Enabling Argyrodite Sulfides as Superb Solid‐State Electrolyte with Remarkable Interfacial Stability Against Electrodes

While argyrodite sulfides are getting more and more attention as highly promising solid‐state electrolytes (SSEs) for solid batteries, they also suffer from the typical sulfide setbacks such as poor electrochemical compatibility with Li anode and high‐voltage cathodes and serious sensitivity to humi...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental materials (Hoboken, N.J.) Vol. 5; no. 3; pp. 852 - 864
Main Authors Xu, Hongjie, Cao, Guoqin, Shen, Yonglong, Yu, Yuran, Hu, Junhua, Wang, Zhuo, Shao, Guosheng
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.07.2022
School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China
State Centre for International Cooperation on Designer Low-Carbon&Environmental Materials(CDLCEM),Zhengzhou University,Zhengzhou 450001,China%Zhengzhou Materials Genome Institute(ZMGl),Building 2,Zhongyuanzhigu Xingyang 450100,China
State Centre for International Cooperation on Designer Low-Carbon&Environmental Materials(CDLCEM),Zhengzhou University,Zhengzhou 450001,China
Zhengzhou Materials Genome Institute(ZMGl),Building 2,Zhongyuanzhigu Xingyang 450100,China%School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While argyrodite sulfides are getting more and more attention as highly promising solid‐state electrolytes (SSEs) for solid batteries, they also suffer from the typical sulfide setbacks such as poor electrochemical compatibility with Li anode and high‐voltage cathodes and serious sensitivity to humid air, which hinders their practical applications. Herein, we have devised an effective strategy to overcome these challenging shortcomings through modification of chalcogen chemistry under the guidance of theoretical modeling. The resultant Li6.25PS4O1.25Cl0.75 delivered excellent electrochemical compatibility with both pure Li anode and high‐voltage LiCoO2 cathode, without compromising the superb ionic conductivity of the pristine sulfide. Furthermore, the current SSE also exhibited highly improved stability to oxygen and humidity, with further advantage being more insulating to electrons. The remarkably enhanced compatibility with electrodes is attributed to in situ formation of helpful electrolyte–electrode interphases. The formation of in situ anode–electrolyte interphase (AEI) enabled stable Li plating/stripping in the Li|Li6.25PS4O1.25Cl0.75|Li symmetric cells at a high current density up to 1 mA cm−2 over 200 h and 2 mA cm−2 for another 100 h. The in situ amorphous nano‐film cathode–electrolyte interphase (CEI) facilitated protection of the SSE from decomposition at elevated voltage. Consequently, the synergistic effect of AEI and CEI helped the LiCoO2|Li6.25PS4O1.25Cl0.75|Li full‐battery cell to achieve markedly better cycling stability than that using the pristine Li6PS5Cl as SSE, at a high area loading of the active cathode material (4 mg cm−2) in type‐2032 coin cells. This work is to add a desirable SSE in the argyrodite sulfide family, so that high‐performance solid battery cells could be fabricated without the usual need of strict control of the ambient atmosphere. Oxygen alloying for high‐performance argyrodite sulfide electrolyte: remarkably widended electrochemical window, highly protective amorphous electrolyte‐electrode interphases, and high lithium ion conductivity maintained.
AbstractList While argyrodite sulfides are getting more and more attention as highly promising solid‐state electrolytes (SSEs) for solid batteries, they also suffer from the typical sulfide setbacks such as poor electrochemical compatibility with Li anode and high‐voltage cathodes and serious sensitivity to humid air, which hinders their practical applications. Herein, we have devised an effective strategy to overcome these challenging shortcomings through modification of chalcogen chemistry under the guidance of theoretical modeling. The resultant Li 6.25 PS 4 O 1.25 Cl 0.75 delivered excellent electrochemical compatibility with both pure Li anode and high‐voltage LiCoO 2 cathode, without compromising the superb ionic conductivity of the pristine sulfide. Furthermore, the current SSE also exhibited highly improved stability to oxygen and humidity, with further advantage being more insulating to electrons. The remarkably enhanced compatibility with electrodes is attributed to in situ formation of helpful electrolyte–electrode interphases. The formation of in situ anode–electrolyte interphase (AEI) enabled stable Li plating/stripping in the Li|Li 6.25 PS 4 O 1.25 Cl 0.75 |Li symmetric cells at a high current density up to 1 mA cm −2 over 200 h and 2 mA cm −2 for another 100 h. The in situ amorphous nano‐film cathode–electrolyte interphase (CEI) facilitated protection of the SSE from decomposition at elevated voltage. Consequently, the synergistic effect of AEI and CEI helped the LiCoO 2 |Li 6.25 PS 4 O 1.25 Cl 0.75 |Li full‐battery cell to achieve markedly better cycling stability than that using the pristine Li 6 PS 5 Cl as SSE, at a high area loading of the active cathode material (4 mg cm −2 ) in type‐2032 coin cells. This work is to add a desirable SSE in the argyrodite sulfide family, so that high‐performance solid battery cells could be fabricated without the usual need of strict control of the ambient atmosphere.
While argyrodite sulfides are getting more and more attention as highly promising solid‐state electrolytes (SSEs) for solid batteries, they also suffer from the typical sulfide setbacks such as poor electrochemical compatibility with Li anode and high‐voltage cathodes and serious sensitivity to humid air, which hinders their practical applications. Herein, we have devised an effective strategy to overcome these challenging shortcomings through modification of chalcogen chemistry under the guidance of theoretical modeling. The resultant Li6.25PS4O1.25Cl0.75 delivered excellent electrochemical compatibility with both pure Li anode and high‐voltage LiCoO2 cathode, without compromising the superb ionic conductivity of the pristine sulfide. Furthermore, the current SSE also exhibited highly improved stability to oxygen and humidity, with further advantage being more insulating to electrons. The remarkably enhanced compatibility with electrodes is attributed to in situ formation of helpful electrolyte–electrode interphases. The formation of in situ anode–electrolyte interphase (AEI) enabled stable Li plating/stripping in the Li|Li6.25PS4O1.25Cl0.75|Li symmetric cells at a high current density up to 1 mA cm−2 over 200 h and 2 mA cm−2 for another 100 h. The in situ amorphous nano‐film cathode–electrolyte interphase (CEI) facilitated protection of the SSE from decomposition at elevated voltage. Consequently, the synergistic effect of AEI and CEI helped the LiCoO2|Li6.25PS4O1.25Cl0.75|Li full‐battery cell to achieve markedly better cycling stability than that using the pristine Li6PS5Cl as SSE, at a high area loading of the active cathode material (4 mg cm−2) in type‐2032 coin cells. This work is to add a desirable SSE in the argyrodite sulfide family, so that high‐performance solid battery cells could be fabricated without the usual need of strict control of the ambient atmosphere.
While argyrodite sulfides are getting more and more attention as highly promising solid-state electrolytes(SSEs)for solid batteries,they also suffer from the typical sulfide setbacks such as poor electrochemical compatibility with Li anode and high-voltage cathodes and serious sensitivity to humid air,which hinders their practical applications.Herein,we have devised an effective strategy to overcome these challenging shortcomings through modification of chalcogen chemistry under the guidance of theoretical modeling.The resultant Li6.2sPS4O1.25Clo.75 delivered excellent electrochemical compatibility with both pure Li anode and high-voltage LiCoO2 cathode,without compromising the superb ionic conductivity of the pristine sulfide.Furthermore,the current SSE also exhibited highly improved stability to oxygen and humidity,with further advantage being more insulating to electrons.The remarkably enhanced compatibility with electrodes is attributed to in situ formation of helpful electrolyte-electrode interphases.The formation of in situ anode-electrolyte interphase(AEI)enabled stable Li plating/stripping in the Li∣Li6.25PS4O1.25Cl0.7s∣Li symmetric cells at a high current density up to 1 mA cm-2 over 200 h and 2 mA cm-2 for another 100 h.The in situ amorphous nano-film cathode-electrolyte interphase(CEI)facilitated protection of the SSE from decomposition at elevated voltage.Consequently,the synergistic effect of AEI and CEI helped the LiCoO2∣Li6.2sPS4O1.25Cl0.75∣Li full-battery cell to achieve markedly better cycling stability than that using the pristine Li6PS5Cl as SSE,at a high area loading of the active cathode material(4 mg cm-2)in type-2032 coin cells.This work is to add a desirable SSE in the argyrodite sulfide family,so that high-performance solid battery cells could be fabricated without the usual need of strict control of the ambient atmosphere.
While argyrodite sulfides are getting more and more attention as highly promising solid‐state electrolytes (SSEs) for solid batteries, they also suffer from the typical sulfide setbacks such as poor electrochemical compatibility with Li anode and high‐voltage cathodes and serious sensitivity to humid air, which hinders their practical applications. Herein, we have devised an effective strategy to overcome these challenging shortcomings through modification of chalcogen chemistry under the guidance of theoretical modeling. The resultant Li6.25PS4O1.25Cl0.75 delivered excellent electrochemical compatibility with both pure Li anode and high‐voltage LiCoO2 cathode, without compromising the superb ionic conductivity of the pristine sulfide. Furthermore, the current SSE also exhibited highly improved stability to oxygen and humidity, with further advantage being more insulating to electrons. The remarkably enhanced compatibility with electrodes is attributed to in situ formation of helpful electrolyte–electrode interphases. The formation of in situ anode–electrolyte interphase (AEI) enabled stable Li plating/stripping in the Li|Li6.25PS4O1.25Cl0.75|Li symmetric cells at a high current density up to 1 mA cm−2 over 200 h and 2 mA cm−2 for another 100 h. The in situ amorphous nano‐film cathode–electrolyte interphase (CEI) facilitated protection of the SSE from decomposition at elevated voltage. Consequently, the synergistic effect of AEI and CEI helped the LiCoO2|Li6.25PS4O1.25Cl0.75|Li full‐battery cell to achieve markedly better cycling stability than that using the pristine Li6PS5Cl as SSE, at a high area loading of the active cathode material (4 mg cm−2) in type‐2032 coin cells. This work is to add a desirable SSE in the argyrodite sulfide family, so that high‐performance solid battery cells could be fabricated without the usual need of strict control of the ambient atmosphere. Oxygen alloying for high‐performance argyrodite sulfide electrolyte: remarkably widended electrochemical window, highly protective amorphous electrolyte‐electrode interphases, and high lithium ion conductivity maintained.
Author Hu, Junhua
Wang, Zhuo
Shen, Yonglong
Cao, Guoqin
Xu, Hongjie
Shao, Guosheng
Yu, Yuran
AuthorAffiliation School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China;State Centre for International Cooperation on Designer Low-Carbon&Environmental Materials(CDLCEM),Zhengzhou University,Zhengzhou 450001,China;Zhengzhou Materials Genome Institute(ZMGl),Building 2,Zhongyuanzhigu Xingyang 450100,China%School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China;State Centre for International Cooperation on Designer Low-Carbon&Environmental Materials(CDLCEM),Zhengzhou University,Zhengzhou 450001,China%Zhengzhou Materials Genome Institute(ZMGl),Building 2,Zhongyuanzhigu Xingyang 450100,China
AuthorAffiliation_xml – name: School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China;State Centre for International Cooperation on Designer Low-Carbon&Environmental Materials(CDLCEM),Zhengzhou University,Zhengzhou 450001,China;Zhengzhou Materials Genome Institute(ZMGl),Building 2,Zhongyuanzhigu Xingyang 450100,China%School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China;State Centre for International Cooperation on Designer Low-Carbon&Environmental Materials(CDLCEM),Zhengzhou University,Zhengzhou 450001,China%Zhengzhou Materials Genome Institute(ZMGl),Building 2,Zhongyuanzhigu Xingyang 450100,China
Author_xml – sequence: 1
  givenname: Hongjie
  surname: Xu
  fullname: Xu, Hongjie
  organization: Zhengzhou Materials Genome Institute (ZMGI)
– sequence: 2
  givenname: Guoqin
  surname: Cao
  fullname: Cao, Guoqin
  organization: Zhengzhou University
– sequence: 3
  givenname: Yonglong
  orcidid: 0000-0001-6647-7600
  surname: Shen
  fullname: Shen, Yonglong
  organization: Zhengzhou Materials Genome Institute (ZMGI)
– sequence: 4
  givenname: Yuran
  surname: Yu
  fullname: Yu, Yuran
  organization: Zhengzhou Materials Genome Institute (ZMGI)
– sequence: 5
  givenname: Junhua
  surname: Hu
  fullname: Hu, Junhua
  email: hujh@zzu.edu.cn
  organization: Zhengzhou Materials Genome Institute (ZMGI)
– sequence: 6
  givenname: Zhuo
  orcidid: 0000-0003-4436-9689
  surname: Wang
  fullname: Wang, Zhuo
  email: wangzh@zzu.edu.cn
  organization: Zhengzhou Materials Genome Institute (ZMGI)
– sequence: 7
  givenname: Guosheng
  orcidid: 0000-0003-1498-7929
  surname: Shao
  fullname: Shao, Guosheng
  email: gsshao@zzu.edu.cn
  organization: Zhengzhou Materials Genome Institute (ZMGI)
BookMark eNp9kcFu1DAQhi1UJErphSeIxA1py9iOk81xVYW2UhESC2dr7Ey2Xlxnsb2qcuMReMY-CS5bVIQQp_kP3__PaP6X7ChMgRh7zeGMA4h3RLfijAuxFM_YsVCtWoBUzdEf-gU7TWkLBQYua94ds7kPaLwLm2oVN3OcBpepWu_96AZKFaaidxRNtZ68G-6__1hnLEDvyeY4-bnoO5dvqk90i_FrSaLqKmSKI1qHviq0cd7luVpt0IWUfztL-Cv2fESf6PRxnrAv7_vP55eL648XV-er64WVshELRIECjKKalFnWY1t3HIRFC10NYG23bOVQG1U3jUHVdoNB09GS-GBbxRsjT9jbQ-4dhhHDRm-nfQxlow7zfLO1XpMAIUAC5wV-c4B3cfq2p5SfaNGClLJTHX-KtHFKKdKod9GVB8yag36oQj9UoX9VUWD4C7auPNFNIUd0_t8W_niy8zT_J1z3_Qdx8PwEHl6e5g
CitedBy_id crossref_primary_10_1016_j_matlet_2024_136221
crossref_primary_10_1016_j_nanoen_2023_108471
crossref_primary_10_1002_anie_202501411
crossref_primary_10_1016_j_cclet_2023_109173
crossref_primary_10_33961_jecst_2024_00535
crossref_primary_10_1016_j_electacta_2022_141545
crossref_primary_10_1016_j_mser_2025_100950
crossref_primary_10_1021_acsami_4c08865
crossref_primary_10_1016_j_jpowsour_2024_235865
crossref_primary_10_1063_5_0130686
crossref_primary_10_1002_adfm_202211805
crossref_primary_10_1007_s11837_022_05669_3
crossref_primary_10_1002_aenm_202301142
crossref_primary_10_1002_eem2_12699
crossref_primary_10_1002_eem2_12414
crossref_primary_10_1021_acsmaterialslett_4c01923
crossref_primary_10_3390_su152215881
crossref_primary_10_1021_acsami_1c21561
crossref_primary_10_1016_j_est_2023_107715
crossref_primary_10_1002_ange_202501411
crossref_primary_10_1002_smtd_202401046
crossref_primary_10_1039_D4EE02358G
crossref_primary_10_1016_j_cej_2023_144405
crossref_primary_10_1016_j_ensm_2025_104078
crossref_primary_10_1016_j_jallcom_2023_169169
crossref_primary_10_1016_j_est_2024_113774
crossref_primary_10_1021_acsami_4c04393
crossref_primary_10_1021_acs_nanolett_2c04216
crossref_primary_10_1039_D2EE03358E
crossref_primary_10_1021_acsenergylett_4c01882
crossref_primary_10_1021_acs_jpcc_4c05656
crossref_primary_10_1002_ente_202401420
crossref_primary_10_1007_s12598_023_02411_z
crossref_primary_10_1002_adfm_202315512
crossref_primary_10_1002_advs_202304117
crossref_primary_10_1021_acsenergylett_3c00560
crossref_primary_10_1007_s41918_022_00149_3
crossref_primary_10_3390_en16031343
crossref_primary_10_1016_j_cej_2024_150438
crossref_primary_10_1016_j_ensm_2023_103072
crossref_primary_10_1016_j_jallcom_2023_168867
crossref_primary_10_1016_j_scriptamat_2023_115303
crossref_primary_10_1016_j_cej_2023_142897
crossref_primary_10_26599_JAC_2023_9220666
crossref_primary_10_1016_j_cej_2024_159099
crossref_primary_10_1007_s41918_024_00212_1
crossref_primary_10_1002_ange_202302655
crossref_primary_10_1016_j_ensm_2023_01_018
crossref_primary_10_1021_acsenergylett_4c01970
crossref_primary_10_1002_eem2_12719
crossref_primary_10_1039_D3TA07453F
crossref_primary_10_1002_eem2_12477
crossref_primary_10_1016_j_ensm_2024_103305
crossref_primary_10_1002_eem2_12753
crossref_primary_10_3390_electronics12245038
crossref_primary_10_1016_j_scriptamat_2023_115592
crossref_primary_10_1007_s11708_022_0833_9
crossref_primary_10_1016_j_mseb_2022_115617
crossref_primary_10_1016_j_ensm_2024_103422
crossref_primary_10_23919_IEN_2022_0029
crossref_primary_10_1016_j_surfin_2022_102425
crossref_primary_10_1039_D1TA05849E
crossref_primary_10_1016_j_cej_2024_157027
crossref_primary_10_1021_acsami_4c04012
crossref_primary_10_1002_anie_202302655
crossref_primary_10_1016_j_compositesb_2022_110142
crossref_primary_10_1016_j_cclet_2025_111015
crossref_primary_10_1016_j_jpowsour_2025_236821
crossref_primary_10_1039_D3NJ01505J
crossref_primary_10_3390_catal15040300
crossref_primary_10_1002_adfm_202420170
Cites_doi 10.1016/j.apsusc.2019.07.041
10.1002/anie.200703900
10.1007/s41918-019-00029-3
10.1038/nnano.2014.152
10.1021/acsaem.7b00140
10.1038/s41563-019-0576-0
10.1038/s41565-018-0284-y
10.1021/acsami.9b10160
10.1021/acs.chemrev.0c00101
10.1002/smll.201906374
10.1016/j.ensm.2020.01.009
10.1038/nenergy.2016.42
10.1002/aenm.201501590
10.1016/j.jechem.2020.04.062
10.1021/acs.chemmater.6b00610
10.1002/adma.201803075
10.1002/anie.201814222
10.1021/acsaem.9b00861
10.1038/nenergy.2016.30
10.1021/jacs.9b08357
10.1021/acsami.5b07517
10.1016/j.ssi.2016.11.029
10.1021/acs.nanolett.0c02489
10.1039/C7EE00534B
10.1039/c3cp51059j
10.1021/acs.chemmater.5b04940
10.1021/jacs.8b03319
10.1016/0956-7151(94)90391-3
10.1002/aenm.201703644
10.1021/ja3091438
10.1002/adma.200502604
10.1002/adma.202002741
10.1007/s10904-014-0127-8
10.1021/acs.nanolett.7b01020
10.1016/j.joule.2018.11.012
10.1002/aenm.201903311
10.1002/adma.201504526
10.1002/adma.202000030
10.1021/jp810923r
10.1016/j.ensm.2021.08.028
10.1038/nnano.2017.16
10.1016/j.jpowsour.2018.11.016
10.1021/acs.chemmater.6b04990
10.1016/j.jpowsour.2020.227988
10.1002/batt.201900218
10.1007/s41918-019-00058-y
10.1039/C9TA10482H
10.1002/eem2.12017
10.1016/j.jechem.2020.11.008
10.1039/C7TA06986C
10.1016/j.elecom.2007.02.008
10.1021/acs.chemrev.5b00563
10.1021/la026208a
10.1039/C8TA11151K
10.1021/acsenergylett.8b00453
10.1038/s41563-019-0438-9
10.1021/jp8043797
10.1038/nmat3066
10.1016/j.joule.2018.02.001
10.1021/cm901819c
10.1016/j.nanoen.2020.104600
10.1021/cm5016959
10.1039/C2EE23355J
10.1063/1.1289788
10.1021/acs.chemmater.5b04082
10.1021/acsenergylett.6b00650
10.1038/s41467-020-15643-9
10.1149/2.0061602jes
10.1038/s41560-018-0096-1
10.1039/C3EE41655K
10.1016/j.jpowsour.2015.02.160
10.1016/j.joule.2019.02.006
10.1038/s41578-019-0157-5
10.1002/admi.201701097
10.1016/j.ensm.2020.04.014
10.1016/j.ensm.2020.06.029
10.1002/aenm.201701963
10.1039/C8TA07240J
10.1016/j.jdent.2008.04.016
10.1002/eem2.12034
10.1016/j.jpowsour.2018.02.062
10.1021/acscentsci.6b00260
10.1039/C8EE02617C
ContentType Journal Article
Copyright 2022 Zhengzhou University
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2022 Zhengzhou University
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1002/eem2.12282
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Environment Abstracts
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Materials Research Database


DeliveryMethod fulltext_linktorsrc
EISSN 2575-0356
EndPage 864
ExternalDocumentID nyyhjcl_e202203011
10_1002_eem2_12282
EEM212282
Genre article
GrantInformation_xml – fundername: Program for Science & Technology Innovation Talents in the Universities of Henan Province
  funderid: 18HASTIT009
– fundername: National Natural Science Foundation of China
  funderid: 111174256; 11274100; 51001091; 51571182; 51602094; 52171082; 91233101
GroupedDBID 0R~
1OC
24P
ACCMX
ACXQS
ALMA_UNASSIGNED_HOLDINGS
AVUZU
EBS
EJD
OK1
WIN
AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c3362-aa2a20b5e4e5b84f749102cac09400cc9873d4b5466ba579dbab9e8e1dc7516b3
IEDL.DBID 24P
ISSN 2575-0356
2575-0348
IngestDate Thu May 29 04:00:40 EDT 2025
Mon Jun 30 12:00:36 EDT 2025
Thu Apr 24 22:58:50 EDT 2025
Tue Jul 01 01:03:05 EDT 2025
Wed Jan 22 16:22:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords alloying chemistry
resilience to humid air
compatibility with high-voltage cathode and lithium anode
fast solid lithium ion conductor
argyrodite sulfide
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3362-aa2a20b5e4e5b84f749102cac09400cc9873d4b5466ba579dbab9e8e1dc7516b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6647-7600
0000-0003-4436-9689
0000-0003-1498-7929
PQID 2703339591
PQPubID 5251211
PageCount 864
ParticipantIDs wanfang_journals_nyyhjcl_e202203011
proquest_journals_2703339591
crossref_primary_10_1002_eem2_12282
crossref_citationtrail_10_1002_eem2_12282
wiley_primary_10_1002_eem2_12282_EEM212282
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Energy & environmental materials (Hoboken, N.J.)
PublicationTitle_FL Energy & Environmental Materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China
State Centre for International Cooperation on Designer Low-Carbon&Environmental Materials(CDLCEM),Zhengzhou University,Zhengzhou 450001,China%Zhengzhou Materials Genome Institute(ZMGl),Building 2,Zhongyuanzhigu Xingyang 450100,China
State Centre for International Cooperation on Designer Low-Carbon&Environmental Materials(CDLCEM),Zhengzhou University,Zhengzhou 450001,China
Zhengzhou Materials Genome Institute(ZMGl),Building 2,Zhongyuanzhigu Xingyang 450100,China%School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China
Publisher_xml – name: Wiley Subscription Services, Inc
– name: State Centre for International Cooperation on Designer Low-Carbon&Environmental Materials(CDLCEM),Zhengzhou University,Zhengzhou 450001,China%Zhengzhou Materials Genome Institute(ZMGl),Building 2,Zhongyuanzhigu Xingyang 450100,China
– name: School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China
– name: Zhengzhou Materials Genome Institute(ZMGl),Building 2,Zhongyuanzhigu Xingyang 450100,China%School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China
– name: State Centre for International Cooperation on Designer Low-Carbon&Environmental Materials(CDLCEM),Zhengzhou University,Zhengzhou 450001,China
References 2017; 5
2017; 2
2020; 20
2020; 120
2019; 11
2019; 10
2019; 12
2000; 88
2019; 58
2019; 14
2008; 36
2014; 26
2020; 16
2014; 25
2011; 10
2019; 18
2009; 113
2020; 11
2003; 19
2013; 6
2020; 19
2020; 8
2018; 6
2010; 22
2018; 8
2013; 15
2018; 3
2019; 410–411
2018; 2
2020; 3
2018; 5
2018; 1
2007; 9
2018; 30
2016; 116
2020; 455
2014; 9
2008; 112
2014; 7
2015; 284
2015; 163
2019; 7
2021; 43
2019; 3
2018; 140
2018; 382
2019; 5
2019; 2
2006; 18
2017; 29
2020; 32
2019; 141
2015; 7
1994; 42
2016; 6
2021; 59
2016; 1
2021; 53
2016; 2
2020; 31
2020; 30
2017; 17
2020; 71
2017; 10
2017; 12
2008; 47
1920; 2010
2020; 27
2013; 135
2016; 28
2019; 493
2017; 300
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
Kong S.‐T. (e_1_2_6_63_1) 1920; 2010
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_80_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_82_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 27
  start-page: 117
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 2
  start-page: 764
  year: 2018
  publication-title: Joule
– volume: 5
  start-page: 21846
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 30
  start-page: 1803075
  year: 2018
  publication-title: Adv. Mater.
– volume: 43
  start-page: 53
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 3
  start-page: 1212
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 2583
  year: 2018
  publication-title: Joule
– volume: 18
  start-page: 2226
  year: 2006
  publication-title: Adv. Mater.
– volume: 58
  start-page: 8681
  year: 2019
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 1150
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 116
  start-page: 140
  year: 2016
  publication-title: Chem. Rev.
– volume: 2
  start-page: 790
  year: 2016
  publication-title: ACS Cent. Sci
– volume: 382
  start-page: 160
  year: 2018
  publication-title: J. Power Sources
– volume: 11
  start-page: 1761
  year: 2020
  publication-title: Nat. Commun.
– volume: 19
  start-page: 341
  year: 2003
  publication-title: Langmuir
– volume: 88
  start-page: 4443
  year: 2000
  publication-title: J. Appl. Phys.
– volume: 15
  start-page: 18600
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 2
  start-page: 664
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 28
  start-page: 266
  year: 2016
  publication-title: Chem. Mater.
– volume: 8
  start-page: 1701963
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 19
  start-page: 428
  year: 2020
  publication-title: Nat. Mater.
– volume: 141
  start-page: 19002
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 2376
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 163
  start-page: A67
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 12
  start-page: 194
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 29
  start-page: 3883
  year: 2017
  publication-title: Chem. Mater.
– volume: 31
  start-page: 344
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 300
  start-page: 78
  year: 2017
  publication-title: Solid State Ionics
– volume: 112
  start-page: 18677
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 135
  start-page: 1167
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 1002
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 28
  start-page: 2400
  year: 2016
  publication-title: Chem. Mater.
– volume: 5
  start-page: 105
  year: 2019
  publication-title: Nat. Rev. Mater
– volume: 1
  start-page: 148
  year: 2018
  publication-title: Energy Environ. Mater.
– volume: 32
  start-page: 2000030
  year: 2020
  publication-title: Adv. Mater.
– volume: 113
  start-page: 6800
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 1
  start-page: 16042
  year: 2016
  publication-title: Nat. Energy
– volume: 3
  start-page: 310
  year: 2018
  publication-title: Nat. Energy
– volume: 20
  start-page: 6660
  year: 2020
  publication-title: Nano Lett.
– volume: 59
  start-page: 229
  year: 2021
  publication-title: J. Energ. Chem.
– volume: 17
  start-page: 3731
  year: 2017
  publication-title: Nano Lett.
– volume: 36
  start-page: 683
  year: 2008
  publication-title: J. Dent.
– volume: 8
  start-page: 1703644
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 71
  start-page: 104600
  year: 2020
  publication-title: Nano Energy
– volume: 12
  start-page: 938
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 140
  start-page: 6767
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 647
  year: 2020
  publication-title: Batteries Supercaps
– volume: 455
  start-page: 227988
  year: 2020
  publication-title: J. Power Sources
– volume: 7
  start-page: 627
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 25
  start-page: 205
  year: 2014
  publication-title: J. Inorg. Organomet. Polym. Mater.
– volume: 16
  start-page: 1906374
  year: 2020
  publication-title: Small
– volume: 2010
  start-page: 636
  year: 1920
  publication-title: Allg. Chem.
– volume: 18
  start-page: 1105
  year: 2019
  publication-title: Nat. Mater.
– volume: 47
  start-page: 755
  year: 2008
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 682
  year: 2011
  publication-title: Nat. Mater.
– volume: 53
  start-page: 147
  year: 2021
  publication-title: J. Energ. Chem.
– volume: 284
  start-page: 206
  year: 2015
  publication-title: J. Power Sources
– volume: 32
  start-page: 2002741
  year: 2020
  publication-title: Adv. Mater.
– volume: 11
  start-page: 31991
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 410–411
  start-page: 162
  year: 2019
  publication-title: J. Power Sources
– volume: 6
  start-page: 148
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 5239
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 19231
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 493
  start-page: 1326
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 26
  start-page: 4248
  year: 2014
  publication-title: Chem. Mater.
– volume: 9
  start-page: 1486
  year: 2007
  publication-title: Electrochem. Commun.
– volume: 14
  start-page: 50
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 618
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 42
  start-page: 2937
  year: 1994
  publication-title: Acta Metall. Mater.
– volume: 1
  start-page: 16030
  year: 2016
  publication-title: Nat. Energy
– volume: 7
  start-page: 23685
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 6288
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 22
  start-page: 949
  year: 2010
  publication-title: Chem. Mater.
– volume: 2
  start-page: 199
  year: 2019
  publication-title: Electrochem. Energ. Rev.
– volume: 30
  start-page: 238
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 3
  start-page: 187
  year: 2019
  publication-title: Electrochem. Energ. Rev.
– volume: 6
  start-page: 1501590
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 1853
  year: 2016
  publication-title: Adv. Mater.
– volume: 28
  start-page: 2634
  year: 2016
  publication-title: Chem. Mater.
– volume: 3
  start-page: 19
  year: 2020
  publication-title: Energy Environ. Mater.
– volume: 120
  start-page: 6878
  year: 2020
  publication-title: Chem. Rev.
– volume: 3
  start-page: 1252
  year: 2019
  publication-title: Joule
– volume: 10
  start-page: 1903311
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 1701097
  year: 2018
  publication-title: Adv. Mater. Interfaces
– ident: e_1_2_6_64_1
  doi: 10.1016/j.apsusc.2019.07.041
– ident: e_1_2_6_7_1
  doi: 10.1002/anie.200703900
– ident: e_1_2_6_15_1
  doi: 10.1007/s41918-019-00029-3
– ident: e_1_2_6_27_1
  doi: 10.1038/nnano.2014.152
– ident: e_1_2_6_11_1
  doi: 10.1021/acsaem.7b00140
– ident: e_1_2_6_50_1
  doi: 10.1038/s41563-019-0576-0
– ident: e_1_2_6_75_1
  doi: 10.1038/s41565-018-0284-y
– ident: e_1_2_6_42_1
  doi: 10.1021/acsami.9b10160
– ident: e_1_2_6_12_1
  doi: 10.1021/acs.chemrev.0c00101
– ident: e_1_2_6_62_1
  doi: 10.1002/smll.201906374
– ident: e_1_2_6_82_1
  doi: 10.1016/j.ensm.2020.01.009
– ident: e_1_2_6_5_1
  doi: 10.1038/nenergy.2016.42
– ident: e_1_2_6_80_1
  doi: 10.1002/aenm.201501590
– ident: e_1_2_6_52_1
  doi: 10.1016/j.jechem.2020.04.062
– ident: e_1_2_6_13_1
  doi: 10.1021/acs.chemmater.6b00610
– ident: e_1_2_6_68_1
  doi: 10.1002/adma.201803075
– ident: e_1_2_6_60_1
  doi: 10.1002/anie.201814222
– ident: e_1_2_6_66_1
  doi: 10.1021/acsaem.9b00861
– ident: e_1_2_6_3_1
  doi: 10.1038/nenergy.2016.30
– ident: e_1_2_6_59_1
  doi: 10.1021/jacs.9b08357
– ident: e_1_2_6_20_1
  doi: 10.1021/acsami.5b07517
– ident: e_1_2_6_36_1
  doi: 10.1016/j.ssi.2016.11.029
– ident: e_1_2_6_57_1
  doi: 10.1021/acs.nanolett.0c02489
– ident: e_1_2_6_67_1
  doi: 10.1039/C7EE00534B
– ident: e_1_2_6_24_1
  doi: 10.1039/c3cp51059j
– ident: e_1_2_6_40_1
  doi: 10.1021/acs.chemmater.5b04940
– ident: e_1_2_6_55_1
  doi: 10.1021/jacs.8b03319
– ident: e_1_2_6_74_1
  doi: 10.1016/0956-7151(94)90391-3
– ident: e_1_2_6_22_1
  doi: 10.1002/aenm.201703644
– ident: e_1_2_6_2_1
  doi: 10.1021/ja3091438
– ident: e_1_2_6_51_1
  doi: 10.1002/adma.200502604
– ident: e_1_2_6_33_1
  doi: 10.1002/adma.202002741
– ident: e_1_2_6_47_1
  doi: 10.1007/s10904-014-0127-8
– ident: e_1_2_6_19_1
  doi: 10.1021/acs.nanolett.7b01020
– ident: e_1_2_6_32_1
  doi: 10.1016/j.joule.2018.11.012
– ident: e_1_2_6_46_1
  doi: 10.1002/aenm.201903311
– ident: e_1_2_6_30_1
  doi: 10.1002/adma.201504526
– ident: e_1_2_6_79_1
  doi: 10.1002/adma.202000030
– ident: e_1_2_6_83_1
  doi: 10.1021/jp810923r
– ident: e_1_2_6_41_1
  doi: 10.1016/j.ensm.2021.08.028
– ident: e_1_2_6_18_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_6_61_1
  doi: 10.1016/j.jpowsour.2018.11.016
– ident: e_1_2_6_21_1
  doi: 10.1021/acs.chemmater.6b04990
– ident: e_1_2_6_31_1
  doi: 10.1016/j.jpowsour.2020.227988
– ident: e_1_2_6_72_1
  doi: 10.1002/batt.201900218
– ident: e_1_2_6_16_1
  doi: 10.1007/s41918-019-00058-y
– ident: e_1_2_6_69_1
  doi: 10.1039/C9TA10482H
– ident: e_1_2_6_38_1
  doi: 10.1002/eem2.12017
– ident: e_1_2_6_44_1
  doi: 10.1016/j.jechem.2020.11.008
– ident: e_1_2_6_17_1
  doi: 10.1039/C7TA06986C
– ident: e_1_2_6_39_1
  doi: 10.1016/j.elecom.2007.02.008
– ident: e_1_2_6_6_1
  doi: 10.1021/acs.chemrev.5b00563
– ident: e_1_2_6_70_1
  doi: 10.1021/la026208a
– ident: e_1_2_6_45_1
  doi: 10.1039/C8TA11151K
– ident: e_1_2_6_77_1
  doi: 10.1021/acsenergylett.8b00453
– ident: e_1_2_6_78_1
  doi: 10.1038/s41563-019-0438-9
– ident: e_1_2_6_84_1
  doi: 10.1021/jp8043797
– ident: e_1_2_6_4_1
  doi: 10.1038/nmat3066
– ident: e_1_2_6_28_1
  doi: 10.1016/j.joule.2018.02.001
– ident: e_1_2_6_49_1
  doi: 10.1021/cm901819c
– ident: e_1_2_6_29_1
  doi: 10.1016/j.nanoen.2020.104600
– ident: e_1_2_6_48_1
  doi: 10.1021/cm5016959
– ident: e_1_2_6_58_1
  doi: 10.1039/C2EE23355J
– ident: e_1_2_6_81_1
  doi: 10.1063/1.1289788
– ident: e_1_2_6_1_1
  doi: 10.1021/acs.chemmater.5b04082
– ident: e_1_2_6_26_1
  doi: 10.1021/acsenergylett.6b00650
– ident: e_1_2_6_56_1
  doi: 10.1038/s41467-020-15643-9
– ident: e_1_2_6_10_1
  doi: 10.1149/2.0061602jes
– ident: e_1_2_6_35_1
  doi: 10.1038/s41560-018-0096-1
– ident: e_1_2_6_8_1
  doi: 10.1039/C3EE41655K
– ident: e_1_2_6_54_1
  doi: 10.1016/j.jpowsour.2015.02.160
– ident: e_1_2_6_53_1
  doi: 10.1016/j.joule.2019.02.006
– ident: e_1_2_6_14_1
  doi: 10.1038/s41578-019-0157-5
– volume: 2010
  start-page: 636
  year: 1920
  ident: e_1_2_6_63_1
  publication-title: Allg. Chem.
– ident: e_1_2_6_76_1
  doi: 10.1002/admi.201701097
– ident: e_1_2_6_65_1
  doi: 10.1016/j.ensm.2020.04.014
– ident: e_1_2_6_23_1
  doi: 10.1016/j.ensm.2020.06.029
– ident: e_1_2_6_34_1
  doi: 10.1002/aenm.201701963
– ident: e_1_2_6_9_1
  doi: 10.1039/C8TA07240J
– ident: e_1_2_6_73_1
  doi: 10.1016/j.jdent.2008.04.016
– ident: e_1_2_6_37_1
  doi: 10.1002/eem2.12034
– ident: e_1_2_6_71_1
  doi: 10.1016/j.jpowsour.2018.02.062
– ident: e_1_2_6_25_1
  doi: 10.1021/acscentsci.6b00260
– ident: e_1_2_6_43_1
  doi: 10.1039/C8EE02617C
SSID ssj0002013419
Score 2.4916682
Snippet While argyrodite sulfides are getting more and more attention as highly promising solid‐state electrolytes (SSEs) for solid batteries, they also suffer from...
While argyrodite sulfides are getting more and more attention as highly promising solid-state electrolytes(SSEs)for solid batteries,they also suffer from the...
SourceID wanfang
proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 852
SubjectTerms alloying chemistry
argyrodite sulfide
Cathodes
Cathodic protection
Compatibility
compatibility with high‐voltage cathode and lithium anode
Electric potential
Electrochemistry
Electrode materials
Electrodes
Electrolytes
Electrolytic cells
fast solid lithium ion conductor
Interface stability
Interphase
Ion currents
Lithium compounds
Molten salt electrolytes
resilience to humid air
Solid electrolytes
Sulfides
Synergistic effect
Voltage
Title Enabling Argyrodite Sulfides as Superb Solid‐State Electrolyte with Remarkable Interfacial Stability Against Electrodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12282
https://www.proquest.com/docview/2703339591
https://d.wanfangdata.com.cn/periodical/nyyhjcl-e202203011
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9RAEF9qi-CLKCqe1rKgLwqxyf5LFnw5JKUIFbGeFF_C7GZznqZp6bWUvPUj-Bn9JM5scncURPBtSWZ3YSY788uw8xvGXkkLRS28StIgm0Q1KSQQGkiI264wOXoHQ8XJRx_N4Ux9ONEnW-zdqhZm4IdYJ9zoZER_TQcc3HJ_Qxoawql4mwn8ZbjDdqi2li70CfVpnWHB0EZkZdRdDjFJkkpt1vykYn8z_XZE2sDMu9fQNdDNb8PWGHcOHrD7I2Dk08HCD9lW6B6xvqSSJ4w6-Hzeow9E4MiPr9pmUYclhyWOz1Ff_PisXdS_b35FSMnLoeVN2-OY8q_8cziFi59UPMVjZrABSqBzlI5XZns-ncMC8eNqJi7-mM0Oyi_vD5OxiULiJVVEAQgQqdNBBe0K1eQKAYLw4Ik4L_XeFrmsldPKGAc6t7UDZ0MRstrnOjNOPmHb3VkXnjIug7O5g0wYG5QOFurcuKBsLr1wGOcm7PVKkZUfGcap0UVbDdzIoiKlV1HpE_ZyLXs-8Gr8VWp3ZY9qPFvLSqCTktJqm-Eio402b7u-__7Dt1UQVENM7mvC3kT7_WOfqiyPRBw9-x_h5-we7TLc3t1l25cXV-EFYpRLtxc_xT22M_06-zb7A9B95KQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKKwSXCgSIpQUsAQeQQhP_JJsDhxWk2tJuD7SLKi7GdibbhTStuq2q3HgEXoSX4kmYSbK7qoSQOPRmJRM78nhmPo88nxl7KVPbz4VXQQiyCFQR2sBCYQPituvHCXqHmIqTR_vxcKw-HumjFfZrXgvT8kMsEm5kGY2_JgOnhPTWkjUU4ES8jQTuGbozlbtQX-GObfZu5wOq95UQ29nh-2HQXSoQeEkVQtYKK0KnQYF2fVUkCgOm8NYTkVzoPe7BZa6cVnHsrE7S3FmXQh-i3Cc6ip3Efm-xNYJRaERrg8_jL-NFUgejKfGj0YV2CIOCUOp4QYkqtpY_fD0ILpHt7StbFbaaXEfKTajbvsfWO4zKB-2ius9WoHrA6oyqrDDQ4fNJjW4XsSo_uCyLaQ4zbmfYPkMV8YPTcpr__vGzQbE8a2_ZKWtsU8qXf4ITe_6d6rV4k4wsLOXsOUo3p3RrPpjYKULW-ZfY-UM2vpEpfsRWq9MKHjMuwaWJs5GIU1AaUpsnsQOVJtILh6G1x17PJ9L4jtSc7tYoTUvHLAxNumkmvcdeLGTPWiqPv0ptzvVhOnOeGYF-UcpUpxF20ulo-baq6-NvvjQgqGyZPGaPvWn0949xTJaNRNN68j_Cz9md4eFoz-zt7O9usLs0Ynt4eJOtXpxfwlOESBfuWbcwOft607bwBw6LIiw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbKViAuCASIhQKWgANIoYn_sj5wWNGsWkorRFlUcXFtZ7IspOmq26rKjUfgQXgqnoRxkt1VJYTEoTcrmdjRjOfHI883hDzn2g5y5kUUAy8iUcQ2slDYKGDbDVSK1kGF4uS9fbU9Fu8O5eEa-bWohWnxIZYJt6AZjb0OCj7Li80VaCjAMXudMDwydFcqd6G-wAPb_M3OFkr3BWOj7NPb7ajrKRB5HgqErGWWxU6CAOkGokgF-kvmrQ84crH3eATnuXBSKOWsTHXurNMwgCT3qUyU4zjvNbIu0Q3GPbI-_Dz-Ml7mdNCZBni00M8Oo6Ao5lItEVHZ5uqHL_vAVWB7_cJWha0mlwPlxtONbpNbXYhKh-2eukPWoLpL6iwUWaGfw-eTGq0uhqr04LwspjnMqZ3jeIYSogcn5TT__eNnE8TSrG2yU9Y4Dhlf-hGO7en3UK5Fm1xkYUPKniJ1c0m3psOJnWLEuvgSJ79HxlfC4vukV51U8IBQDk6nziZMaRAStM1T5UDolHvm0LP2ycsFI43vMM1Da43StGjMzASmm4bpffJsSTtrkTz-SrWxkIfptHluGJpFzrXUCU7SyWj1tqrrr998aYCFquVgMPvkVSO_f6xjsmyPNaOH_0P8lNz4sDUy73f2dx-Rm2HB9urwBumdnZ7DYwyQztyTbl9ScnTVqvAH7ywhTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enabling+Argyrodite+Sulfides+as+Superb+Solid%E2%80%90State+Electrolyte+with+Remarkable+Interfacial+Stability+Against+Electrodes&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Xu%2C+Hongjie&rft.au=Cao%2C+Guoqin&rft.au=Shen%2C+Yonglong&rft.au=Yu%2C+Yuran&rft.date=2022-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=2575-0356&rft.volume=5&rft.issue=3&rft.spage=852&rft.epage=864&rft_id=info:doi/10.1002%2Feem2.12282&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnyyhjcl-e%2Fnyyhjcl-e.jpg