A perspective on biochar for repairing damages in the soil–plant system caused by climate change-driven extreme weather events
There has been more than 75% rise in the number of extreme weather events such as drought and flood during 2000–2019 compared to 1980–1999 due to the adverse effects of climate change, causing significant deterioration of the soil and water quality. Simultaneously, the growing human population has b...
Saved in:
Published in | Biochar (Online) Vol. 4; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.12.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2524-7972 2524-7867 |
DOI | 10.1007/s42773-022-00148-z |
Cover
Loading…
Abstract | There has been more than 75% rise in the number of extreme weather events such as drought and flood during 2000–2019 compared to 1980–1999 due to the adverse effects of climate change, causing significant deterioration of the soil and water quality. Simultaneously, the growing human population has been exerting pressure on available water and soil resources due to overuse or unplanned use. While greenhouse gas emissions have intensified, the fertility of agricultural soils has declined globally due to the exposure of soils to frequent flooding, desertification, and salinization (resulting from extreme weather events). The current review aims to give an overview of damages caused to the soil–plant system by extreme weather events and provide a perspective on how biochar can repair the damaged system. Biochar is known to improve soil fertility, increase crop productivity and mitigate greenhouse gas emissions via sustainable recycling of bio-waste. Beneficial properties of biochar such as alkaline pH, high cation exchange capacity, abundant surface functional groups, remarkable surface area, adequate porosity, excellent water holding capacity, and sufficient nutrient retention capacity can help repair the adverse effects of extreme weather events in the soil–plant system. This paper recommends some cautious future approaches that can propel biochar’s use in improving the soil–plant systems and promoting sustainable functioning of extreme weather-affected areas via mitigation of the adverse effects.
Graphical Abstract
Highlights
High temperature, drought, flood, and salinization are caused by extreme weather.
Biochar augments tolerance of soil–plant systems to extreme weather conditions.
Amendment of soil with biochar enhances soil’s bio-physicochemical properties.
Biochar remains appreciably stable in soil when exposed to extreme weather conditions.
Biochar improves porosity, enzymatic activity, and nutrient supply in soil. |
---|---|
AbstractList | There has been more than 75% rise in the number of extreme weather events such as drought and flood during 2000–2019 compared to 1980–1999 due to the adverse effects of climate change, causing significant deterioration of the soil and water quality. Simultaneously, the growing human population has been exerting pressure on available water and soil resources due to overuse or unplanned use. While greenhouse gas emissions have intensified, the fertility of agricultural soils has declined globally due to the exposure of soils to frequent flooding, desertification, and salinization (resulting from extreme weather events). The current review aims to give an overview of damages caused to the soil–plant system by extreme weather events and provide a perspective on how biochar can repair the damaged system. Biochar is known to improve soil fertility, increase crop productivity and mitigate greenhouse gas emissions via sustainable recycling of bio-waste. Beneficial properties of biochar such as alkaline pH, high cation exchange capacity, abundant surface functional groups, remarkable surface area, adequate porosity, excellent water holding capacity, and sufficient nutrient retention capacity can help repair the adverse effects of extreme weather events in the soil–plant system. This paper recommends some cautious future approaches that can propel biochar’s use in improving the soil–plant systems and promoting sustainable functioning of extreme weather-affected areas via mitigation of the adverse effects.
Graphical Abstract
Highlights
High temperature, drought, flood, and salinization are caused by extreme weather.
Biochar augments tolerance of soil–plant systems to extreme weather conditions.
Amendment of soil with biochar enhances soil’s bio-physicochemical properties.
Biochar remains appreciably stable in soil when exposed to extreme weather conditions.
Biochar improves porosity, enzymatic activity, and nutrient supply in soil. |
ArticleNumber | 22 |
Author | Mukherjee, Santanu Sarkar, Binoy Kumar, Abhishek Bhattacharya, Tanushree |
Author_xml | – sequence: 1 givenname: Abhishek surname: Kumar fullname: Kumar, Abhishek organization: Department of Civil and Environmental Engineering, Birla Institute of Technology – sequence: 2 givenname: Tanushree orcidid: 0000-0003-3547-2529 surname: Bhattacharya fullname: Bhattacharya, Tanushree email: tbhattacharya@bitmesra.ac.in organization: Department of Civil and Environmental Engineering, Birla Institute of Technology – sequence: 3 givenname: Santanu surname: Mukherjee fullname: Mukherjee, Santanu organization: School of Agriculture, Shoolini University of Biotechnology and Management Sciences – sequence: 4 givenname: Binoy surname: Sarkar fullname: Sarkar, Binoy organization: Lancaster Environment Centre, Lancaster University |
BookMark | eNp9kEtOwzAQhi1UJKD0AqzmAgE_0jpZVoiXVIkNrCPHGbeuUieyXaBd9Q7ckJPgUtiw6GpGM_P90nwXZOA6h4RcMXrNKJU3IedSioxynlHK8iLbnpBzPuZ5JouJHPz1peRnZBTCklLKx4xNRHlOdlPo0YcedbRvCJ2D2nZ6oTyYzoPHXllv3RwatVJzDGAdxAVC6Gz7tfvsW-UihE2IuAKt1gEbqDegW7tSESHluDlmjU_RDvAjelwhvKNKER4wDWO4JKdGtQFHv3VIXu_vXm4fs9nzw9PtdJZpIcYxM6LkTBembJhulGSmlKaecNGUokBual0UZZ3WXPJkoMR0NdFFk-fU1ELXYzEkxSFX-y4Ej6bSNqpoOxe9sm3FaLWXWR1kVklm9SOz2iaU_0N7nx70m-OQOECh3wtEXy27tXfpxWPUNzb6jkU |
CitedBy_id | crossref_primary_10_1016_j_envres_2024_120635 crossref_primary_10_3390_agronomy12102321 crossref_primary_10_1071_FP23257 crossref_primary_10_1111_sum_70024 crossref_primary_10_1016_j_gsd_2023_101030 crossref_primary_10_1007_s10668_023_03470_z crossref_primary_10_1016_j_seh_2025_100130 crossref_primary_10_3390_su16010287 crossref_primary_10_1016_j_gsd_2023_100972 crossref_primary_10_1016_j_aoas_2023_05_002 crossref_primary_10_3390_su152316348 crossref_primary_10_1016_j_rcradv_2023_200173 crossref_primary_10_3390_ma17040961 crossref_primary_10_1007_s40003_024_00735_5 crossref_primary_10_1016_j_ecofro_2024_02_014 crossref_primary_10_1016_j_rser_2024_114399 crossref_primary_10_1080_01904167_2025_2468774 crossref_primary_10_1007_s13399_025_06701_7 crossref_primary_10_1680_jenes_24_00107 crossref_primary_10_1016_j_grets_2025_100174 crossref_primary_10_1016_j_gsd_2023_101066 crossref_primary_10_1016_j_jece_2024_114507 crossref_primary_10_3390_c8030046 crossref_primary_10_1016_j_chemosphere_2024_143098 crossref_primary_10_1007_s44169_023_00033_1 crossref_primary_10_1007_s10457_023_00929_w crossref_primary_10_1016_j_heliyon_2024_e33448 crossref_primary_10_1007_s13399_023_03927_1 crossref_primary_10_1007_s42773_023_00207_z crossref_primary_10_1016_j_envres_2023_116824 crossref_primary_10_1007_s42773_024_00411_5 crossref_primary_10_1007_s11157_024_09702_6 crossref_primary_10_1007_s42773_023_00246_6 crossref_primary_10_1016_j_heliyon_2024_e37204 crossref_primary_10_1007_s40726_022_00238_3 crossref_primary_10_1016_j_scitotenv_2024_173567 crossref_primary_10_1080_23311916_2024_2307201 crossref_primary_10_1016_j_scitotenv_2024_172116 crossref_primary_10_1007_s00344_024_11600_8 crossref_primary_10_1016_j_envres_2023_116998 crossref_primary_10_1016_j_scitotenv_2024_171343 crossref_primary_10_3390_plants12030456 crossref_primary_10_3389_fsufs_2024_1346529 crossref_primary_10_1016_j_envdev_2023_100859 crossref_primary_10_1016_j_chemosphere_2022_136413 crossref_primary_10_1016_j_chemosphere_2023_138759 crossref_primary_10_3389_fpls_2024_1385191 crossref_primary_10_1007_s10668_024_05386_8 crossref_primary_10_1016_j_pce_2023_103508 crossref_primary_10_3389_fenvs_2023_1059449 crossref_primary_10_3390_land12081580 crossref_primary_10_1007_s10265_024_01561_0 crossref_primary_10_1016_j_scitotenv_2023_164012 crossref_primary_10_3389_fenvs_2024_1388606 crossref_primary_10_1016_j_fcr_2025_109743 crossref_primary_10_3389_fpls_2024_1441649 crossref_primary_10_1080_23311932_2023_2217603 crossref_primary_10_3390_plants12051002 crossref_primary_10_3390_su14148329 crossref_primary_10_1016_j_biombioe_2024_107531 crossref_primary_10_3390_land13050644 crossref_primary_10_3390_agronomy12123154 crossref_primary_10_1016_j_stress_2023_100286 crossref_primary_10_1016_j_envres_2024_119531 crossref_primary_10_1007_s11270_024_07702_4 crossref_primary_10_1007_s10653_023_01823_1 crossref_primary_10_3390_land12122111 crossref_primary_10_19047_0136_1694_2022_113_110_137 crossref_primary_10_1016_j_chemosphere_2023_140417 crossref_primary_10_1016_j_envpol_2024_123509 crossref_primary_10_3390_su17052120 crossref_primary_10_1016_j_scitotenv_2022_158225 crossref_primary_10_1016_j_envres_2022_113710 crossref_primary_10_3389_fevo_2023_1310267 |
Cites_doi | 10.1186/s40538-020-00204-5 10.1016/j.jenvman.2021.112170 10.1016/j.agee.2014.11.021 10.1007/s11356-017-8904-x 10.1016/j.agee.2015.03.015 10.1016/j.agwat.2015.04.010 10.1071/FP15054 10.1016/j.geoderma.2017.11.034 10.1016/j.mset.2020.10.012 10.1016/j.geoderma.2016.04.013 10.1016/j.geoderma.2014.01.015 10.1016/j.jhydrol.2017.12.052 10.1071/SR12185 10.1007/s00374-014-0959-y 10.1104/pp.113.233353 10.5194/se-5-665-2014 10.1088/1748-9326/9/6/064013 10.1016/j.still.2015.08.002 10.1007/s42773-021-00107-0 10.1002/wat2.1107 10.3389/fenvs.2014.00025 10.1016/j.apsoil.2015.07.014 10.2136/sssaj2017.01.0017 10.1016/j.envres.2021.111758 10.1016/j.agrformet.2012.01.006 10.1016/j.ecoenv.2017.11.063 10.1016/j.ejsobi.2015.07.005 10.1007/s00442-004-1788-8 10.1021/acsomega.0c00216 10.1007/s13593-016-0372-z 10.17311/sciintl.2016.51.73 10.32604/phyton.2019.04784 10.1016/S1002-0160(15)60019-4 10.1016/j.plaphy.2015.08.009 10.1111/sum.12413 10.1016/j.envpol.2018.06.066 10.1016/j.agwat.2006.07.010 10.1126/science.abf3903 10.1111/pce.12944 10.1016/j.chemosphere.2020.129458 10.1016/j.orggeochem.2014.10.002 10.1007/s00128-020-03095-2 10.1016/j.still.2019.104372 10.1016/j.jscs.2020.10.005 10.1007/s10086-003-0616-9 10.3390/ijerph15112580 10.1007/s10668-020-00970-0 10.1016/j.jenvman.2013.05.057 10.3390/su10030712 10.1039/d0ew00027b 10.1155/2014/272684 10.1016/j.scitotenv.2020.143820 10.1016/j.soilbio.2019.107571 10.1007/s42729-019-00075-2 10.4236/ojss.2015.51001 10.1016/j.fcr.2012.11.015 10.1016/j.eti.2020.101270 10.1016/j.marchem.2004.06.026 10.1016/S0140-6736(20)30677-2 10.1016/j.jaridenv.2012.07.012 10.1080/00103624.2016.1146752 10.4067/S0718-95162017000300019 10.1111/j.1461-0248.2005.00756.x 10.1016/j.scitotenv.2018.07.402 10.1016/j.orggeochem.2006.06.022 10.1126/science.280.5371.1911 10.1016/j.chemosphere.2015.12.130 10.1038/s41561-021-00867-1 10.1016/j.iswcr.2015.11.003 10.2136/sssaj2012.0180 10.1016/j.ecoenv.2016.11.029 10.1016/S0016-7061(02)00312-9 10.1080/03650340.2013.821698 10.1155/2017/4758316 10.4155/cmt.10.32 10.5194/se-5-939-2014 10.5194/hess-25-3713-2021 10.1016/j.geoderma.2004.12.019 10.1016/j.biocontrol.2010.06.010 10.1016/j.geoderma.2017.05.029 10.15406/apar.2018.08.00288 10.21273/HORTSCI15398-20 10.1016/j.ejsobi.2016.11.007 10.1016/j.scitotenv.2004.01.026 10.1016/j.geoderma.2020.114574 10.1094/phyto-06-20-0248-rvw 10.1061/(asce)0733-9496(2001)127:1(13) 10.1007/s11356-021-14179-9 10.1002/agg2.20028 10.2135/cropsci2000.4051363x 10.18502/kls.v3i5.974 10.1016/j.chemosphere.2019.05.204 10.1016/j.scitotenv.2014.03.141 10.1016/j.scitotenv.2020.139798 10.1016/j.eja.2013.11.003 10.1029/1999GB900067 10.1016/j.chemosphere.2015.06.041 10.1016/j.soilbio.2022.108564 10.1016/j.scitotenv.2018.03.380 10.3389/fpls.2015.00733 10.1016/j.jenvman.2015.07.056 10.1016/j.soilbio.2013.12.021 10.3390/agronomy10111749 10.1371/journal.pone.0108340 10.1098/rstb.2010.0158 10.3233/jcc-160010 10.3389/fmicb.2018.01636 10.1080/13673882.2020.00001065 10.2298/ABS181005014N 10.1007/s11069-014-1409-8 10.1016/j.heliyon.2019.e02051 10.3390/su11092547 10.1016/j.geoderma.2015.01.001 10.1016/j.soilbio.2014.11.001 10.3390/su10051371 10.3390/LAND8120179 10.1139/Z03-132 10.1007/s11157-020-09523-3 10.1080/10643389.2017.1421844 10.1016/j.gloplacha.2015.01.003 10.1007/s42773-020-00036-4 10.1016/j.agwat.2014.02.016 10.1016/j.geoderma.2013.06.016 10.1111/gcbb.12266 10.3329/baj.v19i2.31854 10.4236/jsbs.2014.43018 10.1007/s11368-015-1349-2 10.1016/j.geoderma.2016.07.019 10.1111/jac.12132 10.1007/s11368-015-1293-1 10.1016/j.soilbio.2018.04.008 10.5772/intechopen.88824 10.1016/j.soilbio.2012.03.007 10.2307/1948629 10.1016/j.still.2019.104435 10.1016/j.geoderma.2010.05.012 10.1016/j.scitotenv.2019.136432 10.1007/s11104-013-1980-x 10.1111/plb.13054 10.1007/s42773-020-00065-z 10.3390/su12198238 10.2136/sssaj2016.01.0020 10.1111/jac.12185 10.21273/hortsci.33.6.947 10.1016/j.scitotenv.2017.12.257 10.3390/SU12083436 10.1007/s13213-012-0465-0 10.1007/s11104-014-2303-6 10.1111/j.0031-9317.2004.00307.x 10.1002/jsfa.6825 10.1016/j.soilbio.2011.04.018 10.4141/s00-075 10.1038/s41598-021-93200-0 10.21203/rs.3.rs-33869/v1 10.1007/s11104-014-2294-3 10.1126/science.1160005 10.1007/s11368-014-0960-y 10.1088/1748-9326/aa67bd 10.1093/treephys/22.18.1311 10.1016/j.still.2018.04.008 10.1016/S0031-0182(00)00168-1 10.1016/j.agee.2016.11.002 10.1016/j.geoderma.2018.03.021 10.1016/j.catena.2018.12.019 10.1016/j.scitotenv.2018.12.269 10.1038/s41598-020-58824-8 10.2136/sssaj2007.0425 10.1201/b14585-2 10.7930/J0Z31WJ2 10.1201/b21225-8 10.1007/978-3-642-14225-3_13 10.1016/j.chemosphere.2021.132788 10.1016/B978-0-12-822928-6.00005-8 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 |
Copyright_xml | – notice: The Author(s) 2022 |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s42773-022-00148-z |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2524-7867 |
ExternalDocumentID | 10_1007_s42773_022_00148_z |
GrantInformation_xml | – fundername: University Grants Commission grantid: 3635/(OBC)(NET-DEC.2015) funderid: http://dx.doi.org/10.13039/501100001501 |
GroupedDBID | 0R~ AAHBH AAHNG AAJSJ AAKKN AAYZJ ABDBF ABECU ABEEZ ABFTV ABKCH ABMQK ABTEG ABTMW ACACY ACOKC ACULB ACZOJ ADKNI ADURQ ADYFF AFGXO AFQWF AGDGC AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AXYYD C24 C6C EBLON EBS EJD FNLPD GROUPED_DOAJ H13 M~E NQJWS OK1 RSV SNPRN SOHCF SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR AASML AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CITATION |
ID | FETCH-LOGICAL-c335t-f3921c8f9d1cda71f97fb623d938e2fbc889b8f92721489e1cd6c8d440fb3cb53 |
IEDL.DBID | C24 |
ISSN | 2524-7972 |
IngestDate | Tue Jul 01 03:16:37 EDT 2025 Thu Apr 24 22:56:25 EDT 2025 Fri Feb 21 02:47:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Temperature rise Salinization Climate change Flood Biochar Drought |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c335t-f3921c8f9d1cda71f97fb623d938e2fbc889b8f92721489e1cd6c8d440fb3cb53 |
ORCID | 0000-0003-3547-2529 |
OpenAccessLink | https://link.springer.com/10.1007/s42773-022-00148-z |
ParticipantIDs | crossref_citationtrail_10_1007_s42773_022_00148_z crossref_primary_10_1007_s42773_022_00148_z springer_journals_10_1007_s42773_022_00148_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221200 2022-12-00 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 20221200 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Biochar (Online) |
PublicationTitleAbbrev | Biochar |
PublicationYear | 2022 |
Publisher | Springer Singapore |
Publisher_xml | – name: Springer Singapore |
References | Gornall, Betts, Burke (CR59) 2010; 365 Poveda, Martínez-Gómez, Fenoll, Escobar (CR128) 2021 Liu, Liu, Ravnskov (CR99) 2017; 203 Tsai, Chang (CR153) 2020 Tri, Tuyet (CR151) 2016; 2 Masiello, Druffel (CR109) 1998; 280 Lu, Lashari, Liu (CR103) 2015; 70 Ohashi, Kume, Yoshifuji (CR121) 2014; 387 Lopes, Reis, Frazão (CR101) 2021 Thomas, Frye, Gale (CR147) 2013; 129 CR160 Gul, Whalen, Thomas (CR61) 2015; 206 Wu, Jansson, Kolari (CR166) 2012; 156 Lu, Xu (CR102) 2014 Ding, Liu, Liu (CR46) 2016; 36 Igalavithana, Mandal, Niazi (CR70) 2017; 47 Lashari, Liu, Li (CR92) 2013; 144 Scott, Cripps, Collinson, Nichols (CR136) 2000; 164 CR30 Kuzyakov, Bogomolova, Glaser (CR89) 2014; 70 Arocena, Opio (CR13) 2003; 113 CR155 Geng, Yan, Zhang (CR56) 2015; 75 CR154 Yang, Jiang, Sun (CR174) 2018 Baiamonte, De Pasquale, Marsala (CR16) 2015; 15 Sattar, Sher, Ijaz (CR134) 2019; 88 Yoo, Kim, Yoo (CR176) 2020 Haider, Koyro, Azam (CR63) 2015; 395 Usowicz, Lipiec, Łukowski (CR157) 2020 Akhtar, Li, Andersen, Liu (CR4) 2014; 138 Basalirwa, Sudo, Wacal (CR20) 2020 Lashari, Ye, Ji (CR93) 2015; 95 Whitman, Whitman, Woolet (CR163) 2019; 138 Chang, Rossi, Zotarelli (CR36) 2021 Repo, Leinonen, Ryyppö, Finér (CR130) 2004; 121 Atkinson (CR15) 2018; 34 Akhtar, Andersen, Liu (CR5) 2015; 201 Kazemi, Ronaghi, Yasrebi (CR81) 2019; 19 CR45 Zhang, Wang, Wu (CR177) 2013; 77 Bhaduri, Saha, Desai, Meena (CR23) 2016; 148 Lehmann, Sohi (CR94) 2008; 321 Carvalho, Madari, Bastiaans (CR34) 2016; 276 Mukherjee, Lal, Zimmerman (CR115) 2014; 487 Ali, Rizwan, Qayyum (CR9) 2017; 24 Shakoor, Shahzad, Chatterjee (CR139) 2021; 285 CR165 Cornelissen, Jubaedah (CR43) 2018; 634 McMichael, Burke (CR110) 1998; 33 Bird, Moyo, Veenendaal (CR25) 1999; 13 Tian, Li, Wang (CR148) 2021; 11 Choudhary, Patel, Pittman, Mohan (CR40) 2020; 5 Genesio, Miglietta, Baronti, Vaccari (CR55) 2015; 201 Blanco-Canqui (CR26) 2017; 81 Burant, Selbig, Furlong, Higgins (CR31) 2018; 242 Baronti, Vaccari, Miglietta (CR19) 2014; 53 Bhattacharya, Pandey, Pandey, Kumar (CR24) 2021 Meng, Yuan (CR112) 2014; 04 Warter, Singer, Cuthbert (CR162) 2021; 25 Madari, Silva, Carvalho (CR105) 2017; 305 Druffel (CR47) 2004; 92 Cheng, Lehmann, Thies (CR39) 2006; 37 CR137 CR54 CR138 Bhaduri, Minner, Tatalovich, Harbor (CR22) 2001; 127 Hammer, Forstreuter, Rillig, Kohler (CR65) 2015; 96 Spokas (CR142) 2010; 1 Kawamoto, Ishimaru, Imamura (CR80) 2005; 51 Kumar, Bhattacharya (CR83) 2020 Alaoui, Rogger, Peth, Blöschl (CR8) 2018; 557 Rath, Rousk (CR129) 2015; 81 Afshar, Hashemi, DaCosta (CR3) 2016; 47 Mack, Walker, Johnstone (CR104) 2021; 372 Zhang, Xiao, Xue, Zhang (CR179) 2020; 12 Brantley, Brye, Savin, Longer (CR28) 2015; 05 Leng, Tang, Rayburg (CR96) 2015; 126 Vollset, Goren, Yuan (CR159) 2020; 396 Liu, Yang, Lu, Wang (CR100) 2018; 181 Janus, Pelfrêne, Heymans (CR74) 2015; 162 Zia-Ur-Rehman, Rizwan, Sabir (CR184) 2016; 45 Scholz, Hof, Schmitt (CR135) 2018 Xiong, Yu, Islam (CR169) 2020 Abideen, Koyro, Huchzermeyer (CR2) 2020; 22 Głąb, Żabiński, Sadowska (CR58) 2018; 315 Zheng, Wang, Chen (CR182) 2018; 41 Allison (CR11) 2005; 8 Kumar, Bhattacharya, Shaikh (CR86) 2021 Laird, Fleming, Wang (CR91) 2010; 158 Conyers, Newton, Condon (CR42) 2012; 50 Gunarathne, Senadeera, Gunarathne (CR62) 2020; 2 Olmo, Alburquerque, Barrón (CR122) 2014; 50 Hossain, Bahar, Sarkar (CR68) 2020; 2 Kim, Kim, Yang (CR82) 2016; 142 Wu, Xu, Shao (CR167) 2014; 5 Akhtar, Andersen, Naveed (CR7) 2015; 42 Muhammad, Aziz, Brookes, Xu (CR114) 2017; 17 Yang, Li, Long (CR173) 2010; 55 Amini, Ghadiri, Chen, Marschner (CR12) 2016; 16 Pellegrini, Harden, Georgiou (CR126) 2022; 15 Lehmann, Czimczik, Laird, Sohi, Lehmann, Josep (CR95) 2009 Lahti, Aphalo, Finér (CR90) 2002; 22 Burrell, Zehetner, Rampazzo (CR32) 2016; 282 Suarez, Wood, Lesch (CR143) 2006; 86 Jones, Murphy, Khalid (CR77) 2011; 43 Yan, Marschner, Cao (CR172) 2015; 3 CR113 Rhoades, Minatre, Pierson (CR131) 2017; 2017 Hu, Jung, Chen (CR69) 2021 CR111 CR72 Xu, Huang (CR170) 2000; 40 Chenfei, Xiaolin, Shenglei (CR38) 2014; 9 Wang, Xiong, Kuzyakov (CR161) 2016; 8 Obia, Mulder, Martinsen (CR120) 2016; 155 Tardieu, Parent, Caldeira, Welcker (CR144) 2014; 164 Akhtar, Andersen, Liu (CR6) 2015; 158 Kaus (CR79) 2020 Nadeem, Zahir, Naveed, Nawaz (CR117) 2013; 63 Carvalho, De Holanda Nunes Maia, Madari (CR33) 2014; 5 Jeffery, Abalos, Prodana (CR75) 2017; 12 Mannan, Halder, Karim, Ahmed (CR107) 2017; 19 Tisserant, Cherubini (CR149) 2019 Abbas, Rizwan, Ali (CR1) 2018; 148 Taskin, de Castro, Allegretta (CR146) 2019; 233 Onwuka (CR123) 2018 Taskin, Branà, Altomare, Loffredo (CR145) 2019 Pardini, Gispert, Dunjó (CR124) 2004; 328 CR88 Sohi, Lopez-capel, Krull, Bol (CR141) 2009; 6618 Mannan, Shashi (CR106) 2020 Chen, Wang, Tam (CR37) 2020 Farhangi-Abriz, Torabian (CR52) 2017; 137 Zhu, Ye, Ran (CR183) 2022; 166 Kumar, Bhattacharya (CR84) 2021 Xu, Luo, Zhou (CR171) 2012; 50 Inbar, Lado, Sternberg (CR71) 2014; 221–222 Haider, Raza, Iqbal (CR64) 2020; 24 Githinji (CR57) 2014; 60 Nikpour-Rashidabad, Tavasolee, Torabian, Farhangi-Abriz (CR118) 2019; 71 Baiamonte, Crescimanno, Parrino, De Pasquale (CR17) 2019; 175 Costa, Raaijmakers, Kuramae (CR44) 2018 Shrestha, Pandit (CR140) 2017; 3 Yang, Shang, Sharma (CR175) 2019; 658 Tryon (CR152) 1948; 18 Sánchez-García, Roig, Sánchez-Monedero, Cayuela (CR133) 2014 Ponomarenko, Anderson (CR127) 2001; 81 Barnes, Gallagher, Masiello (CR18) 2014 Du, Zhao, Wang, Zhang (CR48) 2017; 17 CR10 Jahromi, Lee, Fulcher (CR73) 2020; 3 Fahad, Hussain, Saud (CR51) 2015; 96 Kumar, Bhattacharya, Mozammil Hasnain (CR85) 2020; 3 Batool, Taj, Rashid (CR21) 2015; 6 Boehm, Bell, Fitzgerald (CR27) 2020; 6 Li, Tan (CR98) 2021; 3 Zhang, Ding, Wang (CR180) 2020; 20 Parkash, Singh (CR125) 2020; 55 Arthur, Tuller, Moldrup, de Jonge (CR14) 2015; 243–244 Karmakar, Das, Dutta, Rakshit (CR78) 2016; 4 Tomczyk, Sokołowska, Boguta (CR150) 2020; 19 Njoku (CR119) 2018; 6 Herath, Camps-Arbestain, Hedley (CR67) 2013; 209–210 Egamberdieva, Reckling, Wirth (CR50) 2017; 78 Griffin, Wang, Parikh, Scow (CR60) 2017; 236 Villagra-Mendoza, Horn (CR158) 2018; 326 Brodowski, Amelung, Haumaier (CR29) 2005; 128 Zhang, Bai, Huang (CR178) 2019 Gao, Wang, Dangi (CR53) 2020; 714 Certini (CR35) 2005; 143 Kumar, Nagar, Anand, Singh (CR87) 2021 Edwards, Pittelkow, Kent, Yang (CR49) 2018; 122 Saifullah, Naeem (CR132) 2018; 625 Leng, Huang, Li (CR97) 2019; 647 Hardie, Clothier, Bound (CR66) 2014; 376 Zhao, Ren, Zhang (CR181) 2016; 80 Xiao, Yang, Xu (CR168) 2018 Cogato, Meggio, Migliorati, Marinello (CR41) 2019 Mulcahy, Mulcahy, Dietz (CR116) 2013; 88 Wiedemeier, Abiven, Hockaday (CR164) 2015; 78 Usman, Al-Wabel, Ok (CR156) 2016; 26 Mansoor, Kour, Manhas (CR108) 2021 Jiang, Lim, Huang (CR76) 2015; 2 J Chen (148_CR37) 2020 CH Cheng (148_CR39) 2006; 37 J Zhang (148_CR178) 2019 E Taskin (148_CR146) 2019; 233 SC Thomas (148_CR147) 2013; 129 G Pardini (148_CR124) 2004; 328 L Leng (148_CR97) 2019; 647 M Olmo (148_CR122) 2014; 50 B Bhaduri (148_CR22) 2001; 127 D Laird (148_CR91) 2010; 158 MS Lashari (148_CR93) 2015; 95 BE Madari (148_CR105) 2017; 305 G Baiamonte (148_CR17) 2019; 175 V Choudhary (148_CR40) 2020; 5 J Gornall (148_CR59) 2010; 365 A Batool (148_CR21) 2015; 6 J Lehmann (148_CR95) 2009 G Baiamonte (148_CR16) 2015; 15 148_CR138 148_CR137 M Sánchez-García (148_CR133) 2014 Z Abideen (148_CR2) 2020; 22 H Lu (148_CR103) 2015; 70 148_CR54 W Yang (148_CR175) 2019; 658 AD Igalavithana (148_CR70) 2017; 47 AJ Shrestha (148_CR140) 2017; 3 G Cornelissen (148_CR43) 2018; 634 S Ali (148_CR9) 2017; 24 G Certini (148_CR35) 2005; 143 MI Bird (148_CR25) 1999; 13 A Kumar (148_CR86) 2021 Y Kuzyakov (148_CR89) 2014; 70 X Xu (148_CR171) 2012; 50 AFA Pellegrini (148_CR126) 2022; 15 H Blanco-Canqui (148_CR26) 2017; 81 K Kawamoto (148_CR80) 2005; 51 S Jeffery (148_CR75) 2017; 12 A Burant (148_CR31) 2018; 242 A Kumar (148_CR83) 2020 KM Rath (148_CR129) 2015; 81 SH Wu (148_CR166) 2012; 156 Y Lu (148_CR102) 2014 RT Barnes (148_CR18) 2014 S Mansoor (148_CR108) 2021 ERM Druffel (148_CR47) 2004; 92 AC Scott (148_CR136) 2000; 164 A Kumar (148_CR87) 2021 NB Jahromi (148_CR73) 2020; 3 SS Akhtar (148_CR5) 2015; 201 N Muhammad (148_CR114) 2017; 17 SS Akhtar (148_CR6) 2015; 158 SD Allison (148_CR11) 2005; 8 DB Wiedemeier (148_CR164) 2015; 78 CC Tsai (148_CR153) 2020 A Alaoui (148_CR8) 2018; 557 S Amini (148_CR12) 2016; 16 DS Saifullah (148_CR132) 2018; 625 HMSK Herath (148_CR67) 2013; 209–210 148_CR30 148_CR154 Q Zhang (148_CR179) 2020; 12 T Bhattacharya (148_CR24) 2021 CJ Atkinson (148_CR15) 2018; 34 J Lehmann (148_CR94) 2008; 321 SY Yoo (148_CR176) 2020 D Basalirwa (148_CR20) 2020 D Bhaduri (148_CR23) 2016; 148 F Tardieu (148_CR144) 2014; 164 148_CR155 MTDM Carvalho (148_CR33) 2014; 5 M Mannan (148_CR107) 2017; 19 Y Xiao (148_CR168) 2018 A Kaus (148_CR79) 2020 SM Nadeem (148_CR117) 2013; 63 Y Liu (148_CR100) 2018; 181 J Zhao (148_CR181) 2016; 80 HS Kim (148_CR82) 2016; 142 KE Brantley (148_CR28) 2015; 05 K Villagra-Mendoza (148_CR158) 2018; 326 R Karmakar (148_CR78) 2016; 4 CC Rhoades (148_CR131) 2017; 2017 SE Vollset (148_CR159) 2020; 396 K Zhu (148_CR183) 2022; 166 L Genesio (148_CR55) 2015; 201 T Głąb (148_CR58) 2018; 315 MA Mannan (148_CR106) 2020 OYA Costa (148_CR44) 2018 L Yang (148_CR173) 2010; 55 JM Arocena (148_CR13) 2003; 113 A Sattar (148_CR134) 2019; 88 H Li (148_CR98) 2021; 3 V Gunarathne (148_CR62) 2020; 2 MS Lashari (148_CR92) 2013; 144 148_CR45 A Obia (148_CR120) 2016; 155 J Xiong (148_CR169) 2020 DE Griffin (148_CR60) 2017; 236 J Wang (148_CR161) 2016; 8 T Repo (148_CR130) 2004; 121 E Taskin (148_CR145) 2019 S Gul (148_CR61) 2015; 206 SM Geng (148_CR56) 2015; 75 SC Jiang (148_CR76) 2015; 2 MTM Carvalho (148_CR34) 2016; 276 ZL Du (148_CR48) 2017; 17 A Janus (148_CR74) 2015; 162 RK Afshar (148_CR3) 2016; 47 G Leng (148_CR96) 2015; 126 E Arthur (148_CR14) 2015; 243–244 ÉMG Lopes (148_CR101) 2021 ARA Usman (148_CR156) 2016; 26 Y Ding (148_CR46) 2016; 36 148_CR10 A Kumar (148_CR85) 2020; 3 DL Suarez (148_CR143) 2006; 86 G Haider (148_CR63) 2015; 395 DL Jones (148_CR77) 2011; 43 MM Warter (148_CR162) 2021; 25 H Zheng (148_CR182) 2018; 41 Q Zhang (148_CR177) 2013; 77 A Tisserant (148_CR149) 2019 BL McMichael (148_CR110) 1998; 33 C Njoku (148_CR119) 2018; 6 V Parkash (148_CR125) 2020; 55 S Farhangi-Abriz (148_CR52) 2017; 137 KA Spokas (148_CR142) 2010; 1 148_CR165 Y Zhang (148_CR180) 2020; 20 DN Mulcahy (148_CR116) 2013; 88 J Poveda (148_CR128) 2021 A Cogato (148_CR41) 2019 148_CR160 MC Mack (148_CR104) 2021; 372 T Scholz (148_CR135) 2018 EH Tryon (148_CR152) 1948; 18 Q Xu (148_CR170) 2000; 40 LD Burrell (148_CR32) 2016; 282 T Whitman (148_CR163) 2019; 138 EC Hammer (148_CR65) 2015; 96 SS Akhtar (148_CR4) 2014; 138 Q Hu (148_CR69) 2021 A Tomczyk (148_CR150) 2020; 19 Y Wu (148_CR167) 2014; 5 M Lahti (148_CR90) 2002; 22 S Baronti (148_CR19) 2014; 53 MZ Hossain (148_CR68) 2020; 2 DQ Tri (148_CR151) 2016; 2 M Ohashi (148_CR121) 2014; 387 R Kazemi (148_CR81) 2019; 19 M Conyers (148_CR42) 2012; 50 I Haider (148_CR64) 2020; 24 A Mukherjee (148_CR115) 2014; 487 148_CR72 N Nikpour-Rashidabad (148_CR118) 2019; 71 S Yang (148_CR174) 2018 M Zia-Ur-Rehman (148_CR184) 2016; 45 EV Ponomarenko (148_CR127) 2001; 81 B Onwuka (148_CR123) 2018 JD Edwards (148_CR49) 2018; 122 148_CR111 A Kumar (148_CR84) 2021 T Abbas (148_CR1) 2018; 148 148_CR113 C Liu (148_CR99) 2017; 203 Y Chang (148_CR36) 2021 S Fahad (148_CR51) 2015; 96 A Inbar (148_CR71) 2014; 221–222 AB Boehm (148_CR27) 2020; 6 X Meng (148_CR112) 2014; 04 CA Masiello (148_CR109) 1998; 280 S Brodowski (148_CR29) 2005; 128 S Sohi (148_CR141) 2009; 6618 S Gao (148_CR53) 2020; 714 L Chenfei (148_CR38) 2014; 9 B Usowicz (148_CR157) 2020 M Hardie (148_CR66) 2014; 376 N Yan (148_CR172) 2015; 3 SS Akhtar (148_CR7) 2015; 42 D Egamberdieva (148_CR50) 2017; 78 X Tian (148_CR148) 2021; 11 A Shakoor (148_CR139) 2021; 285 148_CR88 L Githinji (148_CR57) 2014; 60 |
References_xml | – year: 2021 ident: CR36 article-title: Biochar improves soil physical characteristics and strengthens root architecture in Muscadine grape ( L.) publication-title: Chem Biol Technol Agric doi: 10.1186/s40538-020-00204-5 – ident: CR45 – volume: 285 start-page: 112170 year: 2021 ident: CR139 article-title: Nitrous oxide emission from agricultural soils: application of animal manure or biochar? A global meta-analysis publication-title: J Environ Manage doi: 10.1016/j.jenvman.2021.112170 – volume: 201 start-page: 20 year: 2015 end-page: 25 ident: CR55 article-title: Biochar increases vineyard productivity without affecting grape quality: results from a four years field experiment in Tuscany publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2014.11.021 – volume: 24 start-page: 12700 year: 2017 end-page: 12712 ident: CR9 article-title: Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-017-8904-x – volume: 206 start-page: 46 year: 2015 end-page: 59 ident: CR61 article-title: Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2015.03.015 – volume: 158 start-page: 61 year: 2015 end-page: 68 ident: CR6 article-title: Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress publication-title: Agric Water Manag doi: 10.1016/j.agwat.2015.04.010 – volume: 42 start-page: 770 year: 2015 end-page: 781 ident: CR7 article-title: Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize publication-title: Funct Plant Biol doi: 10.1071/FP15054 – volume: 315 start-page: 27 year: 2018 end-page: 35 ident: CR58 article-title: Effects of co-composted maize, sewage sludge, and biochar mixtures on hydrological and physical qualities of sandy soil publication-title: Geoderma doi: 10.1016/j.geoderma.2017.11.034 – volume: 3 start-page: 905 year: 2020 end-page: 920 ident: CR85 article-title: Applications of biomass-derived materials for energy production, conversion, and storage publication-title: Mater Sci Energy Technol doi: 10.1016/j.mset.2020.10.012 – ident: CR138 – volume: 276 start-page: 7 year: 2016 end-page: 18 ident: CR34 article-title: Properties of a clay soil from 1.5 to 3.5 years after biochar application and the impact on rice yield publication-title: Geoderma doi: 10.1016/j.geoderma.2016.04.013 – ident: CR54 – volume: 221–222 start-page: 131 year: 2014 end-page: 138 ident: CR71 article-title: Forest fire effects on soil chemical and physicochemical properties, infiltration, runoff, and erosion in a semiarid Mediterranean region publication-title: Geoderma doi: 10.1016/j.geoderma.2014.01.015 – volume: 557 start-page: 631 year: 2018 end-page: 642 ident: CR8 article-title: Does soil compaction increase floods? A review publication-title: J Hydrol doi: 10.1016/j.jhydrol.2017.12.052 – volume: 50 start-page: 527 year: 2012 end-page: 535 ident: CR42 article-title: Three long-term trials end with a quasi-equilibrium between soil C, N, and pH: an implication for C sequestration publication-title: Soil Res doi: 10.1071/SR12185 – volume: 50 start-page: 1177 year: 2014 end-page: 1187 ident: CR122 article-title: Wheat growth and yield responses to biochar addition under Mediterranean climate conditions publication-title: Biol Fertil Soils doi: 10.1007/s00374-014-0959-y – volume: 164 start-page: 1628 year: 2014 end-page: 1635 ident: CR144 article-title: Genetic and physiological controls of growth under water deficit publication-title: Plant Physiol doi: 10.1104/pp.113.233353 – volume: 5 start-page: 665 year: 2014 end-page: 671 ident: CR167 article-title: Furfural and its biochar improve the general properties of a saline soil publication-title: Solid Earth doi: 10.5194/se-5-665-2014 – volume: 9 start-page: 64013 year: 2014 ident: CR38 article-title: Biochar alters the resistance and resilience to drought in a tropical soil publication-title: Environ Res Lett doi: 10.1088/1748-9326/9/6/064013 – volume: 155 start-page: 35 year: 2016 end-page: 44 ident: CR120 article-title: In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils publication-title: Soil Tillage Res doi: 10.1016/j.still.2015.08.002 – volume: 45 start-page: 339 year: 2016 end-page: 346 ident: CR184 article-title: Comparative effects of different soil conditioners on wheat growth and yield grown in saline-sodic soils publication-title: Sains Malaysiana – volume: 3 start-page: 579 year: 2021 end-page: 590 ident: CR98 article-title: Preparation of high water-retaining biochar and its mechanism of alleviating drought stress in the soil and plant system publication-title: Biochar doi: 10.1007/s42773-021-00107-0 – volume: 2 start-page: 683 year: 2015 end-page: 699 ident: CR76 article-title: Human and environmental health risks and benefits associated with use of urban stormwater publication-title: Wiley Interdiscip Rev Water doi: 10.1002/wat2.1107 – year: 2014 ident: CR133 article-title: Biochar increases soil N 2 O emissions produced by nitrification-mediated pathways publication-title: Front Environ Sci doi: 10.3389/fenvs.2014.00025 – volume: 96 start-page: 114 year: 2015 end-page: 121 ident: CR65 article-title: Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2015.07.014 – volume: 81 start-page: 687 year: 2017 end-page: 711 ident: CR26 article-title: Biochar and soil physical properties publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2017.01.0017 – year: 2021 ident: CR86 article-title: Performance evaluation of crop residue and kitchen waste-derived biochar for eco-efficient removal of arsenic from soils of the Indo-Gangetic plain: a step towards sustainable pollution management publication-title: Environ Res doi: 10.1016/j.envres.2021.111758 – volume: 156 start-page: 85 year: 2012 end-page: 103 ident: CR166 article-title: The role of air and soil temperature in the seasonality of photosynthesis and transpiration in a boreal Scots pine ecosystem publication-title: Agric for Meteorol doi: 10.1016/j.agrformet.2012.01.006 – volume: 148 start-page: 825 year: 2018 end-page: 833 ident: CR1 article-title: Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2017.11.063 – volume: 70 start-page: 67 year: 2015 end-page: 76 ident: CR103 article-title: Changes in soil microbial community structure and enzyme activity with amendment of biochar-manure compost and pyroligneous solution in a saline soil from Central China publication-title: Eur J Soil Biol doi: 10.1016/j.ejsobi.2015.07.005 – volume: 6 start-page: 321 year: 2018 end-page: 326 ident: CR119 article-title: Soil physico-chemical properties as affected by flood and erosion in Abakaliki, Southeastern Nigeria publication-title: Asian J Agric Biol – ident: CR88 – volume: 143 start-page: 1 year: 2005 end-page: 10 ident: CR35 article-title: Effects of fire on properties of forest soils: a review publication-title: Oecologia doi: 10.1007/s00442-004-1788-8 – volume: 5 start-page: 16366 year: 2020 end-page: 16378 ident: CR40 article-title: Batch and continuous fixed-bed lead removal using Himalayan pine needle biochar: isotherm and kinetic studies publication-title: ACS Omega doi: 10.1021/acsomega.0c00216 – volume: 36 start-page: 36 year: 2016 ident: CR46 article-title: Biochar to improve soil fertility. A review publication-title: Agron Sustain Dev doi: 10.1007/s13593-016-0372-z – volume: 4 start-page: 51 year: 2016 end-page: 73 ident: CR78 article-title: Potential effects of climate change on soil properties: a review publication-title: Sci Int doi: 10.17311/sciintl.2016.51.73 – volume: 88 start-page: 379 year: 2019 end-page: 388 ident: CR134 article-title: Biochar application improves the drought tolerance in maize seedlings publication-title: Phyton B Aires doi: 10.32604/phyton.2019.04784 – volume: 26 start-page: 27 year: 2016 end-page: 38 ident: CR156 article-title: Conocarpus biochar induces changes in soil nutrient availability and tomato growth under saline irrigation publication-title: Pedosphere doi: 10.1016/S1002-0160(15)60019-4 – volume: 96 start-page: 281 year: 2015 end-page: 287 ident: CR51 article-title: A biochar application protects rice pollen from high-temperature stress publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2015.08.009 – volume: 34 start-page: 177 year: 2018 end-page: 186 ident: CR15 article-title: How good is the evidence that soil-applied biochar improves water-holding capacity? publication-title: Soil Use Manag doi: 10.1111/sum.12413 – volume: 242 start-page: 2068 year: 2018 end-page: 2077 ident: CR31 article-title: Trace organic contaminants in urban runoff: associations with urban land-use publication-title: Environ Pollut doi: 10.1016/j.envpol.2018.06.066 – volume: 86 start-page: 150 year: 2006 end-page: 164 ident: CR143 article-title: Effect of SAR on water infiltration under a sequential rain-irrigation management system publication-title: Agric Water Manag doi: 10.1016/j.agwat.2006.07.010 – volume: 372 start-page: 280 year: 2021 end-page: 283 ident: CR104 article-title: Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees publication-title: Science doi: 10.1126/science.abf3903 – volume: 41 start-page: 517 year: 2018 end-page: 532 ident: CR182 article-title: Enhanced growth of halophyte plants in biochar-amended coastal soil: roles of nutrient availability and rhizosphere microbial modulation publication-title: Plant Cell Environ doi: 10.1111/pce.12944 – year: 2021 ident: CR108 article-title: Biochar as a tool for effective management of drought and heavy metal toxicity publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.129458 – start-page: 1 year: 2009 end-page: 35 ident: CR95 article-title: Stability of biochar in soil publication-title: Biochar for Environmental management – volume: 78 start-page: 135 year: 2015 end-page: 143 ident: CR164 article-title: Aromaticity and degree of aromatic condensation of char publication-title: Org Geochem doi: 10.1016/j.orggeochem.2014.10.002 – year: 2021 ident: CR84 article-title: Removal of arsenic by wheat straw biochar from soil publication-title: Bull Environ Contam Toxicol doi: 10.1007/s00128-020-03095-2 – year: 2019 ident: CR178 article-title: Biochar alleviated the salt stress of induced saline paddy soil and improved the biochemical characteristics of rice seedlings differing in salt tolerance publication-title: Soil Tillage Res doi: 10.1016/j.still.2019.104372 – ident: CR72 – ident: CR30 – volume: 24 start-page: 974 year: 2020 end-page: 981 ident: CR64 article-title: Potential effects of biochar application on mitigating the drought stress implications on wheat ( L.) under various growth stages publication-title: J Saudi Chem Soc doi: 10.1016/j.jscs.2020.10.005 – volume: 51 start-page: 66 year: 2005 end-page: 72 ident: CR80 article-title: Reactivity of wood charcoal with ozone publication-title: J Wood Sci doi: 10.1007/s10086-003-0616-9 – year: 2018 ident: CR174 article-title: Effects of biochar amendment on co2 emissions from paddy fields under water-saving irrigation publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph15112580 – ident: CR10 – year: 2020 ident: CR83 article-title: Biochar: a sustainable solution publication-title: Environ Dev Sustain doi: 10.1007/s10668-020-00970-0 – ident: CR137 – volume: 129 start-page: 62 year: 2013 end-page: 68 ident: CR147 article-title: Biochar mitigates negative effects of salt additions on two herbaceous plant species publication-title: J Environ Manage doi: 10.1016/j.jenvman.2013.05.057 – year: 2018 ident: CR135 article-title: Cooling effects and regulating ecosystem services provided by urban trees-Novel analysis approaches using urban tree cadastre data publication-title: Sustain doi: 10.3390/su10030712 – volume: 6 start-page: 1520 year: 2020 end-page: 1537 ident: CR27 article-title: Biochar-augmented biofilters to improve pollutant removal from stormwater-can they improve receiving water quality? publication-title: Environ Sci Water Res Technol doi: 10.1039/d0ew00027b – year: 2014 ident: CR102 article-title: Effects of soil temperature, flooding, and organic matter addition on N2O emissions from a soil of Hongze Lake Wetland, China publication-title: Sci World J doi: 10.1155/2014/272684 – year: 2021 ident: CR69 article-title: Biochar industry to circular economy publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.143820 – volume: 138 year: 2019 ident: CR163 article-title: Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2019.107571 – volume: 19 start-page: 758 year: 2019 end-page: 770 ident: CR81 article-title: Effect of shrimp waste-derived biochar and arbuscular mycorrhizal fungus on yield, antioxidant enzymes, and chemical composition of corn under salinity stress publication-title: J Soil Sci Plant Nutr doi: 10.1007/s42729-019-00075-2 – volume: 05 start-page: 1 year: 2015 end-page: 10 ident: CR28 article-title: Biochar source and application rate effects on soil water retention determined using wetting curves publication-title: Open J Soil Sci doi: 10.4236/ojss.2015.51001 – ident: CR165 – volume: 144 start-page: 113 year: 2013 end-page: 118 ident: CR92 article-title: Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain publication-title: F Crop Res doi: 10.1016/j.fcr.2012.11.015 – year: 2021 ident: CR101 article-title: Biochar increases enzyme activity and total microbial quality of soil grown with sugarcane publication-title: Environ Technol Innov doi: 10.1016/j.eti.2020.101270 – volume: 92 start-page: 197 year: 2004 end-page: 200 ident: CR47 article-title: Comments on the importance of black carbon in the global carbon cycle publication-title: Mar Chem doi: 10.1016/j.marchem.2004.06.026 – volume: 396 start-page: 1285 year: 2020 end-page: 1306 ident: CR159 article-title: Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: a forecasting analysis for the Global Burden of Disease Study publication-title: Lancet doi: 10.1016/S0140-6736(20)30677-2 – volume: 88 start-page: 222 year: 2013 end-page: 225 ident: CR116 article-title: Biochar soil amendment increases tomato seedling resistance to drought in sandy soils publication-title: J Arid Environ doi: 10.1016/j.jaridenv.2012.07.012 – volume: 47 start-page: 743 year: 2016 end-page: 752 ident: CR3 article-title: Biochar application and drought stress effects on physiological characteristics of Silybum marianum publication-title: Commun Soil Sci Plant Anal doi: 10.1080/00103624.2016.1146752 – volume: 17 start-page: 808 year: 2017 end-page: 823 ident: CR114 article-title: Impact of wheat straw biochar on yield of rice and some properties of Psammaquent and Plinthudult publication-title: J Soil Sci Plant Nutr doi: 10.4067/S0718-95162017000300019 – volume: 8 start-page: 626 year: 2005 end-page: 635 ident: CR11 article-title: Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments publication-title: Ecol Lett doi: 10.1111/j.1461-0248.2005.00756.x – volume: 647 start-page: 210 year: 2019 end-page: 222 ident: CR97 article-title: Biochar stability assessment methods: a review publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.07.402 – volume: 37 start-page: 1477 year: 2006 end-page: 1488 ident: CR39 article-title: Oxidation of black carbon by biotic and abiotic processes publication-title: Org Geochem doi: 10.1016/j.orggeochem.2006.06.022 – volume: 280 start-page: 1911 year: 1998 end-page: 1913 ident: CR109 article-title: Black carbon in deep-sea sediments publication-title: Science doi: 10.1126/science.280.5371.1911 – volume: 148 start-page: 86 year: 2016 end-page: 98 ident: CR23 article-title: Restoration of carbon and microbial activity in salt-induced soil by application of peanut shell biochar during short-term incubation study publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.12.130 – volume: 15 start-page: 5 year: 2022 end-page: 13 ident: CR126 article-title: Fire effects on the persistence of soil organic matter and long-term carbon storage publication-title: Nat Geosci doi: 10.1038/s41561-021-00867-1 – volume: 3 start-page: 316 year: 2015 end-page: 323 ident: CR172 article-title: Influence of salinity and water content on soil microorganisms publication-title: Int Soil Water Conserv Res doi: 10.1016/j.iswcr.2015.11.003 – volume: 77 start-page: 1478 year: 2013 end-page: 1487 ident: CR177 article-title: Effects of biochar amendment on soil thermal conductivity, reflectance, and temperature publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2012.0180 – volume: 137 start-page: 64 year: 2017 end-page: 70 ident: CR52 article-title: Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2016.11.029 – start-page: 31 year: 2021 end-page: 47 ident: CR87 article-title: Nanotechnology for Sustainable Crop Production: Recent Development and Strategies publication-title: Plant-Microbes-Engineered Nano-particles (PM-ENPs) Nexus in Agro-Ecosystems, Advances in Science, Technology & Innovation – volume: 113 start-page: 1 year: 2003 end-page: 16 ident: CR13 article-title: Prescribed fire-induced changes in properties of sub-boreal forest soils publication-title: Geoderma doi: 10.1016/S0016-7061(02)00312-9 – volume: 60 start-page: 457 year: 2014 end-page: 470 ident: CR57 article-title: Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam publication-title: Arch Agron Soil Sci doi: 10.1080/03650340.2013.821698 – volume: 2017 start-page: 4758316 year: 2017 ident: CR131 article-title: Examining the potential of forest residue-based amendments for post-wildfire rehabilitation in Colorado, USA publication-title: Scientifica (cairo) doi: 10.1155/2017/4758316 – volume: 1 start-page: 289 year: 2010 end-page: 303 ident: CR142 article-title: Review of the stability of biochar in soils: predictability of O: C molar ratios publication-title: Carbon Manag doi: 10.4155/cmt.10.32 – volume: 5 start-page: 939 year: 2014 end-page: 952 ident: CR33 article-title: Biochar increases plant-available water in a sandy loam soil under an aerobic rice crop system publication-title: Solid Earth doi: 10.5194/se-5-939-2014 – volume: 25 start-page: 3713 year: 2021 end-page: 3729 ident: CR162 article-title: Drought onset and propagation into soil moisture and grassland vegetation responses during the 2012–2019 major drought in Southern California publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-25-3713-2021 – volume: 128 start-page: 116 year: 2005 end-page: 129 ident: CR29 article-title: Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2004.12.019 – volume: 55 start-page: 27 year: 2010 end-page: 33 ident: CR173 article-title: Effects of soil temperature and moisture on survival of Coniothyrium minitans conidia in central China publication-title: Biol Control doi: 10.1016/j.biocontrol.2010.06.010 – volume: 305 start-page: 100 year: 2017 end-page: 112 ident: CR105 article-title: Properties of a sandy clay loam Haplic Ferralsol and soybean grain yield in a five-year field trial as affected by biochar amendment publication-title: Geoderma doi: 10.1016/j.geoderma.2017.05.029 – year: 2018 ident: CR123 article-title: Effects of soil temperature on some soil properties and plant growth publication-title: Adv Plants Agric Res doi: 10.15406/apar.2018.08.00288 – volume: 55 start-page: 1946 year: 2020 end-page: 1955 ident: CR125 article-title: Potential of biochar application to mitigate salinity stress in eggplant publication-title: HortScience doi: 10.21273/HORTSCI15398-20 – ident: CR154 – volume: 78 start-page: 38 year: 2017 end-page: 42 ident: CR50 article-title: Biochar-based Bradyrhizobium inoculum improves growth of lupin ( L.) under drought stress publication-title: Eur J Soil Biol doi: 10.1016/j.ejsobi.2016.11.007 – volume: 328 start-page: 237 year: 2004 end-page: 246 ident: CR124 article-title: Relative influence of wildfire on soil properties and erosion processes in different Mediterranean environments in NE Spain publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2004.01.026 – year: 2020 ident: CR157 article-title: Impact of biochar addition on soil thermal properties: modelling approach publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114574 – ident: CR111 – year: 2021 ident: CR128 article-title: The use of biochar for plant pathogen control publication-title: Phytopathology doi: 10.1094/phyto-06-20-0248-rvw – volume: 127 start-page: 13 year: 2001 end-page: 19 ident: CR22 article-title: Long-term hydrologic impact of urbanization: a tale of two models publication-title: J Water Resour Plan Manag doi: 10.1061/(asce)0733-9496(2001)127:1(13) – year: 2021 ident: CR24 article-title: Potential and safe utilization of Fly ash as fertilizer for L. Grown in phytoremediated and non-phytoremediated amendments publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-14179-9 – volume: 3 year: 2020 ident: CR73 article-title: Effect of biochar application on quality of flooded sandy soils and corn growth under greenhouse conditions publication-title: Agrosystems, Geosci Environ doi: 10.1002/agg2.20028 – volume: 40 start-page: 1363 year: 2000 end-page: 1368 ident: CR170 article-title: Growth and physiological responses of creeping bentgrass to changes in air and soil temperatures publication-title: Crop Sci doi: 10.2135/cropsci2000.4051363x – volume: 3 start-page: 1 year: 2017 ident: CR140 article-title: Action research into a flood resilient value chain—biochar-based organic fertilizer doubles productivity of pea in Udayapur, Nepal publication-title: KnE Life Sci doi: 10.18502/kls.v3i5.974 – volume: 233 start-page: 422 year: 2019 end-page: 430 ident: CR146 article-title: Multianalytical characterization of biochar and hydrochar produced from waste biomasses for environmental and agricultural applications publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.05.204 – volume: 487 start-page: 26 year: 2014 end-page: 36 ident: CR115 article-title: Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2014.03.141 – year: 2020 ident: CR176 article-title: Understanding the role of biochar in mitigating soil water stress in simulated urban roadside soil publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.139798 – volume: 53 start-page: 38 year: 2014 end-page: 44 ident: CR19 article-title: Impact of biochar application on plant water relations in Vitis vinifera (L.) publication-title: Eur J Agron doi: 10.1016/j.eja.2013.11.003 – volume: 13 start-page: 923 year: 1999 end-page: 932 ident: CR25 article-title: Stability of elemental carbon in a savanna soil publication-title: Global Biogeochem Cycles doi: 10.1029/1999GB900067 – volume: 142 start-page: 153 year: 2016 end-page: 159 ident: CR82 article-title: Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.06.041 – volume: 166 year: 2022 ident: CR183 article-title: Contrasting effects of straw and biochar on microscale heterogeneity of soil O2 and pH: implication for N2O emissions publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2022.108564 – volume: 634 start-page: 561 year: 2018 end-page: 568 ident: CR43 article-title: Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian Ultisol publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.03.380 – volume: 6 start-page: 733 year: 2015 ident: CR21 article-title: Potential of soil amendments (Biochar and gypsum) in increasing water use efficiency of abelmoschus esculentus L. Moench publication-title: Front Plant Sci doi: 10.3389/fpls.2015.00733 – volume: 162 start-page: 275 year: 2015 end-page: 289 ident: CR74 article-title: Elaboration, characteristics and advantages of biochars for the management of contaminated soils with a specific overview on Miscanthus biochars publication-title: J Environ Manage doi: 10.1016/j.jenvman.2015.07.056 – volume: 70 start-page: 229 year: 2014 end-page: 236 ident: CR89 article-title: Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2013.12.021 – year: 2020 ident: CR153 article-title: Kinetics of C mineralization of biochars in three excessive compost-fertilized soils: effects of feedstocks and soil properties publication-title: Agronomy doi: 10.3390/agronomy10111749 – year: 2014 ident: CR18 article-title: Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments publication-title: PLoS ONE doi: 10.1371/journal.pone.0108340 – volume: 365 start-page: 2973 year: 2010 end-page: 2989 ident: CR59 article-title: Implications of climate change for agricultural productivity in the early twenty-first century publication-title: Philos Trans R Soc B Biol Sci doi: 10.1098/rstb.2010.0158 – volume: 2 start-page: 91 year: 2016 end-page: 101 ident: CR151 article-title: Effect of climate change on the salinity intrusion: case study ca river basin, Vietnam publication-title: J Clim Chang doi: 10.3233/jcc-160010 – year: 2018 ident: CR44 article-title: Microbial extracellular polymeric substances: ecological function and impact on soil aggregation publication-title: Front Microbiol doi: 10.3389/fmicb.2018.01636 – year: 2020 ident: CR79 article-title: Climate adaptive farming and the potential of saline agriculture: the SalFar project publication-title: Regions doi: 10.1080/13673882.2020.00001065 – volume: 71 start-page: 321 year: 2019 end-page: 327 ident: CR118 article-title: The effect of biochar on the physiological, morphological and anatomical characteristics of mung bean roots after exposure to salt stress publication-title: Arch Biol Sci doi: 10.2298/ABS181005014N – volume: 75 start-page: 1997 year: 2015 end-page: 2011 ident: CR56 article-title: Effects of drought stress on agriculture soil publication-title: Nat Hazards doi: 10.1007/s11069-014-1409-8 – year: 2019 ident: CR145 article-title: Biochar and hydrochar from waste biomass promote the growth and enzyme activity of soil-resident ligninolytic fungi publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e02051 – year: 2019 ident: CR41 article-title: Extreme weather events in agriculture: a systematic review publication-title: Sustain doi: 10.3390/su11092547 – volume: 243–244 start-page: 175 year: 2015 end-page: 182 ident: CR14 article-title: Effects of biochar and manure amendments on water vapor sorption in a sandy loam soil publication-title: Geoderma doi: 10.1016/j.geoderma.2015.01.001 – volume: 81 start-page: 108 year: 2015 end-page: 123 ident: CR129 article-title: Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: a review publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2014.11.001 – year: 2018 ident: CR168 article-title: Effect of biochar amendment on methane emissions from paddy field under water-saving irrigation publication-title: Sustain doi: 10.3390/su10051371 – year: 2019 ident: CR149 article-title: Potentials, limitations, co-benefits, and trade-offs of biochar applications to soils for climate change mitigation publication-title: Land doi: 10.3390/LAND8120179 – volume: 6618 start-page: 64 year: 2009 ident: CR141 article-title: Biochar, climate change and soil: a review to guide future research publication-title: Civ Eng doi: 10.1139/Z03-132 – volume: 19 start-page: 191 year: 2020 end-page: 215 ident: CR150 article-title: Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects publication-title: Rev Env Sci Biotechnol doi: 10.1007/s11157-020-09523-3 – volume: 47 start-page: 2275 year: 2017 end-page: 2330 ident: CR70 article-title: Advances and future directions of biochar characterization methods and applications publication-title: Crit Rev Environ Sci Technol doi: 10.1080/10643389.2017.1421844 – volume: 126 start-page: 23 year: 2015 end-page: 34 ident: CR96 article-title: Climate change impacts on meteorological, agricultural and hydrological droughts in China publication-title: Glob Planet Change doi: 10.1016/j.gloplacha.2015.01.003 – volume: 2 start-page: 107 year: 2020 end-page: 120 ident: CR62 article-title: Potential of biochar and organic amendments for reclamation of coastal acidic-salt affected soil publication-title: Biochar doi: 10.1007/s42773-020-00036-4 – volume: 138 start-page: 37 year: 2014 end-page: 44 ident: CR4 article-title: Biochar enhances yield and quality of tomato under reduced irrigation publication-title: Agric Water Manag doi: 10.1016/j.agwat.2014.02.016 – volume: 209–210 start-page: 188 year: 2013 end-page: 197 ident: CR67 article-title: Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol publication-title: Geoderma doi: 10.1016/j.geoderma.2013.06.016 – volume: 8 start-page: 512 year: 2016 end-page: 523 ident: CR161 article-title: Biochar stability in soil: meta-analysis of decomposition and priming effects publication-title: GCB Bioenergy doi: 10.1111/gcbb.12266 – volume: 19 start-page: 61 year: 2017 end-page: 69 ident: CR107 article-title: Alleviation of adverse effect of drought stress on soybean (Glycine max. L.) by using poultry litter biochar publication-title: Bangladesh Agron J doi: 10.3329/baj.v19i2.31854 – volume: 04 start-page: 194 year: 2014 end-page: 198 ident: CR112 article-title: Can biochar couple with algae to deal with desertification? publication-title: J Sustain Bioenergy Syst doi: 10.4236/jsbs.2014.43018 – volume: 17 start-page: 581 year: 2017 end-page: 589 ident: CR48 article-title: Biochar addition drives soil aggregation and carbon sequestration in aggregate fractions from an intensive agricultural system publication-title: J Soils Sediments doi: 10.1007/s11368-015-1349-2 – ident: CR160 – volume: 282 start-page: 96 year: 2016 end-page: 102 ident: CR32 article-title: Long-term effects of biochar on soil physical properties publication-title: Geoderma doi: 10.1016/j.geoderma.2016.07.019 – volume: 201 start-page: 368 year: 2015 end-page: 378 ident: CR5 article-title: Biochar mitigates salinity stress in potato publication-title: J Agron Crop Sci doi: 10.1111/jac.12132 – volume: 16 start-page: 939 year: 2016 end-page: 953 ident: CR12 article-title: Salt-affected soils, reclamation, carbon dynamics, and biochar: a review publication-title: J Soils Sediments doi: 10.1007/s11368-015-1293-1 – volume: 122 start-page: 81 year: 2018 end-page: 90 ident: CR49 article-title: Dynamic biochar effects on soil nitrous oxide emissions and underlying microbial processes during the maize growing season publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2018.04.008 – year: 2020 ident: CR106 article-title: Amelioration of drought tolerance in maize using rice husk biochar publication-title: Maize Prod Use doi: 10.5772/intechopen.88824 – volume: 50 start-page: 142 year: 2012 end-page: 148 ident: CR171 article-title: Carbon quality and the temperature sensitivity of soil organic carbon decomposition in a tallgrass prairie publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.03.007 – volume: 18 start-page: 81 year: 1948 end-page: 115 ident: CR152 article-title: Effect of charcoal on certain physical, chemical, and biological properties of forest soils publication-title: Ecol Monogr doi: 10.2307/1948629 – year: 2020 ident: CR20 article-title: Assessment of crop residue and palm shell biochar incorporation on greenhouse gas emissions during the fallow and crop growing seasons of broccoli (Brassica oleracea var. italica) publication-title: Soil Tillage Res doi: 10.1016/j.still.2019.104435 – volume: 158 start-page: 436 year: 2010 end-page: 442 ident: CR91 article-title: Biochar impact on nutrient leaching from a Midwestern agricultural soil publication-title: Geoderma doi: 10.1016/j.geoderma.2010.05.012 – ident: CR113 – volume: 714 start-page: 136432 year: 2020 ident: CR53 article-title: Nitrogen dynamics affected by biochar and irrigation level in an onion field publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.136432 – volume: 376 start-page: 347 year: 2014 end-page: 361 ident: CR66 article-title: Does biochar influence soil physical properties and soil water availability? publication-title: Plant Soil doi: 10.1007/s11104-013-1980-x – volume: 22 start-page: 259 year: 2020 end-page: 266 ident: CR2 article-title: Ameliorating effects of biochar on photosynthetic efficiency and antioxidant defence of Phragmites karka under drought stress publication-title: Plant Biol doi: 10.1111/plb.13054 – volume: 2 start-page: 379 year: 2020 end-page: 420 ident: CR68 article-title: Biochar and its importance on nutrient dynamics in soil and plant publication-title: Biochar doi: 10.1007/s42773-020-00065-z – year: 2020 ident: CR169 article-title: Effect of biochar on soil temperature under high soil surface temperature in coal mined arid and semiarid regions publication-title: Sustain doi: 10.3390/su12198238 – volume: 80 start-page: 1157 year: 2016 end-page: 1166 ident: CR181 article-title: Effects of biochar amendment on soil thermal properties in the north China plain publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2016.01.0020 – volume: 203 start-page: 131 year: 2017 end-page: 145 ident: CR99 article-title: Impact of wood biochar and its interactions with mycorrhizal fungi, phosphorus fertilization and irrigation strategies on potato growth publication-title: J Agron Crop Sci doi: 10.1111/jac.12185 – volume: 33 start-page: 947 year: 1998 end-page: 951 ident: CR110 article-title: Soil temperature and root growth publication-title: HortScience doi: 10.21273/hortsci.33.6.947 – volume: 625 start-page: 320 year: 2018 end-page: 335 ident: CR132 article-title: Biochar application for the remediation of salt-affected soils: challenges and opportunities publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.12.257 – volume: 12 start-page: 3436 year: 2020 ident: CR179 article-title: Quantifying the effects of biochar application on greenhouse gas emissions from agricultural soils: a global meta-analysis publication-title: Sustain doi: 10.3390/SU12083436 – volume: 63 start-page: 225 year: 2013 end-page: 232 ident: CR117 article-title: Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions publication-title: Ann Microbiol doi: 10.1007/s13213-012-0465-0 – volume: 387 start-page: 337 year: 2014 end-page: 349 ident: CR121 article-title: The effects of an induced short-term drought period on the spatial variations in soil respiration measured around emergent trees in a typical bornean tropical forest, Malaysia publication-title: Plant Soil doi: 10.1007/s11104-014-2303-6 – volume: 121 start-page: 93 year: 2004 end-page: 100 ident: CR130 article-title: The effect of soil temperature on the bud phenology, chlorophyll fluorescence, carbohydrate content and cold hardiness of Norway spruce seedlings publication-title: Physiol Plant doi: 10.1111/j.0031-9317.2004.00307.x – ident: CR155 – volume: 95 start-page: 1321 year: 2015 end-page: 1327 ident: CR93 article-title: Biochar-manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2-year field experiment publication-title: J Sci Food Agric doi: 10.1002/jsfa.6825 – volume: 43 start-page: 1723 year: 2011 end-page: 1731 ident: CR77 article-title: Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.04.018 – volume: 81 start-page: 285 year: 2001 end-page: 297 ident: CR127 article-title: Importance of charred organic matter in Black Chernozem soils of Saskatchewan publication-title: Can J Soil Sci doi: 10.4141/s00-075 – volume: 11 start-page: 13792 year: 2021 ident: CR148 article-title: Evaluation on soil fertility quality under biochar combined with nitrogen reduction publication-title: Sci Rep doi: 10.1038/s41598-021-93200-0 – volume: 20 start-page: 288 year: 2020 ident: CR180 article-title: Biochar addition alleviate the negative effects of drought and salinity stress on soybean productivity and water use efficiency publication-title: BMC Plant Biol doi: 10.21203/rs.3.rs-33869/v1 – volume: 395 start-page: 141 year: 2015 end-page: 157 ident: CR63 article-title: Biochar but not humic acid product amendment affected maize yields via improving plant-soil moisture relations publication-title: Plant Soil doi: 10.1007/s11104-014-2294-3 – volume: 321 start-page: 1295 year: 2008 ident: CR94 article-title: Comment on “fire-derived charcoal causes loss of forest humus” publication-title: Science doi: 10.1126/science.1160005 – volume: 15 start-page: 816 year: 2015 end-page: 824 ident: CR16 article-title: Structure alteration of a sandy-clay soil by biochar amendments publication-title: J Soils Sediments doi: 10.1007/s11368-014-0960-y – volume: 12 start-page: 53001 year: 2017 ident: CR75 article-title: Biochar boosts tropical but not temperate crop yields publication-title: Environ Res Lett doi: 10.1088/1748-9326/aa67bd – volume: 22 start-page: 1311 year: 2002 end-page: 1316 ident: CR90 article-title: Soil temperature, gas exchange and nitrogen status of 5-year-old Norway spruce seedlings publication-title: Tree Physiol doi: 10.1093/treephys/22.18.1311 – volume: 181 start-page: 102 year: 2018 end-page: 109 ident: CR100 article-title: Effects of biochar on spatial and temporal changes in soil temperature in cold waterlogged rice paddies publication-title: Soil Tillage Res doi: 10.1016/j.still.2018.04.008 – volume: 164 start-page: 1 year: 2000 end-page: 31 ident: CR136 article-title: The taphonomy of charcoal following a recent heathland fire and some implications for the interpretation of fossil charcoal deposits publication-title: Palaeogeogr Palaeoclimatol Palaeoecol doi: 10.1016/S0031-0182(00)00168-1 – volume: 236 start-page: 21 year: 2017 end-page: 29 ident: CR60 article-title: Short-lived effects of walnut shell biochar on soils and crop yields in a long-term field experiment publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2016.11.002 – volume: 326 start-page: 88 year: 2018 end-page: 95 ident: CR158 article-title: Effect of biochar addition on hydraulic functions of two textural soils publication-title: Geoderma doi: 10.1016/j.geoderma.2018.03.021 – volume: 175 start-page: 294 year: 2019 end-page: 303 ident: CR17 article-title: Effect of biochar on the physical and structural properties of a desert sandy soil publication-title: CATENA doi: 10.1016/j.catena.2018.12.019 – volume: 658 start-page: 1306 year: 2019 end-page: 1315 ident: CR175 article-title: Colloidal stability and aggregation kinetics of biochar colloids: effects of pyrolysis temperature, cation type, and humic acid concentrations publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.12.269 – year: 2020 ident: CR37 article-title: Impacts of climate change on tropical cyclones and induced storm surges in the Pearl River Delta region using pseudo-global-warming method publication-title: Sci Rep doi: 10.1038/s41598-020-58824-8 – year: 2020 ident: 148_CR20 publication-title: Soil Tillage Res doi: 10.1016/j.still.2019.104435 – year: 2021 ident: 148_CR69 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.143820 – volume: 50 start-page: 1177 year: 2014 ident: 148_CR122 publication-title: Biol Fertil Soils doi: 10.1007/s00374-014-0959-y – volume: 3 start-page: 905 year: 2020 ident: 148_CR85 publication-title: Mater Sci Energy Technol doi: 10.1016/j.mset.2020.10.012 – volume: 3 year: 2020 ident: 148_CR73 publication-title: Agrosystems, Geosci Environ doi: 10.1002/agg2.20028 – volume: 77 start-page: 1478 year: 2013 ident: 148_CR177 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2012.0180 – volume: 328 start-page: 237 year: 2004 ident: 148_CR124 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2004.01.026 – ident: 148_CR45 doi: 10.2136/sssaj2007.0425 – volume: 175 start-page: 294 year: 2019 ident: 148_CR17 publication-title: CATENA doi: 10.1016/j.catena.2018.12.019 – volume: 376 start-page: 347 year: 2014 ident: 148_CR66 publication-title: Plant Soil doi: 10.1007/s11104-013-1980-x – ident: 148_CR30 doi: 10.1201/b14585-2 – volume: 144 start-page: 113 year: 2013 ident: 148_CR92 publication-title: F Crop Res doi: 10.1016/j.fcr.2012.11.015 – volume: 80 start-page: 1157 year: 2016 ident: 148_CR181 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2016.01.0020 – year: 2021 ident: 148_CR108 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.129458 – volume: 50 start-page: 142 year: 2012 ident: 148_CR171 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.03.007 – ident: 148_CR154 – volume: 5 start-page: 665 year: 2014 ident: 148_CR167 publication-title: Solid Earth doi: 10.5194/se-5-665-2014 – volume: 86 start-page: 150 year: 2006 ident: 148_CR143 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2006.07.010 – volume: 158 start-page: 61 year: 2015 ident: 148_CR6 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2015.04.010 – volume: 45 start-page: 339 year: 2016 ident: 148_CR184 publication-title: Sains Malaysiana – volume: 37 start-page: 1477 year: 2006 ident: 148_CR39 publication-title: Org Geochem doi: 10.1016/j.orggeochem.2006.06.022 – volume: 75 start-page: 1997 year: 2015 ident: 148_CR56 publication-title: Nat Hazards doi: 10.1007/s11069-014-1409-8 – volume: 221–222 start-page: 131 year: 2014 ident: 148_CR71 publication-title: Geoderma doi: 10.1016/j.geoderma.2014.01.015 – ident: 148_CR10 – volume: 6618 start-page: 64 year: 2009 ident: 148_CR141 publication-title: Civ Eng doi: 10.1139/Z03-132 – volume: 5 start-page: 16366 year: 2020 ident: 148_CR40 publication-title: ACS Omega doi: 10.1021/acsomega.0c00216 – year: 2021 ident: 148_CR101 publication-title: Environ Technol Innov doi: 10.1016/j.eti.2020.101270 – year: 2019 ident: 148_CR145 publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e02051 – volume: 122 start-page: 81 year: 2018 ident: 148_CR49 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2018.04.008 – volume: 201 start-page: 20 year: 2015 ident: 148_CR55 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2014.11.021 – volume: 50 start-page: 527 year: 2012 ident: 148_CR42 publication-title: Soil Res doi: 10.1071/SR12185 – year: 2020 ident: 148_CR106 publication-title: Maize Prod Use doi: 10.5772/intechopen.88824 – year: 2020 ident: 148_CR157 publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114574 – volume: 47 start-page: 2275 year: 2017 ident: 148_CR70 publication-title: Crit Rev Environ Sci Technol doi: 10.1080/10643389.2017.1421844 – year: 2020 ident: 148_CR79 publication-title: Regions doi: 10.1080/13673882.2020.00001065 – volume: 126 start-page: 23 year: 2015 ident: 148_CR96 publication-title: Glob Planet Change doi: 10.1016/j.gloplacha.2015.01.003 – ident: 148_CR155 – year: 2021 ident: 148_CR86 publication-title: Environ Res doi: 10.1016/j.envres.2021.111758 – volume: 137 start-page: 64 year: 2017 ident: 148_CR52 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2016.11.029 – volume: 22 start-page: 259 year: 2020 ident: 148_CR2 publication-title: Plant Biol doi: 10.1111/plb.13054 – year: 2018 ident: 148_CR123 publication-title: Adv Plants Agric Res doi: 10.15406/apar.2018.08.00288 – volume: 05 start-page: 1 year: 2015 ident: 148_CR28 publication-title: Open J Soil Sci doi: 10.4236/ojss.2015.51001 – volume: 15 start-page: 816 year: 2015 ident: 148_CR16 publication-title: J Soils Sediments doi: 10.1007/s11368-014-0960-y – volume: 121 start-page: 93 year: 2004 ident: 148_CR130 publication-title: Physiol Plant doi: 10.1111/j.0031-9317.2004.00307.x – volume: 143 start-page: 1 year: 2005 ident: 148_CR35 publication-title: Oecologia doi: 10.1007/s00442-004-1788-8 – volume: 233 start-page: 422 year: 2019 ident: 148_CR146 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.05.204 – year: 2019 ident: 148_CR41 publication-title: Sustain doi: 10.3390/su11092547 – volume: 4 start-page: 51 year: 2016 ident: 148_CR78 publication-title: Sci Int doi: 10.17311/sciintl.2016.51.73 – volume: 321 start-page: 1295 year: 2008 ident: 148_CR94 publication-title: Science doi: 10.1126/science.1160005 – volume: 19 start-page: 191 year: 2020 ident: 148_CR150 publication-title: Rev Env Sci Biotechnol doi: 10.1007/s11157-020-09523-3 – volume: 36 start-page: 36 year: 2016 ident: 148_CR46 publication-title: Agron Sustain Dev doi: 10.1007/s13593-016-0372-z – volume: 282 start-page: 96 year: 2016 ident: 148_CR32 publication-title: Geoderma doi: 10.1016/j.geoderma.2016.07.019 – volume: 3 start-page: 316 year: 2015 ident: 148_CR172 publication-title: Int Soil Water Conserv Res doi: 10.1016/j.iswcr.2015.11.003 – year: 2021 ident: 148_CR24 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-14179-9 – volume: 6 start-page: 733 year: 2015 ident: 148_CR21 publication-title: Front Plant Sci doi: 10.3389/fpls.2015.00733 – year: 2021 ident: 148_CR36 publication-title: Chem Biol Technol Agric doi: 10.1186/s40538-020-00204-5 – volume: 243–244 start-page: 175 year: 2015 ident: 148_CR14 publication-title: Geoderma doi: 10.1016/j.geoderma.2015.01.001 – volume: 70 start-page: 229 year: 2014 ident: 148_CR89 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2013.12.021 – ident: 148_CR54 – ident: 148_CR111 doi: 10.7930/J0Z31WJ2 – volume: 04 start-page: 194 year: 2014 ident: 148_CR112 publication-title: J Sustain Bioenergy Syst doi: 10.4236/jsbs.2014.43018 – volume: 396 start-page: 1285 year: 2020 ident: 148_CR159 publication-title: Lancet doi: 10.1016/S0140-6736(20)30677-2 – ident: 148_CR165 doi: 10.1201/b21225-8 – volume: 285 start-page: 112170 year: 2021 ident: 148_CR139 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2021.112170 – volume: 3 start-page: 1 year: 2017 ident: 148_CR140 publication-title: KnE Life Sci doi: 10.18502/kls.v3i5.974 – volume: 88 start-page: 222 year: 2013 ident: 148_CR116 publication-title: J Arid Environ doi: 10.1016/j.jaridenv.2012.07.012 – volume: 387 start-page: 337 year: 2014 ident: 148_CR121 publication-title: Plant Soil doi: 10.1007/s11104-014-2303-6 – volume: 81 start-page: 687 year: 2017 ident: 148_CR26 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2017.01.0017 – volume: 305 start-page: 100 year: 2017 ident: 148_CR105 publication-title: Geoderma doi: 10.1016/j.geoderma.2017.05.029 – volume: 19 start-page: 61 year: 2017 ident: 148_CR107 publication-title: Bangladesh Agron J doi: 10.3329/baj.v19i2.31854 – year: 2014 ident: 148_CR133 publication-title: Front Environ Sci doi: 10.3389/fenvs.2014.00025 – volume: 19 start-page: 758 year: 2019 ident: 148_CR81 publication-title: J Soil Sci Plant Nutr doi: 10.1007/s42729-019-00075-2 – volume: 6 start-page: 321 year: 2018 ident: 148_CR119 publication-title: Asian J Agric Biol – volume: 24 start-page: 974 year: 2020 ident: 148_CR64 publication-title: J Saudi Chem Soc doi: 10.1016/j.jscs.2020.10.005 – volume: 16 start-page: 939 year: 2016 ident: 148_CR12 publication-title: J Soils Sediments doi: 10.1007/s11368-015-1293-1 – year: 2020 ident: 148_CR169 publication-title: Sustain doi: 10.3390/su12198238 – volume: 236 start-page: 21 year: 2017 ident: 148_CR60 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2016.11.002 – volume: 162 start-page: 275 year: 2015 ident: 148_CR74 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2015.07.056 – volume: 658 start-page: 1306 year: 2019 ident: 148_CR175 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.12.269 – volume: 70 start-page: 67 year: 2015 ident: 148_CR103 publication-title: Eur J Soil Biol doi: 10.1016/j.ejsobi.2015.07.005 – volume: 148 start-page: 86 year: 2016 ident: 148_CR23 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.12.130 – volume: 315 start-page: 27 year: 2018 ident: 148_CR58 publication-title: Geoderma doi: 10.1016/j.geoderma.2017.11.034 – volume: 88 start-page: 379 year: 2019 ident: 148_CR134 publication-title: Phyton B Aires doi: 10.32604/phyton.2019.04784 – volume: 2 start-page: 91 year: 2016 ident: 148_CR151 publication-title: J Clim Chang doi: 10.3233/jcc-160010 – volume: 2 start-page: 379 year: 2020 ident: 148_CR68 publication-title: Biochar doi: 10.1007/s42773-020-00065-z – year: 2021 ident: 148_CR128 publication-title: Phytopathology doi: 10.1094/phyto-06-20-0248-rvw – year: 2018 ident: 148_CR135 publication-title: Sustain doi: 10.3390/su10030712 – volume: 166 year: 2022 ident: 148_CR183 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2022.108564 – volume: 96 start-page: 114 year: 2015 ident: 148_CR65 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2015.07.014 – volume: 164 start-page: 1628 year: 2014 ident: 148_CR144 publication-title: Plant Physiol doi: 10.1104/pp.113.233353 – volume: 43 start-page: 1723 year: 2011 ident: 148_CR77 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.04.018 – volume: 201 start-page: 368 year: 2015 ident: 148_CR5 publication-title: J Agron Crop Sci doi: 10.1111/jac.12132 – year: 2018 ident: 148_CR44 publication-title: Front Microbiol doi: 10.3389/fmicb.2018.01636 – volume: 95 start-page: 1321 year: 2015 ident: 148_CR93 publication-title: J Sci Food Agric doi: 10.1002/jsfa.6825 – volume: 26 start-page: 27 year: 2016 ident: 148_CR156 publication-title: Pedosphere doi: 10.1016/S1002-0160(15)60019-4 – volume: 40 start-page: 1363 year: 2000 ident: 148_CR170 publication-title: Crop Sci doi: 10.2135/cropsci2000.4051363x – volume: 128 start-page: 116 year: 2005 ident: 148_CR29 publication-title: Geoderma doi: 10.1016/j.geoderma.2004.12.019 – volume: 487 start-page: 26 year: 2014 ident: 148_CR115 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2014.03.141 – volume: 280 start-page: 1911 year: 1998 ident: 148_CR109 publication-title: Science doi: 10.1126/science.280.5371.1911 – volume: 2 start-page: 683 year: 2015 ident: 148_CR76 publication-title: Wiley Interdiscip Rev Water doi: 10.1002/wat2.1107 – volume: 60 start-page: 457 year: 2014 ident: 148_CR57 publication-title: Arch Agron Soil Sci doi: 10.1080/03650340.2013.821698 – year: 2020 ident: 148_CR176 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.139798 – volume: 276 start-page: 7 year: 2016 ident: 148_CR34 publication-title: Geoderma doi: 10.1016/j.geoderma.2016.04.013 – volume: 557 start-page: 631 year: 2018 ident: 148_CR8 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2017.12.052 – volume: 714 start-page: 136432 year: 2020 ident: 148_CR53 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.136432 – volume: 138 year: 2019 ident: 148_CR163 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2019.107571 – year: 2019 ident: 148_CR178 publication-title: Soil Tillage Res doi: 10.1016/j.still.2019.104372 – volume: 34 start-page: 177 year: 2018 ident: 148_CR15 publication-title: Soil Use Manag doi: 10.1111/sum.12413 – ident: 148_CR160 doi: 10.1007/978-3-642-14225-3_13 – volume: 395 start-page: 141 year: 2015 ident: 148_CR63 publication-title: Plant Soil doi: 10.1007/s11104-014-2294-3 – volume: 55 start-page: 27 year: 2010 ident: 148_CR173 publication-title: Biol Control doi: 10.1016/j.biocontrol.2010.06.010 – volume: 2017 start-page: 4758316 year: 2017 ident: 148_CR131 publication-title: Scientifica (cairo) doi: 10.1155/2017/4758316 – ident: 148_CR137 doi: 10.1016/j.chemosphere.2021.132788 – ident: 148_CR88 doi: 10.1016/B978-0-12-822928-6.00005-8 – start-page: 31 volume-title: Plant-Microbes-Engineered Nano-particles (PM-ENPs) Nexus in Agro-Ecosystems, Advances in Science, Technology & Innovation year: 2021 ident: 148_CR87 – year: 2018 ident: 148_CR174 publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph15112580 – volume: 81 start-page: 108 year: 2015 ident: 148_CR129 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2014.11.001 – volume: 1 start-page: 289 year: 2010 ident: 148_CR142 publication-title: Carbon Manag doi: 10.4155/cmt.10.32 – volume: 113 start-page: 1 year: 2003 ident: 148_CR13 publication-title: Geoderma doi: 10.1016/S0016-7061(02)00312-9 – volume: 181 start-page: 102 year: 2018 ident: 148_CR100 publication-title: Soil Tillage Res doi: 10.1016/j.still.2018.04.008 – volume: 625 start-page: 320 year: 2018 ident: 148_CR132 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.12.257 – volume: 365 start-page: 2973 year: 2010 ident: 148_CR59 publication-title: Philos Trans R Soc B Biol Sci doi: 10.1098/rstb.2010.0158 – start-page: 1 volume-title: Biochar for Environmental management year: 2009 ident: 148_CR95 – volume: 92 start-page: 197 year: 2004 ident: 148_CR47 publication-title: Mar Chem doi: 10.1016/j.marchem.2004.06.026 – volume: 33 start-page: 947 year: 1998 ident: 148_CR110 publication-title: HortScience doi: 10.21273/hortsci.33.6.947 – volume: 96 start-page: 281 year: 2015 ident: 148_CR51 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2015.08.009 – year: 2020 ident: 148_CR153 publication-title: Agronomy doi: 10.3390/agronomy10111749 – volume: 78 start-page: 135 year: 2015 ident: 148_CR164 publication-title: Org Geochem doi: 10.1016/j.orggeochem.2014.10.002 – volume: 209–210 start-page: 188 year: 2013 ident: 148_CR67 publication-title: Geoderma doi: 10.1016/j.geoderma.2013.06.016 – year: 2020 ident: 148_CR37 publication-title: Sci Rep doi: 10.1038/s41598-020-58824-8 – volume: 24 start-page: 12700 year: 2017 ident: 148_CR9 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-017-8904-x – volume: 8 start-page: 626 year: 2005 ident: 148_CR11 publication-title: Ecol Lett doi: 10.1111/j.1461-0248.2005.00756.x – volume: 42 start-page: 770 year: 2015 ident: 148_CR7 publication-title: Funct Plant Biol doi: 10.1071/FP15054 – volume: 8 start-page: 512 year: 2016 ident: 148_CR161 publication-title: GCB Bioenergy doi: 10.1111/gcbb.12266 – volume: 22 start-page: 1311 year: 2002 ident: 148_CR90 publication-title: Tree Physiol doi: 10.1093/treephys/22.18.1311 – volume: 55 start-page: 1946 year: 2020 ident: 148_CR125 publication-title: HortScience doi: 10.21273/HORTSCI15398-20 – volume: 6 start-page: 1520 year: 2020 ident: 148_CR27 publication-title: Environ Sci Water Res Technol doi: 10.1039/d0ew00027b – year: 2021 ident: 148_CR84 publication-title: Bull Environ Contam Toxicol doi: 10.1007/s00128-020-03095-2 – volume: 203 start-page: 131 year: 2017 ident: 148_CR99 publication-title: J Agron Crop Sci doi: 10.1111/jac.12185 – ident: 148_CR138 – volume: 206 start-page: 46 year: 2015 ident: 148_CR61 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2015.03.015 – ident: 148_CR113 – volume: 155 start-page: 35 year: 2016 ident: 148_CR120 publication-title: Soil Tillage Res doi: 10.1016/j.still.2015.08.002 – year: 2020 ident: 148_CR83 publication-title: Environ Dev Sustain doi: 10.1007/s10668-020-00970-0 – volume: 164 start-page: 1 year: 2000 ident: 148_CR136 publication-title: Palaeogeogr Palaeoclimatol Palaeoecol doi: 10.1016/S0031-0182(00)00168-1 – volume: 25 start-page: 3713 year: 2021 ident: 148_CR162 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-25-3713-2021 – volume: 142 start-page: 153 year: 2016 ident: 148_CR82 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.06.041 – ident: 148_CR72 – volume: 18 start-page: 81 year: 1948 ident: 148_CR152 publication-title: Ecol Monogr doi: 10.2307/1948629 – volume: 78 start-page: 38 year: 2017 ident: 148_CR50 publication-title: Eur J Soil Biol doi: 10.1016/j.ejsobi.2016.11.007 – year: 2019 ident: 148_CR149 publication-title: Land doi: 10.3390/LAND8120179 – volume: 127 start-page: 13 year: 2001 ident: 148_CR22 publication-title: J Water Resour Plan Manag doi: 10.1061/(asce)0733-9496(2001)127:1(13) – volume: 63 start-page: 225 year: 2013 ident: 148_CR117 publication-title: Ann Microbiol doi: 10.1007/s13213-012-0465-0 – volume: 17 start-page: 581 year: 2017 ident: 148_CR48 publication-title: J Soils Sediments doi: 10.1007/s11368-015-1349-2 – volume: 634 start-page: 561 year: 2018 ident: 148_CR43 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.03.380 – volume: 158 start-page: 436 year: 2010 ident: 148_CR91 publication-title: Geoderma doi: 10.1016/j.geoderma.2010.05.012 – volume: 13 start-page: 923 year: 1999 ident: 148_CR25 publication-title: Global Biogeochem Cycles doi: 10.1029/1999GB900067 – volume: 20 start-page: 288 year: 2020 ident: 148_CR180 publication-title: BMC Plant Biol doi: 10.21203/rs.3.rs-33869/v1 – volume: 156 start-page: 85 year: 2012 ident: 148_CR166 publication-title: Agric for Meteorol doi: 10.1016/j.agrformet.2012.01.006 – volume: 242 start-page: 2068 year: 2018 ident: 148_CR31 publication-title: Environ Pollut doi: 10.1016/j.envpol.2018.06.066 – volume: 9 start-page: 64013 year: 2014 ident: 148_CR38 publication-title: Environ Res Lett doi: 10.1088/1748-9326/9/6/064013 – volume: 138 start-page: 37 year: 2014 ident: 148_CR4 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2014.02.016 – volume: 326 start-page: 88 year: 2018 ident: 148_CR158 publication-title: Geoderma doi: 10.1016/j.geoderma.2018.03.021 – year: 2018 ident: 148_CR168 publication-title: Sustain doi: 10.3390/su10051371 – volume: 12 start-page: 53001 year: 2017 ident: 148_CR75 publication-title: Environ Res Lett doi: 10.1088/1748-9326/aa67bd – volume: 5 start-page: 939 year: 2014 ident: 148_CR33 publication-title: Solid Earth doi: 10.5194/se-5-939-2014 – year: 2014 ident: 148_CR102 publication-title: Sci World J doi: 10.1155/2014/272684 – volume: 372 start-page: 280 year: 2021 ident: 148_CR104 publication-title: Science doi: 10.1126/science.abf3903 – year: 2014 ident: 148_CR18 publication-title: PLoS ONE doi: 10.1371/journal.pone.0108340 – volume: 129 start-page: 62 year: 2013 ident: 148_CR147 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2013.05.057 – volume: 51 start-page: 66 year: 2005 ident: 148_CR80 publication-title: J Wood Sci doi: 10.1007/s10086-003-0616-9 – volume: 647 start-page: 210 year: 2019 ident: 148_CR97 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.07.402 – volume: 81 start-page: 285 year: 2001 ident: 148_CR127 publication-title: Can J Soil Sci doi: 10.4141/s00-075 – volume: 2 start-page: 107 year: 2020 ident: 148_CR62 publication-title: Biochar doi: 10.1007/s42773-020-00036-4 – volume: 148 start-page: 825 year: 2018 ident: 148_CR1 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2017.11.063 – volume: 3 start-page: 579 year: 2021 ident: 148_CR98 publication-title: Biochar doi: 10.1007/s42773-021-00107-0 – volume: 11 start-page: 13792 year: 2021 ident: 148_CR148 publication-title: Sci Rep doi: 10.1038/s41598-021-93200-0 – volume: 12 start-page: 3436 year: 2020 ident: 148_CR179 publication-title: Sustain doi: 10.3390/SU12083436 – volume: 47 start-page: 743 year: 2016 ident: 148_CR3 publication-title: Commun Soil Sci Plant Anal doi: 10.1080/00103624.2016.1146752 – volume: 17 start-page: 808 year: 2017 ident: 148_CR114 publication-title: J Soil Sci Plant Nutr doi: 10.4067/S0718-95162017000300019 – volume: 41 start-page: 517 year: 2018 ident: 148_CR182 publication-title: Plant Cell Environ doi: 10.1111/pce.12944 – volume: 71 start-page: 321 year: 2019 ident: 148_CR118 publication-title: Arch Biol Sci doi: 10.2298/ABS181005014N – volume: 53 start-page: 38 year: 2014 ident: 148_CR19 publication-title: Eur J Agron doi: 10.1016/j.eja.2013.11.003 – volume: 15 start-page: 5 year: 2022 ident: 148_CR126 publication-title: Nat Geosci doi: 10.1038/s41561-021-00867-1 |
SSID | ssj0002511639 ssib053820432 ssib046561560 |
Score | 2.4951606 |
SecondaryResourceType | review_article |
Snippet | There has been more than 75% rise in the number of extreme weather events such as drought and flood during 2000–2019 compared to 1980–1999 due to the adverse... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | Agriculture Ceramics Composites Earth and Environmental Science Environment Environmental Engineering/Biotechnology Fossil Fuels (incl. Carbon Capture) Glass Natural Materials Renewable and Green Energy Review Soil Science & Conservation |
Title | A perspective on biochar for repairing damages in the soil–plant system caused by climate change-driven extreme weather events |
URI | https://link.springer.com/article/10.1007/s42773-022-00148-z |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL3oQn1hfzMGbBrrZ7Gb3WIpFBD0p9LbktbJQt6XbIvYg_gf_ob_ESXZbLYjgJZedZGGSTL6ZZL4h5CJVQnMr0TsxXFKeC06V1oxKLbSQjtDcB9zu7uObR347iAZNUli1eO2-uJL0lnqZ7MaZEO7OkdGOD4PN18lGhL67W9e9b85xRwAW_AD9uKNd_idbRl4cqI59iTEWMU5FKliTTfP7b1ZPrNXrUn8K9XfIdgMfoVvP9y5Zs-Ue2eo-TRoKDbtP3rsw_s6ghFEJqhi55CpAfAoTPH4KNzYY-Yy2pIKiBASBUI2K4ef7x3iIqoaa3xm0nFXWgHoFPSwQ2lqo84SpmTgjCWjYXXgRXmocCZ4Nqjogj_3rh94NbeosUB2G0ZTmiJECneSpCbSRIshTkSuERSYNE8typZMkVfiZobfIk9SiVKwTw3knV6FWUXhIWuWotEcEXMFyo0SYJBIdzwjBQIcbHCMNQimNjdskWOgy0w0JuauFMcyW9Mle_xnqP_P6z-ZtcrnsM64pOP6UvlpMUdZsx-oP8eP_iZ-QTeaWhn_Pckpa08nMniEqmapzvwhdG_fOvWeP7d3b9ReG5NuU |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYDsABsYqdOXADi8Zx4uRYVaCynkDiFnkLilTSqilCcOIf-EO-hLGTlkUIiXMmtjRe5s2M5w0hB6kSmluJ3onhkvJccKq0ZlRqoYV0hOY-4HZ1HXdv-flddNfQ5LhamB_5--OKMyFcppHRlg9-vUyTWY6esnu-14k7473jaL-CL1Afz7Gr-mSTeIuD0rFvLMYixqlIBWtqaH6f5rud-p4k9bbndIksNqAR2vUqL5MpW66Qhfb9sCHOsKvktQ2Dz7pJ6Jegir4rqQJEpTBEo1O4scHIB7xBKihKQOgHVb_ovb--DXqoYKhZnUHLx8oaUM-gewUCWgt1dTA1Q3c1Al7nLqgITzV6BM8BVa2R29OTm06XNt0VqA7DaERzREaBTvLUBNpIEeSpyBWCIZOGiWW50kmSKvzM0EfkSWpRKtaJ4byVq1CrKFwnM2W_tBsEXJtyo0SYJBLdzQghQIsbHCMNQimNjTdJMNZlphvqcdcBo5dNSJO9_jPUf-b1n71sksPJP4OaeONP6aPxEmXNIaz-EN_6n_g-meveXF1ml2fXF9tknrlt4l-07JCZ0fDR7iIuGak9vyE_APcJ16I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEF7SBEp7KE0fNG2azKG3drG1Wmmlo3FinKQ1PdTgm9iXikCVjWVT6lP-Q_5hfklmV7JjQzD0rNEKRvv4Zma_bwj5kiqhuZUYnRguKc8Fp0prRqUWWkgnaO4Tbj9G8XDMryfRZIvF72-7r0uSDafBqTRVi87M5J0N8Y0zIVz9kdGuT4mtnpEjjFR8obYf99czyomBBVsBAK5uxwVlmyyMA9ixbzfGIsapSAVrmTVPf2b39NotnfoTafCavGqhJPSaf39MDmz1hrzs_Z63chr2LbntweyRTQnTClQxdUQrQKwKczyKCjc2GPkH95UaigoQEEI9Lcr727tZiW6HRusZtFzW1oD6B7osEOZaaDjD1Mzdhgm4ybtUI_xtMCV4Zaj6HRkPLn_1h7TtuUB1GEYLmiNeCnSSpybQRoogT0WuECKZNEwsy5VOklThY4aRI09Si1axTgzn3VyFWkXhe3JYTSv7gYBrXm6UCJNEYhAaITDocoNjpEEopbHxCQnWvsx0K0ju-mKU2UZK2fs_Q_9n3v_Z6oR83bwza-Q49lp_W_-irF2a9R7zj_9nfk6e_7wYZN-vRjefyAvmZom_5nJKDhfzpf2MYGWhzvx8fACfNd_p |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+perspective+on+biochar+for+repairing+damages+in+the+soil%E2%80%93plant+system+caused+by+climate+change-driven+extreme+weather+events&rft.jtitle=Biochar+%28Online%29&rft.au=Kumar%2C+Abhishek&rft.au=Bhattacharya%2C+Tanushree&rft.au=Mukherjee%2C+Santanu&rft.au=Sarkar%2C+Binoy&rft.date=2022-12-01&rft.issn=2524-7972&rft.eissn=2524-7867&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1007%2Fs42773-022-00148-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42773_022_00148_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-7972&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-7972&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-7972&client=summon |