Oxygen vacancies assisted LaFeO3 derived from metal organic frameworks endows a practical HCHO sensor with excellent sensing characteristics
[Display omitted] •MOFs-derived oxygen vacancies-enriched LaFeO3 was designed via a fast and scalable fabrication approach.•The resultant M−LaFeO3 gas sensor exhibit excellent HCHO sensing performance at a low operating temperature of 160°C.•The increased oxygen vacancies play a vital role in promot...
Saved in:
Published in | Journal of industrial and engineering chemistry (Seoul, Korea) Vol. 126; pp. 501 - 509 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
25.10.2023
한국공업화학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•MOFs-derived oxygen vacancies-enriched LaFeO3 was designed via a fast and scalable fabrication approach.•The resultant M−LaFeO3 gas sensor exhibit excellent HCHO sensing performance at a low operating temperature of 160°C.•The increased oxygen vacancies play a vital role in promoting the adsorption and activation of O2 and HCHO molecules.•M−LaFeO3 sensor shows excellent application prospect in food safety assessment.
Perovskite oxide semiconductors have attracted tremendous interest in gas sensing due to their promising properties of tunable active sites, excellent catalytic ability and good structural stability. Nevertheless, the rapid synthesis of perovskite oxides and controlled regulation of their surface oxygen vacancies remains a great challenge. Herein, we report a novel metal–organic frameworks (MOFs) self-template strategy for the rapid and large-scale preparation of LaFeO3 nanoparticles (M−LaFeO3) with abundant oxygen vacancies. Benefit from the introduction of oxygen vacancies, the resultant M−LaFeO3 gas sensor exhibit excellent formaldehyde (HCHO) sensing performance at a low operating temperature of 160 °C, including high sensitivity (Rg/Ra = 8.9 @ 100 ppm), fast response/recovery rate (53 s/32 s), low detection limit (1 ppm) and excellent selectivity. Comprehensive density functional theory (DFT) calculation and spectral characterizations reveal that oxygen vacancies play a vital role in promoting the adsorption and activation of O2 and HCHO molecules, and accelerate the chemical reaction on the sensing materials surface. Most importantly, it proves the promising application of M−LaFeO3 sensor in food safety assessment. This work not only provides a simple strategy for constructing oxygen vacancies enriched LaFeO3, but also demonstrates the application potential of LaFeO3-based gas sensors in the field of formaldehyde detection. |
---|---|
AbstractList | Perovskite oxide semiconductors have attracted tremendous interest in gas sensing due to their promisingproperties of tunable active sites, excellent catalytic ability and good structural stability.
Nevertheless, the rapid synthesis of perovskite oxides and controlled regulation of their surface oxygenvacancies remains a great challenge. Herein, we report a novel metal–organic frameworks (MOFs) selftemplatestrategy for the rapid and large-scale preparation of LaFeO3 nanoparticles (MLaFeO3) withabundant oxygen vacancies. Benefit from the introduction of oxygen vacancies, the resultantMLaFeO3 gas sensor exhibit excellent formaldehyde (HCHO) sensing performance at a low operatingtemperature of 160 C, including high sensitivity (Rg/Ra = 8.9 @ 100 ppm), fast response/recovery rate(53 s/32 s), low detection limit (1 ppm) and excellent selectivity. Comprehensive density functional theory(DFT) calculation and spectral characterizations reveal that oxygen vacancies play a vital role in promotingthe adsorption and activation of O2 and HCHO molecules, and accelerate the chemical reaction onthe sensing materials surface. Most importantly, it proves the promising application of MLaFeO3 sensorin food safety assessment. This work not only provides a simple strategy for constructing oxygen vacanciesenriched LaFeO3, but also demonstrates the application potential of LaFeO3-based gas sensors in thefield of formaldehyde detection. KCI Citation Count: 10 [Display omitted] •MOFs-derived oxygen vacancies-enriched LaFeO3 was designed via a fast and scalable fabrication approach.•The resultant M−LaFeO3 gas sensor exhibit excellent HCHO sensing performance at a low operating temperature of 160°C.•The increased oxygen vacancies play a vital role in promoting the adsorption and activation of O2 and HCHO molecules.•M−LaFeO3 sensor shows excellent application prospect in food safety assessment. Perovskite oxide semiconductors have attracted tremendous interest in gas sensing due to their promising properties of tunable active sites, excellent catalytic ability and good structural stability. Nevertheless, the rapid synthesis of perovskite oxides and controlled regulation of their surface oxygen vacancies remains a great challenge. Herein, we report a novel metal–organic frameworks (MOFs) self-template strategy for the rapid and large-scale preparation of LaFeO3 nanoparticles (M−LaFeO3) with abundant oxygen vacancies. Benefit from the introduction of oxygen vacancies, the resultant M−LaFeO3 gas sensor exhibit excellent formaldehyde (HCHO) sensing performance at a low operating temperature of 160 °C, including high sensitivity (Rg/Ra = 8.9 @ 100 ppm), fast response/recovery rate (53 s/32 s), low detection limit (1 ppm) and excellent selectivity. Comprehensive density functional theory (DFT) calculation and spectral characterizations reveal that oxygen vacancies play a vital role in promoting the adsorption and activation of O2 and HCHO molecules, and accelerate the chemical reaction on the sensing materials surface. Most importantly, it proves the promising application of M−LaFeO3 sensor in food safety assessment. This work not only provides a simple strategy for constructing oxygen vacancies enriched LaFeO3, but also demonstrates the application potential of LaFeO3-based gas sensors in the field of formaldehyde detection. |
Author | Zhao, Shushu Guo, Lulu Yang, Guimao Wu, Yanhong Zhang, Xuguang Gao, Lifeng |
Author_xml | – sequence: 1 givenname: Lulu orcidid: 0000-0001-5101-884X surname: Guo fullname: Guo, Lulu email: llguo@wfmc.edu.cn organization: Affiliated Hospital of Weifang Medical University, Weifang, China – sequence: 2 givenname: Shushu surname: Zhao fullname: Zhao, Shushu organization: Affiliated Hospital of Weifang Medical University, Weifang, China – sequence: 3 givenname: Guimao surname: Yang fullname: Yang, Guimao organization: Affiliated Hospital of Weifang Medical University, Weifang, China – sequence: 4 givenname: Lifeng surname: Gao fullname: Gao, Lifeng organization: Affiliated Hospital of Weifang Medical University, Weifang, China – sequence: 5 givenname: Yanhong surname: Wu fullname: Wu, Yanhong organization: Affiliated Hospital of Weifang Medical University, Weifang, China – sequence: 6 givenname: Xuguang surname: Zhang fullname: Zhang, Xuguang organization: Affiliated Hospital of Weifang Medical University, Weifang, China |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003010821$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kcFqGzEQhkVJoUnaF-hJ58JutdKuvAu9BNPUAYOhpJCbGM-OHNlrKUjCTt4hD1057qmHXDSa4f8k-OaKXfjgibGvjagb0ejv23rrCGsppKqFroXqP7DLpp_paja0DxflLqWuRK8fPrGrlLZC6JLRl-x19fyyIc8PgODRUeKQkkuZRr6EW1opPlJ0h9LaGPZ8TxkmHuIGvMMygj0dQ9wlTn4MxwLzpwiYHZbUYr5Y8UQ-hciPLj9yekaaJvL5ber8huMjnOLlh1SY9Jl9tDAl-vKvXrM_tz_v54tqufp1N79ZVqhUlyurwUoUbSut7lBJGlDM-q4fQCnblHM9KL3ulB2KjtbqthmGbgZ6rTulVaPUNft2ftdHa3boTAD3VjfB7KK5-X1_ZxqhpOykLmF5DmMMKUWy5im6PcSXEjEn-WZrTvLNSb4R2hSxBer_g9BlyC74HMFN76M_zigVAwdH0aSyF480ukiYzRjce_hfvjyjnA |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2024_12_516 crossref_primary_10_1016_j_snb_2024_136747 crossref_primary_10_1016_j_snb_2024_136749 crossref_primary_10_1016_j_cap_2024_05_003 crossref_primary_10_1016_j_jiec_2024_04_052 crossref_primary_10_3390_nano14040359 crossref_primary_10_1039_D4MH01306A crossref_primary_10_1016_j_vacuum_2025_114243 crossref_primary_10_1038_s41598_024_54207_5 crossref_primary_10_1016_j_est_2024_112652 crossref_primary_10_1039_D4TC03614J crossref_primary_10_1016_j_talanta_2025_127586 crossref_primary_10_1016_j_jallcom_2023_171623 crossref_primary_10_1016_j_snb_2024_137010 crossref_primary_10_1016_j_jallcom_2024_174862 crossref_primary_10_1016_j_surfin_2025_105870 crossref_primary_10_1016_j_snb_2024_135810 crossref_primary_10_1016_j_microc_2025_113140 crossref_primary_10_1016_j_snb_2024_136158 |
Cites_doi | 10.1002/adma.202105276 10.1002/adfm.202215099 10.1002/adma.202206842 10.1002/smll.202201131 10.1039/D2TA07048K 10.1016/j.snb.2019.127037 10.1002/adfm.201903128 10.1016/j.cej.2020.126890 10.1021/acssensors.2c00228 10.1021/acsami.1c22701 10.1038/s41467-021-25290-3 10.1002/adma.202203671 10.1016/j.apsusc.2022.153085 10.1038/s41467-022-30958-5 10.1016/j.snb.2019.03.012 10.1002/adfm.201903012 10.1002/anie.201901987 10.1016/j.cej.2022.137736 10.1016/j.snb.2019.126845 10.1021/jacs.6b09167 10.1016/j.physe.2014.03.018 10.1016/j.snb.2018.08.129 10.1016/j.snb.2022.132558 |
ContentType | Journal Article |
Copyright | 2023 The Korean Society of Industrial and Engineering Chemistry |
Copyright_xml | – notice: 2023 The Korean Society of Industrial and Engineering Chemistry |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1016/j.jiec.2023.06.038 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1876-794X |
EndPage | 509 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10322526 10_1016_j_jiec_2023_06_038 S1226086X2300391X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9ZL AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABNUV ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO9 EP2 EP3 FDB FIRID FNPLU FYGXN GBLVA HH5 IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SSG SSZ T5K ~G- 2WC AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION EJD HZ~ MZR OK1 RIG SSH ZY4 ZZE ACYCR |
ID | FETCH-LOGICAL-c335t-f6af2c0442f65c32e9c078589a33f19a3b936b53f90234f6419957a6b65363133 |
IEDL.DBID | .~1 |
ISSN | 1226-086X |
IngestDate | Sun Jun 15 03:10:26 EDT 2025 Tue Jul 01 03:34:30 EDT 2025 Thu Apr 24 23:05:42 EDT 2025 Fri Feb 23 02:35:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | HCHO sensing Perovskite oxides Metal-organic frameworks Oxygen vacancy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c335t-f6af2c0442f65c32e9c078589a33f19a3b936b53f90234f6419957a6b65363133 |
ORCID | 0000-0001-5101-884X |
PageCount | 9 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10322526 crossref_primary_10_1016_j_jiec_2023_06_038 crossref_citationtrail_10_1016_j_jiec_2023_06_038 elsevier_sciencedirect_doi_10_1016_j_jiec_2023_06_038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-25 |
PublicationDateYYYYMMDD | 2023-10-25 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | Journal of industrial and engineering chemistry (Seoul, Korea) |
PublicationYear | 2023 |
Publisher | Elsevier B.V 한국공업화학회 |
Publisher_xml | – name: Elsevier B.V – name: 한국공업화학회 |
References | Kim, Hwang, Koh, Lee, Lee (b0010) 2022; 34 Wang, Zhou, Wang, Gong, Liu, Zhou (b0145) 2023; 109 Cai, Luo, Hu, Xue, Wang, Xu (b0155) 2022; 7 Guo, Shen, Ma, Ma, Wang, Yuan (b0160) 2022; 906 Xu, Zhang, Li, Yin, Yin, Zhu, Chen, Wang, Bie (b0020) 2019; 289 Guo, Liu, Zhang, Sui (b0110) 2022; 605 Zhang, Song, Han, Wang (b0060) 2014; 63 Gao, Zhang (b0040) 2018; 277 Zhang, Zhang, Jiang, Guo, Qu, Shimakawa, Yang (b0045) 2021; 413 Y. Jo, Y. Jo, J. Lee, H. Jang, I. Hwang, D. Yoo, Adv. Mater. DOI: 10.1002/adma.202206842. Jo, Jeong, Moon, Jo, Yoon, Lee (b0035) 2022; 12 Yu, Gong, Gao, Fan, Li, Huang, Chang, Wang, He (b0105) 2022; 449 Kim, Jeong, Sharma, Myung (b0050) 2022; 14 Xiao, Zhang, Ma, Yang, Gao, Wang, Jia (b0055) 2022; 371 Yang, Ma, Qiao, Cui, Jia, Wang (b0075) 2020; 313 Yu, Dong, Wang, Li, Zhu, Yang (b0095) 2022; 10 He, Huang, Goodsell, Angerhofer, Wei (b0130) 2019; 58 Liu, He, Sun, Huang, Li (b0150) 2022; 365 Zhang, Ding, Xu, Wang, Shao, Sun, Lin (b0100) 2020; 386 Bao, Liu, Sun, Huang, Hu, Da, Ji, Xi, Yan (b0120) 2022; 18 Wei, Wei, Li, Li, Shi, Ouyang, Qi, Philips, Yuan (b0140) 2022; 13 Al-Hashem, Akbar, Morris (b0065) 2019; 301 Yang, Zhang, Chen (b0085) 2019; 300 Zhang, Lv, Guo (b0165) 2021; 34 Jang, Lee, Choi, Koo, Kim, Shin, Park, Kim (b0030) 2019; 29 H. Liang, X. Guo, L. Guo, S. Liu, Q. Zhan, H. Yang, H. Li, N. de Rooij, Y. Lee, P. French, Y. Wang, G. Zhou, Adv. Funct. Mater. DOI: 10.1002/adfm.202215099. Kim, Jang, Kim, Kang, Cho, Jeong, Kim (b0025) 2019; 29 Li, Ma, Mou, Luo, Ma, Lu, Cui, Li, Liu, Sun (b0125) 2022; 449 Shanmugasundaram, Manorama, Kim, Jeong, Lee (b0005) 2022; 448 Koo, Choi, Kim, Jang, Tuller, Kim (b0090) 2016; 138 Zhu, Wang, Liu, Chen, Xu, Ma, Wang, Liang, Li, Yan (b0070) 2022; 590 Jing, Cao, Ma, Li, Qu, Xie, Jin, Zhao (b0115) 2021; 407 Li, Luo, Liu, Wang, Gao, Duan (b0135) 2022; 432 Zhang (10.1016/j.jiec.2023.06.038_b0165) 2021; 34 Li (10.1016/j.jiec.2023.06.038_b0135) 2022; 432 Zhu (10.1016/j.jiec.2023.06.038_b0070) 2022; 590 Zhang (10.1016/j.jiec.2023.06.038_b0100) 2020; 386 Zhang (10.1016/j.jiec.2023.06.038_b0060) 2014; 63 Yang (10.1016/j.jiec.2023.06.038_b0075) 2020; 313 Xiao (10.1016/j.jiec.2023.06.038_b0055) 2022; 371 Xu (10.1016/j.jiec.2023.06.038_b0020) 2019; 289 Jing (10.1016/j.jiec.2023.06.038_b0115) 2021; 407 Jo (10.1016/j.jiec.2023.06.038_b0035) 2022; 12 Guo (10.1016/j.jiec.2023.06.038_b0110) 2022; 605 10.1016/j.jiec.2023.06.038_b0080 Yu (10.1016/j.jiec.2023.06.038_b0095) 2022; 10 Kim (10.1016/j.jiec.2023.06.038_b0025) 2019; 29 Wang (10.1016/j.jiec.2023.06.038_b0145) 2023; 109 Kim (10.1016/j.jiec.2023.06.038_b0050) 2022; 14 Li (10.1016/j.jiec.2023.06.038_b0125) 2022; 449 Zhang (10.1016/j.jiec.2023.06.038_b0045) 2021; 413 Bao (10.1016/j.jiec.2023.06.038_b0120) 2022; 18 He (10.1016/j.jiec.2023.06.038_b0130) 2019; 58 Jang (10.1016/j.jiec.2023.06.038_b0030) 2019; 29 Kim (10.1016/j.jiec.2023.06.038_b0010) 2022; 34 Cai (10.1016/j.jiec.2023.06.038_b0155) 2022; 7 10.1016/j.jiec.2023.06.038_b0015 Yang (10.1016/j.jiec.2023.06.038_b0085) 2019; 300 Koo (10.1016/j.jiec.2023.06.038_b0090) 2016; 138 Wei (10.1016/j.jiec.2023.06.038_b0140) 2022; 13 Al-Hashem (10.1016/j.jiec.2023.06.038_b0065) 2019; 301 Yu (10.1016/j.jiec.2023.06.038_b0105) 2022; 449 Liu (10.1016/j.jiec.2023.06.038_b0150) 2022; 365 Shanmugasundaram (10.1016/j.jiec.2023.06.038_b0005) 2022; 448 Gao (10.1016/j.jiec.2023.06.038_b0040) 2018; 277 Guo (10.1016/j.jiec.2023.06.038_b0160) 2022; 906 |
References_xml | – volume: 300 year: 2019 ident: b0085 publication-title: Sens. Actuators B – volume: 7 start-page: 1484 year: 2022 end-page: 1494 ident: b0155 publication-title: ACS Sens. – volume: 34 start-page: 2105276 year: 2021 ident: b0165 publication-title: Adv. Mater. – volume: 371 year: 2022 ident: b0055 publication-title: Sens. Actuators B – volume: 58 start-page: 6038 year: 2019 end-page: 6041 ident: b0130 publication-title: Angew. Chem. Int. Ed. – volume: 14 start-page: 18275 year: 2022 end-page: 18282 ident: b0050 publication-title: ACS Appl. Mater. Interfaces – volume: 432 year: 2022 ident: b0135 publication-title: Chem. Eng. J. – volume: 449 year: 2022 ident: b0105 publication-title: Chem. Eng. J. – volume: 301 year: 2019 ident: b0065 publication-title: Sens. Actuators B – volume: 12 start-page: 4955 year: 2022 ident: b0035 publication-title: Nat. Commun. – volume: 63 start-page: 21 year: 2014 end-page: 26 ident: b0060 publication-title: Physica E – volume: 29 start-page: 1903012 year: 2019 ident: b0030 publication-title: Adv. Funct. Mater. – volume: 289 start-page: 186 year: 2019 end-page: 194 ident: b0020 publication-title: Sens. Actuators, B – volume: 34 start-page: 2203671 year: 2022 ident: b0010 publication-title: Adv. Mater. – volume: 29 start-page: 1903128 year: 2019 ident: b0025 publication-title: Adv. Funct. Mater. – volume: 109 year: 2023 ident: b0145 publication-title: Nano Energy – volume: 277 start-page: 604 year: 2018 end-page: 633 ident: b0040 publication-title: Sens. Actuators, B – volume: 10 start-page: 25453 year: 2022 end-page: 25462 ident: b0095 publication-title: J. Mater. Chem. A – volume: 18 start-page: 2201131 year: 2022 ident: b0120 publication-title: Small – volume: 386 year: 2020 ident: b0100 publication-title: Chem. Eng. J. – volume: 365 year: 2022 ident: b0150 publication-title: Sens. Actuators B – reference: Y. Jo, Y. Jo, J. Lee, H. Jang, I. Hwang, D. Yoo, Adv. Mater. DOI: 10.1002/adma.202206842. – volume: 906 year: 2022 ident: b0160 publication-title: J. Alloys Compd. – volume: 138 start-page: 13431 year: 2016 end-page: 13437 ident: b0090 publication-title: J. Am. Chem. Soc. – volume: 413 year: 2021 ident: b0045 publication-title: J. Hazard. Mater. – volume: 590 year: 2022 ident: b0070 publication-title: Appl. Surf. Sci. – volume: 313 year: 2020 ident: b0075 publication-title: Sens. Actuators B – volume: 407 year: 2021 ident: b0115 publication-title: Chem. Eng. J. – volume: 13 start-page: 3199 year: 2022 ident: b0140 publication-title: Nat. Commun. – volume: 605 year: 2022 ident: b0110 publication-title: Appl. Surf. Sci. – volume: 449 year: 2022 ident: b0125 publication-title: J. Energy Chem. – reference: H. Liang, X. Guo, L. Guo, S. Liu, Q. Zhan, H. Yang, H. Li, N. de Rooij, Y. Lee, P. French, Y. Wang, G. Zhou, Adv. Funct. Mater. DOI: 10.1002/adfm.202215099. – volume: 448 year: 2022 ident: b0005 publication-title: Chem. Eng. J. – volume: 906 year: 2022 ident: 10.1016/j.jiec.2023.06.038_b0160 publication-title: J. Alloys Compd. – volume: 34 start-page: 2105276 year: 2021 ident: 10.1016/j.jiec.2023.06.038_b0165 publication-title: Adv. Mater. doi: 10.1002/adma.202105276 – ident: 10.1016/j.jiec.2023.06.038_b0015 doi: 10.1002/adfm.202215099 – ident: 10.1016/j.jiec.2023.06.038_b0080 doi: 10.1002/adma.202206842 – volume: 18 start-page: 2201131 year: 2022 ident: 10.1016/j.jiec.2023.06.038_b0120 publication-title: Small doi: 10.1002/smll.202201131 – volume: 449 year: 2022 ident: 10.1016/j.jiec.2023.06.038_b0125 publication-title: J. Energy Chem. – volume: 10 start-page: 25453 year: 2022 ident: 10.1016/j.jiec.2023.06.038_b0095 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA07048K – volume: 365 year: 2022 ident: 10.1016/j.jiec.2023.06.038_b0150 publication-title: Sens. Actuators B – volume: 300 year: 2019 ident: 10.1016/j.jiec.2023.06.038_b0085 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2019.127037 – volume: 29 start-page: 1903128 year: 2019 ident: 10.1016/j.jiec.2023.06.038_b0025 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201903128 – volume: 407 year: 2021 ident: 10.1016/j.jiec.2023.06.038_b0115 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126890 – volume: 413 year: 2021 ident: 10.1016/j.jiec.2023.06.038_b0045 publication-title: J. Hazard. Mater. – volume: 7 start-page: 1484 year: 2022 ident: 10.1016/j.jiec.2023.06.038_b0155 publication-title: ACS Sens. doi: 10.1021/acssensors.2c00228 – volume: 14 start-page: 18275 year: 2022 ident: 10.1016/j.jiec.2023.06.038_b0050 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c22701 – volume: 12 start-page: 4955 year: 2022 ident: 10.1016/j.jiec.2023.06.038_b0035 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25290-3 – volume: 34 start-page: 2203671 year: 2022 ident: 10.1016/j.jiec.2023.06.038_b0010 publication-title: Adv. Mater. doi: 10.1002/adma.202203671 – volume: 590 year: 2022 ident: 10.1016/j.jiec.2023.06.038_b0070 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.153085 – volume: 13 start-page: 3199 year: 2022 ident: 10.1016/j.jiec.2023.06.038_b0140 publication-title: Nat. Commun. doi: 10.1038/s41467-022-30958-5 – volume: 109 year: 2023 ident: 10.1016/j.jiec.2023.06.038_b0145 publication-title: Nano Energy – volume: 289 start-page: 186 year: 2019 ident: 10.1016/j.jiec.2023.06.038_b0020 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2019.03.012 – volume: 29 start-page: 1903012 year: 2019 ident: 10.1016/j.jiec.2023.06.038_b0030 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201903012 – volume: 449 year: 2022 ident: 10.1016/j.jiec.2023.06.038_b0105 publication-title: Chem. Eng. J. – volume: 605 year: 2022 ident: 10.1016/j.jiec.2023.06.038_b0110 publication-title: Appl. Surf. Sci. – volume: 386 year: 2020 ident: 10.1016/j.jiec.2023.06.038_b0100 publication-title: Chem. Eng. J. – volume: 58 start-page: 6038 year: 2019 ident: 10.1016/j.jiec.2023.06.038_b0130 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201901987 – volume: 448 year: 2022 ident: 10.1016/j.jiec.2023.06.038_b0005 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137736 – volume: 313 year: 2020 ident: 10.1016/j.jiec.2023.06.038_b0075 publication-title: Sens. Actuators B – volume: 432 year: 2022 ident: 10.1016/j.jiec.2023.06.038_b0135 publication-title: Chem. Eng. J. – volume: 301 year: 2019 ident: 10.1016/j.jiec.2023.06.038_b0065 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2019.126845 – volume: 138 start-page: 13431 year: 2016 ident: 10.1016/j.jiec.2023.06.038_b0090 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09167 – volume: 63 start-page: 21 year: 2014 ident: 10.1016/j.jiec.2023.06.038_b0060 publication-title: Physica E doi: 10.1016/j.physe.2014.03.018 – volume: 277 start-page: 604 year: 2018 ident: 10.1016/j.jiec.2023.06.038_b0040 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2018.08.129 – volume: 371 year: 2022 ident: 10.1016/j.jiec.2023.06.038_b0055 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2022.132558 |
SSID | ssj0060386 ssib009049966 |
Score | 2.454922 |
Snippet | [Display omitted]
•MOFs-derived oxygen vacancies-enriched LaFeO3 was designed via a fast and scalable fabrication approach.•The resultant M−LaFeO3 gas sensor... Perovskite oxide semiconductors have attracted tremendous interest in gas sensing due to their promisingproperties of tunable active sites, excellent catalytic... |
SourceID | nrf crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 501 |
SubjectTerms | HCHO sensing Metal-organic frameworks Oxygen vacancy Perovskite oxides 화학공학 |
Title | Oxygen vacancies assisted LaFeO3 derived from metal organic frameworks endows a practical HCHO sensor with excellent sensing characteristics |
URI | https://dx.doi.org/10.1016/j.jiec.2023.06.038 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003010821 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Industrial and Engineering Chemistry, 2023, 126(0), , pp.501-509 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYovcChKi9BKcgSvaGwSfzAOaJVV6EP9lCQ9mb5iZZHFu0ulF76C_qjO5N4EUgVh14SxRonkWc089ma-YaQT9IrxZVkmQoqZtwWPjNFZbMyBqlEKa1vj7K_n8n6gn8ZidES6S9qYTCtMvn-zqe33jqN9NJq9u7G496PApADAPIRgGikOR9hBTs_Ris_-v2U5iFz1nZ7ROEMpVPhTJfjdTUOSGNYspbDE2tU_h2c3jTT-CzsDN6Tdwkv0pPul9bIUmjWyeozFsEN8mf4-AvMgD4Y17banVEAxKg9T7-ZQRgy6kHyAR6xloTeBsDbtOvm5GAoJWfNaGj85CdMpqlyCqTqfj2kM9jpTqYUT2xpeGxP-pt5Owqfp-4l4_MmuRh8Pu_XWWqykDnGxDyL0sTS5ZyXUQrHylA5QA1CVYaxWMDVVkxawWIFy8Sj5FjTfWyklYJJBjvcLbLcTJqwTajkubU2NwE8LIewb30wuVfSm8JghtUOKRarq11iIMdGGDd6kWp2pVEjGjWiMd-OqR1y-DTnruPfeFVaLJSmX1iRhgDx6rwD0LC-dmONdNt4v5zo66mGTcWpRs7BEuz2w3--fZes4BNGvFJ8JMvz6X3YAygzt_utre6TtyenX-uzv9HT82Y |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOUAPiKcoFLAEnFDYxC-SAwdUWGXptnuglfZm_ETblmy1u_Rx6S_g3_AHmUm8VSuhHpB6SRTHTqyZyczYmfmGkDfKl6UoFc_KUMZM2MJnpqhsxmJQpWTK-nYre3tH1Xvi61iOV8ifZS4MhlUm3d_p9FZbp5ZeombvaDLpfSvAcwCHfAxONMKcj1Nk5VY4O4F12_zj4DMw-S1j_S-7m3WWSgtkjnO5yKIykblcCBaVdJyFyoGtlGVlOI8FHG3FlZU8VmDTRFQCM5k_GGWV5IoXuAsKev-2AHWBZRPen1_Elaict-UlcXYZTi9l6nRBZfuTgLiJjLegoZgU829reKuZxUt2rn-f3EsOKv3U0eABWQnNQ7J2CbbwEfk9Oj0DuaPHxrW1fecUPHAUF0-Hph9GnHroeQyXmLxCfwZw8GlXPspBU4oGm9PQ-OkJDKYpVQt61Zv1iM5haT2dUdwipuG0_bXQLNpWeD11VyGmH5O9GyH9E7LaTJvwlFAlcmttbgKodAF-hvXB5L5U3hQGQ7rWSbGkrnYJ8hwrbxzqZWzbvkaOaOSIxgA_Xq6TdxdjjjrAj2t7yyXT9BWx1WCRrh33GjisD9xEI743nn9M9cFMwypmoBHkkMGH8uw_n_6K3Kl3t4d6ONjZek7u4h00t0xukNXF7Fd4AX7Uwr5s5ZaS7zf9ofwFRR8sWQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxygen+vacancies+assisted+LaFeO3+derived+from+metal+organic+frameworks+endows+a+practical+HCHO+sensor+with+excellent+sensing+characteristics&rft.jtitle=Journal+of+industrial+and+engineering+chemistry+%28Seoul%2C+Korea%29&rft.au=Lulu+Guo&rft.au=Shushu+Zhao&rft.au=Guimao+Yang&rft.au=Lifeng+Gao&rft.date=2023-10-25&rft.pub=%ED%95%9C%EA%B5%AD%EA%B3%B5%EC%97%85%ED%99%94%ED%95%99%ED%9A%8C&rft.issn=1226-086X&rft.eissn=1876-794X&rft.spage=501&rft.epage=509&rft_id=info:doi/10.1016%2Fj.jiec.2023.06.038&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10322526 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-086X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-086X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-086X&client=summon |