Cauchy problem for fractional $ {(p, q)} $-difference equations
In this research article, we deal with the global convergence of successive approximations (s.a) as well as the existence of solutions to a fractional $ {(p, q)} $-difference equation. Then, we discuss the existence result of the solutions of Caputo-type $ {(p, q)} $-difference fractional vector-ord...
Saved in:
Published in | AIMS mathematics Vol. 8; no. 7; pp. 15773 - 15788 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this research article, we deal with the global convergence of successive approximations (s.a) as well as the existence of solutions to a fractional $ {(p, q)} $-difference equation. Then, we discuss the existence result of the solutions of Caputo-type $ {(p, q)} $-difference fractional vector-order equations in a Banach space. Also, we prove a theorem on the global convergence of successive approximations to the unique solution of our problem. Finally, the application of the main results is demonstrated by presenting numerical examples. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2023805 |