Enabling Argyrodite Sulfides as Superb Solid‐State Electrolyte with Remarkable Interfacial Stability Against Electrodes
While argyrodite sulfides are getting more and more attention as highly promising solid‐state electrolytes (SSEs) for solid batteries, they also suffer from the typical sulfide setbacks such as poor electrochemical compatibility with Li anode and high‐voltage cathodes and serious sensitivity to humi...
Saved in:
Published in | Energy & environmental materials (Hoboken, N.J.) Vol. 5; no. 3; pp. 852 - 864 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.07.2022
School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China State Centre for International Cooperation on Designer Low-Carbon&Environmental Materials(CDLCEM),Zhengzhou University,Zhengzhou 450001,China%Zhengzhou Materials Genome Institute(ZMGl),Building 2,Zhongyuanzhigu Xingyang 450100,China State Centre for International Cooperation on Designer Low-Carbon&Environmental Materials(CDLCEM),Zhengzhou University,Zhengzhou 450001,China Zhengzhou Materials Genome Institute(ZMGl),Building 2,Zhongyuanzhigu Xingyang 450100,China%School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | While argyrodite sulfides are getting more and more attention as highly promising solid‐state electrolytes (SSEs) for solid batteries, they also suffer from the typical sulfide setbacks such as poor electrochemical compatibility with Li anode and high‐voltage cathodes and serious sensitivity to humid air, which hinders their practical applications. Herein, we have devised an effective strategy to overcome these challenging shortcomings through modification of chalcogen chemistry under the guidance of theoretical modeling. The resultant Li6.25PS4O1.25Cl0.75 delivered excellent electrochemical compatibility with both pure Li anode and high‐voltage LiCoO2 cathode, without compromising the superb ionic conductivity of the pristine sulfide. Furthermore, the current SSE also exhibited highly improved stability to oxygen and humidity, with further advantage being more insulating to electrons. The remarkably enhanced compatibility with electrodes is attributed to in situ formation of helpful electrolyte–electrode interphases. The formation of in situ anode–electrolyte interphase (AEI) enabled stable Li plating/stripping in the Li|Li6.25PS4O1.25Cl0.75|Li symmetric cells at a high current density up to 1 mA cm−2 over 200 h and 2 mA cm−2 for another 100 h. The in situ amorphous nano‐film cathode–electrolyte interphase (CEI) facilitated protection of the SSE from decomposition at elevated voltage. Consequently, the synergistic effect of AEI and CEI helped the LiCoO2|Li6.25PS4O1.25Cl0.75|Li full‐battery cell to achieve markedly better cycling stability than that using the pristine Li6PS5Cl as SSE, at a high area loading of the active cathode material (4 mg cm−2) in type‐2032 coin cells. This work is to add a desirable SSE in the argyrodite sulfide family, so that high‐performance solid battery cells could be fabricated without the usual need of strict control of the ambient atmosphere.
Oxygen alloying for high‐performance argyrodite sulfide electrolyte: remarkably widended electrochemical window, highly protective amorphous electrolyte‐electrode interphases, and high lithium ion conductivity maintained. |
---|---|
AbstractList | While argyrodite sulfides are getting more and more attention as highly promising solid‐state electrolytes (SSEs) for solid batteries, they also suffer from the typical sulfide setbacks such as poor electrochemical compatibility with Li anode and high‐voltage cathodes and serious sensitivity to humid air, which hinders their practical applications. Herein, we have devised an effective strategy to overcome these challenging shortcomings through modification of chalcogen chemistry under the guidance of theoretical modeling. The resultant Li
6.25
PS
4
O
1.25
Cl
0.75
delivered excellent electrochemical compatibility with both pure Li anode and high‐voltage LiCoO
2
cathode, without compromising the superb ionic conductivity of the pristine sulfide. Furthermore, the current SSE also exhibited highly improved stability to oxygen and humidity, with further advantage being more insulating to electrons. The remarkably enhanced compatibility with electrodes is attributed to in situ formation of helpful electrolyte–electrode interphases. The formation of in situ anode–electrolyte interphase (AEI) enabled stable Li plating/stripping in the Li|Li
6.25
PS
4
O
1.25
Cl
0.75
|Li symmetric cells at a high current density up to 1 mA cm
−2
over 200 h and 2 mA cm
−2
for another 100 h. The in situ amorphous nano‐film cathode–electrolyte interphase (CEI) facilitated protection of the SSE from decomposition at elevated voltage. Consequently, the synergistic effect of AEI and CEI helped the LiCoO
2
|Li
6.25
PS
4
O
1.25
Cl
0.75
|Li full‐battery cell to achieve markedly better cycling stability than that using the pristine Li
6
PS
5
Cl as SSE, at a high area loading of the active cathode material (4 mg cm
−2
) in type‐2032 coin cells. This work is to add a desirable SSE in the argyrodite sulfide family, so that high‐performance solid battery cells could be fabricated without the usual need of strict control of the ambient atmosphere. While argyrodite sulfides are getting more and more attention as highly promising solid‐state electrolytes (SSEs) for solid batteries, they also suffer from the typical sulfide setbacks such as poor electrochemical compatibility with Li anode and high‐voltage cathodes and serious sensitivity to humid air, which hinders their practical applications. Herein, we have devised an effective strategy to overcome these challenging shortcomings through modification of chalcogen chemistry under the guidance of theoretical modeling. The resultant Li6.25PS4O1.25Cl0.75 delivered excellent electrochemical compatibility with both pure Li anode and high‐voltage LiCoO2 cathode, without compromising the superb ionic conductivity of the pristine sulfide. Furthermore, the current SSE also exhibited highly improved stability to oxygen and humidity, with further advantage being more insulating to electrons. The remarkably enhanced compatibility with electrodes is attributed to in situ formation of helpful electrolyte–electrode interphases. The formation of in situ anode–electrolyte interphase (AEI) enabled stable Li plating/stripping in the Li|Li6.25PS4O1.25Cl0.75|Li symmetric cells at a high current density up to 1 mA cm−2 over 200 h and 2 mA cm−2 for another 100 h. The in situ amorphous nano‐film cathode–electrolyte interphase (CEI) facilitated protection of the SSE from decomposition at elevated voltage. Consequently, the synergistic effect of AEI and CEI helped the LiCoO2|Li6.25PS4O1.25Cl0.75|Li full‐battery cell to achieve markedly better cycling stability than that using the pristine Li6PS5Cl as SSE, at a high area loading of the active cathode material (4 mg cm−2) in type‐2032 coin cells. This work is to add a desirable SSE in the argyrodite sulfide family, so that high‐performance solid battery cells could be fabricated without the usual need of strict control of the ambient atmosphere. While argyrodite sulfides are getting more and more attention as highly promising solid-state electrolytes(SSEs)for solid batteries,they also suffer from the typical sulfide setbacks such as poor electrochemical compatibility with Li anode and high-voltage cathodes and serious sensitivity to humid air,which hinders their practical applications.Herein,we have devised an effective strategy to overcome these challenging shortcomings through modification of chalcogen chemistry under the guidance of theoretical modeling.The resultant Li6.2sPS4O1.25Clo.75 delivered excellent electrochemical compatibility with both pure Li anode and high-voltage LiCoO2 cathode,without compromising the superb ionic conductivity of the pristine sulfide.Furthermore,the current SSE also exhibited highly improved stability to oxygen and humidity,with further advantage being more insulating to electrons.The remarkably enhanced compatibility with electrodes is attributed to in situ formation of helpful electrolyte-electrode interphases.The formation of in situ anode-electrolyte interphase(AEI)enabled stable Li plating/stripping in the Li∣Li6.25PS4O1.25Cl0.7s∣Li symmetric cells at a high current density up to 1 mA cm-2 over 200 h and 2 mA cm-2 for another 100 h.The in situ amorphous nano-film cathode-electrolyte interphase(CEI)facilitated protection of the SSE from decomposition at elevated voltage.Consequently,the synergistic effect of AEI and CEI helped the LiCoO2∣Li6.2sPS4O1.25Cl0.75∣Li full-battery cell to achieve markedly better cycling stability than that using the pristine Li6PS5Cl as SSE,at a high area loading of the active cathode material(4 mg cm-2)in type-2032 coin cells.This work is to add a desirable SSE in the argyrodite sulfide family,so that high-performance solid battery cells could be fabricated without the usual need of strict control of the ambient atmosphere. While argyrodite sulfides are getting more and more attention as highly promising solid‐state electrolytes (SSEs) for solid batteries, they also suffer from the typical sulfide setbacks such as poor electrochemical compatibility with Li anode and high‐voltage cathodes and serious sensitivity to humid air, which hinders their practical applications. Herein, we have devised an effective strategy to overcome these challenging shortcomings through modification of chalcogen chemistry under the guidance of theoretical modeling. The resultant Li6.25PS4O1.25Cl0.75 delivered excellent electrochemical compatibility with both pure Li anode and high‐voltage LiCoO2 cathode, without compromising the superb ionic conductivity of the pristine sulfide. Furthermore, the current SSE also exhibited highly improved stability to oxygen and humidity, with further advantage being more insulating to electrons. The remarkably enhanced compatibility with electrodes is attributed to in situ formation of helpful electrolyte–electrode interphases. The formation of in situ anode–electrolyte interphase (AEI) enabled stable Li plating/stripping in the Li|Li6.25PS4O1.25Cl0.75|Li symmetric cells at a high current density up to 1 mA cm−2 over 200 h and 2 mA cm−2 for another 100 h. The in situ amorphous nano‐film cathode–electrolyte interphase (CEI) facilitated protection of the SSE from decomposition at elevated voltage. Consequently, the synergistic effect of AEI and CEI helped the LiCoO2|Li6.25PS4O1.25Cl0.75|Li full‐battery cell to achieve markedly better cycling stability than that using the pristine Li6PS5Cl as SSE, at a high area loading of the active cathode material (4 mg cm−2) in type‐2032 coin cells. This work is to add a desirable SSE in the argyrodite sulfide family, so that high‐performance solid battery cells could be fabricated without the usual need of strict control of the ambient atmosphere. Oxygen alloying for high‐performance argyrodite sulfide electrolyte: remarkably widended electrochemical window, highly protective amorphous electrolyte‐electrode interphases, and high lithium ion conductivity maintained. |
Author | Hu, Junhua Wang, Zhuo Shen, Yonglong Cao, Guoqin Xu, Hongjie Shao, Guosheng Yu, Yuran |
AuthorAffiliation | School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China;State Centre for International Cooperation on Designer Low-Carbon&Environmental Materials(CDLCEM),Zhengzhou University,Zhengzhou 450001,China;Zhengzhou Materials Genome Institute(ZMGl),Building 2,Zhongyuanzhigu Xingyang 450100,China%School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China;State Centre for International Cooperation on Designer Low-Carbon&Environmental Materials(CDLCEM),Zhengzhou University,Zhengzhou 450001,China%Zhengzhou Materials Genome Institute(ZMGl),Building 2,Zhongyuanzhigu Xingyang 450100,China |
AuthorAffiliation_xml | – name: School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China;State Centre for International Cooperation on Designer Low-Carbon&Environmental Materials(CDLCEM),Zhengzhou University,Zhengzhou 450001,China;Zhengzhou Materials Genome Institute(ZMGl),Building 2,Zhongyuanzhigu Xingyang 450100,China%School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China;State Centre for International Cooperation on Designer Low-Carbon&Environmental Materials(CDLCEM),Zhengzhou University,Zhengzhou 450001,China%Zhengzhou Materials Genome Institute(ZMGl),Building 2,Zhongyuanzhigu Xingyang 450100,China |
Author_xml | – sequence: 1 givenname: Hongjie surname: Xu fullname: Xu, Hongjie organization: Zhengzhou Materials Genome Institute (ZMGI) – sequence: 2 givenname: Guoqin surname: Cao fullname: Cao, Guoqin organization: Zhengzhou University – sequence: 3 givenname: Yonglong orcidid: 0000-0001-6647-7600 surname: Shen fullname: Shen, Yonglong organization: Zhengzhou Materials Genome Institute (ZMGI) – sequence: 4 givenname: Yuran surname: Yu fullname: Yu, Yuran organization: Zhengzhou Materials Genome Institute (ZMGI) – sequence: 5 givenname: Junhua surname: Hu fullname: Hu, Junhua email: hujh@zzu.edu.cn organization: Zhengzhou Materials Genome Institute (ZMGI) – sequence: 6 givenname: Zhuo orcidid: 0000-0003-4436-9689 surname: Wang fullname: Wang, Zhuo email: wangzh@zzu.edu.cn organization: Zhengzhou Materials Genome Institute (ZMGI) – sequence: 7 givenname: Guosheng orcidid: 0000-0003-1498-7929 surname: Shao fullname: Shao, Guosheng email: gsshao@zzu.edu.cn organization: Zhengzhou Materials Genome Institute (ZMGI) |
BookMark | eNp9kcFu1DAQhi1UJErphSeIxA1py9iOk81xVYW2UhESC2dr7Ey2Xlxnsb2qcuMReMY-CS5bVIQQp_kP3__PaP6X7ChMgRh7zeGMA4h3RLfijAuxFM_YsVCtWoBUzdEf-gU7TWkLBQYua94ds7kPaLwLm2oVN3OcBpepWu_96AZKFaaidxRNtZ68G-6__1hnLEDvyeY4-bnoO5dvqk90i_FrSaLqKmSKI1qHviq0cd7luVpt0IWUfztL-Cv2fESf6PRxnrAv7_vP55eL648XV-er64WVshELRIECjKKalFnWY1t3HIRFC10NYG23bOVQG1U3jUHVdoNB09GS-GBbxRsjT9jbQ-4dhhHDRm-nfQxlow7zfLO1XpMAIUAC5wV-c4B3cfq2p5SfaNGClLJTHX-KtHFKKdKod9GVB8yag36oQj9UoX9VUWD4C7auPNFNIUd0_t8W_niy8zT_J1z3_Qdx8PwEHl6e5g |
CitedBy_id | crossref_primary_10_1016_j_matlet_2024_136221 crossref_primary_10_1016_j_nanoen_2023_108471 crossref_primary_10_1002_anie_202501411 crossref_primary_10_1016_j_cclet_2023_109173 crossref_primary_10_33961_jecst_2024_00535 crossref_primary_10_1016_j_electacta_2022_141545 crossref_primary_10_1016_j_mser_2025_100950 crossref_primary_10_1021_acsami_4c08865 crossref_primary_10_1016_j_jpowsour_2024_235865 crossref_primary_10_1063_5_0130686 crossref_primary_10_1002_adfm_202211805 crossref_primary_10_1007_s11837_022_05669_3 crossref_primary_10_1002_aenm_202301142 crossref_primary_10_1002_eem2_12699 crossref_primary_10_1002_eem2_12414 crossref_primary_10_1021_acsmaterialslett_4c01923 crossref_primary_10_3390_su152215881 crossref_primary_10_1021_acsami_1c21561 crossref_primary_10_1016_j_est_2023_107715 crossref_primary_10_1002_ange_202501411 crossref_primary_10_1002_smtd_202401046 crossref_primary_10_1039_D4EE02358G crossref_primary_10_1016_j_cej_2023_144405 crossref_primary_10_1016_j_ensm_2025_104078 crossref_primary_10_1016_j_jallcom_2023_169169 crossref_primary_10_1016_j_est_2024_113774 crossref_primary_10_1021_acsami_4c04393 crossref_primary_10_1021_acs_nanolett_2c04216 crossref_primary_10_1039_D2EE03358E crossref_primary_10_1021_acsenergylett_4c01882 crossref_primary_10_1021_acs_jpcc_4c05656 crossref_primary_10_1002_ente_202401420 crossref_primary_10_1007_s12598_023_02411_z crossref_primary_10_1002_adfm_202315512 crossref_primary_10_1002_advs_202304117 crossref_primary_10_1021_acsenergylett_3c00560 crossref_primary_10_1007_s41918_022_00149_3 crossref_primary_10_3390_en16031343 crossref_primary_10_1016_j_cej_2024_150438 crossref_primary_10_1016_j_ensm_2023_103072 crossref_primary_10_1016_j_jallcom_2023_168867 crossref_primary_10_1016_j_scriptamat_2023_115303 crossref_primary_10_1016_j_cej_2023_142897 crossref_primary_10_26599_JAC_2023_9220666 crossref_primary_10_1016_j_cej_2024_159099 crossref_primary_10_1007_s41918_024_00212_1 crossref_primary_10_1002_ange_202302655 crossref_primary_10_1016_j_ensm_2023_01_018 crossref_primary_10_1021_acsenergylett_4c01970 crossref_primary_10_1002_eem2_12719 crossref_primary_10_1039_D3TA07453F crossref_primary_10_1002_eem2_12477 crossref_primary_10_1016_j_ensm_2024_103305 crossref_primary_10_1002_eem2_12753 crossref_primary_10_3390_electronics12245038 crossref_primary_10_1016_j_scriptamat_2023_115592 crossref_primary_10_1007_s11708_022_0833_9 crossref_primary_10_1016_j_mseb_2022_115617 crossref_primary_10_1016_j_ensm_2024_103422 crossref_primary_10_23919_IEN_2022_0029 crossref_primary_10_1016_j_surfin_2022_102425 crossref_primary_10_1039_D1TA05849E crossref_primary_10_1016_j_cej_2024_157027 crossref_primary_10_1021_acsami_4c04012 crossref_primary_10_1002_anie_202302655 crossref_primary_10_1016_j_compositesb_2022_110142 crossref_primary_10_1016_j_cclet_2025_111015 crossref_primary_10_1016_j_jpowsour_2025_236821 crossref_primary_10_1039_D3NJ01505J crossref_primary_10_3390_catal15040300 crossref_primary_10_1002_adfm_202420170 |
Cites_doi | 10.1016/j.apsusc.2019.07.041 10.1002/anie.200703900 10.1007/s41918-019-00029-3 10.1038/nnano.2014.152 10.1021/acsaem.7b00140 10.1038/s41563-019-0576-0 10.1038/s41565-018-0284-y 10.1021/acsami.9b10160 10.1021/acs.chemrev.0c00101 10.1002/smll.201906374 10.1016/j.ensm.2020.01.009 10.1038/nenergy.2016.42 10.1002/aenm.201501590 10.1016/j.jechem.2020.04.062 10.1021/acs.chemmater.6b00610 10.1002/adma.201803075 10.1002/anie.201814222 10.1021/acsaem.9b00861 10.1038/nenergy.2016.30 10.1021/jacs.9b08357 10.1021/acsami.5b07517 10.1016/j.ssi.2016.11.029 10.1021/acs.nanolett.0c02489 10.1039/C7EE00534B 10.1039/c3cp51059j 10.1021/acs.chemmater.5b04940 10.1021/jacs.8b03319 10.1016/0956-7151(94)90391-3 10.1002/aenm.201703644 10.1021/ja3091438 10.1002/adma.200502604 10.1002/adma.202002741 10.1007/s10904-014-0127-8 10.1021/acs.nanolett.7b01020 10.1016/j.joule.2018.11.012 10.1002/aenm.201903311 10.1002/adma.201504526 10.1002/adma.202000030 10.1021/jp810923r 10.1016/j.ensm.2021.08.028 10.1038/nnano.2017.16 10.1016/j.jpowsour.2018.11.016 10.1021/acs.chemmater.6b04990 10.1016/j.jpowsour.2020.227988 10.1002/batt.201900218 10.1007/s41918-019-00058-y 10.1039/C9TA10482H 10.1002/eem2.12017 10.1016/j.jechem.2020.11.008 10.1039/C7TA06986C 10.1016/j.elecom.2007.02.008 10.1021/acs.chemrev.5b00563 10.1021/la026208a 10.1039/C8TA11151K 10.1021/acsenergylett.8b00453 10.1038/s41563-019-0438-9 10.1021/jp8043797 10.1038/nmat3066 10.1016/j.joule.2018.02.001 10.1021/cm901819c 10.1016/j.nanoen.2020.104600 10.1021/cm5016959 10.1039/C2EE23355J 10.1063/1.1289788 10.1021/acs.chemmater.5b04082 10.1021/acsenergylett.6b00650 10.1038/s41467-020-15643-9 10.1149/2.0061602jes 10.1038/s41560-018-0096-1 10.1039/C3EE41655K 10.1016/j.jpowsour.2015.02.160 10.1016/j.joule.2019.02.006 10.1038/s41578-019-0157-5 10.1002/admi.201701097 10.1016/j.ensm.2020.04.014 10.1016/j.ensm.2020.06.029 10.1002/aenm.201701963 10.1039/C8TA07240J 10.1016/j.jdent.2008.04.016 10.1002/eem2.12034 10.1016/j.jpowsour.2018.02.062 10.1021/acscentsci.6b00260 10.1039/C8EE02617C |
ContentType | Journal Article |
Copyright | 2022 Zhengzhou University Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2022 Zhengzhou University – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1002/eem2.12282 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Environment Abstracts Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2575-0356 |
EndPage | 864 |
ExternalDocumentID | nyyhjcl_e202203011 10_1002_eem2_12282 EEM212282 |
Genre | article |
GrantInformation_xml | – fundername: Program for Science & Technology Innovation Talents in the Universities of Henan Province funderid: 18HASTIT009 – fundername: National Natural Science Foundation of China funderid: 111174256; 11274100; 51001091; 51571182; 51602094; 52171082; 91233101 |
GroupedDBID | 0R~ 1OC 24P ACCMX ACXQS ALMA_UNASSIGNED_HOLDINGS AVUZU EBS EJD OK1 WIN AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI 2B. 4A8 92I 93N PSX TCJ |
ID | FETCH-LOGICAL-c3362-aa2a20b5e4e5b84f749102cac09400cc9873d4b5466ba579dbab9e8e1dc7516b3 |
IEDL.DBID | 24P |
ISSN | 2575-0356 2575-0348 |
IngestDate | Thu May 29 04:00:40 EDT 2025 Mon Jun 30 12:00:36 EDT 2025 Thu Apr 24 22:58:50 EDT 2025 Tue Jul 01 01:03:05 EDT 2025 Wed Jan 22 16:22:57 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | alloying chemistry resilience to humid air compatibility with high-voltage cathode and lithium anode fast solid lithium ion conductor argyrodite sulfide |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3362-aa2a20b5e4e5b84f749102cac09400cc9873d4b5466ba579dbab9e8e1dc7516b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6647-7600 0000-0003-4436-9689 0000-0003-1498-7929 |
PQID | 2703339591 |
PQPubID | 5251211 |
PageCount | 864 |
ParticipantIDs | wanfang_journals_nyyhjcl_e202203011 proquest_journals_2703339591 crossref_primary_10_1002_eem2_12282 crossref_citationtrail_10_1002_eem2_12282 wiley_primary_10_1002_eem2_12282_EEM212282 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Energy & environmental materials (Hoboken, N.J.) |
PublicationTitle_FL | Energy & Environmental Materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China State Centre for International Cooperation on Designer Low-Carbon&Environmental Materials(CDLCEM),Zhengzhou University,Zhengzhou 450001,China%Zhengzhou Materials Genome Institute(ZMGl),Building 2,Zhongyuanzhigu Xingyang 450100,China State Centre for International Cooperation on Designer Low-Carbon&Environmental Materials(CDLCEM),Zhengzhou University,Zhengzhou 450001,China Zhengzhou Materials Genome Institute(ZMGl),Building 2,Zhongyuanzhigu Xingyang 450100,China%School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: State Centre for International Cooperation on Designer Low-Carbon&Environmental Materials(CDLCEM),Zhengzhou University,Zhengzhou 450001,China%Zhengzhou Materials Genome Institute(ZMGl),Building 2,Zhongyuanzhigu Xingyang 450100,China – name: School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China – name: Zhengzhou Materials Genome Institute(ZMGl),Building 2,Zhongyuanzhigu Xingyang 450100,China%School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China – name: State Centre for International Cooperation on Designer Low-Carbon&Environmental Materials(CDLCEM),Zhengzhou University,Zhengzhou 450001,China |
References | 2017; 5 2017; 2 2020; 20 2020; 120 2019; 11 2019; 10 2019; 12 2000; 88 2019; 58 2019; 14 2008; 36 2014; 26 2020; 16 2014; 25 2011; 10 2019; 18 2009; 113 2020; 11 2003; 19 2013; 6 2020; 19 2020; 8 2018; 6 2010; 22 2018; 8 2013; 15 2018; 3 2019; 410–411 2018; 2 2020; 3 2018; 5 2018; 1 2007; 9 2018; 30 2016; 116 2020; 455 2014; 9 2008; 112 2014; 7 2015; 284 2015; 163 2019; 7 2021; 43 2019; 3 2018; 140 2018; 382 2019; 5 2019; 2 2006; 18 2017; 29 2020; 32 2019; 141 2015; 7 1994; 42 2016; 6 2021; 59 2016; 1 2021; 53 2016; 2 2020; 31 2020; 30 2017; 17 2020; 71 2017; 10 2017; 12 2008; 47 1920; 2010 2020; 27 2013; 135 2016; 28 2019; 493 2017; 300 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 Kong S.‐T. (e_1_2_6_63_1) 1920; 2010 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_79_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_80_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_82_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – volume: 27 start-page: 117 year: 2020 publication-title: Energy Storage Mater. – volume: 2 start-page: 764 year: 2018 publication-title: Joule – volume: 5 start-page: 21846 year: 2017 publication-title: J. Mater. Chem. A – volume: 30 start-page: 1803075 year: 2018 publication-title: Adv. Mater. – volume: 43 start-page: 53 year: 2021 publication-title: Energy Storage Mater. – volume: 3 start-page: 1212 year: 2018 publication-title: ACS Energy Lett. – volume: 2 start-page: 2583 year: 2018 publication-title: Joule – volume: 18 start-page: 2226 year: 2006 publication-title: Adv. Mater. – volume: 58 start-page: 8681 year: 2019 publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 1150 year: 2017 publication-title: Energy Environ. Sci. – volume: 116 start-page: 140 year: 2016 publication-title: Chem. Rev. – volume: 2 start-page: 790 year: 2016 publication-title: ACS Cent. Sci – volume: 382 start-page: 160 year: 2018 publication-title: J. Power Sources – volume: 11 start-page: 1761 year: 2020 publication-title: Nat. Commun. – volume: 19 start-page: 341 year: 2003 publication-title: Langmuir – volume: 88 start-page: 4443 year: 2000 publication-title: J. Appl. Phys. – volume: 15 start-page: 18600 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 2 start-page: 664 year: 2017 publication-title: ACS Energy Lett. – volume: 28 start-page: 266 year: 2016 publication-title: Chem. Mater. – volume: 8 start-page: 1701963 year: 2018 publication-title: Adv. Energy Mater. – volume: 19 start-page: 428 year: 2020 publication-title: Nat. Mater. – volume: 141 start-page: 19002 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 2376 year: 2020 publication-title: J. Mater. Chem. A – volume: 163 start-page: A67 year: 2015 publication-title: J. Electrochem. Soc. – volume: 12 start-page: 194 year: 2017 publication-title: Nat. Nanotechnol. – volume: 29 start-page: 3883 year: 2017 publication-title: Chem. Mater. – volume: 31 start-page: 344 year: 2020 publication-title: Energy Storage Mater. – volume: 300 start-page: 78 year: 2017 publication-title: Solid State Ionics – volume: 112 start-page: 18677 year: 2008 publication-title: J. Phys. Chem. C – volume: 135 start-page: 1167 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 1002 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 28 start-page: 2400 year: 2016 publication-title: Chem. Mater. – volume: 5 start-page: 105 year: 2019 publication-title: Nat. Rev. Mater – volume: 1 start-page: 148 year: 2018 publication-title: Energy Environ. Mater. – volume: 32 start-page: 2000030 year: 2020 publication-title: Adv. Mater. – volume: 113 start-page: 6800 year: 2009 publication-title: J. Phys. Chem. C – volume: 1 start-page: 16042 year: 2016 publication-title: Nat. Energy – volume: 3 start-page: 310 year: 2018 publication-title: Nat. Energy – volume: 20 start-page: 6660 year: 2020 publication-title: Nano Lett. – volume: 59 start-page: 229 year: 2021 publication-title: J. Energ. Chem. – volume: 17 start-page: 3731 year: 2017 publication-title: Nano Lett. – volume: 36 start-page: 683 year: 2008 publication-title: J. Dent. – volume: 8 start-page: 1703644 year: 2018 publication-title: Adv. Energy Mater. – volume: 71 start-page: 104600 year: 2020 publication-title: Nano Energy – volume: 12 start-page: 938 year: 2019 publication-title: Energy Environ. Sci. – volume: 140 start-page: 6767 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 647 year: 2020 publication-title: Batteries Supercaps – volume: 455 start-page: 227988 year: 2020 publication-title: J. Power Sources – volume: 7 start-page: 627 year: 2014 publication-title: Energy Environ. Sci. – volume: 25 start-page: 205 year: 2014 publication-title: J. Inorg. Organomet. Polym. Mater. – volume: 16 start-page: 1906374 year: 2020 publication-title: Small – volume: 2010 start-page: 636 year: 1920 publication-title: Allg. Chem. – volume: 18 start-page: 1105 year: 2019 publication-title: Nat. Mater. – volume: 47 start-page: 755 year: 2008 publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 682 year: 2011 publication-title: Nat. Mater. – volume: 53 start-page: 147 year: 2021 publication-title: J. Energ. Chem. – volume: 284 start-page: 206 year: 2015 publication-title: J. Power Sources – volume: 32 start-page: 2002741 year: 2020 publication-title: Adv. Mater. – volume: 11 start-page: 31991 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 410–411 start-page: 162 year: 2019 publication-title: J. Power Sources – volume: 6 start-page: 148 year: 2013 publication-title: Energy Environ. Sci. – volume: 7 start-page: 5239 year: 2019 publication-title: J. Mater. Chem. A – volume: 6 start-page: 19231 year: 2018 publication-title: J. Mater. Chem. A – volume: 493 start-page: 1326 year: 2019 publication-title: Appl. Surf. Sci. – volume: 26 start-page: 4248 year: 2014 publication-title: Chem. Mater. – volume: 9 start-page: 1486 year: 2007 publication-title: Electrochem. Commun. – volume: 14 start-page: 50 year: 2019 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 618 year: 2014 publication-title: Nat. Nanotechnol. – volume: 42 start-page: 2937 year: 1994 publication-title: Acta Metall. Mater. – volume: 1 start-page: 16030 year: 2016 publication-title: Nat. Energy – volume: 7 start-page: 23685 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 6288 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 22 start-page: 949 year: 2010 publication-title: Chem. Mater. – volume: 2 start-page: 199 year: 2019 publication-title: Electrochem. Energ. Rev. – volume: 30 start-page: 238 year: 2020 publication-title: Energy Storage Mater. – volume: 3 start-page: 187 year: 2019 publication-title: Electrochem. Energ. Rev. – volume: 6 start-page: 1501590 year: 2016 publication-title: Adv. Energy Mater. – volume: 28 start-page: 1853 year: 2016 publication-title: Adv. Mater. – volume: 28 start-page: 2634 year: 2016 publication-title: Chem. Mater. – volume: 3 start-page: 19 year: 2020 publication-title: Energy Environ. Mater. – volume: 120 start-page: 6878 year: 2020 publication-title: Chem. Rev. – volume: 3 start-page: 1252 year: 2019 publication-title: Joule – volume: 10 start-page: 1903311 year: 2019 publication-title: Adv. Energy Mater. – volume: 5 start-page: 1701097 year: 2018 publication-title: Adv. Mater. Interfaces – ident: e_1_2_6_64_1 doi: 10.1016/j.apsusc.2019.07.041 – ident: e_1_2_6_7_1 doi: 10.1002/anie.200703900 – ident: e_1_2_6_15_1 doi: 10.1007/s41918-019-00029-3 – ident: e_1_2_6_27_1 doi: 10.1038/nnano.2014.152 – ident: e_1_2_6_11_1 doi: 10.1021/acsaem.7b00140 – ident: e_1_2_6_50_1 doi: 10.1038/s41563-019-0576-0 – ident: e_1_2_6_75_1 doi: 10.1038/s41565-018-0284-y – ident: e_1_2_6_42_1 doi: 10.1021/acsami.9b10160 – ident: e_1_2_6_12_1 doi: 10.1021/acs.chemrev.0c00101 – ident: e_1_2_6_62_1 doi: 10.1002/smll.201906374 – ident: e_1_2_6_82_1 doi: 10.1016/j.ensm.2020.01.009 – ident: e_1_2_6_5_1 doi: 10.1038/nenergy.2016.42 – ident: e_1_2_6_80_1 doi: 10.1002/aenm.201501590 – ident: e_1_2_6_52_1 doi: 10.1016/j.jechem.2020.04.062 – ident: e_1_2_6_13_1 doi: 10.1021/acs.chemmater.6b00610 – ident: e_1_2_6_68_1 doi: 10.1002/adma.201803075 – ident: e_1_2_6_60_1 doi: 10.1002/anie.201814222 – ident: e_1_2_6_66_1 doi: 10.1021/acsaem.9b00861 – ident: e_1_2_6_3_1 doi: 10.1038/nenergy.2016.30 – ident: e_1_2_6_59_1 doi: 10.1021/jacs.9b08357 – ident: e_1_2_6_20_1 doi: 10.1021/acsami.5b07517 – ident: e_1_2_6_36_1 doi: 10.1016/j.ssi.2016.11.029 – ident: e_1_2_6_57_1 doi: 10.1021/acs.nanolett.0c02489 – ident: e_1_2_6_67_1 doi: 10.1039/C7EE00534B – ident: e_1_2_6_24_1 doi: 10.1039/c3cp51059j – ident: e_1_2_6_40_1 doi: 10.1021/acs.chemmater.5b04940 – ident: e_1_2_6_55_1 doi: 10.1021/jacs.8b03319 – ident: e_1_2_6_74_1 doi: 10.1016/0956-7151(94)90391-3 – ident: e_1_2_6_22_1 doi: 10.1002/aenm.201703644 – ident: e_1_2_6_2_1 doi: 10.1021/ja3091438 – ident: e_1_2_6_51_1 doi: 10.1002/adma.200502604 – ident: e_1_2_6_33_1 doi: 10.1002/adma.202002741 – ident: e_1_2_6_47_1 doi: 10.1007/s10904-014-0127-8 – ident: e_1_2_6_19_1 doi: 10.1021/acs.nanolett.7b01020 – ident: e_1_2_6_32_1 doi: 10.1016/j.joule.2018.11.012 – ident: e_1_2_6_46_1 doi: 10.1002/aenm.201903311 – ident: e_1_2_6_30_1 doi: 10.1002/adma.201504526 – ident: e_1_2_6_79_1 doi: 10.1002/adma.202000030 – ident: e_1_2_6_83_1 doi: 10.1021/jp810923r – ident: e_1_2_6_41_1 doi: 10.1016/j.ensm.2021.08.028 – ident: e_1_2_6_18_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_6_61_1 doi: 10.1016/j.jpowsour.2018.11.016 – ident: e_1_2_6_21_1 doi: 10.1021/acs.chemmater.6b04990 – ident: e_1_2_6_31_1 doi: 10.1016/j.jpowsour.2020.227988 – ident: e_1_2_6_72_1 doi: 10.1002/batt.201900218 – ident: e_1_2_6_16_1 doi: 10.1007/s41918-019-00058-y – ident: e_1_2_6_69_1 doi: 10.1039/C9TA10482H – ident: e_1_2_6_38_1 doi: 10.1002/eem2.12017 – ident: e_1_2_6_44_1 doi: 10.1016/j.jechem.2020.11.008 – ident: e_1_2_6_17_1 doi: 10.1039/C7TA06986C – ident: e_1_2_6_39_1 doi: 10.1016/j.elecom.2007.02.008 – ident: e_1_2_6_6_1 doi: 10.1021/acs.chemrev.5b00563 – ident: e_1_2_6_70_1 doi: 10.1021/la026208a – ident: e_1_2_6_45_1 doi: 10.1039/C8TA11151K – ident: e_1_2_6_77_1 doi: 10.1021/acsenergylett.8b00453 – ident: e_1_2_6_78_1 doi: 10.1038/s41563-019-0438-9 – ident: e_1_2_6_84_1 doi: 10.1021/jp8043797 – ident: e_1_2_6_4_1 doi: 10.1038/nmat3066 – ident: e_1_2_6_28_1 doi: 10.1016/j.joule.2018.02.001 – ident: e_1_2_6_49_1 doi: 10.1021/cm901819c – ident: e_1_2_6_29_1 doi: 10.1016/j.nanoen.2020.104600 – ident: e_1_2_6_48_1 doi: 10.1021/cm5016959 – ident: e_1_2_6_58_1 doi: 10.1039/C2EE23355J – ident: e_1_2_6_81_1 doi: 10.1063/1.1289788 – ident: e_1_2_6_1_1 doi: 10.1021/acs.chemmater.5b04082 – ident: e_1_2_6_26_1 doi: 10.1021/acsenergylett.6b00650 – ident: e_1_2_6_56_1 doi: 10.1038/s41467-020-15643-9 – ident: e_1_2_6_10_1 doi: 10.1149/2.0061602jes – ident: e_1_2_6_35_1 doi: 10.1038/s41560-018-0096-1 – ident: e_1_2_6_8_1 doi: 10.1039/C3EE41655K – ident: e_1_2_6_54_1 doi: 10.1016/j.jpowsour.2015.02.160 – ident: e_1_2_6_53_1 doi: 10.1016/j.joule.2019.02.006 – ident: e_1_2_6_14_1 doi: 10.1038/s41578-019-0157-5 – volume: 2010 start-page: 636 year: 1920 ident: e_1_2_6_63_1 publication-title: Allg. Chem. – ident: e_1_2_6_76_1 doi: 10.1002/admi.201701097 – ident: e_1_2_6_65_1 doi: 10.1016/j.ensm.2020.04.014 – ident: e_1_2_6_23_1 doi: 10.1016/j.ensm.2020.06.029 – ident: e_1_2_6_34_1 doi: 10.1002/aenm.201701963 – ident: e_1_2_6_9_1 doi: 10.1039/C8TA07240J – ident: e_1_2_6_73_1 doi: 10.1016/j.jdent.2008.04.016 – ident: e_1_2_6_37_1 doi: 10.1002/eem2.12034 – ident: e_1_2_6_71_1 doi: 10.1016/j.jpowsour.2018.02.062 – ident: e_1_2_6_25_1 doi: 10.1021/acscentsci.6b00260 – ident: e_1_2_6_43_1 doi: 10.1039/C8EE02617C |
SSID | ssj0002013419 |
Score | 2.4916682 |
Snippet | While argyrodite sulfides are getting more and more attention as highly promising solid‐state electrolytes (SSEs) for solid batteries, they also suffer from... While argyrodite sulfides are getting more and more attention as highly promising solid-state electrolytes(SSEs)for solid batteries,they also suffer from the... |
SourceID | wanfang proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 852 |
SubjectTerms | alloying chemistry argyrodite sulfide Cathodes Cathodic protection Compatibility compatibility with high‐voltage cathode and lithium anode Electric potential Electrochemistry Electrode materials Electrodes Electrolytes Electrolytic cells fast solid lithium ion conductor Interface stability Interphase Ion currents Lithium compounds Molten salt electrolytes resilience to humid air Solid electrolytes Sulfides Synergistic effect Voltage |
Title | Enabling Argyrodite Sulfides as Superb Solid‐State Electrolyte with Remarkable Interfacial Stability Against Electrodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12282 https://www.proquest.com/docview/2703339591 https://d.wanfangdata.com.cn/periodical/nyyhjcl-e202203011 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9RAEF9qi-CLKCqe1rKgLwqxyf5LFnw5JKUIFbGeFF_C7GZznqZp6bWUvPUj-Bn9JM5scncURPBtSWZ3YSY788uw8xvGXkkLRS28StIgm0Q1KSQQGkiI264wOXoHQ8XJRx_N4Ux9ONEnW-zdqhZm4IdYJ9zoZER_TQcc3HJ_Qxoawql4mwn8ZbjDdqi2li70CfVpnWHB0EZkZdRdDjFJkkpt1vykYn8z_XZE2sDMu9fQNdDNb8PWGHcOHrD7I2Dk08HCD9lW6B6xvqSSJ4w6-Hzeow9E4MiPr9pmUYclhyWOz1Ff_PisXdS_b35FSMnLoeVN2-OY8q_8cziFi59UPMVjZrABSqBzlI5XZns-ncMC8eNqJi7-mM0Oyi_vD5OxiULiJVVEAQgQqdNBBe0K1eQKAYLw4Ik4L_XeFrmsldPKGAc6t7UDZ0MRstrnOjNOPmHb3VkXnjIug7O5g0wYG5QOFurcuKBsLr1wGOcm7PVKkZUfGcap0UVbDdzIoiKlV1HpE_ZyLXs-8Gr8VWp3ZY9qPFvLSqCTktJqm-Eio402b7u-__7Dt1UQVENM7mvC3kT7_WOfqiyPRBw9-x_h5-we7TLc3t1l25cXV-EFYpRLtxc_xT22M_06-zb7A9B95KQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKKwSXCgSIpQUsAQeQQhP_JJsDhxWk2tJuD7SLKi7GdibbhTStuq2q3HgEXoSX4kmYSbK7qoSQOPRmJRM78nhmPo88nxl7KVPbz4VXQQiyCFQR2sBCYQPituvHCXqHmIqTR_vxcKw-HumjFfZrXgvT8kMsEm5kGY2_JgOnhPTWkjUU4ES8jQTuGbozlbtQX-GObfZu5wOq95UQ29nh-2HQXSoQeEkVQtYKK0KnQYF2fVUkCgOm8NYTkVzoPe7BZa6cVnHsrE7S3FmXQh-i3Cc6ip3Efm-xNYJRaERrg8_jL-NFUgejKfGj0YV2CIOCUOp4QYkqtpY_fD0ILpHt7StbFbaaXEfKTajbvsfWO4zKB-2ius9WoHrA6oyqrDDQ4fNJjW4XsSo_uCyLaQ4zbmfYPkMV8YPTcpr__vGzQbE8a2_ZKWtsU8qXf4ITe_6d6rV4k4wsLOXsOUo3p3RrPpjYKULW-ZfY-UM2vpEpfsRWq9MKHjMuwaWJs5GIU1AaUpsnsQOVJtILh6G1x17PJ9L4jtSc7tYoTUvHLAxNumkmvcdeLGTPWiqPv0ptzvVhOnOeGYF-UcpUpxF20ulo-baq6-NvvjQgqGyZPGaPvWn0949xTJaNRNN68j_Cz9md4eFoz-zt7O9usLs0Ynt4eJOtXpxfwlOESBfuWbcwOft607bwBw6LIiw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbKViAuCASIhQKWgANIoYn_sj5wWNGsWkorRFlUcXFtZ7IspOmq26rKjUfgQXgqnoRxkt1VJYTEoTcrmdjRjOfHI883hDzn2g5y5kUUAy8iUcQ2slDYKGDbDVSK1kGF4uS9fbU9Fu8O5eEa-bWohWnxIZYJt6AZjb0OCj7Li80VaCjAMXudMDwydFcqd6G-wAPb_M3OFkr3BWOj7NPb7ajrKRB5HgqErGWWxU6CAOkGokgF-kvmrQ84crH3eATnuXBSKOWsTHXurNMwgCT3qUyU4zjvNbIu0Q3GPbI-_Dz-Ml7mdNCZBni00M8Oo6Ao5lItEVHZ5uqHL_vAVWB7_cJWha0mlwPlxtONbpNbXYhKh-2eukPWoLpL6iwUWaGfw-eTGq0uhqr04LwspjnMqZ3jeIYSogcn5TT__eNnE8TSrG2yU9Y4Dhlf-hGO7en3UK5Fm1xkYUPKniJ1c0m3psOJnWLEuvgSJ79HxlfC4vukV51U8IBQDk6nziZMaRAStM1T5UDolHvm0LP2ycsFI43vMM1Da43StGjMzASmm4bpffJsSTtrkTz-SrWxkIfptHluGJpFzrXUCU7SyWj1tqrrr998aYCFquVgMPvkVSO_f6xjsmyPNaOH_0P8lNz4sDUy73f2dx-Rm2HB9urwBumdnZ7DYwyQztyTbl9ScnTVqvAH7ywhTA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enabling+Argyrodite+Sulfides+as+Superb+Solid%E2%80%90State+Electrolyte+with+Remarkable+Interfacial+Stability+Against+Electrodes&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Xu%2C+Hongjie&rft.au=Cao%2C+Guoqin&rft.au=Shen%2C+Yonglong&rft.au=Yu%2C+Yuran&rft.date=2022-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=2575-0356&rft.volume=5&rft.issue=3&rft.spage=852&rft.epage=864&rft_id=info:doi/10.1002%2Feem2.12282&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnyyhjcl-e%2Fnyyhjcl-e.jpg |