Improving modularity score of community detection using memetic algorithms

With the growth of online networks, understanding the intricate structure of communities has become vital. Traditional community detection algorithms, while effective to an extent, often fall short in complex systems. This study introduced a meta-heuristic approach for community detection that lever...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 9; no. 8; pp. 20516 - 20538
Main Authors Lee, Dongwon, Kim, Jingeun, Yoon, Yourim
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2024
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2024997

Cover

Abstract With the growth of online networks, understanding the intricate structure of communities has become vital. Traditional community detection algorithms, while effective to an extent, often fall short in complex systems. This study introduced a meta-heuristic approach for community detection that leveraged a memetic algorithm, combining genetic algorithms (GA) with the stochastic hill climbing (SHC) algorithm as a local optimization method to enhance modularity scores, which was a measure of the strength of community structure within a network. We conducted comprehensive experiments on five social network datasets (Zachary's Karate Club, Dolphin Social Network, Books About U.S. Politics, American College Football, and the Jazz Club Dataset). Also, we executed an ablation study based on modularity and convergence speed to determine the efficiency of local search. Our method outperformed other GA-based community detection methods, delivering higher maximum and average modularity scores, indicative of a superior detection of community structures. The effectiveness of local search was notable in its ability to accelerate convergence toward the global optimum. Our results not only demonstrated the algorithm's robustness across different network complexities but also underscored the significance of local search in achieving consistent and reliable modularity scores in community detection.
AbstractList With the growth of online networks, understanding the intricate structure of communities has become vital. Traditional community detection algorithms, while effective to an extent, often fall short in complex systems. This study introduced a meta-heuristic approach for community detection that leveraged a memetic algorithm, combining genetic algorithms (GA) with the stochastic hill climbing (SHC) algorithm as a local optimization method to enhance modularity scores, which was a measure of the strength of community structure within a network. We conducted comprehensive experiments on five social network datasets (Zachary's Karate Club, Dolphin Social Network, Books About U.S. Politics, American College Football, and the Jazz Club Dataset). Also, we executed an ablation study based on modularity and convergence speed to determine the efficiency of local search. Our method outperformed other GA-based community detection methods, delivering higher maximum and average modularity scores, indicative of a superior detection of community structures. The effectiveness of local search was notable in its ability to accelerate convergence toward the global optimum. Our results not only demonstrated the algorithm's robustness across different network complexities but also underscored the significance of local search in achieving consistent and reliable modularity scores in community detection.
Author Lee, Dongwon
Kim, Jingeun
Yoon, Yourim
Author_xml – sequence: 1
  givenname: Dongwon
  surname: Lee
  fullname: Lee, Dongwon
  organization: Department of Computer Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
– sequence: 2
  givenname: Jingeun
  surname: Kim
  fullname: Kim, Jingeun
  organization: Department of IT Convergence Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
– sequence: 3
  givenname: Yourim
  surname: Yoon
  fullname: Yoon, Yourim
  organization: Department of Computer Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
BookMark eNpNkNtKAzEQhoNUsNbe-QD7AG7NcZNcSvFQKXij1yHJTtotm03JboW-vdtaxKsZ_pn5GL5bNOlSBwjdE7xgmvHHaIftgmLKtZZXaEq5ZGWllZr862_QvO93GGNKKKeST9H7Ku5z-m66TRFTfWhtboZj0fuUoUih8CnGQ3eKahjAD03qikN_3oYIQ-ML227SeLON_R26DrbtYX6pM_T18vy5fCvXH6-r5dO69IyJoawtlgpEwDUJ2GkevNBeEaKUpbV0UttxxkglKkVDEEIJLzg4SWQFGmvFZmj1y62T3Zl9bqLNR5NsY85Byhtj8_haC0YIIjV1Ghhz3IG3onKUOimxrUIAPrIeflk-p77PEP54BJuTVnPSai5a2Q8X2G3O
Cites_doi 10.3390/ani12020201
10.1609/aaai.v33i01.3301152
10.1207/s15327906mbr2302_6
10.1016/S0965-9978(00)00070-3
10.1109/TKDE.2007.190689
10.1007/s00265-003-0651-y
10.1007/s00500-011-0715-2
10.1103/PhysRevE.69.066133
10.1109/ACCESS.2019.2900662
10.1016/j.engappai.2022.105202
10.1016/j.physa.2011.08.043
10.1016/j.physa.2019.122937
10.1109/ICCP.2010.5606467
10.1109/TKDE.2007.1061
10.1140/epjds9
10.1016/S0045-7949(03)00183-4
10.1016/j.asoc.2017.11.014
10.1111/j.1475-3995.1999.tb00173.x
10.1007/s00500-013-1060-4
10.1016/j.protcy.2012.05.128
10.1007/s00500-019-04414-4
10.1073/pnas.0601602103
10.1016/j.neucom.2017.05.029
10.1145/1348549.1348552
10.1109/TEVC.2005.850260
10.1103/PhysRevE.69.026113
10.2991/icmeit-19.2019.100
10.1109/JSYST.2018.2835642
10.1088/1742-5468/2005/09/P09008
10.1016/j.physa.2012.11.003
10.1109/ICETACS.2013.6691399
10.1016/j.socnet.2008.03.005
10.1002/widm.1178
10.1073/pnas.122653799
10.1088/1742-5468/aa6581
10.1086/jar.33.4.3629752
10.1103/PhysRevE.70.066111
10.1016/j.asoc.2019.01.045
10.1103/PhysRevE.80.036115
10.1137/0611030
10.1109/ICTAI.2009.58
10.1007/s41109-020-00289-9
10.1007/s00521-019-04487-0
10.1016/j.physa.2018.02.133
10.1016/j.physa.2008.12.021
10.1007/s11280-024-01238-7
10.1103/PhysRevE.84.056101
10.1002/int.20517
10.1109/TCYB.2019.2938895
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2024997
DatabaseName CrossRef
Directory of Open Access Journals (DOAJ) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 20538
ExternalDocumentID oai_doaj_org_article_551792b9e33b4beca56b22b770a6ffe4
10_3934_math_2024997
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c335t-da078e5f0d1f0b94fc59c81188a2d7b79a5f03165682ff5585c54eb7176e90983
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:20:17 EDT 2025
Tue Jul 01 03:57:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c335t-da078e5f0d1f0b94fc59c81188a2d7b79a5f03165682ff5585c54eb7176e90983
OpenAccessLink https://doaj.org/article/551792b9e33b4beca56b22b770a6ffe4
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_551792b9e33b4beca56b22b770a6ffe4
crossref_primary_10_3934_math_2024997
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2024
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2024997-41
key-10.3934/math.2024997-42
key-10.3934/math.2024997-40
key-10.3934/math.2024997-45
key-10.3934/math.2024997-46
key-10.3934/math.2024997-43
key-10.3934/math.2024997-44
key-10.3934/math.2024997-49
key-10.3934/math.2024997-47
key-10.3934/math.2024997-48
key-10.3934/math.2024997-52
key-10.3934/math.2024997-53
key-10.3934/math.2024997-50
key-10.3934/math.2024997-51
key-10.3934/math.2024997-12
key-10.3934/math.2024997-56
key-10.3934/math.2024997-13
key-10.3934/math.2024997-57
key-10.3934/math.2024997-10
key-10.3934/math.2024997-54
key-10.3934/math.2024997-11
key-10.3934/math.2024997-55
key-10.3934/math.2024997-4
key-10.3934/math.2024997-16
key-10.3934/math.2024997-3
key-10.3934/math.2024997-17
key-10.3934/math.2024997-2
key-10.3934/math.2024997-14
key-10.3934/math.2024997-58
key-10.3934/math.2024997-1
key-10.3934/math.2024997-15
key-10.3934/math.2024997-59
key-10.3934/math.2024997-18
key-10.3934/math.2024997-19
key-10.3934/math.2024997-63
key-10.3934/math.2024997-20
key-10.3934/math.2024997-64
key-10.3934/math.2024997-61
key-10.3934/math.2024997-62
key-10.3934/math.2024997-23
key-10.3934/math.2024997-67
key-10.3934/math.2024997-24
key-10.3934/math.2024997-68
key-10.3934/math.2024997-21
key-10.3934/math.2024997-65
key-10.3934/math.2024997-22
key-10.3934/math.2024997-66
key-10.3934/math.2024997-27
key-10.3934/math.2024997-28
key-10.3934/math.2024997-25
key-10.3934/math.2024997-69
key-10.3934/math.2024997-26
key-10.3934/math.2024997-29
key-10.3934/math.2024997-9
key-10.3934/math.2024997-8
key-10.3934/math.2024997-7
key-10.3934/math.2024997-6
key-10.3934/math.2024997-5
key-10.3934/math.2024997-60
key-10.3934/math.2024997-30
key-10.3934/math.2024997-31
key-10.3934/math.2024997-34
key-10.3934/math.2024997-35
key-10.3934/math.2024997-32
key-10.3934/math.2024997-33
key-10.3934/math.2024997-38
key-10.3934/math.2024997-39
key-10.3934/math.2024997-36
key-10.3934/math.2024997-37
key-10.3934/math.2024997-70
key-10.3934/math.2024997-71
References_xml – ident: key-10.3934/math.2024997-37
  doi: 10.3390/ani12020201
– ident: key-10.3934/math.2024997-70
  doi: 10.1609/aaai.v33i01.3301152
– ident: key-10.3934/math.2024997-67
  doi: 10.1207/s15327906mbr2302_6
– ident: key-10.3934/math.2024997-5
– ident: key-10.3934/math.2024997-38
  doi: 10.1016/S0965-9978(00)00070-3
– ident: key-10.3934/math.2024997-9
  doi: 10.1109/TKDE.2007.190689
– ident: key-10.3934/math.2024997-50
  doi: 10.1007/s00265-003-0651-y
– ident: key-10.3934/math.2024997-30
  doi: 10.1007/s00500-011-0715-2
– ident: key-10.3934/math.2024997-23
  doi: 10.1103/PhysRevE.69.066133
– ident: key-10.3934/math.2024997-71
  doi: 10.1109/ACCESS.2019.2900662
– ident: key-10.3934/math.2024997-15
– ident: key-10.3934/math.2024997-11
  doi: 10.1016/j.engappai.2022.105202
– ident: key-10.3934/math.2024997-49
  doi: 10.1016/j.physa.2011.08.043
– ident: key-10.3934/math.2024997-12
  doi: 10.1016/j.physa.2019.122937
– ident: key-10.3934/math.2024997-46
  doi: 10.1109/ICCP.2010.5606467
– ident: key-10.3934/math.2024997-32
  doi: 10.1109/TKDE.2007.1061
– ident: key-10.3934/math.2024997-4
  doi: 10.1140/epjds9
– ident: key-10.3934/math.2024997-24
– ident: key-10.3934/math.2024997-39
  doi: 10.1016/S0045-7949(03)00183-4
– ident: key-10.3934/math.2024997-59
  doi: 10.1016/j.asoc.2017.11.014
– ident: key-10.3934/math.2024997-60
– ident: key-10.3934/math.2024997-47
– ident: key-10.3934/math.2024997-43
– ident: key-10.3934/math.2024997-21
  doi: 10.1111/j.1475-3995.1999.tb00173.x
– ident: key-10.3934/math.2024997-22
– ident: key-10.3934/math.2024997-31
  doi: 10.1007/s00500-013-1060-4
– ident: key-10.3934/math.2024997-44
  doi: 10.1016/j.protcy.2012.05.128
– ident: key-10.3934/math.2024997-19
  doi: 10.1007/s00500-019-04414-4
– ident: key-10.3934/math.2024997-35
– ident: key-10.3934/math.2024997-51
  doi: 10.1073/pnas.0601602103
– ident: key-10.3934/math.2024997-54
  doi: 10.1016/j.neucom.2017.05.029
– ident: key-10.3934/math.2024997-58
  doi: 10.1145/1348549.1348552
– ident: key-10.3934/math.2024997-25
– ident: key-10.3934/math.2024997-28
  doi: 10.1109/TEVC.2005.850260
– ident: key-10.3934/math.2024997-6
  doi: 10.1103/PhysRevE.69.026113
– ident: key-10.3934/math.2024997-56
  doi: 10.2991/icmeit-19.2019.100
– ident: key-10.3934/math.2024997-62
  doi: 10.1109/JSYST.2018.2835642
– ident: key-10.3934/math.2024997-2
– ident: key-10.3934/math.2024997-66
  doi: 10.1088/1742-5468/2005/09/P09008
– ident: key-10.3934/math.2024997-18
  doi: 10.1016/j.physa.2012.11.003
– ident: key-10.3934/math.2024997-42
– ident: key-10.3934/math.2024997-57
  doi: 10.1109/ICETACS.2013.6691399
– ident: key-10.3934/math.2024997-33
  doi: 10.1016/j.socnet.2008.03.005
– ident: key-10.3934/math.2024997-13
– ident: key-10.3934/math.2024997-1
  doi: 10.1002/widm.1178
– ident: key-10.3934/math.2024997-8
  doi: 10.1073/pnas.122653799
– ident: key-10.3934/math.2024997-63
  doi: 10.1088/1742-5468/aa6581
– ident: key-10.3934/math.2024997-48
  doi: 10.1086/jar.33.4.3629752
– ident: key-10.3934/math.2024997-52
– ident: key-10.3934/math.2024997-10
– ident: key-10.3934/math.2024997-61
  doi: 10.1103/PhysRevE.70.066111
– ident: key-10.3934/math.2024997-64
  doi: 10.1016/j.asoc.2019.01.045
– ident: key-10.3934/math.2024997-34
  doi: 10.1103/PhysRevE.80.036115
– ident: key-10.3934/math.2024997-26
– ident: key-10.3934/math.2024997-7
  doi: 10.1137/0611030
– ident: key-10.3934/math.2024997-53
  doi: 10.1109/ICTAI.2009.58
– ident: key-10.3934/math.2024997-45
– ident: key-10.3934/math.2024997-20
– ident: key-10.3934/math.2024997-16
– ident: key-10.3934/math.2024997-41
– ident: key-10.3934/math.2024997-65
  doi: 10.1007/s41109-020-00289-9
– ident: key-10.3934/math.2024997-55
– ident: key-10.3934/math.2024997-3
  doi: 10.1007/s00521-019-04487-0
– ident: key-10.3934/math.2024997-68
  doi: 10.1016/j.physa.2018.02.133
– ident: key-10.3934/math.2024997-69
  doi: 10.1016/j.physa.2008.12.021
– ident: key-10.3934/math.2024997-36
  doi: 10.1007/s11280-024-01238-7
– ident: key-10.3934/math.2024997-40
– ident: key-10.3934/math.2024997-17
  doi: 10.1103/PhysRevE.84.056101
– ident: key-10.3934/math.2024997-27
– ident: key-10.3934/math.2024997-29
  doi: 10.1002/int.20517
– ident: key-10.3934/math.2024997-14
  doi: 10.1109/TCYB.2019.2938895
SSID ssj0002124274
Score 2.2496185
Snippet With the growth of online networks, understanding the intricate structure of communities has become vital. Traditional community detection algorithms, while...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 20516
SubjectTerms community detection
genetic algorithm
local search
memetic algorithm
modularity
Title Improving modularity score of community detection using memetic algorithms
URI https://doaj.org/article/551792b9e33b4beca56b22b770a6ffe4
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gBj1DQ-x_EIiKqqVCYqdYv8hIEmiIb_z10SqmwsrM4lse4S3_cl5-8Yu5Mm5g6BeaLA-ARAQmIA3ysZlbQCnINIG5yXL_l8BYu1XA9afVFNWCcP3DluIklDKrM6CGEBb2hkbrPMKpWaPMbQKoGmOh2QKVqDcUEG5FtdpbvQAiaI_-jfA7IN0nca5KCBVH-bU2ZH7LAHg_yhm8Qx2wvVCTtY7pRUt6dssWP9fFN7qhlF2My3JD7J68hdt78Dh3xo2qqqilMpO1qHDe1P5ObjrcZz3jfbM7aaPb8-zZO-_0HihJBN4g3m7yBj6qcxtRqik9oVyAgKk3lllTZ4TJB8TpHFKBH4OwnBIkHLg051Ic7ZqKqrcMG4LYzR1MHWWwUQvc2iUV5BzP0UjcOY3f96pPzsZC5KpAfkuZI8V_aeG7NHctfOhsSp2wEMWdmHrPwrZJf_cZErtk9z6r6GXLNR8_UdbhAfNPa2fRR-AL9yuzg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+modularity+score+of+community+detection+using+memetic+algorithms&rft.jtitle=AIMS+mathematics&rft.au=Dongwon+Lee&rft.au=Jingeun+Kim&rft.au=Yourim+Yoon&rft.date=2024-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=9&rft.issue=8&rft.spage=20516&rft.epage=20538&rft_id=info:doi/10.3934%2Fmath.2024997&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_551792b9e33b4beca56b22b770a6ffe4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon