Oxygen vacancies assisted LaFeO3 derived from metal organic frameworks endows a practical HCHO sensor with excellent sensing characteristics

[Display omitted] •MOFs-derived oxygen vacancies-enriched LaFeO3 was designed via a fast and scalable fabrication approach.•The resultant M−LaFeO3 gas sensor exhibit excellent HCHO sensing performance at a low operating temperature of 160°C.•The increased oxygen vacancies play a vital role in promot...

Full description

Saved in:
Bibliographic Details
Published inJournal of industrial and engineering chemistry (Seoul, Korea) Vol. 126; pp. 501 - 509
Main Authors Guo, Lulu, Zhao, Shushu, Yang, Guimao, Gao, Lifeng, Wu, Yanhong, Zhang, Xuguang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 25.10.2023
한국공업화학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •MOFs-derived oxygen vacancies-enriched LaFeO3 was designed via a fast and scalable fabrication approach.•The resultant M−LaFeO3 gas sensor exhibit excellent HCHO sensing performance at a low operating temperature of 160°C.•The increased oxygen vacancies play a vital role in promoting the adsorption and activation of O2 and HCHO molecules.•M−LaFeO3 sensor shows excellent application prospect in food safety assessment. Perovskite oxide semiconductors have attracted tremendous interest in gas sensing due to their promising properties of tunable active sites, excellent catalytic ability and good structural stability. Nevertheless, the rapid synthesis of perovskite oxides and controlled regulation of their surface oxygen vacancies remains a great challenge. Herein, we report a novel metal–organic frameworks (MOFs) self-template strategy for the rapid and large-scale preparation of LaFeO3 nanoparticles (M−LaFeO3) with abundant oxygen vacancies. Benefit from the introduction of oxygen vacancies, the resultant M−LaFeO3 gas sensor exhibit excellent formaldehyde (HCHO) sensing performance at a low operating temperature of 160 °C, including high sensitivity (Rg/Ra = 8.9 @ 100 ppm), fast response/recovery rate (53 s/32 s), low detection limit (1 ppm) and excellent selectivity. Comprehensive density functional theory (DFT) calculation and spectral characterizations reveal that oxygen vacancies play a vital role in promoting the adsorption and activation of O2 and HCHO molecules, and accelerate the chemical reaction on the sensing materials surface. Most importantly, it proves the promising application of M−LaFeO3 sensor in food safety assessment. This work not only provides a simple strategy for constructing oxygen vacancies enriched LaFeO3, but also demonstrates the application potential of LaFeO3-based gas sensors in the field of formaldehyde detection.
AbstractList Perovskite oxide semiconductors have attracted tremendous interest in gas sensing due to their promisingproperties of tunable active sites, excellent catalytic ability and good structural stability. Nevertheless, the rapid synthesis of perovskite oxides and controlled regulation of their surface oxygenvacancies remains a great challenge. Herein, we report a novel metal–organic frameworks (MOFs) selftemplatestrategy for the rapid and large-scale preparation of LaFeO3 nanoparticles (MLaFeO3) withabundant oxygen vacancies. Benefit from the introduction of oxygen vacancies, the resultantMLaFeO3 gas sensor exhibit excellent formaldehyde (HCHO) sensing performance at a low operatingtemperature of 160 C, including high sensitivity (Rg/Ra = 8.9 @ 100 ppm), fast response/recovery rate(53 s/32 s), low detection limit (1 ppm) and excellent selectivity. Comprehensive density functional theory(DFT) calculation and spectral characterizations reveal that oxygen vacancies play a vital role in promotingthe adsorption and activation of O2 and HCHO molecules, and accelerate the chemical reaction onthe sensing materials surface. Most importantly, it proves the promising application of MLaFeO3 sensorin food safety assessment. This work not only provides a simple strategy for constructing oxygen vacanciesenriched LaFeO3, but also demonstrates the application potential of LaFeO3-based gas sensors in thefield of formaldehyde detection. KCI Citation Count: 10
[Display omitted] •MOFs-derived oxygen vacancies-enriched LaFeO3 was designed via a fast and scalable fabrication approach.•The resultant M−LaFeO3 gas sensor exhibit excellent HCHO sensing performance at a low operating temperature of 160°C.•The increased oxygen vacancies play a vital role in promoting the adsorption and activation of O2 and HCHO molecules.•M−LaFeO3 sensor shows excellent application prospect in food safety assessment. Perovskite oxide semiconductors have attracted tremendous interest in gas sensing due to their promising properties of tunable active sites, excellent catalytic ability and good structural stability. Nevertheless, the rapid synthesis of perovskite oxides and controlled regulation of their surface oxygen vacancies remains a great challenge. Herein, we report a novel metal–organic frameworks (MOFs) self-template strategy for the rapid and large-scale preparation of LaFeO3 nanoparticles (M−LaFeO3) with abundant oxygen vacancies. Benefit from the introduction of oxygen vacancies, the resultant M−LaFeO3 gas sensor exhibit excellent formaldehyde (HCHO) sensing performance at a low operating temperature of 160 °C, including high sensitivity (Rg/Ra = 8.9 @ 100 ppm), fast response/recovery rate (53 s/32 s), low detection limit (1 ppm) and excellent selectivity. Comprehensive density functional theory (DFT) calculation and spectral characterizations reveal that oxygen vacancies play a vital role in promoting the adsorption and activation of O2 and HCHO molecules, and accelerate the chemical reaction on the sensing materials surface. Most importantly, it proves the promising application of M−LaFeO3 sensor in food safety assessment. This work not only provides a simple strategy for constructing oxygen vacancies enriched LaFeO3, but also demonstrates the application potential of LaFeO3-based gas sensors in the field of formaldehyde detection.
Author Zhao, Shushu
Guo, Lulu
Yang, Guimao
Wu, Yanhong
Zhang, Xuguang
Gao, Lifeng
Author_xml – sequence: 1
  givenname: Lulu
  orcidid: 0000-0001-5101-884X
  surname: Guo
  fullname: Guo, Lulu
  email: llguo@wfmc.edu.cn
  organization: Affiliated Hospital of Weifang Medical University, Weifang, China
– sequence: 2
  givenname: Shushu
  surname: Zhao
  fullname: Zhao, Shushu
  organization: Affiliated Hospital of Weifang Medical University, Weifang, China
– sequence: 3
  givenname: Guimao
  surname: Yang
  fullname: Yang, Guimao
  organization: Affiliated Hospital of Weifang Medical University, Weifang, China
– sequence: 4
  givenname: Lifeng
  surname: Gao
  fullname: Gao, Lifeng
  organization: Affiliated Hospital of Weifang Medical University, Weifang, China
– sequence: 5
  givenname: Yanhong
  surname: Wu
  fullname: Wu, Yanhong
  organization: Affiliated Hospital of Weifang Medical University, Weifang, China
– sequence: 6
  givenname: Xuguang
  surname: Zhang
  fullname: Zhang, Xuguang
  organization: Affiliated Hospital of Weifang Medical University, Weifang, China
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003010821$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kcFqGzEQhkVJoUnaF-hJ58JutdKuvAu9BNPUAYOhpJCbGM-OHNlrKUjCTt4hD1057qmHXDSa4f8k-OaKXfjgibGvjagb0ejv23rrCGsppKqFroXqP7DLpp_paja0DxflLqWuRK8fPrGrlLZC6JLRl-x19fyyIc8PgODRUeKQkkuZRr6EW1opPlJ0h9LaGPZ8TxkmHuIGvMMygj0dQ9wlTn4MxwLzpwiYHZbUYr5Y8UQ-hciPLj9yekaaJvL5ber8huMjnOLlh1SY9Jl9tDAl-vKvXrM_tz_v54tqufp1N79ZVqhUlyurwUoUbSut7lBJGlDM-q4fQCnblHM9KL3ulB2KjtbqthmGbgZ6rTulVaPUNft2ftdHa3boTAD3VjfB7KK5-X1_ZxqhpOykLmF5DmMMKUWy5im6PcSXEjEn-WZrTvLNSb4R2hSxBer_g9BlyC74HMFN76M_zigVAwdH0aSyF480ukiYzRjce_hfvjyjnA
CitedBy_id crossref_primary_10_1016_j_ceramint_2024_12_516
crossref_primary_10_1016_j_snb_2024_136747
crossref_primary_10_1016_j_snb_2024_136749
crossref_primary_10_1016_j_cap_2024_05_003
crossref_primary_10_1016_j_jiec_2024_04_052
crossref_primary_10_3390_nano14040359
crossref_primary_10_1039_D4MH01306A
crossref_primary_10_1016_j_vacuum_2025_114243
crossref_primary_10_1038_s41598_024_54207_5
crossref_primary_10_1016_j_est_2024_112652
crossref_primary_10_1039_D4TC03614J
crossref_primary_10_1016_j_talanta_2025_127586
crossref_primary_10_1016_j_jallcom_2023_171623
crossref_primary_10_1016_j_snb_2024_137010
crossref_primary_10_1016_j_jallcom_2024_174862
crossref_primary_10_1016_j_surfin_2025_105870
crossref_primary_10_1016_j_snb_2024_135810
crossref_primary_10_1016_j_microc_2025_113140
crossref_primary_10_1016_j_snb_2024_136158
Cites_doi 10.1002/adma.202105276
10.1002/adfm.202215099
10.1002/adma.202206842
10.1002/smll.202201131
10.1039/D2TA07048K
10.1016/j.snb.2019.127037
10.1002/adfm.201903128
10.1016/j.cej.2020.126890
10.1021/acssensors.2c00228
10.1021/acsami.1c22701
10.1038/s41467-021-25290-3
10.1002/adma.202203671
10.1016/j.apsusc.2022.153085
10.1038/s41467-022-30958-5
10.1016/j.snb.2019.03.012
10.1002/adfm.201903012
10.1002/anie.201901987
10.1016/j.cej.2022.137736
10.1016/j.snb.2019.126845
10.1021/jacs.6b09167
10.1016/j.physe.2014.03.018
10.1016/j.snb.2018.08.129
10.1016/j.snb.2022.132558
ContentType Journal Article
Copyright 2023 The Korean Society of Industrial and Engineering Chemistry
Copyright_xml – notice: 2023 The Korean Society of Industrial and Engineering Chemistry
DBID AAYXX
CITATION
ACYCR
DOI 10.1016/j.jiec.2023.06.038
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1876-794X
EndPage 509
ExternalDocumentID oai_kci_go_kr_ARTI_10322526
10_1016_j_jiec_2023_06_038
S1226086X2300391X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9ZL
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
GBLVA
HH5
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SSG
SSZ
T5K
~G-
2WC
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
EJD
HZ~
MZR
OK1
RIG
SSH
ZY4
ZZE
ACYCR
ID FETCH-LOGICAL-c335t-f6af2c0442f65c32e9c078589a33f19a3b936b53f90234f6419957a6b65363133
IEDL.DBID .~1
ISSN 1226-086X
IngestDate Sun Jun 15 03:10:26 EDT 2025
Tue Jul 01 03:34:30 EDT 2025
Thu Apr 24 23:05:42 EDT 2025
Fri Feb 23 02:35:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords HCHO sensing
Perovskite oxides
Metal-organic frameworks
Oxygen vacancy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c335t-f6af2c0442f65c32e9c078589a33f19a3b936b53f90234f6419957a6b65363133
ORCID 0000-0001-5101-884X
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10322526
crossref_primary_10_1016_j_jiec_2023_06_038
crossref_citationtrail_10_1016_j_jiec_2023_06_038
elsevier_sciencedirect_doi_10_1016_j_jiec_2023_06_038
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-25
PublicationDateYYYYMMDD 2023-10-25
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-25
  day: 25
PublicationDecade 2020
PublicationTitle Journal of industrial and engineering chemistry (Seoul, Korea)
PublicationYear 2023
Publisher Elsevier B.V
한국공업화학회
Publisher_xml – name: Elsevier B.V
– name: 한국공업화학회
References Kim, Hwang, Koh, Lee, Lee (b0010) 2022; 34
Wang, Zhou, Wang, Gong, Liu, Zhou (b0145) 2023; 109
Cai, Luo, Hu, Xue, Wang, Xu (b0155) 2022; 7
Guo, Shen, Ma, Ma, Wang, Yuan (b0160) 2022; 906
Xu, Zhang, Li, Yin, Yin, Zhu, Chen, Wang, Bie (b0020) 2019; 289
Guo, Liu, Zhang, Sui (b0110) 2022; 605
Zhang, Song, Han, Wang (b0060) 2014; 63
Gao, Zhang (b0040) 2018; 277
Zhang, Zhang, Jiang, Guo, Qu, Shimakawa, Yang (b0045) 2021; 413
Y. Jo, Y. Jo, J. Lee, H. Jang, I. Hwang, D. Yoo, Adv. Mater. DOI: 10.1002/adma.202206842.
Jo, Jeong, Moon, Jo, Yoon, Lee (b0035) 2022; 12
Yu, Gong, Gao, Fan, Li, Huang, Chang, Wang, He (b0105) 2022; 449
Kim, Jeong, Sharma, Myung (b0050) 2022; 14
Xiao, Zhang, Ma, Yang, Gao, Wang, Jia (b0055) 2022; 371
Yang, Ma, Qiao, Cui, Jia, Wang (b0075) 2020; 313
Yu, Dong, Wang, Li, Zhu, Yang (b0095) 2022; 10
He, Huang, Goodsell, Angerhofer, Wei (b0130) 2019; 58
Liu, He, Sun, Huang, Li (b0150) 2022; 365
Zhang, Ding, Xu, Wang, Shao, Sun, Lin (b0100) 2020; 386
Bao, Liu, Sun, Huang, Hu, Da, Ji, Xi, Yan (b0120) 2022; 18
Wei, Wei, Li, Li, Shi, Ouyang, Qi, Philips, Yuan (b0140) 2022; 13
Al-Hashem, Akbar, Morris (b0065) 2019; 301
Yang, Zhang, Chen (b0085) 2019; 300
Zhang, Lv, Guo (b0165) 2021; 34
Jang, Lee, Choi, Koo, Kim, Shin, Park, Kim (b0030) 2019; 29
H. Liang, X. Guo, L. Guo, S. Liu, Q. Zhan, H. Yang, H. Li, N. de Rooij, Y. Lee, P. French, Y. Wang, G. Zhou, Adv. Funct. Mater. DOI: 10.1002/adfm.202215099.
Kim, Jang, Kim, Kang, Cho, Jeong, Kim (b0025) 2019; 29
Li, Ma, Mou, Luo, Ma, Lu, Cui, Li, Liu, Sun (b0125) 2022; 449
Shanmugasundaram, Manorama, Kim, Jeong, Lee (b0005) 2022; 448
Koo, Choi, Kim, Jang, Tuller, Kim (b0090) 2016; 138
Zhu, Wang, Liu, Chen, Xu, Ma, Wang, Liang, Li, Yan (b0070) 2022; 590
Jing, Cao, Ma, Li, Qu, Xie, Jin, Zhao (b0115) 2021; 407
Li, Luo, Liu, Wang, Gao, Duan (b0135) 2022; 432
Zhang (10.1016/j.jiec.2023.06.038_b0165) 2021; 34
Li (10.1016/j.jiec.2023.06.038_b0135) 2022; 432
Zhu (10.1016/j.jiec.2023.06.038_b0070) 2022; 590
Zhang (10.1016/j.jiec.2023.06.038_b0100) 2020; 386
Zhang (10.1016/j.jiec.2023.06.038_b0060) 2014; 63
Yang (10.1016/j.jiec.2023.06.038_b0075) 2020; 313
Xiao (10.1016/j.jiec.2023.06.038_b0055) 2022; 371
Xu (10.1016/j.jiec.2023.06.038_b0020) 2019; 289
Jing (10.1016/j.jiec.2023.06.038_b0115) 2021; 407
Jo (10.1016/j.jiec.2023.06.038_b0035) 2022; 12
Guo (10.1016/j.jiec.2023.06.038_b0110) 2022; 605
10.1016/j.jiec.2023.06.038_b0080
Yu (10.1016/j.jiec.2023.06.038_b0095) 2022; 10
Kim (10.1016/j.jiec.2023.06.038_b0025) 2019; 29
Wang (10.1016/j.jiec.2023.06.038_b0145) 2023; 109
Kim (10.1016/j.jiec.2023.06.038_b0050) 2022; 14
Li (10.1016/j.jiec.2023.06.038_b0125) 2022; 449
Zhang (10.1016/j.jiec.2023.06.038_b0045) 2021; 413
Bao (10.1016/j.jiec.2023.06.038_b0120) 2022; 18
He (10.1016/j.jiec.2023.06.038_b0130) 2019; 58
Jang (10.1016/j.jiec.2023.06.038_b0030) 2019; 29
Kim (10.1016/j.jiec.2023.06.038_b0010) 2022; 34
Cai (10.1016/j.jiec.2023.06.038_b0155) 2022; 7
10.1016/j.jiec.2023.06.038_b0015
Yang (10.1016/j.jiec.2023.06.038_b0085) 2019; 300
Koo (10.1016/j.jiec.2023.06.038_b0090) 2016; 138
Wei (10.1016/j.jiec.2023.06.038_b0140) 2022; 13
Al-Hashem (10.1016/j.jiec.2023.06.038_b0065) 2019; 301
Yu (10.1016/j.jiec.2023.06.038_b0105) 2022; 449
Liu (10.1016/j.jiec.2023.06.038_b0150) 2022; 365
Shanmugasundaram (10.1016/j.jiec.2023.06.038_b0005) 2022; 448
Gao (10.1016/j.jiec.2023.06.038_b0040) 2018; 277
Guo (10.1016/j.jiec.2023.06.038_b0160) 2022; 906
References_xml – volume: 300
  year: 2019
  ident: b0085
  publication-title: Sens. Actuators B
– volume: 7
  start-page: 1484
  year: 2022
  end-page: 1494
  ident: b0155
  publication-title: ACS Sens.
– volume: 34
  start-page: 2105276
  year: 2021
  ident: b0165
  publication-title: Adv. Mater.
– volume: 371
  year: 2022
  ident: b0055
  publication-title: Sens. Actuators B
– volume: 58
  start-page: 6038
  year: 2019
  end-page: 6041
  ident: b0130
  publication-title: Angew. Chem. Int. Ed.
– volume: 14
  start-page: 18275
  year: 2022
  end-page: 18282
  ident: b0050
  publication-title: ACS Appl. Mater. Interfaces
– volume: 432
  year: 2022
  ident: b0135
  publication-title: Chem. Eng. J.
– volume: 449
  year: 2022
  ident: b0105
  publication-title: Chem. Eng. J.
– volume: 301
  year: 2019
  ident: b0065
  publication-title: Sens. Actuators B
– volume: 12
  start-page: 4955
  year: 2022
  ident: b0035
  publication-title: Nat. Commun.
– volume: 63
  start-page: 21
  year: 2014
  end-page: 26
  ident: b0060
  publication-title: Physica E
– volume: 29
  start-page: 1903012
  year: 2019
  ident: b0030
  publication-title: Adv. Funct. Mater.
– volume: 289
  start-page: 186
  year: 2019
  end-page: 194
  ident: b0020
  publication-title: Sens. Actuators, B
– volume: 34
  start-page: 2203671
  year: 2022
  ident: b0010
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1903128
  year: 2019
  ident: b0025
  publication-title: Adv. Funct. Mater.
– volume: 109
  year: 2023
  ident: b0145
  publication-title: Nano Energy
– volume: 277
  start-page: 604
  year: 2018
  end-page: 633
  ident: b0040
  publication-title: Sens. Actuators, B
– volume: 10
  start-page: 25453
  year: 2022
  end-page: 25462
  ident: b0095
  publication-title: J. Mater. Chem. A
– volume: 18
  start-page: 2201131
  year: 2022
  ident: b0120
  publication-title: Small
– volume: 386
  year: 2020
  ident: b0100
  publication-title: Chem. Eng. J.
– volume: 365
  year: 2022
  ident: b0150
  publication-title: Sens. Actuators B
– reference: Y. Jo, Y. Jo, J. Lee, H. Jang, I. Hwang, D. Yoo, Adv. Mater. DOI: 10.1002/adma.202206842.
– volume: 906
  year: 2022
  ident: b0160
  publication-title: J. Alloys Compd.
– volume: 138
  start-page: 13431
  year: 2016
  end-page: 13437
  ident: b0090
  publication-title: J. Am. Chem. Soc.
– volume: 413
  year: 2021
  ident: b0045
  publication-title: J. Hazard. Mater.
– volume: 590
  year: 2022
  ident: b0070
  publication-title: Appl. Surf. Sci.
– volume: 313
  year: 2020
  ident: b0075
  publication-title: Sens. Actuators B
– volume: 407
  year: 2021
  ident: b0115
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 3199
  year: 2022
  ident: b0140
  publication-title: Nat. Commun.
– volume: 605
  year: 2022
  ident: b0110
  publication-title: Appl. Surf. Sci.
– volume: 449
  year: 2022
  ident: b0125
  publication-title: J. Energy Chem.
– reference: H. Liang, X. Guo, L. Guo, S. Liu, Q. Zhan, H. Yang, H. Li, N. de Rooij, Y. Lee, P. French, Y. Wang, G. Zhou, Adv. Funct. Mater. DOI: 10.1002/adfm.202215099.
– volume: 448
  year: 2022
  ident: b0005
  publication-title: Chem. Eng. J.
– volume: 906
  year: 2022
  ident: 10.1016/j.jiec.2023.06.038_b0160
  publication-title: J. Alloys Compd.
– volume: 34
  start-page: 2105276
  year: 2021
  ident: 10.1016/j.jiec.2023.06.038_b0165
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202105276
– ident: 10.1016/j.jiec.2023.06.038_b0015
  doi: 10.1002/adfm.202215099
– ident: 10.1016/j.jiec.2023.06.038_b0080
  doi: 10.1002/adma.202206842
– volume: 18
  start-page: 2201131
  year: 2022
  ident: 10.1016/j.jiec.2023.06.038_b0120
  publication-title: Small
  doi: 10.1002/smll.202201131
– volume: 449
  year: 2022
  ident: 10.1016/j.jiec.2023.06.038_b0125
  publication-title: J. Energy Chem.
– volume: 10
  start-page: 25453
  year: 2022
  ident: 10.1016/j.jiec.2023.06.038_b0095
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA07048K
– volume: 365
  year: 2022
  ident: 10.1016/j.jiec.2023.06.038_b0150
  publication-title: Sens. Actuators B
– volume: 300
  year: 2019
  ident: 10.1016/j.jiec.2023.06.038_b0085
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2019.127037
– volume: 29
  start-page: 1903128
  year: 2019
  ident: 10.1016/j.jiec.2023.06.038_b0025
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201903128
– volume: 407
  year: 2021
  ident: 10.1016/j.jiec.2023.06.038_b0115
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126890
– volume: 413
  year: 2021
  ident: 10.1016/j.jiec.2023.06.038_b0045
  publication-title: J. Hazard. Mater.
– volume: 7
  start-page: 1484
  year: 2022
  ident: 10.1016/j.jiec.2023.06.038_b0155
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.2c00228
– volume: 14
  start-page: 18275
  year: 2022
  ident: 10.1016/j.jiec.2023.06.038_b0050
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c22701
– volume: 12
  start-page: 4955
  year: 2022
  ident: 10.1016/j.jiec.2023.06.038_b0035
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25290-3
– volume: 34
  start-page: 2203671
  year: 2022
  ident: 10.1016/j.jiec.2023.06.038_b0010
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202203671
– volume: 590
  year: 2022
  ident: 10.1016/j.jiec.2023.06.038_b0070
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.153085
– volume: 13
  start-page: 3199
  year: 2022
  ident: 10.1016/j.jiec.2023.06.038_b0140
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30958-5
– volume: 109
  year: 2023
  ident: 10.1016/j.jiec.2023.06.038_b0145
  publication-title: Nano Energy
– volume: 289
  start-page: 186
  year: 2019
  ident: 10.1016/j.jiec.2023.06.038_b0020
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2019.03.012
– volume: 29
  start-page: 1903012
  year: 2019
  ident: 10.1016/j.jiec.2023.06.038_b0030
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201903012
– volume: 449
  year: 2022
  ident: 10.1016/j.jiec.2023.06.038_b0105
  publication-title: Chem. Eng. J.
– volume: 605
  year: 2022
  ident: 10.1016/j.jiec.2023.06.038_b0110
  publication-title: Appl. Surf. Sci.
– volume: 386
  year: 2020
  ident: 10.1016/j.jiec.2023.06.038_b0100
  publication-title: Chem. Eng. J.
– volume: 58
  start-page: 6038
  year: 2019
  ident: 10.1016/j.jiec.2023.06.038_b0130
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201901987
– volume: 448
  year: 2022
  ident: 10.1016/j.jiec.2023.06.038_b0005
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137736
– volume: 313
  year: 2020
  ident: 10.1016/j.jiec.2023.06.038_b0075
  publication-title: Sens. Actuators B
– volume: 432
  year: 2022
  ident: 10.1016/j.jiec.2023.06.038_b0135
  publication-title: Chem. Eng. J.
– volume: 301
  year: 2019
  ident: 10.1016/j.jiec.2023.06.038_b0065
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2019.126845
– volume: 138
  start-page: 13431
  year: 2016
  ident: 10.1016/j.jiec.2023.06.038_b0090
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b09167
– volume: 63
  start-page: 21
  year: 2014
  ident: 10.1016/j.jiec.2023.06.038_b0060
  publication-title: Physica E
  doi: 10.1016/j.physe.2014.03.018
– volume: 277
  start-page: 604
  year: 2018
  ident: 10.1016/j.jiec.2023.06.038_b0040
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2018.08.129
– volume: 371
  year: 2022
  ident: 10.1016/j.jiec.2023.06.038_b0055
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2022.132558
SSID ssj0060386
ssib009049966
Score 2.454922
Snippet [Display omitted] •MOFs-derived oxygen vacancies-enriched LaFeO3 was designed via a fast and scalable fabrication approach.•The resultant M−LaFeO3 gas sensor...
Perovskite oxide semiconductors have attracted tremendous interest in gas sensing due to their promisingproperties of tunable active sites, excellent catalytic...
SourceID nrf
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 501
SubjectTerms HCHO sensing
Metal-organic frameworks
Oxygen vacancy
Perovskite oxides
화학공학
Title Oxygen vacancies assisted LaFeO3 derived from metal organic frameworks endows a practical HCHO sensor with excellent sensing characteristics
URI https://dx.doi.org/10.1016/j.jiec.2023.06.038
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003010821
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Industrial and Engineering Chemistry, 2023, 126(0), , pp.501-509
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYovcChKi9BKcgSvaGwSfzAOaJVV6EP9lCQ9mb5iZZHFu0ulF76C_qjO5N4EUgVh14SxRonkWc089ma-YaQT9IrxZVkmQoqZtwWPjNFZbMyBqlEKa1vj7K_n8n6gn8ZidES6S9qYTCtMvn-zqe33jqN9NJq9u7G496PApADAPIRgGikOR9hBTs_Ris_-v2U5iFz1nZ7ROEMpVPhTJfjdTUOSGNYspbDE2tU_h2c3jTT-CzsDN6Tdwkv0pPul9bIUmjWyeozFsEN8mf4-AvMgD4Y17banVEAxKg9T7-ZQRgy6kHyAR6xloTeBsDbtOvm5GAoJWfNaGj85CdMpqlyCqTqfj2kM9jpTqYUT2xpeGxP-pt5Owqfp-4l4_MmuRh8Pu_XWWqykDnGxDyL0sTS5ZyXUQrHylA5QA1CVYaxWMDVVkxawWIFy8Sj5FjTfWyklYJJBjvcLbLcTJqwTajkubU2NwE8LIewb30wuVfSm8JghtUOKRarq11iIMdGGDd6kWp2pVEjGjWiMd-OqR1y-DTnruPfeFVaLJSmX1iRhgDx6rwD0LC-dmONdNt4v5zo66mGTcWpRs7BEuz2w3--fZes4BNGvFJ8JMvz6X3YAygzt_utre6TtyenX-uzv9HT82Y
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOUAPiKcoFLAEnFDYxC-SAwdUWGXptnuglfZm_ETblmy1u_Rx6S_g3_AHmUm8VSuhHpB6SRTHTqyZyczYmfmGkDfKl6UoFc_KUMZM2MJnpqhsxmJQpWTK-nYre3tH1Xvi61iOV8ifZS4MhlUm3d_p9FZbp5ZeombvaDLpfSvAcwCHfAxONMKcj1Nk5VY4O4F12_zj4DMw-S1j_S-7m3WWSgtkjnO5yKIykblcCBaVdJyFyoGtlGVlOI8FHG3FlZU8VmDTRFQCM5k_GGWV5IoXuAsKev-2AHWBZRPen1_Elaict-UlcXYZTi9l6nRBZfuTgLiJjLegoZgU829reKuZxUt2rn-f3EsOKv3U0eABWQnNQ7J2CbbwEfk9Oj0DuaPHxrW1fecUPHAUF0-Hph9GnHroeQyXmLxCfwZw8GlXPspBU4oGm9PQ-OkJDKYpVQt61Zv1iM5haT2dUdwipuG0_bXQLNpWeD11VyGmH5O9GyH9E7LaTJvwlFAlcmttbgKodAF-hvXB5L5U3hQGQ7rWSbGkrnYJ8hwrbxzqZWzbvkaOaOSIxgA_Xq6TdxdjjjrAj2t7yyXT9BWx1WCRrh33GjisD9xEI743nn9M9cFMwypmoBHkkMGH8uw_n_6K3Kl3t4d6ONjZek7u4h00t0xukNXF7Fd4AX7Uwr5s5ZaS7zf9ofwFRR8sWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxygen+vacancies+assisted+LaFeO3+derived+from+metal+organic+frameworks+endows+a+practical+HCHO+sensor+with+excellent+sensing+characteristics&rft.jtitle=Journal+of+industrial+and+engineering+chemistry+%28Seoul%2C+Korea%29&rft.au=Lulu+Guo&rft.au=Shushu+Zhao&rft.au=Guimao+Yang&rft.au=Lifeng+Gao&rft.date=2023-10-25&rft.pub=%ED%95%9C%EA%B5%AD%EA%B3%B5%EC%97%85%ED%99%94%ED%95%99%ED%9A%8C&rft.issn=1226-086X&rft.eissn=1876-794X&rft.spage=501&rft.epage=509&rft_id=info:doi/10.1016%2Fj.jiec.2023.06.038&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10322526
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-086X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-086X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-086X&client=summon