1_2_8_26_1
  doi: 10.1016/j.engstruct.2017.07.019
– ident: e_1_2_8_38_1
  doi: 10.1007/978-1-4614-0394-4
– ident: e_1_2_8_3_1
  doi: 10.1002/eqe.534
– ident: e_1_2_8_18_1
  doi: 10.1002/eqe.2991
– volume-title: LPILE v6.0—A Program for the Analysis and Design of Piles and Drilled Shafts Under Lateral Loads
  year: 2012
  ident: e_1_2_8_34_1
– volume-title: Performance Based Grouping and Fragility Analysis of Box‐Girder Bridges in California
  year: 2017
  ident: e_1_2_8_13_1
– volume-title: The Elements of Statistical Learning. Springer Series in Statistics
  year: 2001
  ident: e_1_2_8_21_1
– ident: e_1_2_8_23_1
  doi: 10.1021/ci034160g
– volume-title: Analytical Fragility Curves for Highway Bridges in Moderate Seismic Zones
  year: 2005
  ident: e_1_2_8_2_1
– volume-title: New Ground Motion Selection Procedures and Selected Motions for the PEER Transportation Research Program
  year: 2011
  ident: e_1_2_8_35_1
– ident: e_1_2_8_29_1
  doi: 10.1109/MCSE.2011.66
– ident: e_1_2_8_12_1
  doi: 10.1016/j.engstruct.2016.05.054
– volume: 271
  start-page: 29
  year: 2010
  ident: e_1_2_8_7_1
  article-title: Seismic damage states and response parameters for bridge columns
  publication-title: ACI Spec Publ
– volume-title: Next Generation Seismic Fragility Curves for California Bridges Incorporating the Evolution in Seismic Design Philosophy
  year: 2012
  ident: e_1_2_8_8_1
– ident: e_1_2_8_31_1
  doi: 10.1061/(ASCE)BE.1943-5592.0000058
– ident: e_1_2_8_20_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_8_37_1
  doi: 10.2307/1403680
SSID ssj0003607
Score 2.58955
Snippet Summary A framework for the generation of bridge‐specific fragility curves utilizing the capabilities of machine learning and stripe‐based approach is...
A framework for the generation of bridge‐specific fragility curves utilizing the capabilities of machine learning and stripe‐based approach is presented in...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1238
SubjectTerms Artificial intelligence
bridge‐specific fragility
Computer applications
Concrete bridges
Forests
Fragility
Learning algorithms
Machine learning
Mathematical models
Methodology
multispan bridges
Numerical models
regional risk assessment
Risk assessment
Title Stripe‐based fragility analysis of multispan concrete bridge classes using machine learning techniques
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.3183
https://www.proquest.com/docview/2268252035
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFB3ElS58i9UqI4iu0iYzzWsp0lJcCD4KBRdhnhXUVJt0oSs_wW_0S7yTTNIqCuIqi8yQydw7956bnDmD0BGUxpAXYtfR2ldOJ5DMYZooR3JCIsFoJ-SF2udF0B90zof-0LIqzV6YUh-i_uBmVkYRr80CZzxrz0RD1bNqGYeE8GuoWgYPXc2Uo2jg1nKZEUTgSnfWJe2q49dMNIOX8yC1yDK9VXRbja8kl9y3pjlviddv0o3_e4E1tGLBJz4tvWUdLah0Ay3PSRJuorvrHMKI-nh7N_lNYj1hI0OffcHMypfgscYFDRFiUYqhnAbcmStc7vzCwqBxlWHDpx_hx4KqqbA9m2KEa8nYbAsNet2bs75jT2NwBDU_e2NPa0GYZAyKKs1dFQZMBUEENz0NZY_wwkASCQmfMul7DHCdG2tfAqbymcsV3UaL6ThVOwhHTMTUjZkMwBn8mEahVoJFnMbwCBp6DXRSWSYRVqrcnJjxkJQiyySBuUvM3DXQYd3yqZTn-KFNszJuYhdolsDooDYmLvUb6Liw0q_9k-5l11x3_9pwDy0BrLJMtCZazCdTtQ_QJecHhZN-AmIc7gs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2VcgAO7IhCASMhOKVN4mYTJwRFZZXYJA5IkeOlSEBYmh7gxCfwjXwJ42wFBBLilENsxfGMZ97Y4zcAaxgao18ITEMpRxotVzCDKVsaIrJtnzPa8qKU7fPY7Vy09i-dywpsFndhMn6IcsNNr4zUXusFrjekmwPWUPkoG1ojh2BYF_TWxPk7pwPuKOqaJWGmjza4YJ417WbR86svGgDMzzA19TO7E3BVjDBLL7lp9JOowV--kTf-8xcmYTzHn2QrU5gpqMh4GsY-sRLOwPVZgpZEvr--aRcniHpiXZ1B-0xYzmBC7hVJMxHRHMUEI2qEnokk2eUvwjUglz2iU-q75C7N1pQkL0_RJSVrbG8WLnbb59sdIy_IYHCqz3sDSyluM8EYxlUqMqXnMum6Pr60FEY-3PJcYQv0-ZQJx2II7cxAOQJhlcPMSNI5qMb3sZwH4jMeUDNgwkV9cALqe0py5kc0wE9Qz6rBRiGakOds5bpoxm2Y8SzbIc5dqOeuBqtly4eMoeOHNvVCumG-Rnshjg7DY9ukTg3WUzH92j9sn7T1c-GvDVdgpHN-dBge7h0fLMIooqw8Ma0O1eSpL5cQySTRcqqxHzX_8ic
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BkRAc2BFlNRKCU4oTN05yRNCKTYhVQuIQOV6KBJRCwwFOfALfyJcwztICAglxyiG24tjjmTfJ8xuANUyNMS5E1DHG106dK-EI42lHJZ4XSsHqQZKpfR7x3Yv6_qV_WbAq7VmYXB-i98HN7ozMX9sN3lFmsy8aqh90zRrkIAzVOY1s2Yad0750FOO0p5cZogsuhWept1n2_BqK-vjyM0rNwkxzHK7KAebskpvaU5rU5Ms37cb_vcEEjBXok2zl5jIJA7o9BaOfNAmn4fosRT-i31_fbIBTxDyKluXPPhNR6JeQe0MyHiI6ozbBfBqBZ6pJfvSLSAvHdZdYQn2L3GVcTU2K4hQt0tOM7c7ARbNxvr3rFOUYHMns397INUZ6QgmBWZVJqA640JyHeNM1mPdIN-DKUxjxmVC-KxDY0cj4CkGVL2ii2SxU2vdtPQckFDJiNBKKozX4EQsDo6UIExbhI1jgVmGjXJlYFlrltmTGbZyrLHsxzl1s564Kq72WnVyf44c2i-XixsUO7cY4OkyOPcr8Kqxnq_Rr_7hx0rDX-b82XIHh451mfLh3dLAAIwixClbaIlTSxye9hDAmTZYze_0AeuHw1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stripe%E2%80%90based+fragility+analysis+of+multispan+concrete+bridge+classes+using+machine+learning+techniques&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Mangalathu%2C+Sujith&rft.au=Jeon%2C+Jong%E2%80%90Su&rft.date=2019-09-01&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=48&rft.issue=11&rft.spage=1238&rft.epage=1255&rft_id=info:doi/10.1002%2Feqe.3183&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eqe_3183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon