Structural Modification of Organic Thin-Film Transistors for Photosensor Application
We investigated the light response characteristics of bottom-gate/top-contact organic TFTs fabricated using pentacene and polystyrene as an organic semiconductor and a polymeric insulator, respectively. The pentacene TFT with overlaps (50 μm) between the source and gate electrodes as well as between...
Saved in:
Published in | Journal of the Korean Physical Society Vol. 72; no. 10; pp. 1254 - 1263 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean Physical Society
01.05.2018
Springer Nature B.V 한국물리학회 |
Subjects | |
Online Access | Get full text |
ISSN | 0374-4884 1976-8524 |
DOI | 10.3938/jkps.72.1254 |
Cover
Abstract | We investigated the light response characteristics of bottom-gate/top-contact organic TFTs fabricated using pentacene and polystyrene as an organic semiconductor and a polymeric insulator, respectively. The pentacene TFT with overlaps (50 μm) between the source and gate electrodes as well as between the drain and gate electrodes exhibited negligible hysteresis in its transfer characteristics upon reversal of the gate voltage sweep direction. When the TFTs were structurally modified to produce an underlap structure between the source and gate electrodes, clockwise hysteresis and a drain-current decrease were observed, which were further augmented by increasing the gate underlap (from 30 μm to 50 μm and 70 μm). Herein, these results are explained in terms of space charge formation and accumulation capacitance reduction. Importantly, we found that space charges formed under the source electrode contributed to the drain currents via light irradiation through the underlap region. Under constant bias conditions, the TFTs with gate underlap structures thus exhibited on-state drain current changes in response to light signals. In our study, an optimal photosensitivity exceeding 11 was achieved by the TFT with a 30 μm gate underlap. Consequently, we suggest that gate underlap structure modification is a viable means of implementing light responsiveness in organic TFTs. |
---|---|
AbstractList | We investigated the light response characteristics of bottom-gate/top-contact organic TFTs fabricated using pentacene and polystyrene as an organic semiconductor and a polymeric insulator, respectively. The pentacene TFT with overlaps (50 μm) between the source and gate electrodes as well as between the drain and gate electrodes exhibited negligible hysteresis in its transfer characteristics upon reversal of the gate voltage sweep direction. When the TFTs were structurally modified to produce an underlap structure between the source and gate electrodes, clockwise hysteresis and a drain-current decrease were observed, which were further augmented by increasing the gate underlap (from 30 μm to 50 μm and 70 μm). Herein, these results are explained in terms of space charge formation and accumulation capacitance reduction. Importantly, we found that space charges formed under the source electrode contributed to the drain currents via light irradiation through the underlap region. Under constant bias conditions, the TFTs with gate underlap structures thus exhibited on-state drain current changes in response to light signals. In our study, an optimal photosensitivity exceeding 11 was achieved by the TFT with a 30 μm gate underlap. Consequently, we suggest that gate underlap structure modification is a viable means of implementing light responsiveness in organic TFTs. We investigated the light response characteristics of bottom-gate/top-contact organic TFTs fabricated using pentacene and polystyrene as an organic semiconductor and a polymeric insulator, respectively. The pentacene TFT with overlaps (50 μm) between the source and gate electrodes as well as between the drain and gate electrodes exhibited negligible hysteresis in its transfer characteristics upon reversal of the gate voltage sweep direction. When the TFTs were structurally modified to produce an underlap structure between the source and gate electrodes, clockwise hysteresis and a drain-current decrease were observed, which were further augmented by increasing the gate underlap (from 30 μm to 50 μm and 70 μm). Herein, these results are explained in terms of space charge formation and accumulation capacitance reduction. Importantly, we found that space charges formed under the source electrode contributed to the drain currents via light irradiation through the underlap region. Under constant bias conditions, the TFTs with gate underlap structures thus exhibited on-state drain current changes in response to light signals. In our study, an optimal photosensitivity exceeding 11 was achieved by the TFT with a 30 μm gate underlap. Consequently, we suggest that gate underlap structure modification is a viable means of implementing light responsiveness in organic TFTs. KCI Citation Count: 0 |
Author | Park, Jaehoon Bae, Jin-Hyuk Ndikumana, Joel Jeong, Hyeon Seok Lee, Hyeonju |
Author_xml | – sequence: 1 givenname: Hyeon Seok surname: Jeong fullname: Jeong, Hyeon Seok organization: School of Electronics Engineering, Kyungpook National University – sequence: 2 givenname: Jin-Hyuk surname: Bae fullname: Bae, Jin-Hyuk email: jhbae@ee.knu.ac.kr organization: School of Electronics Engineering, Kyungpook National University – sequence: 3 givenname: Hyeonju surname: Lee fullname: Lee, Hyeonju organization: Department of Electronic Engineering, Hallym University – sequence: 4 givenname: Joel surname: Ndikumana fullname: Ndikumana, Joel organization: Department of Electronic Engineering, Hallym University – sequence: 5 givenname: Jaehoon surname: Park fullname: Park, Jaehoon organization: Department of Electronic Engineering, Hallym University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002347300$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp1kEtLAzEUhYNUsD52_oABV4JT85iZJMtSrApKRcd1SDOTmnaajEm68N-bPkAQXd174TvnHs4pGFhnWwAuERwRTtjtctWHEcUjhMviCAwRp1XOSlwMwBASWuQFY8UJOA1hCWFBCK2GoH6LfqPixssue3aN0UbJaJzNnM5mfiGtUVn9YWw-Nd06q720wYTofMi089nLh4sutDakfdz33UF8Do617EJ7cZhn4H16V08e8qfZ_eNk_JQrQsqYKz1XaA7nhDeygk0DG0RRo5XkqCSk4rjgHBEGmZI63Uxy1UheYYKhZpQTcgau977Wa7FSRjhpdnPhxMqL8Wv9KJK-wogm9mrP9t59btoQxdJtvE3xBIaEUZY-lYm62VPKuxB8q0XvzVr6L4Gg2HYsth0LisW244TjX7gycVdB9NJ0_4nyvSgkb7to_U-SP_lvNPOR3w |
CitedBy_id | crossref_primary_10_17798_bitlisfen_656800 |
Cites_doi | 10.1088/0957-4484/21/32/325201 10.3390/electronics5010009 10.1063/1.3046115 10.1109/LED.2012.2224631 10.3390/ma3063614 10.1063/1.2193055 10.1109/TCSI.2015.2415175 10.1038/srep31387 10.1063/1.347594 10.1039/C3TC31998A 10.1016/j.orgel.2014.06.007 10.1039/b909902f 10.3390/s150409592 10.1063/1.1690110 10.1063/1.1525068 10.1109/JSTQE.2004.833972 10.1063/1.2957981 10.1063/1.4721676 10.1016/j.orgel.2014.09.039 10.1038/srep01080 10.1038/ncomms7828 10.1073/pnas.1203848109 10.7567/JJAP.52.05DC12 10.1098/rsta.2011.0414 10.1021/cm049391x |
ContentType | Journal Article |
Copyright | The Korean Physical Society 2018 Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: The Korean Physical Society 2018 – notice: Copyright Springer Science & Business Media 2018 |
DBID | AAYXX CITATION ACYCR |
DOI | 10.3938/jkps.72.1254 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1976-8524 |
EndPage | 1263 |
ExternalDocumentID | oai_kci_go_kr_ARTI_3806217 10_3938_jkps_72_1254 |
GroupedDBID | -EM 06D 0R~ 0VY 203 29~ 2LR 2WC 30V 4.4 406 408 5GY 87A 96X 9ZL AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACCUX ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMLO ACOKC ACPIV ACREN ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH AUKKA AXYYD AYJHY BGNMA C1A CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRP FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 HF~ HMJXF HRMNR HZ~ IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y MZR NPVJJ NQJWS NU0 O9- O9J OK1 P2P PT4 ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE TSG U2A UG4 UOJIU UTJUX UZXMN VFIZW W48 Z7R Z7V Z7X Z7Y Z7Z Z83 Z88 ZMTXR ZZE ~02 ~A9 AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ AAFGU AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AKQUC |
ID | FETCH-LOGICAL-c335t-cfbc1b0b39da60dd0d171dfca9153369249913808caf3368a9cda962320f87933 |
IEDL.DBID | U2A |
ISSN | 0374-4884 |
IngestDate | Tue Nov 21 21:40:46 EST 2023 Wed Sep 17 13:41:09 EDT 2025 Tue Jul 01 02:51:47 EDT 2025 Thu Apr 24 23:02:38 EDT 2025 Fri Feb 21 02:40:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Transistor Underlap Photosensor Space Charge Organic Semiconductor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c335t-cfbc1b0b39da60dd0d171dfca9153369249913808caf3368a9cda962320f87933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2038781385 |
PQPubID | 2044318 |
PageCount | 10 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_3806217 proquest_journals_2038781385 crossref_primary_10_3938_jkps_72_1254 crossref_citationtrail_10_3938_jkps_72_1254 springer_journals_10_3938_jkps_72_1254 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-01 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Heidelberg |
PublicationTitle | Journal of the Korean Physical Society |
PublicationTitleAbbrev | J. Korean Phys. Soc |
PublicationYear | 2018 |
Publisher | The Korean Physical Society Springer Nature B.V 한국물리학회 |
Publisher_xml | – name: The Korean Physical Society – name: Springer Nature B.V – name: 한국물리학회 |
References | MokS. M.YanF.ChanH. L. W.Appl. Phys. Lett.2008930233102008ApPhL..93b3310M10.1063/1.2957981 ZhangL.WuT.GuoY.ZhaoY.SunX.WenY.YuG.LiuY.Sci. Rep.2013310802013NatSR...3E1080Z10.1038/srep01080 WangD.NoëlV.PiroB.Electronics20165910.3390/electronics5010009 ParkJ.KimD. W.LeeB. K.JeongY.-S.PettyM.ChoiJ. S.DoL.-M.Jpn. J. Appl. Phys.20135205DC1210.7567/JJAP.52.05DC12 KnippD.StreetR. A.VölkelA.HoJ.J. Appl. Phys.2003933472003JAP....93..347K10.1063/1.1525068 FioreV.IEEE Trans. Circuits Sys. I, Reg. Pap.2015621668343374110.1109/TCSI.2015.2415175 ParkJ.BaeJ.-H.KimW.-H.KimM.-H.KeumC.-M.LeeS.-D.ChoiJ. S.Materials2010336142010Mate....3.3614P10.3390/ma3063614 IinoH.UsuiT.HannaJ.-I.Nat. Commun.2015668282015NatCo...6E6828I10.1038/ncomms7828 RaimondoC.CrivillersN.ReindersF.SanderF.MayorM.SamoriP.Proc. Natl. Acad. Sci. U. S. A.2012109123752012PNAS..10912375R10.1073/pnas.1203848109 HottaS.YamaoT.BisriS. Z.TakenobuT.IwasaY.J. Mater. Chem. C2014296510.1039/C3TC31998A GreenhamN. C.Philos. Trans. R. Soc. A2013371201104142013RSPTA.37110414G10.1098/rsta.2011.0414 PalT.ArifM.KhondakerS. I.Nanotechnology20102132520110.1088/0957-4484/21/32/325201 ParkC. B.KimK. M.LeeJ. E.NaH.YooS. S.YangM. S.Org. Electron.201415353810.1016/j.orgel.2014.09.039 GuoD.IkedaS.SaikiK.MiyajoeH.TerashimaK.J. Appl. Phys.2006990945022006JAP....99i4502G10.1063/1.2193055 KlaukH.Chem. Soc. Rev.201039264310.1039/b909902f LeydeckerT.HerderM.PavlicaE.BratinaG.HechtS.OrgiuE.SamoriP.Nat. Commun.201611769 ZojerK.RothländerT.KraxnerJ.SchmiedR.PalfingerU.PlankH.GroggerW.HaaseA.GoldH.StadloberB.Sci. Rep.20166313872016NatSR...631387Z10.1038/srep31387 HamiltonM. C.KanickiJ.IEEE J. Sel. Topics Quantum Electron.20041084010.1109/JSTQE.2004.833972 HwangH.LiL.JiZ.LuC.GuoJ.WangL.LiuM.IEEE Electron Device Lett.201334692013IEDL...34...63H10.1109/LED.2012.2224631 CavallariM. R.IzquierdoJ. E. E.BragaG. S.DiraniE. A.Pereira-da-SilvaM. A.RodríguezE. F. G.FonsecaF. J.Sensors201515959210.3390/s150409592 KimJ.ChoS.KimY.-H.ParkS. K.Org. Electron.201415209910.1016/j.orgel.2014.06.007 SaragiT. P. I.PudzichR.FuhrmannT.SalbeckJ.Appl. Phys. Lett.20048423342004ApPhL..84.2334S10.1063/1.1690110 ParkJ.JeongY.-S.ParkK.-S.DoL.-M.BaeJ.-H.ChoiJ. S.PearsonC.PettyM.J. Appl. Phys.20121111045122012JAP...111j4512P10.1063/1.4721676 MinakataT.NagoyaI.OzakiM.J. Appl. Phys.19916973541991JAP....69.7354M10.1063/1.347594 NewmanC. R.FrisbieC. D.da Silva FilhoD. A.BrédasJ. L.EwbankP. C.MannK. R.Chem. Mater.200416443610.1021/cm049391x ChangM.-F.LeeP.-T.McAlisterS. P.ChinA.Appl. Phys. Lett.2008932333022008ApPhL..93w3302C10.1063/1.3046115 HanH.NamS.SeoJ.JeongJ.KimH.BradleyD. D. C.KimY.IEEE J. Sel. Top. Quantum Electron.2016226000107 T. P. I. Saragi (3626_CR11) 2004; 84 J. Park (3626_CR20) 2010; 3 H. Iino (3626_CR3) 2015; 6 D. Guo (3626_CR19) 2006; 99 V. Fiore (3626_CR5) 2015; 62 D. Knipp (3626_CR18) 2003; 93 N. C. Greenham (3626_CR24) 2013; 371 J. Kim (3626_CR26) 2014; 15 D. Wang (3626_CR6) 2016; 5 M.-F. Chang (3626_CR23) 2008; 93 J. Park (3626_CR15) 2013; 52 T. Minakata (3626_CR22) 1991; 69 S. M. Mok (3626_CR13) 2008; 93 C. Raimondo (3626_CR8) 2012; 109 T. Pal (3626_CR12) 2010; 21 H. Hwang (3626_CR16) 2013; 34 H. Klauk (3626_CR2) 2010; 39 T. Leydecker (3626_CR10) 2016; 11 C. R. Newman (3626_CR1) 2004; 16 M. R. Cavallari (3626_CR7) 2015; 15 J. Park (3626_CR21) 2012; 111 C. B. Park (3626_CR4) 2014; 15 H. Han (3626_CR14) 2016; 22 K. Zojer (3626_CR17) 2016; 6 M. C. Hamilton (3626_CR27) 2004; 10 S. Hotta (3626_CR25) 2014; 2 L. Zhang (3626_CR9) 2013; 3 |
References_xml | – reference: GuoD.IkedaS.SaikiK.MiyajoeH.TerashimaK.J. Appl. Phys.2006990945022006JAP....99i4502G10.1063/1.2193055 – reference: MokS. M.YanF.ChanH. L. W.Appl. Phys. Lett.2008930233102008ApPhL..93b3310M10.1063/1.2957981 – reference: CavallariM. R.IzquierdoJ. E. E.BragaG. S.DiraniE. A.Pereira-da-SilvaM. A.RodríguezE. F. G.FonsecaF. J.Sensors201515959210.3390/s150409592 – reference: KnippD.StreetR. A.VölkelA.HoJ.J. Appl. Phys.2003933472003JAP....93..347K10.1063/1.1525068 – reference: ChangM.-F.LeeP.-T.McAlisterS. P.ChinA.Appl. Phys. Lett.2008932333022008ApPhL..93w3302C10.1063/1.3046115 – reference: HwangH.LiL.JiZ.LuC.GuoJ.WangL.LiuM.IEEE Electron Device Lett.201334692013IEDL...34...63H10.1109/LED.2012.2224631 – reference: ParkJ.JeongY.-S.ParkK.-S.DoL.-M.BaeJ.-H.ChoiJ. S.PearsonC.PettyM.J. Appl. Phys.20121111045122012JAP...111j4512P10.1063/1.4721676 – reference: GreenhamN. C.Philos. Trans. R. Soc. A2013371201104142013RSPTA.37110414G10.1098/rsta.2011.0414 – reference: PalT.ArifM.KhondakerS. I.Nanotechnology20102132520110.1088/0957-4484/21/32/325201 – reference: ParkJ.KimD. W.LeeB. K.JeongY.-S.PettyM.ChoiJ. S.DoL.-M.Jpn. J. Appl. Phys.20135205DC1210.7567/JJAP.52.05DC12 – reference: ParkJ.BaeJ.-H.KimW.-H.KimM.-H.KeumC.-M.LeeS.-D.ChoiJ. S.Materials2010336142010Mate....3.3614P10.3390/ma3063614 – reference: ParkC. B.KimK. M.LeeJ. E.NaH.YooS. S.YangM. S.Org. Electron.201415353810.1016/j.orgel.2014.09.039 – reference: ZojerK.RothländerT.KraxnerJ.SchmiedR.PalfingerU.PlankH.GroggerW.HaaseA.GoldH.StadloberB.Sci. Rep.20166313872016NatSR...631387Z10.1038/srep31387 – reference: FioreV.IEEE Trans. Circuits Sys. I, Reg. Pap.2015621668343374110.1109/TCSI.2015.2415175 – reference: NewmanC. R.FrisbieC. D.da Silva FilhoD. A.BrédasJ. L.EwbankP. C.MannK. R.Chem. Mater.200416443610.1021/cm049391x – reference: IinoH.UsuiT.HannaJ.-I.Nat. Commun.2015668282015NatCo...6E6828I10.1038/ncomms7828 – reference: RaimondoC.CrivillersN.ReindersF.SanderF.MayorM.SamoriP.Proc. Natl. Acad. Sci. U. S. A.2012109123752012PNAS..10912375R10.1073/pnas.1203848109 – reference: ZhangL.WuT.GuoY.ZhaoY.SunX.WenY.YuG.LiuY.Sci. Rep.2013310802013NatSR...3E1080Z10.1038/srep01080 – reference: KlaukH.Chem. Soc. Rev.201039264310.1039/b909902f – reference: KimJ.ChoS.KimY.-H.ParkS. K.Org. Electron.201415209910.1016/j.orgel.2014.06.007 – reference: WangD.NoëlV.PiroB.Electronics20165910.3390/electronics5010009 – reference: HanH.NamS.SeoJ.JeongJ.KimH.BradleyD. D. C.KimY.IEEE J. Sel. Top. Quantum Electron.2016226000107 – reference: SaragiT. P. I.PudzichR.FuhrmannT.SalbeckJ.Appl. Phys. Lett.20048423342004ApPhL..84.2334S10.1063/1.1690110 – reference: HamiltonM. C.KanickiJ.IEEE J. Sel. Topics Quantum Electron.20041084010.1109/JSTQE.2004.833972 – reference: HottaS.YamaoT.BisriS. Z.TakenobuT.IwasaY.J. Mater. Chem. C2014296510.1039/C3TC31998A – reference: MinakataT.NagoyaI.OzakiM.J. Appl. Phys.19916973541991JAP....69.7354M10.1063/1.347594 – reference: LeydeckerT.HerderM.PavlicaE.BratinaG.HechtS.OrgiuE.SamoriP.Nat. Commun.201611769 – volume: 21 start-page: 325201 year: 2010 ident: 3626_CR12 publication-title: Nanotechnology doi: 10.1088/0957-4484/21/32/325201 – volume: 5 start-page: 9 year: 2016 ident: 3626_CR6 publication-title: Electronics doi: 10.3390/electronics5010009 – volume: 93 start-page: 233302 year: 2008 ident: 3626_CR23 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3046115 – volume: 34 start-page: 69 year: 2013 ident: 3626_CR16 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2012.2224631 – volume: 3 start-page: 3614 year: 2010 ident: 3626_CR20 publication-title: Materials doi: 10.3390/ma3063614 – volume: 99 start-page: 094502 year: 2006 ident: 3626_CR19 publication-title: J. Appl. Phys. doi: 10.1063/1.2193055 – volume: 62 start-page: 1668 year: 2015 ident: 3626_CR5 publication-title: IEEE Trans. Circuits Sys. I, Reg. Pap. doi: 10.1109/TCSI.2015.2415175 – volume: 6 start-page: 31387 year: 2016 ident: 3626_CR17 publication-title: Sci. Rep. doi: 10.1038/srep31387 – volume: 69 start-page: 7354 year: 1991 ident: 3626_CR22 publication-title: J. Appl. Phys. doi: 10.1063/1.347594 – volume: 2 start-page: 965 year: 2014 ident: 3626_CR25 publication-title: J. Mater. Chem. C doi: 10.1039/C3TC31998A – volume: 15 start-page: 2099 year: 2014 ident: 3626_CR26 publication-title: Org. Electron. doi: 10.1016/j.orgel.2014.06.007 – volume: 39 start-page: 2643 year: 2010 ident: 3626_CR2 publication-title: Chem. Soc. Rev. doi: 10.1039/b909902f – volume: 15 start-page: 9592 year: 2015 ident: 3626_CR7 publication-title: Sensors doi: 10.3390/s150409592 – volume: 84 start-page: 2334 year: 2004 ident: 3626_CR11 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1690110 – volume: 93 start-page: 347 year: 2003 ident: 3626_CR18 publication-title: J. Appl. Phys. doi: 10.1063/1.1525068 – volume: 10 start-page: 840 year: 2004 ident: 3626_CR27 publication-title: IEEE J. Sel. Topics Quantum Electron. doi: 10.1109/JSTQE.2004.833972 – volume: 93 start-page: 023310 year: 2008 ident: 3626_CR13 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2957981 – volume: 111 start-page: 104512 year: 2012 ident: 3626_CR21 publication-title: J. Appl. Phys. doi: 10.1063/1.4721676 – volume: 15 start-page: 3538 year: 2014 ident: 3626_CR4 publication-title: Org. Electron. doi: 10.1016/j.orgel.2014.09.039 – volume: 3 start-page: 1080 year: 2013 ident: 3626_CR9 publication-title: Sci. Rep. doi: 10.1038/srep01080 – volume: 6 start-page: 6828 year: 2015 ident: 3626_CR3 publication-title: Nat. Commun. doi: 10.1038/ncomms7828 – volume: 109 start-page: 12375 year: 2012 ident: 3626_CR8 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1203848109 – volume: 11 start-page: 769 year: 2016 ident: 3626_CR10 publication-title: Nat. Commun. – volume: 52 start-page: 05DC12 year: 2013 ident: 3626_CR15 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.52.05DC12 – volume: 371 start-page: 20110414 year: 2013 ident: 3626_CR24 publication-title: Philos. Trans. R. Soc. A doi: 10.1098/rsta.2011.0414 – volume: 22 start-page: 6000107 year: 2016 ident: 3626_CR14 publication-title: IEEE J. Sel. Top. Quantum Electron. – volume: 16 start-page: 4436 year: 2004 ident: 3626_CR1 publication-title: Chem. Mater. doi: 10.1021/cm049391x |
SSID | ssj0043376 |
Score | 2.1194246 |
Snippet | We investigated the light response characteristics of bottom-gate/top-contact organic TFTs fabricated using pentacene and polystyrene as an organic... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1254 |
SubjectTerms | Electrodes Hysteresis Light irradiation Mathematical and Computational Physics Particle and Nuclear Physics Photosensitivity Physics Physics and Astronomy Polystyrene resins Semiconductor devices Space charge Theoretical Thin film transistors 물리학 |
Title | Structural Modification of Organic Thin-Film Transistors for Photosensor Application |
URI | https://link.springer.com/article/10.3938/jkps.72.1254 https://www.proquest.com/docview/2038781385 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002347300 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of the Korean Physical Society, 2018, 72(10), , pp.1254-1263 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8QwEB50RfBFPHF1lSDqi1SbJtsmj6u4XiiCLuhTyNF6rG7F7v_HSQ_FC3xKS1LSznQy38dMJgBb1FKOvIIHUqC5ccTMgdaUBjo0hlmqOTd-o_DFZXwy4Ge33duaKBZNtnsTkixXas8rJRP7T8PXYi-J9tAj80mY6iJr94Y4iHrNyssZS6rYZMJxWsGrRPcfT39xQZOjt-wLuvwWEC39TH8OZmuASHqVRudhIh0twHSZqGmLRbi5Lgu--mIZ5CJ3PtGnlC3JM1Ltq7TEn8UZ9B-fX0jpicpCIAVBdEquHvJxXiBzxeveZ-h6CQb9o5vDk6A-GSGwjHXHgc2MpSY0TDodh86FjibUZVZLD99iz6kkZSIUVmd4L7S0TktEOlGYCbRItgytUT5KV4AgBaFhKqNIxIZb7HaZNDozoeDapZFpw24jLGXrsuH-9IpnhfTBi1Z50aokUl60bdj-GP1alcv4Y9wmyl0N7aPy9a19e5-r4ZtCFH-q8M1jpEpt6DRqUbVlFSry8XaBH9dtw06jqs_u3yZb_e_ANZhBPCSqfMYOtFCh6TpijrHZgKle_-Dg0rfHd-dHG-WP9w6_aNYk |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7BIgSXFigV21KwEO2lytaOvYl9XFUsy2NppS4SPVl-JC1dukFke-HXM86jCFokTklkR7ZnbM_3acZjgH3mmEBeISIlcbkJxMyRMYxFhlrLHTNC2HBQeHyWjM7F8UX_oiGKZRvt3rokq5068ErF5adf0-uyl8Y9tMhiEZYEsm_agaXB4feTg3bvFZyntXcyFdiwFHWo-z__PzBCi7Ob_AG-fOQSrSzN8CV8aftYB5hMe3_mtuduH6VvfP4g1uBFAzrJoJ4l67CQzTZguQr-dOUrmHyrksiGBBxkXPgQPFTpixQ5qc9qOhLu94yGl1e_SWXdquQiJUHES77-LOZFiWwY3wf37vBNOB8eTD6Poua2hchx3p9HLreOWWq58iah3lPPUuZzZ1SAhEngaYpxSaUzOX5Lo5w3CtFTTHOJq5y_hs6smGVbQJDWMJqpOJaJFQ6Lfa6syS2Vwvgstl342IpfuyYVebgR40ojJQly0kFOOo11kFMX3v-tfV2n4Hii3h5qUk_dpQ45s8PzR6GnNxqZwZHGnidIv7qw3SpaN6u11HHw4UscXL8LH1q93Rf_r7E3z624CyujyfhUnx6dnbyFVcRbso6X3IYOKjd7h5hmbneaiXwHsGHyhw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7BVqBeUFtAXdiChVouKBDH3sQ-roAVj4KQykrcLD9iSheSFdn_r47zKKKAxCmJ7CjOjMfzjWb8GeA7tZRjXMEjKdDcOGLmSGtKIx0bwyzVnJuwUfjiMj2Z8LOb4U1bVVl11e5dSrLZ0xBYmor5wcz5YOJMMnHwZzqr9rNkH70zX4QPuBDTMMcnyahbhTljWZOnzDgOQfCm6P3F28_c0WLx6J8hzf-So7XPGX-ClRYsklGj3c-wkBdfYKku2rTVKlz_qslfA3EGuShdKPqp5UxKT5o9lpaEczmj8d39A6m9Uk0KUhFEquTqdzkvK4xi8X70lMZeg8n4-PrwJGpPSYgsY8N5ZL2x1MSGSafT2LnY0Yw6b7UMUC4N8ZWkTMTCao_PQkvrtETUk8ReoHWydegVZZF_BYLhCI1zmSQiNdxis_PSaG9iwbXLE9OHvU5YyrYU4uEki3uFoUQQrQqiVVmigmj78ONf71lDnfFGvx2Uu5raOxW4rsP1tlTTR4WI_lThyFMMm_ow6NSiWiurVBJy7wJ_btiH3U5VT82vfWzjvR23YfnqaKx-nl6eb8JHhEmiKXMcQA91m39DKDI3W_Wc-wu-qNpD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Modification+of+Organic+Thin-Film+Transistors+for+Photosensor+Application&rft.jtitle=Journal+of+the+Korean+Physical+Society&rft.au=Jeong%2C+Hyeon+Seok&rft.au=Bae%2C+Jin-Hyuk&rft.au=Lee%2C+Hyeonju&rft.au=Ndikumana%2C+Joel&rft.date=2018-05-01&rft.issn=0374-4884&rft.eissn=1976-8524&rft.volume=72&rft.issue=10&rft.spage=1254&rft.epage=1263&rft_id=info:doi/10.3938%2Fjkps.72.1254&rft.externalDBID=n%2Fa&rft.externalDocID=10_3938_jkps_72_1254 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0374-4884&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0374-4884&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0374-4884&client=summon |