Numerical simulations on optoelectronic deep neural network hardware based on self-referential holography
We propose a novel optoelectronic deep neural network (OE-DNN) hardware called the self-referential holographic deep neural network (SR-HDNN). The SR-HDNN features a combination of an optical computing part utilizing a volume hologram and an electronic part connecting the optical elements virtually....
Saved in:
Published in | Optical review (Tokyo, Japan) Vol. 30; no. 3; pp. 387 - 396 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Springer Japan
01.06.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1340-6000 1349-9432 |
DOI | 10.1007/s10043-023-00810-2 |
Cover
Abstract | We propose a novel optoelectronic deep neural network (OE-DNN) hardware called the self-referential holographic deep neural network (SR-HDNN). The SR-HDNN features a combination of an optical computing part utilizing a volume hologram and an electronic part connecting the optical elements virtually. Since the shape of a volume hologram, which is a 3-dimensional (3D) refractive index distribution in this case, can be changed by its recording conditions, it is expected to realize the flexible design of optical computing functions by coupling between specific nodes. In addition, the electronic part enables the construction of multi-layer networks without extending the optical system and enabling arbitrary signal processing, including nonlinear operations. By integrating flexible optical and electronic parts, the SR-HDNN consisting of both flexible optical and electronic parts has the potential to maximize the performance of OE-DNN. In this study, we numerically simulate image classification tasks to investigate the feasibility and potential of the SR-HDNN. |
---|---|
AbstractList | We propose a novel optoelectronic deep neural network (OE-DNN) hardware called the self-referential holographic deep neural network (SR-HDNN). The SR-HDNN features a combination of an optical computing part utilizing a volume hologram and an electronic part connecting the optical elements virtually. Since the shape of a volume hologram, which is a 3-dimensional (3D) refractive index distribution in this case, can be changed by its recording conditions, it is expected to realize the flexible design of optical computing functions by coupling between specific nodes. In addition, the electronic part enables the construction of multi-layer networks without extending the optical system and enabling arbitrary signal processing, including nonlinear operations. By integrating flexible optical and electronic parts, the SR-HDNN consisting of both flexible optical and electronic parts has the potential to maximize the performance of OE-DNN. In this study, we numerically simulate image classification tasks to investigate the feasibility and potential of the SR-HDNN. |
Author | Takabayashi, Masanori Tomioka, Rio |
Author_xml | – sequence: 1 givenname: Rio surname: Tomioka fullname: Tomioka, Rio email: tomioka.rio288@mail.kyutech.jp organization: Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology – sequence: 2 givenname: Masanori surname: Takabayashi fullname: Takabayashi, Masanori organization: Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Research Center for Neuromorphic AI Hardware, Kyushu Institute of Technology |
BookMark | eNp9kLlOAzEQQC0UJJLAD1DtDxh87FmiiEuKoIHa8nrHicPGXtleRfl7nA0VRQqPp5g3x1ugmXUWELqn5IESUj2GFHOOCUuP1JRgdoXmlOcNbnLOZlNOcEkIuUGLEHaEsII35RyZj3EP3ijZZ8Hsx15G42zInM3cEB30oKJ31qisAxgyC6NPlRbiwfmfbCt9d5AeslYG6E5QgF5jDxo82GhS6db1buPlsD3eomst-wB3f_8Sfb88f63e8Prz9X31tMaK8yJiVbRa1aRlUkEOBLSmUFBd84JDpcqm47yVrK00U3VJdcVorauilRXosq0A-BKxc1_lXQhpFzF4s5f-KCgRJ1niLEskWWKSJViC6n-QMnFyEb00_WWUn9GQ5tgNeLFzo7fpxEvUL4EYhHs |
CitedBy_id | crossref_primary_10_1007_s10043_023_00856_2 |
Cites_doi | 10.1364/AO.56.007327 10.1038/s41377-022-00809-5 10.1364/PRJ.8.000046 10.1021/acsphotonics.1c01365 10.7567/JJAP.57.09SC01 10.1103/PhysRevX.10.041037 10.1364/OL.389696 10.1126/science.aat8084 10.1103/PhysRevLett.104.100601 10.3169/mta.9.161 10.1038/s41598-022-22291-0 10.1364/OE.21.003669 10.1038/ncomms1078 10.1109/JSTQE.2022.3194574 10.1038/s41377-020-00446-w 10.1038/s41598-018-30619-y 10.1364/OPTCON.444882 10.1364/OPTICA.408659 10.1038/s41566-021-00796-w 10.1109/5.726791 10.1364/OE.415542 |
ContentType | Journal Article |
Copyright | The Optical Society of Japan 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Optical Society of Japan 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10043-023-00810-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1349-9432 |
EndPage | 396 |
ExternalDocumentID | 10_1007_s10043_023_00810_2 |
GroupedDBID | -5F -5G -BR -EM -Y2 -~C .86 .VR 0R~ 0VY 123 1N0 2.D 203 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 53G 5VS 67Z 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AFBBN AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JSF JSH JZLTJ KDC KOV KQ8 LAS LLZTM M4Y MA- MC8 N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OK1 PF0 PT4 QTG R9I RHV RJT RNS ROL RPX RSV RZJ S16 S1Z S27 S3B SAP SCLPG SDH SGB SHX SISQX SJN SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TKC TR2 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Y Z7Z Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c335t-c5bfc80b2ace4e0eff1e51f8353e7c69d33ba2b7f2c861f7218f75ba7ef6b7ee3 |
IEDL.DBID | AGYKE |
ISSN | 1340-6000 |
IngestDate | Tue Jul 01 04:25:32 EDT 2025 Thu Apr 24 23:05:51 EDT 2025 Fri Feb 21 02:43:19 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Optical neural network Self-referential holography Optical information processing Holographic data storage |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c335t-c5bfc80b2ace4e0eff1e51f8353e7c69d33ba2b7f2c861f7218f75ba7ef6b7ee3 |
OpenAccessLink | https://kyutech.repo.nii.ac.jp/records/2000809 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1007_s10043_023_00810_2 crossref_citationtrail_10_1007_s10043_023_00810_2 springer_journals_10_1007_s10043_023_00810_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Optical review (Tokyo, Japan) |
PublicationTitleAbbrev | Opt Rev |
PublicationYear | 2023 |
Publisher | Springer Japan |
Publisher_xml | – name: Springer Japan |
References | Popoff, Lerosey, Fink, Boccara, Gigan (CR14) 2010; 1 Rafayelyan, Dong, Tan, Krzakala, Gigan (CR7) 2020; 10 Katano, Nobukawa, Muroi, Kinoshita, Ishii (CR17) 2021; 9 Li, Luo, Bai, Ozcan (CR21) 2022 Rahman, Li, Mengu, Rivenson, Ozcan (CR9) 2021; 10 Katano, Muroi, Kinoshita, Ishii, Hayashi (CR18) 2018; 57 Sadeghzadeh, Koohi (CR6) 2022; 12 Miscuglio, Hu, Li, George, Capanna, Dalir, Bardet, Gupta, Sorger (CR4) 2020; 7 Chang, Sitzmann, Dun, Heidrich, Wetzstein (CR3) 2018; 8 Shi, Huang, Huang, Hu, Chen, Yang, Chen (CR5) 2022; 11 Lecun, Bottou, Bengio, Haffner (CR15) 1998; 86 Hao, Lin, Chen, Lin, Liu, Song, Lin, Tan (CR16) 2022; 1 Sakib Rahman, Ozcan (CR20) 2021; 8 Wu, Zhou, Khoram, Liu, Yu (CR2) 2020; 8 Gu, Gao, Liu (CR10) 2021; 29 Shimobaba, Kuwata, Homma, Takahashi, Nagahama, Sano, Hasegawa, Hirayama, Kakue, Shiraki, Takada, Ito (CR19) 2017; 56 Lin, Rivenson, Yardimci, Veli, Luo, Jarrahi, Ozcan (CR1) 2018; 361 Takabayashi, Okamoto (CR12) 2013; 21 Popoff, Lerosey, Carminati, Fink, Boccara, Gigan (CR13) 2010; 104 Dou, Deng, Yan, Wu, Lin, Dai (CR8) 2020; 45 Zhou, Lin, Wu, Chen, Xie, Li, Fan, Wu, Fang, Dai (CR11) 2021; 15 M Takabayashi (810_CR12) 2013; 21 Y Lecun (810_CR15) 1998; 86 Y Katano (810_CR17) 2021; 9 Y Li (810_CR21) 2022 W Shi (810_CR5) 2022; 11 T Zhou (810_CR11) 2021; 15 MS Sakib Rahman (810_CR20) 2021; 8 MSS Rahman (810_CR9) 2021; 10 H Dou (810_CR8) 2020; 45 T Shimobaba (810_CR19) 2017; 56 J Chang (810_CR3) 2018; 8 S Popoff (810_CR14) 2010; 1 H Sadeghzadeh (810_CR6) 2022; 12 M Miscuglio (810_CR4) 2020; 7 SM Popoff (810_CR13) 2010; 104 Y Katano (810_CR18) 2018; 57 J Hao (810_CR16) 2022; 1 X Lin (810_CR1) 2018; 361 M Rafayelyan (810_CR7) 2020; 10 Z Gu (810_CR10) 2021; 29 Z Wu (810_CR2) 2020; 8 |
References_xml | – volume: 56 start-page: 7327 issue: 26 year: 2017 end-page: 7330 ident: CR19 article-title: Convolutional neural network-based data page classification for holographic memory publication-title: Appl. Opt. doi: 10.1364/AO.56.007327 – volume: 11 start-page: 121 issue: 1 year: 2022 ident: CR5 article-title: Loen: Lensless opto-electronic neural network empowered machine vision publication-title: Light: Sci. Appl. doi: 10.1038/s41377-022-00809-5 – volume: 8 start-page: 46 issue: 1 year: 2020 end-page: 50 ident: CR2 article-title: Neuromorphic metasurface publication-title: Photon. Res. doi: 10.1364/PRJ.8.000046 – volume: 8 start-page: 3375 issue: 11 year: 2021 end-page: 3384 ident: CR20 article-title: Computer-free, all-optical reconstruction of holograms using diffractive networks publication-title: ACS Photonics doi: 10.1021/acsphotonics.1c01365 – volume: 57 start-page: 09SC01 issue: 9S1 year: 2018 ident: CR18 article-title: Data demodulation using convolutional neural networks for holographic data storage publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.57.09SC01 – volume: 10 start-page: 041037 year: 2020 ident: CR7 article-title: Large-scale optical reservoir computing for spatiotemporal chaotic systems prediction publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.10.041037 – volume: 45 start-page: 2688 issue: 10 year: 2020 end-page: 2691 ident: CR8 article-title: Residual D2NN: training diffractive deep neural networks via learnable light shortcuts publication-title: Opt. Lett. doi: 10.1364/OL.389696 – volume: 361 start-page: 1004 issue: 6406 year: 2018 end-page: 1008 ident: CR1 article-title: All-optical machine learning using diffractive deep neural networks publication-title: Science doi: 10.1126/science.aat8084 – volume: 104 start-page: 100601 year: 2010 ident: CR13 article-title: Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.100601 – volume: 9 start-page: 161 issue: 3 year: 2021 end-page: 168 ident: CR17 article-title: Efficient decoding method for holographic data storage combining convolutional neural network and spatially coupled low-density parity-check code publication-title: ITE Trans. Media Technol. Appl. doi: 10.3169/mta.9.161 – volume: 12 start-page: 17232 issue: 1 year: 2022 ident: CR6 article-title: Translation-invariant optical neural network for image classification publication-title: Sci. Rep. doi: 10.1038/s41598-022-22291-0 – volume: 21 start-page: 3669 issue: 3 year: 2013 end-page: 3681 ident: CR12 article-title: Self-referential holography and its applications to data storage and phase-to-intensity conversion publication-title: Opt. Express doi: 10.1364/OE.21.003669 – volume: 1 start-page: 81 issue: 1 year: 2010 ident: CR14 article-title: Image transmission through an opaque material publication-title: Nat. Commun. doi: 10.1038/ncomms1078 – year: 2022 ident: CR21 article-title: Analysis of diffractive neural networks for seeing through random diffusers publication-title: IEEE J. Select. Topics Quantum Electron. doi: 10.1109/JSTQE.2022.3194574 – volume: 10 start-page: 14 issue: 1 year: 2021 ident: CR9 article-title: Ensemble learning of diffractive optical networks publication-title: Light: Sci. Appl. doi: 10.1038/s41377-020-00446-w – volume: 8 start-page: 12324 issue: 1 year: 2018 ident: CR3 article-title: Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification publication-title: Sci. Rep. doi: 10.1038/s41598-018-30619-y – volume: 1 start-page: 51 issue: 1 year: 2022 end-page: 62 ident: CR16 article-title: Phase retrieval combined with the deep learning denoising method in holographic data storage publication-title: Opt. Continuum doi: 10.1364/OPTCON.444882 – volume: 7 start-page: 1812 issue: 12 year: 2020 end-page: 1819 ident: CR4 article-title: Massively parallel amplitude-only Fourier neural network publication-title: Optica doi: 10.1364/OPTICA.408659 – volume: 15 start-page: 367 issue: 5 year: 2021 end-page: 373 ident: CR11 article-title: Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit publication-title: Nat. Photonics doi: 10.1038/s41566-021-00796-w – volume: 86 start-page: 2278 issue: 11 year: 1998 end-page: 2324 ident: CR15 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 29 start-page: 5877 issue: 4 year: 2021 end-page: 5889 ident: CR10 article-title: Optronic convolutional neural networks of multi-layers with different functions executed in optics for image classification publication-title: Opt. Express doi: 10.1364/OE.415542 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 810_CR15 publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 15 start-page: 367 issue: 5 year: 2021 ident: 810_CR11 publication-title: Nat. Photonics doi: 10.1038/s41566-021-00796-w – volume: 361 start-page: 1004 issue: 6406 year: 2018 ident: 810_CR1 publication-title: Science doi: 10.1126/science.aat8084 – volume: 57 start-page: 09SC01 issue: 9S1 year: 2018 ident: 810_CR18 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.57.09SC01 – volume: 10 start-page: 041037 year: 2020 ident: 810_CR7 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.10.041037 – volume: 21 start-page: 3669 issue: 3 year: 2013 ident: 810_CR12 publication-title: Opt. Express doi: 10.1364/OE.21.003669 – volume: 1 start-page: 81 issue: 1 year: 2010 ident: 810_CR14 publication-title: Nat. Commun. doi: 10.1038/ncomms1078 – volume: 11 start-page: 121 issue: 1 year: 2022 ident: 810_CR5 publication-title: Light: Sci. Appl. doi: 10.1038/s41377-022-00809-5 – volume: 29 start-page: 5877 issue: 4 year: 2021 ident: 810_CR10 publication-title: Opt. Express doi: 10.1364/OE.415542 – volume: 104 start-page: 100601 year: 2010 ident: 810_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.100601 – volume: 10 start-page: 14 issue: 1 year: 2021 ident: 810_CR9 publication-title: Light: Sci. Appl. doi: 10.1038/s41377-020-00446-w – volume: 8 start-page: 3375 issue: 11 year: 2021 ident: 810_CR20 publication-title: ACS Photonics doi: 10.1021/acsphotonics.1c01365 – volume: 45 start-page: 2688 issue: 10 year: 2020 ident: 810_CR8 publication-title: Opt. Lett. doi: 10.1364/OL.389696 – volume: 7 start-page: 1812 issue: 12 year: 2020 ident: 810_CR4 publication-title: Optica doi: 10.1364/OPTICA.408659 – volume: 1 start-page: 51 issue: 1 year: 2022 ident: 810_CR16 publication-title: Opt. Continuum doi: 10.1364/OPTCON.444882 – volume: 9 start-page: 161 issue: 3 year: 2021 ident: 810_CR17 publication-title: ITE Trans. Media Technol. Appl. doi: 10.3169/mta.9.161 – volume: 56 start-page: 7327 issue: 26 year: 2017 ident: 810_CR19 publication-title: Appl. Opt. doi: 10.1364/AO.56.007327 – year: 2022 ident: 810_CR21 publication-title: IEEE J. Select. Topics Quantum Electron. doi: 10.1109/JSTQE.2022.3194574 – volume: 12 start-page: 17232 issue: 1 year: 2022 ident: 810_CR6 publication-title: Sci. Rep. doi: 10.1038/s41598-022-22291-0 – volume: 8 start-page: 12324 issue: 1 year: 2018 ident: 810_CR3 publication-title: Sci. Rep. doi: 10.1038/s41598-018-30619-y – volume: 8 start-page: 46 issue: 1 year: 2020 ident: 810_CR2 publication-title: Photon. Res. doi: 10.1364/PRJ.8.000046 |
SSID | ssj0025396 |
Score | 2.3173296 |
Snippet | We propose a novel optoelectronic deep neural network (OE-DNN) hardware called the self-referential holographic deep neural network (SR-HDNN). The SR-HDNN... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 387 |
SubjectTerms | Atomic International Symposium on Imaging Japan Lasers Microwaves Molecular Optical and Plasma Physics Optical Devices Optical Memory (ISOM’ 22) Optics Photonics Physics Physics and Astronomy Quantum Optics RF and Optical Engineering Sapporo Sensing Special Section: Regular Paper |
Title | Numerical simulations on optoelectronic deep neural network hardware based on self-referential holography |
URI | https://link.springer.com/article/10.1007/s10043-023-00810-2 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aEbz4Fuuj5OBNI7vJPrLHVqyi2JMFPS1JdoLFui3dLYK_3mQ3Wx9IwfskhEwyM8nMfB9CZxYFSxijR0IPAhJQYeygopxkMQeR2IhC2A_9h0F0OwzunsIn1xRWNNXuTUqystTfmt1sptj4GGL9mEeM4V0LfZ7wFlrr3jzfXy8eWiGreLl8ZkvbzZ13zTJ_z_LTIf3MhlZOpr-Fhs3y6tqS18t5KS_Vxy_kxv-ufxttuqgTd-tjsoNWIN9F61X1pyr20GgwrxM3Y1yM3hyhV4EnOZ5My8kXUw7OAKbYQmAaybwuIMe2betdzABbh5jZQQWMNXH8JcaAjPHLAhl7Hw37149Xt8RxMBDFWFgSFUqtuCepUBCAB1r7EPraxG0MYhUlGWNSUBlrqnjka_Oe5DoOpYhBRzIGYAeolU9yOEQ4SgJmNBJwDyJLkiU0UBPbA-jMY5InbeQ3ikiVAyi3PBnj9Ata2W5harYwrbYwpW10vhgzreE5lkpfNKpJ3VUtlogf_U_8GG3QSrv2i-YEtcrZHE5NxFLKjjmg_V5v0HEHtYNWh7T7CYWw45A |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yEb2Inzg_c_CmgTbpR3oc4pi67bTBbiVNX3BQ27F2-O-btOnmQAbeX3J4yXvvl7yPH0KPZgqW0E6P-A54xKNC-0FJOUlDDiIyiEKYD_3ROBhMvfeZP7NNYWVb7d6mJGtP_avZzWSKdYwhJo45RDvefQ0GuOEtmNLe-pnls5qVy2WmsF1bvG2V-XuP7XC0nQutQ0z_BB1bbIh7zWGeoj3Iz9BBXaMpy3M0H6-a9EqGy_mXpd0qcZHjYlEVGz4bnAIssBlUqSXzpswbm-aqb7EEbMJWahaVkCliWUa0mWf4cz2_-gJN-6-TlwGxTAlEMuZXRPqJktxJqJDggQNKueC7SqMrBqEMopSxRNAkVFTywFX61cdV6CciBBUkIQC7RJ28yOEK4SDymNacxx0IDJWVUEA1AgdQqcMSHnWR2yoslnaMuGGzyOLNAGSj5FgrOa6VHNMuelqvWTRDNHZKP7fnEFuDKneIX_9P_AEdDiajYTx8G3_coCNa3wXzqXKLOtVyBXcaY1TJfX2lfgAuQsco |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QEIgL4inGMwduEK1N-tpxAqbxmjgwabcqTR0xqbTV2om_T9x2LwlN4u7k4Di2E9vfR8gtomBJ4_SYa4HDHC6NH1Q8YLEfgOxiRiHxQ_996A1GzsvYHa9M8Vfd7vOSZD3TgChNadnJY91ZGXzDqrGJNwxjmsWME9427thGSx_x3uLJ5YqKocsW2ORubn8zNvP3Huuhab0uWoWb_gHZb_JE2qsP9pBsQXpEdqp-TVUck8lwVpdaElpMvhsKroJmKc3yMlty29AYIKcIWmkk07rlm-Kg1Y-cAsUQFuOiAhLNGsYRc-UT-rXAsj4ho_7T58OANawJTAnhlky5kVaBFXGpwAELtLbBtbXJtAT4yuvGQkSSR77mKvBsbV6AgfbdSPqgvcgHEKeklWYpnBHqdR1hNOcEFnhIayU1cJONA-jYElHQbRN7rrBQNZDiyGyRhEswZFRyaJQcVkoOeZvcLdbkNaDGRun7-TmEzeUqNoif_0_8hux-PPbDt-fh6wXZ45Up4P_KJWmV0xlcmXSjjK4ri_oF5_jLZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulations+on+optoelectronic+deep+neural+network+hardware+based+on+self-referential+holography&rft.jtitle=Optical+review+%28Tokyo%2C+Japan%29&rft.au=Tomioka%2C+Rio&rft.au=Takabayashi%2C+Masanori&rft.date=2023-06-01&rft.issn=1340-6000&rft.eissn=1349-9432&rft.volume=30&rft.issue=3&rft.spage=387&rft.epage=396&rft_id=info:doi/10.1007%2Fs10043-023-00810-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10043_023_00810_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1340-6000&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1340-6000&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1340-6000&client=summon |