Practical generalized finite-time synchronization of duplex networks with quantized and delayed couplings via intermittent control

This paper investigates the practical generalized finite-time synchronization (PGFETS) of duplex networks with quantized and delayed couplings. Given that continuous transmission of signals will increase the load and cost of communication, we introduce quantized couplings in the model. Then, via the...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 9; no. 8; pp. 20350 - 20366
Main Authors Yang, Ting, Cao, Li, Zhang, Wanli
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper investigates the practical generalized finite-time synchronization (PGFETS) of duplex networks with quantized and delayed couplings. Given that continuous transmission of signals will increase the load and cost of communication, we introduce quantized couplings in the model. Then, via the theorem of finite-time stability, the PGFETS is proposed based on the fact that PGFETS is much more extensive and practical than classical finite-time synchronization. Some sufficient criteria are formulated to achieve the goal of synchronization by utilizing quantized intermittent control schemes. Lastly, the validity of the theoretical results is illustrated by numerical simulations.
AbstractList This paper investigates the practical generalized finite-time synchronization (PGFETS) of duplex networks with quantized and delayed couplings. Given that continuous transmission of signals will increase the load and cost of communication, we introduce quantized couplings in the model. Then, via the theorem of finite-time stability, the PGFETS is proposed based on the fact that PGFETS is much more extensive and practical than classical finite-time synchronization. Some sufficient criteria are formulated to achieve the goal of synchronization by utilizing quantized intermittent control schemes. Lastly, the validity of the theoretical results is illustrated by numerical simulations.
Author Yang, Ting
Cao, Li
Zhang, Wanli
Author_xml – sequence: 1
  givenname: Ting
  surname: Yang
  fullname: Yang, Ting
– sequence: 2
  givenname: Li
  surname: Cao
  fullname: Cao, Li
– sequence: 3
  givenname: Wanli
  surname: Zhang
  fullname: Zhang, Wanli
BookMark eNpNkctOAzEMRSMEEq_u-IB8AAN5zSNLVPGohAQLWI88idMGpglkUqAs-XKGUiEkS766ts_C95DshhiQkBPOzqSW6nwJeXEmmFBasx1yIFQti0o3ze4_vU8mw_DEGBNcKFGrA_J1n8Bkb6CncwyYoPefaKnzwWcssl8iHdbBLFIM_hOyj4FGR-3qpccPGjC_x_Q80HefF_R1BSFvriFYarGH9ahNHHd9mA_0zQP1IWNa-pwx5HEUcor9Mdlz0A842fYj8nh1-TC9KW7vrmfTi9vCSFnmwujasU4r7KxVUgtWN8ogVw2vGmtAcc20KJ1TrBFcj1UbZpnTVckduo7JIzL75doIT-1L8ktI6zaCbzdGTPMW0viKHtuyNBXvlGtkV6muasAoZ4XQFUhEp8zIOv1lmRSHIaH743HW_sTR_sTRbuOQ3yCbg6E
Cites_doi 10.3934/math.2021473
10.1016/j.jfranklin.2023.03.057
10.1109/TNNLS.2021.3054967
10.1007/s40435-022-00948-y
10.1016/j.automatica.2015.01.021
10.1109/JAS.2023.123171
10.1016/j.cnsns.2023.107227
10.1016/j.chaos.2018.01.009
10.1007/s11071-018-4633-z
10.1016/j.neucom.2019.12.031
10.1109/TNNLS.2021.3069926
10.1007/s11432-018-2727-5
10.1109/TSMC.2023.3345365
10.1109/TCYB.2017.2749248
10.1016/j.neunet.2020.07.002
10.1109/TAC.2020.3022532
10.1016/j.neucom.2020.05.103
10.1109/TCSII.2022.3187269
10.1109/TCSI.2021.3050988
10.1109/TCSII.2021.3128624
10.1016/j.cnsns.2012.11.009
10.1016/j.nonrwa.2010.05.037
10.1137/1.9781611970777
10.1016/j.fss.2020.07.015
10.1007/s11063-020-10245-4
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2024990
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 20366
ExternalDocumentID oai_doaj_org_article_55c61b4f83b64b68ac4fd2296a3eef4c
10_3934_math_2024990
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c335t-c97f0b94ebdd43920784ce148168dca4190925ff4082192197c0d0f9651fefb03
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:20:17 EDT 2025
Tue Jul 01 03:57:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c335t-c97f0b94ebdd43920784ce148168dca4190925ff4082192197c0d0f9651fefb03
OpenAccessLink https://doaj.org/article/55c61b4f83b64b68ac4fd2296a3eef4c
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_55c61b4f83b64b68ac4fd2296a3eef4c
crossref_primary_10_3934_math_2024990
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2024
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2024990-27
key-10.3934/math.2024990-26
key-10.3934/math.2024990-14
key-10.3934/math.2024990-13
key-10.3934/math.2024990-12
key-10.3934/math.2024990-11
key-10.3934/math.2024990-10
key-10.3934/math.2024990-3
key-10.3934/math.2024990-2
key-10.3934/math.2024990-1
key-10.3934/math.2024990-9
key-10.3934/math.2024990-8
key-10.3934/math.2024990-19
key-10.3934/math.2024990-7
key-10.3934/math.2024990-18
key-10.3934/math.2024990-6
key-10.3934/math.2024990-17
key-10.3934/math.2024990-5
key-10.3934/math.2024990-16
key-10.3934/math.2024990-4
key-10.3934/math.2024990-15
key-10.3934/math.2024990-25
key-10.3934/math.2024990-24
key-10.3934/math.2024990-23
key-10.3934/math.2024990-22
key-10.3934/math.2024990-21
key-10.3934/math.2024990-20
References_xml – ident: key-10.3934/math.2024990-2
  doi: 10.3934/math.2021473
– ident: key-10.3934/math.2024990-8
  doi: 10.1016/j.jfranklin.2023.03.057
– ident: key-10.3934/math.2024990-3
  doi: 10.1109/TNNLS.2021.3054967
– ident: key-10.3934/math.2024990-12
  doi: 10.1007/s40435-022-00948-y
– ident: key-10.3934/math.2024990-23
  doi: 10.1016/j.automatica.2015.01.021
– ident: key-10.3934/math.2024990-27
– ident: key-10.3934/math.2024990-4
  doi: 10.1109/JAS.2023.123171
– ident: key-10.3934/math.2024990-7
  doi: 10.1016/j.cnsns.2023.107227
– ident: key-10.3934/math.2024990-10
  doi: 10.1016/j.chaos.2018.01.009
– ident: key-10.3934/math.2024990-11
  doi: 10.1007/s11071-018-4633-z
– ident: key-10.3934/math.2024990-17
  doi: 10.1016/j.neucom.2019.12.031
– ident: key-10.3934/math.2024990-20
  doi: 10.1109/TNNLS.2021.3069926
– ident: key-10.3934/math.2024990-18
  doi: 10.1007/s11432-018-2727-5
– ident: key-10.3934/math.2024990-15
  doi: 10.1109/TSMC.2023.3345365
– ident: key-10.3934/math.2024990-21
  doi: 10.1109/TCYB.2017.2749248
– ident: key-10.3934/math.2024990-14
  doi: 10.1016/j.neunet.2020.07.002
– ident: key-10.3934/math.2024990-1
  doi: 10.1109/TAC.2020.3022532
– ident: key-10.3934/math.2024990-26
– ident: key-10.3934/math.2024990-19
  doi: 10.1016/j.neucom.2020.05.103
– ident: key-10.3934/math.2024990-6
  doi: 10.1109/TCSII.2022.3187269
– ident: key-10.3934/math.2024990-5
  doi: 10.1109/TCSI.2021.3050988
– ident: key-10.3934/math.2024990-24
  doi: 10.1109/TCSII.2021.3128624
– ident: key-10.3934/math.2024990-25
  doi: 10.1016/j.cnsns.2012.11.009
– ident: key-10.3934/math.2024990-9
  doi: 10.1016/j.nonrwa.2010.05.037
– ident: key-10.3934/math.2024990-22
  doi: 10.1137/1.9781611970777
– ident: key-10.3934/math.2024990-13
  doi: 10.1016/j.fss.2020.07.015
– ident: key-10.3934/math.2024990-16
  doi: 10.1007/s11063-020-10245-4
SSID ssj0002124274
Score 2.2429044
Snippet This paper investigates the practical generalized finite-time synchronization (PGFETS) of duplex networks with quantized and delayed couplings. Given that...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 20350
SubjectTerms duplex networks
intermittent control
practical generalized finite-time synchronization
quantized couplings
time delays
Title Practical generalized finite-time synchronization of duplex networks with quantized and delayed couplings via intermittent control
URI https://doaj.org/article/55c61b4f83b64b68ac4fd2296a3eef4c
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv9qDH0CT7SHJUsRShniz0FvZZCpJW24j16C93JhtLbl68hZAsyzdh5pvNzDeE3OhEGwVEINKGmYgXzkVaKhZlwjIB9FpKgc3J42c5mvCnqZh2Rn1hTViQBw7ADYQwMtHc50xLrmWuDPc2TQtY0DnPDXpfiHmdZAp9MDhkDvlWqHRnBeMD4H_47wGyDXS_nRjUkepvYsrwgOy3ZJDehU0ckh1XHZG98VZJdXVMvoOgECBJZ0Ehev7lLPVz5IoRToanq01lGonb0FFJF57aevnqPmkVarxXFE9b6VsNKDZvq8pSVIfcwLVZ1NiUO1vRj7miqB6BLf7ApNe0LWM_IZPh48vDKGrnJkSGMbGOTJH5WBfcaWuBb6TAArhxkPckMrdgGeAARSq8x1nTKIdWZCa2sS-kSLzzOmanpFctKndGKOTOeaJgtVR5nmmvpOUa53omiXIuz_rk9hfJchnkMUpIKxDxEhEvW8T75B5h3j6DotbNDTB12Zq6_MvU5_-xyAXZxT2FU5RL0lu_1-4KeMVaXzef0A-dgtEj
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Practical+generalized+finite-time+synchronization+of+duplex+networks+with+quantized+and+delayed+couplings+via+intermittent+control&rft.jtitle=AIMS+mathematics&rft.au=Yang%2C+Ting&rft.au=Cao%2C+Li&rft.au=Zhang%2C+Wanli&rft.date=2024-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=9&rft.issue=8&rft.spage=20350&rft.epage=20366&rft_id=info:doi/10.3934%2Fmath.2024990&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2024990
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon