Stripe‐based fragility analysis of multispan concrete bridge classes using machine learning techniques
Summary A framework for the generation of bridge‐specific fragility curves utilizing the capabilities of machine learning and stripe‐based approach is presented in this paper. The proposed methodology using random forests helps to generate or update fragility curves for a new set of input parameters...
Saved in:
Published in | Earthquake engineering & structural dynamics Vol. 48; no. 11; pp. 1238 - 1255 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
A framework for the generation of bridge‐specific fragility curves utilizing the capabilities of machine learning and stripe‐based approach is presented in this paper. The proposed methodology using random forests helps to generate or update fragility curves for a new set of input parameters with less computational effort and expensive resimulation. The methodology does not place any assumptions on the demand model of various components and helps to identify the relative importance of each uncertain variable in their seismic demand model. The methodology is demonstrated through the case study of a multispan concrete bridge class in California. Geometric, material, and structural uncertainties are accounted for in the generation of bridge numerical models and their fragility curves. It is also noted that the traditional lognormality assumption on the demand model leads to unrealistic fragility estimates. Fragility results obtained by the proposed methodology can be deployed in a risk assessment platform such as HAZUS for regional loss estimation. |
---|---|
AbstractList | A framework for the generation of bridge‐specific fragility curves utilizing the capabilities of machine learning and stripe‐based approach is presented in this paper. The proposed methodology using random forests helps to generate or update fragility curves for a new set of input parameters with less computational effort and expensive resimulation. The methodology does not place any assumptions on the demand model of various components and helps to identify the relative importance of each uncertain variable in their seismic demand model. The methodology is demonstrated through the case study of a multispan concrete bridge class in California. Geometric, material, and structural uncertainties are accounted for in the generation of bridge numerical models and their fragility curves. It is also noted that the traditional lognormality assumption on the demand model leads to unrealistic fragility estimates. Fragility results obtained by the proposed methodology can be deployed in a risk assessment platform such as HAZUS for regional loss estimation. Summary A framework for the generation of bridge‐specific fragility curves utilizing the capabilities of machine learning and stripe‐based approach is presented in this paper. The proposed methodology using random forests helps to generate or update fragility curves for a new set of input parameters with less computational effort and expensive resimulation. The methodology does not place any assumptions on the demand model of various components and helps to identify the relative importance of each uncertain variable in their seismic demand model. The methodology is demonstrated through the case study of a multispan concrete bridge class in California. Geometric, material, and structural uncertainties are accounted for in the generation of bridge numerical models and their fragility curves. It is also noted that the traditional lognormality assumption on the demand model leads to unrealistic fragility estimates. Fragility results obtained by the proposed methodology can be deployed in a risk assessment platform such as HAZUS for regional loss estimation. |
Author | Mangalathu, Sujith Jeon, Jong‐Su |
Author_xml | – sequence: 1 givenname: Sujith orcidid: 0000-0001-8435-3919 surname: Mangalathu fullname: Mangalathu, Sujith organization: University of California – sequence: 2 givenname: Jong‐Su orcidid: 0000-0001-6657-7265 surname: Jeon fullname: Jeon, Jong‐Su email: jongsujeon@hanyang.ac.kr organization: Hanyang University |
BookMark | eNp1kM1Kw0AUhQdRsK2CjzDgxk3q_CSTZCml_kBBRF2Hm8mddko6aWemSHc-gs_ok5haV6KrC_d-51zOGZJj1zkk5IKzMWdMXOMGx5IX8ogMOCtVUhZpdkwGjJVFUhRpfkqGISwZY1KxfEAWz9HbNX6-f9QQsKHGw9y2Nu4oOGh3wQbaGbrattGGNTiqO6c9RqS1t80cqW4hBAx0G6yb0xXohXVIWwTv9ouIeuHsZovhjJwYaAOe_8wReb2dvkzuk9nj3cPkZpZoKZVMSm6MFtAA8LQ0NcNcASpV9Edu0iLXPFeNaIRSEpqMgxCKlSZrRKYyYDXKEbk8-K59t_8bq2W39X2WUPVsITLBZNZTVwdK-y4Ej6Zae7sCv6s4q_Y9Vn2P1b7HHh3_QrWNEG3nogfb_iVIDoI32-LuX-Nq-jT95r8AIsSIDQ |
CitedBy_id | crossref_primary_10_1016_j_jobe_2024_110772 crossref_primary_10_1785_0120240108 crossref_primary_10_1016_j_engstruct_2024_117534 crossref_primary_10_1016_j_istruc_2024_106726 crossref_primary_10_1016_j_istruc_2024_106845 crossref_primary_10_1016_j_soildyn_2023_108036 crossref_primary_10_1016_j_istruc_2023_02_036 crossref_primary_10_1061__ASCE_CF_1943_5509_0001746 crossref_primary_10_1016_j_engstruct_2021_112883 crossref_primary_10_3390_infrastructures9020019 crossref_primary_10_1080_15732479_2021_1979600 crossref_primary_10_1007_s10694_024_01550_8 crossref_primary_10_1177_8755293020919419 crossref_primary_10_1088_1742_6596_2327_1_012068 crossref_primary_10_1002_eqe_4218 crossref_primary_10_1111_mice_13175 crossref_primary_10_1002_suco_202300375 crossref_primary_10_1016_j_advengsoft_2022_103373 crossref_primary_10_1016_j_istruc_2024_107927 crossref_primary_10_3390_infrastructures7050064 crossref_primary_10_1016_j_istruc_2021_12_058 crossref_primary_10_3390_app13148194 crossref_primary_10_1016_j_jobe_2022_105465 crossref_primary_10_1016_j_soildyn_2024_109011 crossref_primary_10_1016_j_engstruct_2022_114395 crossref_primary_10_1016_j_jobe_2020_102118 crossref_primary_10_1002_eqe_3699 crossref_primary_10_1115_1_4063242 crossref_primary_10_1016_j_cscm_2024_e03162 crossref_primary_10_1016_j_engstruct_2021_112975 crossref_primary_10_1016_j_engstruct_2022_113949 crossref_primary_10_1016_j_istruc_2021_12_024 crossref_primary_10_1016_j_engstruct_2023_116739 crossref_primary_10_3390_buildings15050694 crossref_primary_10_1061__ASCE_BE_1943_5592_0001711 crossref_primary_10_1155_2021_6663767 crossref_primary_10_1016_j_engstruct_2021_112067 crossref_primary_10_1002_eqe_4021 crossref_primary_10_1007_s40996_025_01795_5 crossref_primary_10_1016_j_engstruct_2022_115290 crossref_primary_10_1007_s10518_023_01825_5 crossref_primary_10_1016_j_engstruct_2020_110927 crossref_primary_10_1016_j_jobe_2024_111398 crossref_primary_10_1061__ASCE_ST_1943_541X_0002831 crossref_primary_10_1016_j_engstruct_2022_114889 crossref_primary_10_1155_2024_5872960 crossref_primary_10_1016_j_engstruct_2023_116976 crossref_primary_10_1108_IR_11_2019_0233 crossref_primary_10_1016_j_engstruct_2021_112212 crossref_primary_10_1016_j_scitotenv_2020_141001 crossref_primary_10_1016_j_istruc_2024_107780 crossref_primary_10_1007_s43452_023_00631_9 crossref_primary_10_1002_eqe_3582 crossref_primary_10_1016_j_engstruct_2023_116295 crossref_primary_10_1016_j_jobe_2022_104438 crossref_primary_10_1016_j_istruc_2022_05_056 crossref_primary_10_1002_eqe_3839 crossref_primary_10_1016_j_soildyn_2021_106967 crossref_primary_10_1016_j_istruc_2021_10_085 crossref_primary_10_1016_j_jobe_2021_102300 crossref_primary_10_1016_j_compstruc_2023_106991 crossref_primary_10_1016_j_compstruc_2020_106355 crossref_primary_10_1080_13632469_2020_1835753 crossref_primary_10_1016_j_ymssp_2024_111856 crossref_primary_10_1177_87552930211036164 crossref_primary_10_5459_bnzsee_54_2_58_68 crossref_primary_10_1016_j_engappai_2023_106976 crossref_primary_10_1016_j_strusafe_2023_102330 crossref_primary_10_1016_j_jobe_2020_101905 crossref_primary_10_1016_j_compstruc_2023_107150 crossref_primary_10_1016_j_engstruct_2021_112820 crossref_primary_10_1016_j_engstruct_2021_111979 crossref_primary_10_1016_j_engstruct_2022_113898 crossref_primary_10_3390_su16135491 crossref_primary_10_1016_j_conbuildmat_2021_125088 crossref_primary_10_1016_j_istruc_2021_08_088 crossref_primary_10_1016_j_istruc_2022_03_066 crossref_primary_10_1080_17445302_2025_2472259 crossref_primary_10_1061__ASCE_BE_1943_5592_0001919 crossref_primary_10_1061__ASCE_ST_1943_541X_0003392 crossref_primary_10_1016_j_compstruc_2024_107580 crossref_primary_10_1016_j_istruc_2021_06_110 crossref_primary_10_1080_19648189_2024_2393881 crossref_primary_10_1016_j_ijdrr_2024_105084 crossref_primary_10_1016_j_engstruct_2022_114566 crossref_primary_10_1061__ASCE_BE_1943_5592_0001873 crossref_primary_10_1016_j_prostr_2024_09_097 crossref_primary_10_1177_1369433221997722 crossref_primary_10_1061__ASCE_BE_1943_5592_0001917 crossref_primary_10_1016_j_istruc_2025_108441 crossref_primary_10_1007_s10518_023_01783_y crossref_primary_10_1016_j_engstruct_2020_110204 crossref_primary_10_1177_87552930211033309 crossref_primary_10_1016_j_engstruct_2021_112250 crossref_primary_10_1016_j_engstruct_2023_115600 crossref_primary_10_1016_j_istruc_2024_106653 crossref_primary_10_1016_j_ymssp_2023_110873 crossref_primary_10_1016_j_engstruct_2020_110331 crossref_primary_10_1016_j_engstruct_2023_116257 crossref_primary_10_1002_eqe_4230 crossref_primary_10_1016_j_istruc_2023_02_105 |
Cites_doi | 10.1002/eqe.2567 10.1016/j.strusafe.2009.10.002 10.1016/j.engstruct.2016.03.068 10.1016/j.probengmech.2007.08.001 10.1016/j.engstruct.2009.02.017 10.1080/13632469.2017.1342291 10.1007/BF00058655 10.1193/1.3155405 10.1002/eqe.141 10.1061/40753(171)184 10.1080/13632469.2017.1387188 10.1186/1471-2105-7-3 10.1002/eqe.557 10.1016/j.engstruct.2017.07.019 10.1007/978-1-4614-0394-4 10.1002/eqe.534 10.1002/eqe.2991 10.1021/ci034160g 10.1109/MCSE.2011.66 10.1016/j.engstruct.2016.05.054 10.1061/(ASCE)BE.1943-5592.0000058 10.1023/A:1010933404324 10.2307/1403680 |
ContentType | Journal Article |
Copyright | 2019 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI |
DOI | 10.1002/eqe.3183 |
DatabaseName | CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1096-9845 |
EndPage | 1255 |
ExternalDocumentID | 10_1002_eqe_3183 EQE3183 |
Genre | article |
GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) – fundername: Korea government (MSIT) funderid: NRF‐2019R1C1C1007780 |
GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AABCJ AAESR AAEVG AAHHS AAHQN AAIKC AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACKIV ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CKXBT CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M58 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WLBEL WOHZO WQJ WRC WWC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7ST 7TG 7UA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H96 KL. KR7 L.G SOI |
ID | FETCH-LOGICAL-c3363-91ffc2adaa149fb0e76ae6683361f487c176d2d2663ad51a22609f5d2565a0be3 |
IEDL.DBID | DR2 |
ISSN | 0098-8847 |
IngestDate | Fri Jul 25 22:25:58 EDT 2025 Tue Jul 01 02:21:57 EDT 2025 Thu Apr 24 23:08:15 EDT 2025 Wed Jan 22 16:39:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3363-91ffc2adaa149fb0e76ae6683361f487c176d2d2663ad51a22609f5d2565a0be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6657-7265 0000-0001-8435-3919 |
PQID | 2268252035 |
PQPubID | 866380 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2268252035 crossref_primary_10_1002_eqe_3183 crossref_citationtrail_10_1002_eqe_3183 wiley_primary_10_1002_eqe_3183_EQE3183 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2019 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: September 2019 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Earthquake engineering & structural dynamics |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 32 2009; 25 2017; 63 2010; 15 2012 2006; 35 2002; 31 2011 2006; 7 2016; 123 2002; 2 2007 2005 2011; 13 1992 2001; 45 2018; 47 2009; 31 2001 2016; 118 2015; 44 2008; 23 2017 2010; 271 2015 2013 1996; 24 1979; 21 2017; 148 2003; 43 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 McKay MD (e_1_2_8_36_1) 1979; 21 e_1_2_8_5_1 Jeon J‐S (e_1_2_8_33_1) 2017; 63 e_1_2_8_6_1 Friedman J (e_1_2_8_21_1) 2001 e_1_2_8_20_1 Nielson BG (e_1_2_8_2_1) 2005 e_1_2_8_22_1 e_1_2_8_23_1 LPILE (e_1_2_8_34_1) 2012 e_1_2_8_17_1 e_1_2_8_18_1 Ramanathan KN (e_1_2_8_8_1) 2012 e_1_2_8_19_1 e_1_2_8_14_1 e_1_2_8_15_1 Rokneddin K (e_1_2_8_24_1) 2013 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Ghosh J (e_1_2_8_9_1) 2013 Padgett JE (e_1_2_8_4_1) 2007 Liaw A (e_1_2_8_28_1) 2002; 2 Vosooghi A (e_1_2_8_7_1) 2010; 271 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_12_1 Baker JW (e_1_2_8_35_1) 2011 Mangalathu S (e_1_2_8_13_1) 2017 e_1_2_8_30_1 |
References_xml | – year: 2011 – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random forests publication-title: Mach Learn – volume: 35 start-page: 811 issue: 7 year: 2006 end-page: 828 article-title: A Hertz contact model with non‐linear damping for pounding simulation publication-title: Earthq Eng Struct Dyn – year: 2005 – volume: 23 start-page: 12 issue: 1 year: 2008 end-page: 22 article-title: Mechanistic quantification of RC bridge damage states under earthquake through fragility analysis publication-title: Probab Eng Mech – volume: 7 start-page: 3 issue: 1 year: 2006 article-title: Gene selection and classification of microarray data using random forest publication-title: BMC Bioinf – year: 2007 – year: 2001 – volume: 31 start-page: 1648 issue: 8 year: 2009 end-page: 1660 article-title: Evaluating effectiveness and optimum design of isolation devices for highway bridges using the fragility function method publication-title: Eng Struct – volume: 118 start-page: 407 year: 2016 end-page: 420 article-title: Sampling based numerical seismic assessment of continuous span RC bridges publication-title: Eng Struct – volume: 63 start-page: 647 issue: 5 year: 2017 end-page: 657 article-title: Fragility characteristics of skewed concrete bridges accounting for ground motion directionality publication-title: Struct Eng Mech – start-page: 1 year: 2017 end-page: 26 article-title: Parameterized seismic fragility curves for curved multi‐frame concrete box‐girder bridges using Bayesian parameter estimation publication-title: J Earthq Eng – volume: 47 start-page: 784 issue: 3 year: 2018 end-page: 801 article-title: Critical uncertainty parameters influencing seismic performance of bridges using Lasso regression publication-title: Earthq Eng Struct Dyn – start-page: 291 year: 1992 end-page: 319 – volume: 148 start-page: 755 year: 2017 end-page: 766 article-title: Bridge classes for regional seismic risk assessment: improving HAZUS models publication-title: Eng Struct – year: 2012 – volume: 2 start-page: 18 issue: 3 year: 2002 end-page: 22 article-title: Classification and regression by random forest publication-title: R News – volume: 123 start-page: 379 year: 2016 end-page: 394 article-title: ANCOVA‐based grouping of bridge classes for seismic fragility assessment publication-title: Eng Struct – start-page: 1 year: 2005 end-page: 11 – volume: 271 start-page: 29 year: 2010 end-page: 46 article-title: Seismic damage states and response parameters for bridge columns publication-title: ACI Spec Publ – volume: 32 start-page: 154 issue: 2 year: 2010 end-page: 164 article-title: Earthquake induced damage classification for reinforced concrete buildings publication-title: Struct Saf – volume: 44 start-page: 1959 issue: 12 year: 2015 end-page: 1978 article-title: Computation of bridge seismic fragility by large‐scale simulation for probabilistic resilience analysis publication-title: Earthq Eng Struct Dyn – start-page: 1 year: 2017 end-page: 17 article-title: Derivation of fragility functions for seismic assessment of RC bridge portfolios using different intensity measures publication-title: J Earthq Eng – volume: 25 start-page: 643 issue: 3 year: 2009 end-page: 664 article-title: Seismic performance of sacrificial exterior shear keys in bridge abutments publication-title: Earthq Spectra – volume: 35 start-page: 77 issue: 1 year: 2006 end-page: 93 article-title: Post‐earthquake functionality of highway overpass bridges publication-title: Earthq Eng Struct Dyn – volume: 21 start-page: 239 issue: 2 year: 1979 end-page: 245 article-title: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Dent Tech – volume: 31 start-page: 491 issue: 3 year: 2002 end-page: 514 article-title: Incremental dynamic analysis publication-title: Earthq Eng Struct Dyn – year: 2017 – volume: 24 start-page: 123 issue: 2 year: 1996 end-page: 140 article-title: Bagging predictors publication-title: Mach Learn – volume: 43 start-page: 1947 issue: 6 year: 2003 end-page: 1958 article-title: Random forest: a classification and regression tool for compound classification and QSAR modeling publication-title: J Chem Inf Comput Sci – volume: 13 start-page: 58 issue: 4 year: 2011 end-page: 66 article-title: OpenSees: a framework for earthquake engineering simulation publication-title: Comput Sci Eng – year: 2015 – year: 2013 – volume: 15 start-page: 302 issue: 3 year: 2010 end-page: 311 article-title: Validated simulation models for lateral response of bridge abutments with typical backfills publication-title: J Bridg Eng – volume-title: Reliability and Risk Assessment of Networked Urban Infrastructure Systems Under Natural Hazards year: 2013 ident: e_1_2_8_24_1 – volume-title: Parameterized Seismic Fragility Assessment and Life‐Cycle Analysis of Aging Highway Bridges year: 2013 ident: e_1_2_8_9_1 – ident: e_1_2_8_19_1 doi: 10.1002/eqe.2567 – volume: 63 start-page: 647 issue: 5 year: 2017 ident: e_1_2_8_33_1 article-title: Fragility characteristics of skewed concrete bridges accounting for ground motion directionality publication-title: Struct Eng Mech – ident: e_1_2_8_25_1 doi: 10.1016/j.strusafe.2009.10.002 – ident: e_1_2_8_11_1 doi: 10.1016/j.engstruct.2016.03.068 – ident: e_1_2_8_5_1 doi: 10.1016/j.probengmech.2007.08.001 – ident: e_1_2_8_6_1 doi: 10.1016/j.engstruct.2009.02.017 – ident: e_1_2_8_17_1 doi: 10.1080/13632469.2017.1342291 – volume: 21 start-page: 239 issue: 2 year: 1979 ident: e_1_2_8_36_1 article-title: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Dent Tech – ident: e_1_2_8_27_1 doi: 10.1007/BF00058655 – ident: e_1_2_8_32_1 doi: 10.1193/1.3155405 – ident: e_1_2_8_15_1 doi: 10.1002/eqe.141 – ident: e_1_2_8_16_1 doi: 10.1061/40753(171)184 – ident: e_1_2_8_14_1 doi: 10.1080/13632469.2017.1387188 – ident: e_1_2_8_22_1 doi: 10.1186/1471-2105-7-3 – volume-title: Seismic Vulnerability Assessment of Retrofitted Bridges Using Probabilistic Methods year: 2007 ident: e_1_2_8_4_1 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: e_1_2_8_28_1 article-title: Classification and regression by random forest publication-title: R News – ident: e_1_2_8_30_1 doi: 10.1002/eqe.557 – ident: e_1_2_8_10_1 – ident: e_1_2_8_26_1 doi: 10.1016/j.engstruct.2017.07.019 – ident: e_1_2_8_38_1 doi: 10.1007/978-1-4614-0394-4 – ident: e_1_2_8_3_1 doi: 10.1002/eqe.534 – ident: e_1_2_8_18_1 doi: 10.1002/eqe.2991 – volume-title: LPILE v6.0—A Program for the Analysis and Design of Piles and Drilled Shafts Under Lateral Loads year: 2012 ident: e_1_2_8_34_1 – volume-title: Performance Based Grouping and Fragility Analysis of Box‐Girder Bridges in California year: 2017 ident: e_1_2_8_13_1 – volume-title: The Elements of Statistical Learning. Springer Series in Statistics year: 2001 ident: e_1_2_8_21_1 – ident: e_1_2_8_23_1 doi: 10.1021/ci034160g – volume-title: Analytical Fragility Curves for Highway Bridges in Moderate Seismic Zones year: 2005 ident: e_1_2_8_2_1 – volume-title: New Ground Motion Selection Procedures and Selected Motions for the PEER Transportation Research Program year: 2011 ident: e_1_2_8_35_1 – ident: e_1_2_8_29_1 doi: 10.1109/MCSE.2011.66 – ident: e_1_2_8_12_1 doi: 10.1016/j.engstruct.2016.05.054 – volume: 271 start-page: 29 year: 2010 ident: e_1_2_8_7_1 article-title: Seismic damage states and response parameters for bridge columns publication-title: ACI Spec Publ – volume-title: Next Generation Seismic Fragility Curves for California Bridges Incorporating the Evolution in Seismic Design Philosophy year: 2012 ident: e_1_2_8_8_1 – ident: e_1_2_8_31_1 doi: 10.1061/(ASCE)BE.1943-5592.0000058 – ident: e_1_2_8_20_1 doi: 10.1023/A:1010933404324 – ident: e_1_2_8_37_1 doi: 10.2307/1403680 |
SSID | ssj0003607 |
Score | 2.58955 |
Snippet | Summary
A framework for the generation of bridge‐specific fragility curves utilizing the capabilities of machine learning and stripe‐based approach is... A framework for the generation of bridge‐specific fragility curves utilizing the capabilities of machine learning and stripe‐based approach is presented in... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1238 |
SubjectTerms | Artificial intelligence bridge‐specific fragility Computer applications Concrete bridges Forests Fragility Learning algorithms Machine learning Mathematical models Methodology multispan bridges Numerical models regional risk assessment Risk assessment |
Title | Stripe‐based fragility analysis of multispan concrete bridge classes using machine learning techniques |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.3183 https://www.proquest.com/docview/2268252035 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFB3ElS58i9UqI4iu0iYzzWsp0lJcCD4KBRdhnhXUVJt0oSs_wW_0S7yTTNIqCuIqi8yQydw7956bnDmD0BGUxpAXYtfR2ldOJ5DMYZooR3JCIsFoJ-SF2udF0B90zof-0LIqzV6YUh-i_uBmVkYRr80CZzxrz0RD1bNqGYeE8GuoWgYPXc2Uo2jg1nKZEUTgSnfWJe2q49dMNIOX8yC1yDK9VXRbja8kl9y3pjlviddv0o3_e4E1tGLBJz4tvWUdLah0Ay3PSRJuorvrHMKI-nh7N_lNYj1hI0OffcHMypfgscYFDRFiUYqhnAbcmStc7vzCwqBxlWHDpx_hx4KqqbA9m2KEa8nYbAsNet2bs75jT2NwBDU_e2NPa0GYZAyKKs1dFQZMBUEENz0NZY_wwkASCQmfMul7DHCdG2tfAqbymcsV3UaL6ThVOwhHTMTUjZkMwBn8mEahVoJFnMbwCBp6DXRSWSYRVqrcnJjxkJQiyySBuUvM3DXQYd3yqZTn-KFNszJuYhdolsDooDYmLvUb6Liw0q_9k-5l11x3_9pwDy0BrLJMtCZazCdTtQ_QJecHhZN-AmIc7gs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2VcgAO7IhCASMhOKVN4mYTJwRFZZXYJA5IkeOlSEBYmh7gxCfwjXwJ42wFBBLilENsxfGMZ97Y4zcAaxgao18ITEMpRxotVzCDKVsaIrJtnzPa8qKU7fPY7Vy09i-dywpsFndhMn6IcsNNr4zUXusFrjekmwPWUPkoG1ojh2BYF_TWxPk7pwPuKOqaJWGmjza4YJ417WbR86svGgDMzzA19TO7E3BVjDBLL7lp9JOowV--kTf-8xcmYTzHn2QrU5gpqMh4GsY-sRLOwPVZgpZEvr--aRcniHpiXZ1B-0xYzmBC7hVJMxHRHMUEI2qEnokk2eUvwjUglz2iU-q75C7N1pQkL0_RJSVrbG8WLnbb59sdIy_IYHCqz3sDSyluM8EYxlUqMqXnMum6Pr60FEY-3PJcYQv0-ZQJx2II7cxAOQJhlcPMSNI5qMb3sZwH4jMeUDNgwkV9cALqe0py5kc0wE9Qz6rBRiGakOds5bpoxm2Y8SzbIc5dqOeuBqtly4eMoeOHNvVCumG-Rnshjg7DY9ukTg3WUzH92j9sn7T1c-GvDVdgpHN-dBge7h0fLMIooqw8Ma0O1eSpL5cQySTRcqqxHzX_8ic |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BkRAc2BFlNRKCU4oTN05yRNCKTYhVQuIQOV6KBJRCwwFOfALfyJcwztICAglxyiG24tjjmTfJ8xuANUyNMS5E1DHG106dK-EI42lHJZ4XSsHqQZKpfR7x3Yv6_qV_WbAq7VmYXB-i98HN7ozMX9sN3lFmsy8aqh90zRrkIAzVOY1s2Yad0750FOO0p5cZogsuhWept1n2_BqK-vjyM0rNwkxzHK7KAebskpvaU5rU5Ms37cb_vcEEjBXok2zl5jIJA7o9BaOfNAmn4fosRT-i31_fbIBTxDyKluXPPhNR6JeQe0MyHiI6ozbBfBqBZ6pJfvSLSAvHdZdYQn2L3GVcTU2K4hQt0tOM7c7ARbNxvr3rFOUYHMns397INUZ6QgmBWZVJqA640JyHeNM1mPdIN-DKUxjxmVC-KxDY0cj4CkGVL2ii2SxU2vdtPQckFDJiNBKKozX4EQsDo6UIExbhI1jgVmGjXJlYFlrltmTGbZyrLHsxzl1s564Kq72WnVyf44c2i-XixsUO7cY4OkyOPcr8Kqxnq_Rr_7hx0rDX-b82XIHh451mfLh3dLAAIwixClbaIlTSxye9hDAmTZYze_0AeuHw1g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stripe%E2%80%90based+fragility+analysis+of+multispan+concrete+bridge+classes+using+machine+learning+techniques&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Mangalathu%2C+Sujith&rft.au=Jeon%2C+Jong%E2%80%90Su&rft.date=2019-09-01&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=48&rft.issue=11&rft.spage=1238&rft.epage=1255&rft_id=info:doi/10.1002%2Feqe.3183&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eqe_3183 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon |