Improving modularity score of community detection using memetic algorithms
With the growth of online networks, understanding the intricate structure of communities has become vital. Traditional community detection algorithms, while effective to an extent, often fall short in complex systems. This study introduced a meta-heuristic approach for community detection that lever...
Saved in:
Published in | AIMS mathematics Vol. 9; no. 8; pp. 20516 - 20538 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2024997 |
Cover
Abstract | With the growth of online networks, understanding the intricate structure of communities has become vital. Traditional community detection algorithms, while effective to an extent, often fall short in complex systems. This study introduced a meta-heuristic approach for community detection that leveraged a memetic algorithm, combining genetic algorithms (GA) with the stochastic hill climbing (SHC) algorithm as a local optimization method to enhance modularity scores, which was a measure of the strength of community structure within a network. We conducted comprehensive experiments on five social network datasets (Zachary's Karate Club, Dolphin Social Network, Books About U.S. Politics, American College Football, and the Jazz Club Dataset). Also, we executed an ablation study based on modularity and convergence speed to determine the efficiency of local search. Our method outperformed other GA-based community detection methods, delivering higher maximum and average modularity scores, indicative of a superior detection of community structures. The effectiveness of local search was notable in its ability to accelerate convergence toward the global optimum. Our results not only demonstrated the algorithm's robustness across different network complexities but also underscored the significance of local search in achieving consistent and reliable modularity scores in community detection. |
---|---|
AbstractList | With the growth of online networks, understanding the intricate structure of communities has become vital. Traditional community detection algorithms, while effective to an extent, often fall short in complex systems. This study introduced a meta-heuristic approach for community detection that leveraged a memetic algorithm, combining genetic algorithms (GA) with the stochastic hill climbing (SHC) algorithm as a local optimization method to enhance modularity scores, which was a measure of the strength of community structure within a network. We conducted comprehensive experiments on five social network datasets (Zachary's Karate Club, Dolphin Social Network, Books About U.S. Politics, American College Football, and the Jazz Club Dataset). Also, we executed an ablation study based on modularity and convergence speed to determine the efficiency of local search. Our method outperformed other GA-based community detection methods, delivering higher maximum and average modularity scores, indicative of a superior detection of community structures. The effectiveness of local search was notable in its ability to accelerate convergence toward the global optimum. Our results not only demonstrated the algorithm's robustness across different network complexities but also underscored the significance of local search in achieving consistent and reliable modularity scores in community detection. |
Author | Lee, Dongwon Kim, Jingeun Yoon, Yourim |
Author_xml | – sequence: 1 givenname: Dongwon surname: Lee fullname: Lee, Dongwon organization: Department of Computer Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, Republic of Korea – sequence: 2 givenname: Jingeun surname: Kim fullname: Kim, Jingeun organization: Department of IT Convergence Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, Republic of Korea – sequence: 3 givenname: Yourim surname: Yoon fullname: Yoon, Yourim organization: Department of Computer Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, Republic of Korea |
BookMark | eNpNkNtKAzEQhoNUsNbe-QD7AG7NcZNcSvFQKXij1yHJTtotm03JboW-vdtaxKsZ_pn5GL5bNOlSBwjdE7xgmvHHaIftgmLKtZZXaEq5ZGWllZr862_QvO93GGNKKKeST9H7Ku5z-m66TRFTfWhtboZj0fuUoUih8CnGQ3eKahjAD03qikN_3oYIQ-ML227SeLON_R26DrbtYX6pM_T18vy5fCvXH6-r5dO69IyJoawtlgpEwDUJ2GkevNBeEaKUpbV0UttxxkglKkVDEEIJLzg4SWQFGmvFZmj1y62T3Zl9bqLNR5NsY85Byhtj8_haC0YIIjV1Ghhz3IG3onKUOimxrUIAPrIeflk-p77PEP54BJuTVnPSai5a2Q8X2G3O |
Cites_doi | 10.3390/ani12020201 10.1609/aaai.v33i01.3301152 10.1207/s15327906mbr2302_6 10.1016/S0965-9978(00)00070-3 10.1109/TKDE.2007.190689 10.1007/s00265-003-0651-y 10.1007/s00500-011-0715-2 10.1103/PhysRevE.69.066133 10.1109/ACCESS.2019.2900662 10.1016/j.engappai.2022.105202 10.1016/j.physa.2011.08.043 10.1016/j.physa.2019.122937 10.1109/ICCP.2010.5606467 10.1109/TKDE.2007.1061 10.1140/epjds9 10.1016/S0045-7949(03)00183-4 10.1016/j.asoc.2017.11.014 10.1111/j.1475-3995.1999.tb00173.x 10.1007/s00500-013-1060-4 10.1016/j.protcy.2012.05.128 10.1007/s00500-019-04414-4 10.1073/pnas.0601602103 10.1016/j.neucom.2017.05.029 10.1145/1348549.1348552 10.1109/TEVC.2005.850260 10.1103/PhysRevE.69.026113 10.2991/icmeit-19.2019.100 10.1109/JSYST.2018.2835642 10.1088/1742-5468/2005/09/P09008 10.1016/j.physa.2012.11.003 10.1109/ICETACS.2013.6691399 10.1016/j.socnet.2008.03.005 10.1002/widm.1178 10.1073/pnas.122653799 10.1088/1742-5468/aa6581 10.1086/jar.33.4.3629752 10.1103/PhysRevE.70.066111 10.1016/j.asoc.2019.01.045 10.1103/PhysRevE.80.036115 10.1137/0611030 10.1109/ICTAI.2009.58 10.1007/s41109-020-00289-9 10.1007/s00521-019-04487-0 10.1016/j.physa.2018.02.133 10.1016/j.physa.2008.12.021 10.1007/s11280-024-01238-7 10.1103/PhysRevE.84.056101 10.1002/int.20517 10.1109/TCYB.2019.2938895 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2024997 |
DatabaseName | CrossRef Directory of Open Access Journals (DOAJ) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 20538 |
ExternalDocumentID | oai_doaj_org_article_551792b9e33b4beca56b22b770a6ffe4 10_3934_math_2024997 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c335t-da078e5f0d1f0b94fc59c81188a2d7b79a5f03165682ff5585c54eb7176e90983 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:20:17 EDT 2025 Tue Jul 01 03:57:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c335t-da078e5f0d1f0b94fc59c81188a2d7b79a5f03165682ff5585c54eb7176e90983 |
OpenAccessLink | https://doaj.org/article/551792b9e33b4beca56b22b770a6ffe4 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_551792b9e33b4beca56b22b770a6ffe4 crossref_primary_10_3934_math_2024997 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2024 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2024997-41 key-10.3934/math.2024997-42 key-10.3934/math.2024997-40 key-10.3934/math.2024997-45 key-10.3934/math.2024997-46 key-10.3934/math.2024997-43 key-10.3934/math.2024997-44 key-10.3934/math.2024997-49 key-10.3934/math.2024997-47 key-10.3934/math.2024997-48 key-10.3934/math.2024997-52 key-10.3934/math.2024997-53 key-10.3934/math.2024997-50 key-10.3934/math.2024997-51 key-10.3934/math.2024997-12 key-10.3934/math.2024997-56 key-10.3934/math.2024997-13 key-10.3934/math.2024997-57 key-10.3934/math.2024997-10 key-10.3934/math.2024997-54 key-10.3934/math.2024997-11 key-10.3934/math.2024997-55 key-10.3934/math.2024997-4 key-10.3934/math.2024997-16 key-10.3934/math.2024997-3 key-10.3934/math.2024997-17 key-10.3934/math.2024997-2 key-10.3934/math.2024997-14 key-10.3934/math.2024997-58 key-10.3934/math.2024997-1 key-10.3934/math.2024997-15 key-10.3934/math.2024997-59 key-10.3934/math.2024997-18 key-10.3934/math.2024997-19 key-10.3934/math.2024997-63 key-10.3934/math.2024997-20 key-10.3934/math.2024997-64 key-10.3934/math.2024997-61 key-10.3934/math.2024997-62 key-10.3934/math.2024997-23 key-10.3934/math.2024997-67 key-10.3934/math.2024997-24 key-10.3934/math.2024997-68 key-10.3934/math.2024997-21 key-10.3934/math.2024997-65 key-10.3934/math.2024997-22 key-10.3934/math.2024997-66 key-10.3934/math.2024997-27 key-10.3934/math.2024997-28 key-10.3934/math.2024997-25 key-10.3934/math.2024997-69 key-10.3934/math.2024997-26 key-10.3934/math.2024997-29 key-10.3934/math.2024997-9 key-10.3934/math.2024997-8 key-10.3934/math.2024997-7 key-10.3934/math.2024997-6 key-10.3934/math.2024997-5 key-10.3934/math.2024997-60 key-10.3934/math.2024997-30 key-10.3934/math.2024997-31 key-10.3934/math.2024997-34 key-10.3934/math.2024997-35 key-10.3934/math.2024997-32 key-10.3934/math.2024997-33 key-10.3934/math.2024997-38 key-10.3934/math.2024997-39 key-10.3934/math.2024997-36 key-10.3934/math.2024997-37 key-10.3934/math.2024997-70 key-10.3934/math.2024997-71 |
References_xml | – ident: key-10.3934/math.2024997-37 doi: 10.3390/ani12020201 – ident: key-10.3934/math.2024997-70 doi: 10.1609/aaai.v33i01.3301152 – ident: key-10.3934/math.2024997-67 doi: 10.1207/s15327906mbr2302_6 – ident: key-10.3934/math.2024997-5 – ident: key-10.3934/math.2024997-38 doi: 10.1016/S0965-9978(00)00070-3 – ident: key-10.3934/math.2024997-9 doi: 10.1109/TKDE.2007.190689 – ident: key-10.3934/math.2024997-50 doi: 10.1007/s00265-003-0651-y – ident: key-10.3934/math.2024997-30 doi: 10.1007/s00500-011-0715-2 – ident: key-10.3934/math.2024997-23 doi: 10.1103/PhysRevE.69.066133 – ident: key-10.3934/math.2024997-71 doi: 10.1109/ACCESS.2019.2900662 – ident: key-10.3934/math.2024997-15 – ident: key-10.3934/math.2024997-11 doi: 10.1016/j.engappai.2022.105202 – ident: key-10.3934/math.2024997-49 doi: 10.1016/j.physa.2011.08.043 – ident: key-10.3934/math.2024997-12 doi: 10.1016/j.physa.2019.122937 – ident: key-10.3934/math.2024997-46 doi: 10.1109/ICCP.2010.5606467 – ident: key-10.3934/math.2024997-32 doi: 10.1109/TKDE.2007.1061 – ident: key-10.3934/math.2024997-4 doi: 10.1140/epjds9 – ident: key-10.3934/math.2024997-24 – ident: key-10.3934/math.2024997-39 doi: 10.1016/S0045-7949(03)00183-4 – ident: key-10.3934/math.2024997-59 doi: 10.1016/j.asoc.2017.11.014 – ident: key-10.3934/math.2024997-60 – ident: key-10.3934/math.2024997-47 – ident: key-10.3934/math.2024997-43 – ident: key-10.3934/math.2024997-21 doi: 10.1111/j.1475-3995.1999.tb00173.x – ident: key-10.3934/math.2024997-22 – ident: key-10.3934/math.2024997-31 doi: 10.1007/s00500-013-1060-4 – ident: key-10.3934/math.2024997-44 doi: 10.1016/j.protcy.2012.05.128 – ident: key-10.3934/math.2024997-19 doi: 10.1007/s00500-019-04414-4 – ident: key-10.3934/math.2024997-35 – ident: key-10.3934/math.2024997-51 doi: 10.1073/pnas.0601602103 – ident: key-10.3934/math.2024997-54 doi: 10.1016/j.neucom.2017.05.029 – ident: key-10.3934/math.2024997-58 doi: 10.1145/1348549.1348552 – ident: key-10.3934/math.2024997-25 – ident: key-10.3934/math.2024997-28 doi: 10.1109/TEVC.2005.850260 – ident: key-10.3934/math.2024997-6 doi: 10.1103/PhysRevE.69.026113 – ident: key-10.3934/math.2024997-56 doi: 10.2991/icmeit-19.2019.100 – ident: key-10.3934/math.2024997-62 doi: 10.1109/JSYST.2018.2835642 – ident: key-10.3934/math.2024997-2 – ident: key-10.3934/math.2024997-66 doi: 10.1088/1742-5468/2005/09/P09008 – ident: key-10.3934/math.2024997-18 doi: 10.1016/j.physa.2012.11.003 – ident: key-10.3934/math.2024997-42 – ident: key-10.3934/math.2024997-57 doi: 10.1109/ICETACS.2013.6691399 – ident: key-10.3934/math.2024997-33 doi: 10.1016/j.socnet.2008.03.005 – ident: key-10.3934/math.2024997-13 – ident: key-10.3934/math.2024997-1 doi: 10.1002/widm.1178 – ident: key-10.3934/math.2024997-8 doi: 10.1073/pnas.122653799 – ident: key-10.3934/math.2024997-63 doi: 10.1088/1742-5468/aa6581 – ident: key-10.3934/math.2024997-48 doi: 10.1086/jar.33.4.3629752 – ident: key-10.3934/math.2024997-52 – ident: key-10.3934/math.2024997-10 – ident: key-10.3934/math.2024997-61 doi: 10.1103/PhysRevE.70.066111 – ident: key-10.3934/math.2024997-64 doi: 10.1016/j.asoc.2019.01.045 – ident: key-10.3934/math.2024997-34 doi: 10.1103/PhysRevE.80.036115 – ident: key-10.3934/math.2024997-26 – ident: key-10.3934/math.2024997-7 doi: 10.1137/0611030 – ident: key-10.3934/math.2024997-53 doi: 10.1109/ICTAI.2009.58 – ident: key-10.3934/math.2024997-45 – ident: key-10.3934/math.2024997-20 – ident: key-10.3934/math.2024997-16 – ident: key-10.3934/math.2024997-41 – ident: key-10.3934/math.2024997-65 doi: 10.1007/s41109-020-00289-9 – ident: key-10.3934/math.2024997-55 – ident: key-10.3934/math.2024997-3 doi: 10.1007/s00521-019-04487-0 – ident: key-10.3934/math.2024997-68 doi: 10.1016/j.physa.2018.02.133 – ident: key-10.3934/math.2024997-69 doi: 10.1016/j.physa.2008.12.021 – ident: key-10.3934/math.2024997-36 doi: 10.1007/s11280-024-01238-7 – ident: key-10.3934/math.2024997-40 – ident: key-10.3934/math.2024997-17 doi: 10.1103/PhysRevE.84.056101 – ident: key-10.3934/math.2024997-27 – ident: key-10.3934/math.2024997-29 doi: 10.1002/int.20517 – ident: key-10.3934/math.2024997-14 doi: 10.1109/TCYB.2019.2938895 |
SSID | ssj0002124274 |
Score | 2.2496185 |
Snippet | With the growth of online networks, understanding the intricate structure of communities has become vital. Traditional community detection algorithms, while... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 20516 |
SubjectTerms | community detection genetic algorithm local search memetic algorithm modularity |
Title | Improving modularity score of community detection using memetic algorithms |
URI | https://doaj.org/article/551792b9e33b4beca56b22b770a6ffe4 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gBj1DQ-x_EIiKqqVCYqdYv8hIEmiIb_z10SqmwsrM4lse4S3_cl5-8Yu5Mm5g6BeaLA-ARAQmIA3ysZlbQCnINIG5yXL_l8BYu1XA9afVFNWCcP3DluIklDKrM6CGEBb2hkbrPMKpWaPMbQKoGmOh2QKVqDcUEG5FtdpbvQAiaI_-jfA7IN0nca5KCBVH-bU2ZH7LAHg_yhm8Qx2wvVCTtY7pRUt6dssWP9fFN7qhlF2My3JD7J68hdt78Dh3xo2qqqilMpO1qHDe1P5ObjrcZz3jfbM7aaPb8-zZO-_0HihJBN4g3m7yBj6qcxtRqik9oVyAgKk3lllTZ4TJB8TpHFKBH4OwnBIkHLg051Ic7ZqKqrcMG4LYzR1MHWWwUQvc2iUV5BzP0UjcOY3f96pPzsZC5KpAfkuZI8V_aeG7NHctfOhsSp2wEMWdmHrPwrZJf_cZErtk9z6r6GXLNR8_UdbhAfNPa2fRR-AL9yuzg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+modularity+score+of+community+detection+using+memetic+algorithms&rft.jtitle=AIMS+mathematics&rft.au=Dongwon+Lee&rft.au=Jingeun+Kim&rft.au=Yourim+Yoon&rft.date=2024-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=9&rft.issue=8&rft.spage=20516&rft.epage=20538&rft_id=info:doi/10.3934%2Fmath.2024997&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_551792b9e33b4beca56b22b770a6ffe4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |