Intuitionistic fuzzy normed prime and maximal ideals
Motivated by the new notion of intuitionistic fuzzy normed ideal, we present and investigate some associated properties of intuitionistic fuzzy normed ideals. We describe the intrinsic product of any two intuitionistic fuzzy normed subsets and show that the intrinsic product of intuitionistic fuzzy...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 10; pp. 10565 - 10580 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2021613 |
Cover
Abstract | Motivated by the new notion of intuitionistic fuzzy normed ideal, we present and investigate some associated properties of intuitionistic fuzzy normed ideals. We describe the intrinsic product of any two intuitionistic fuzzy normed subsets and show that the intrinsic product of intuitionistic fuzzy normed ideals is a subset of the intersection of these ideals. We specify the notions of intuitionistic fuzzy normed prime ideal and intuitionistic fuzzy normed maximal ideal, we present the conditions under which a given intuitionistic fuzzy normed ideal is considered to be an intuitionistic fuzzy normed prime (maximal) ideal. In addition, the relation between the intuitionistic characteristic function and prime and maximal ideals is generalized. Finally, we characterize relevant properties of intuitionistic fuzzy normed prime ideals and intuitionistic fuzzy normed maximal ideals. |
---|---|
AbstractList | Motivated by the new notion of intuitionistic fuzzy normed ideal, we present and investigate some associated properties of intuitionistic fuzzy normed ideals. We describe the intrinsic product of any two intuitionistic fuzzy normed subsets and show that the intrinsic product of intuitionistic fuzzy normed ideals is a subset of the intersection of these ideals. We specify the notions of intuitionistic fuzzy normed prime ideal and intuitionistic fuzzy normed maximal ideal, we present the conditions under which a given intuitionistic fuzzy normed ideal is considered to be an intuitionistic fuzzy normed prime (maximal) ideal. In addition, the relation between the intuitionistic characteristic function and prime and maximal ideals is generalized. Finally, we characterize relevant properties of intuitionistic fuzzy normed prime ideals and intuitionistic fuzzy normed maximal ideals. |
Author | Alhaleem, Nour Abed Ahmad, Abd Ghafur |
Author_xml | – sequence: 1 givenname: Nour Abed surname: Alhaleem fullname: Alhaleem, Nour Abed – sequence: 2 givenname: Abd Ghafur surname: Ahmad fullname: Ahmad, Abd Ghafur |
BookMark | eNpNkM1KAzEUhYNUsNbufIB5AKfOze9kKcWfQsGNrkPmJtGUzkQyU7B9eqe2iKtzuRw-Dt81mXSp84TcQrVgmvH71g6fC1pRkMAuyJRyxUqp63ry774i877fVNXYopwqPiV81Q27OMTUxX6IWITd4bAvupRb74qvHFtf2M4Vrf2Ord0W0Xm77W_IZRjDz885I-9Pj2_Ll3L9-rxaPqxLZEwMZWgghIYpri0ory3WNVVinOcaVA6Ai8bKWtUAIDRHJZGiBe0dDwBeBjYjqxPXJbsxxzU2702y0fw-Uv4wNo-rt97IQBE9-qpBwR1qzYVDJzEEpwV1YmTdnViYU99nH_54UJmjQHMUaM4C2Q9S6GZB |
Cites_doi | 10.1016/0165-0114(90)90066-F 10.1016/S0019-9958(65)90241-X 10.1063/1.5028033 10.3390/math6070123 10.3390/sym10100515 10.7546/nifs.2021.27.1.60-71 10.1016/0165-0114(91)90171-L 10.3390/math8091594 10.1016/0165-0114(87)90155-2 10.1016/S0165-0114(86)80034-3 10.3233/JIFS-161747 10.1016/0165-0114(91)90038-R 10.1007/978-3-7908-1870-3_1 10.1155/2013/287382 10.1016/0022-247X(88)90009-1 10.1007/978-3-7908-1870-3_2 |
ContentType | Journal Article |
CorporateAuthor | Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia |
CorporateAuthor_xml | – name: Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2021613 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 10580 |
ExternalDocumentID | oai_doaj_org_article_6f2ccece0bc54dc9945dcd6cffd952d5 10_3934_math_2021613 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c335t-fb1ffb3749a17e9ac88275613dbc7d1145ba6878111594c76c2ca19ed4f11e6f3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:19:35 EDT 2025 Tue Jul 01 03:56:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c335t-fb1ffb3749a17e9ac88275613dbc7d1145ba6878111594c76c2ca19ed4f11e6f3 |
OpenAccessLink | https://doaj.org/article/6f2ccece0bc54dc9945dcd6cffd952d5 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6f2ccece0bc54dc9945dcd6cffd952d5 crossref_primary_10_3934_math_2021613 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2021 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2021613-19 key-10.3934/math.2021613-18 key-10.3934/math.2021613-17 key-10.3934/math.2021613-16 key-10.3934/math.2021613-15 key-10.3934/math.2021613-14 key-10.3934/math.2021613-13 key-10.3934/math.2021613-12 key-10.3934/math.2021613-11 key-10.3934/math.2021613-10 key-10.3934/math.2021613-20 key-10.3934/math.2021613-9 key-10.3934/math.2021613-3 key-10.3934/math.2021613-4 key-10.3934/math.2021613-1 key-10.3934/math.2021613-2 key-10.3934/math.2021613-7 key-10.3934/math.2021613-8 key-10.3934/math.2021613-5 key-10.3934/math.2021613-6 key-10.3934/math.2021613-28 key-10.3934/math.2021613-27 key-10.3934/math.2021613-26 key-10.3934/math.2021613-25 key-10.3934/math.2021613-24 key-10.3934/math.2021613-23 key-10.3934/math.2021613-22 key-10.3934/math.2021613-21 |
References_xml | – ident: key-10.3934/math.2021613-22 doi: 10.1016/0165-0114(90)90066-F – ident: key-10.3934/math.2021613-13 – ident: key-10.3934/math.2021613-28 doi: 10.1016/S0019-9958(65)90241-X – ident: key-10.3934/math.2021613-15 – ident: key-10.3934/math.2021613-9 doi: 10.1063/1.5028033 – ident: key-10.3934/math.2021613-4 doi: 10.3390/math6070123 – ident: key-10.3934/math.2021613-11 – ident: key-10.3934/math.2021613-17 doi: 10.3390/sym10100515 – ident: key-10.3934/math.2021613-12 doi: 10.7546/nifs.2021.27.1.60-71 – ident: key-10.3934/math.2021613-18 – ident: key-10.3934/math.2021613-19 doi: 10.1016/0165-0114(91)90171-L – ident: key-10.3934/math.2021613-21 – ident: key-10.3934/math.2021613-25 – ident: key-10.3934/math.2021613-10 doi: 10.3390/math8091594 – ident: key-10.3934/math.2021613-23 – ident: key-10.3934/math.2021613-8 – ident: key-10.3934/math.2021613-14 – ident: key-10.3934/math.2021613-24 doi: 10.1016/0165-0114(87)90155-2 – ident: key-10.3934/math.2021613-7 doi: 10.1016/S0165-0114(86)80034-3 – ident: key-10.3934/math.2021613-3 doi: 10.3233/JIFS-161747 – ident: key-10.3934/math.2021613-16 doi: 10.1016/0165-0114(91)90038-R – ident: key-10.3934/math.2021613-6 doi: 10.1007/978-3-7908-1870-3_1 – ident: key-10.3934/math.2021613-20 – ident: key-10.3934/math.2021613-2 doi: 10.1155/2013/287382 – ident: key-10.3934/math.2021613-27 doi: 10.1016/0022-247X(88)90009-1 – ident: key-10.3934/math.2021613-1 – ident: key-10.3934/math.2021613-26 – ident: key-10.3934/math.2021613-5 doi: 10.1007/978-3-7908-1870-3_2 |
SSID | ssj0002124274 |
Score | 2.1380987 |
Snippet | Motivated by the new notion of intuitionistic fuzzy normed ideal, we present and investigate some associated properties of intuitionistic fuzzy normed ideals.... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 10565 |
SubjectTerms | intuitionistic fuzzy normed ideal intuitionistic fuzzy normed maximal ideal intuitionistic fuzzy normed prime ideal intuitionistic fuzzy normed ring |
Title | Intuitionistic fuzzy normed prime and maximal ideals |
URI | https://doaj.org/article/6f2ccece0bc54dc9945dcd6cffd952d5 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ9YXe9Dj0s3mtTmqWKpQTxZ6W5LJBHroWmwL2l9vkl1Lb168hhCSb2Dmm2TyDSF3IWQ4oWz0fgXmvIQqr9DbXHNDMT78Yfq3Nn6Towl_nYrpTquvWBPWygO3wA2kLwEQsLAguAOtuXDgJHjvtChdUi8tdLGTTEUfHBwyD_lWW-nONOODwP_i20NJUyeDnRi0I9WfYsrwiBx2ZDB7aDdxTPawOSEH462S6vKU8JcQFFJZVVJUzvx6s_nOmsA00WWLqM2fmcZlc_M1m4elZi4Qv-UZmQyf359GedfpIAfGxCr3lnpvmeLaUIXaQOC9KlJ7Z0G5kLIIa2QVP4UG9sFBSSjBUI2Oe0pRenZOes1HgxckcwyAKS1RY6AWaIw0llHpKqF4VQDtk_vfs9eLVtCiDolAxKiOGNUdRn3yGIHZzoky1GkgGKfujFP_ZZzL_1jkiuzHPbX3Htekt_pc401gAit7m4z-A3N6tKQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intuitionistic+fuzzy+normed+prime+and+maximal+ideals&rft.jtitle=AIMS+mathematics&rft.au=Nour+Abed+Alhaleem&rft.au=Abd+Ghafur+Ahmad&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=10&rft.spage=10565&rft.epage=10580&rft_id=info:doi/10.3934%2Fmath.2021613&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6f2ccece0bc54dc9945dcd6cffd952d5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |