Numerical simulations on optoelectronic deep neural network hardware based on self-referential holography

We propose a novel optoelectronic deep neural network (OE-DNN) hardware called the self-referential holographic deep neural network (SR-HDNN). The SR-HDNN features a combination of an optical computing part utilizing a volume hologram and an electronic part connecting the optical elements virtually....

Full description

Saved in:
Bibliographic Details
Published inOptical review (Tokyo, Japan) Vol. 30; no. 3; pp. 387 - 396
Main Authors Tomioka, Rio, Takabayashi, Masanori
Format Journal Article
LanguageEnglish
Published Tokyo Springer Japan 01.06.2023
Subjects
Online AccessGet full text
ISSN1340-6000
1349-9432
DOI10.1007/s10043-023-00810-2

Cover

Abstract We propose a novel optoelectronic deep neural network (OE-DNN) hardware called the self-referential holographic deep neural network (SR-HDNN). The SR-HDNN features a combination of an optical computing part utilizing a volume hologram and an electronic part connecting the optical elements virtually. Since the shape of a volume hologram, which is a 3-dimensional (3D) refractive index distribution in this case, can be changed by its recording conditions, it is expected to realize the flexible design of optical computing functions by coupling between specific nodes. In addition, the electronic part enables the construction of multi-layer networks without extending the optical system and enabling arbitrary signal processing, including nonlinear operations. By integrating flexible optical and electronic parts, the SR-HDNN consisting of both flexible optical and electronic parts has the potential to maximize the performance of OE-DNN. In this study, we numerically simulate image classification tasks to investigate the feasibility and potential of the SR-HDNN.
AbstractList We propose a novel optoelectronic deep neural network (OE-DNN) hardware called the self-referential holographic deep neural network (SR-HDNN). The SR-HDNN features a combination of an optical computing part utilizing a volume hologram and an electronic part connecting the optical elements virtually. Since the shape of a volume hologram, which is a 3-dimensional (3D) refractive index distribution in this case, can be changed by its recording conditions, it is expected to realize the flexible design of optical computing functions by coupling between specific nodes. In addition, the electronic part enables the construction of multi-layer networks without extending the optical system and enabling arbitrary signal processing, including nonlinear operations. By integrating flexible optical and electronic parts, the SR-HDNN consisting of both flexible optical and electronic parts has the potential to maximize the performance of OE-DNN. In this study, we numerically simulate image classification tasks to investigate the feasibility and potential of the SR-HDNN.
Author Takabayashi, Masanori
Tomioka, Rio
Author_xml – sequence: 1
  givenname: Rio
  surname: Tomioka
  fullname: Tomioka, Rio
  email: tomioka.rio288@mail.kyutech.jp
  organization: Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology
– sequence: 2
  givenname: Masanori
  surname: Takabayashi
  fullname: Takabayashi, Masanori
  organization: Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Research Center for Neuromorphic AI Hardware, Kyushu Institute of Technology
BookMark eNp9kLlOAzEQQC0UJJLAD1DtDxh87FmiiEuKoIHa8nrHicPGXtleRfl7nA0VRQqPp5g3x1ugmXUWELqn5IESUj2GFHOOCUuP1JRgdoXmlOcNbnLOZlNOcEkIuUGLEHaEsII35RyZj3EP3ijZZ8Hsx15G42zInM3cEB30oKJ31qisAxgyC6NPlRbiwfmfbCt9d5AeslYG6E5QgF5jDxo82GhS6db1buPlsD3eomst-wB3f_8Sfb88f63e8Prz9X31tMaK8yJiVbRa1aRlUkEOBLSmUFBd84JDpcqm47yVrK00U3VJdcVorauilRXosq0A-BKxc1_lXQhpFzF4s5f-KCgRJ1niLEskWWKSJViC6n-QMnFyEb00_WWUn9GQ5tgNeLFzo7fpxEvUL4EYhHs
CitedBy_id crossref_primary_10_1007_s10043_023_00856_2
Cites_doi 10.1364/AO.56.007327
10.1038/s41377-022-00809-5
10.1364/PRJ.8.000046
10.1021/acsphotonics.1c01365
10.7567/JJAP.57.09SC01
10.1103/PhysRevX.10.041037
10.1364/OL.389696
10.1126/science.aat8084
10.1103/PhysRevLett.104.100601
10.3169/mta.9.161
10.1038/s41598-022-22291-0
10.1364/OE.21.003669
10.1038/ncomms1078
10.1109/JSTQE.2022.3194574
10.1038/s41377-020-00446-w
10.1038/s41598-018-30619-y
10.1364/OPTCON.444882
10.1364/OPTICA.408659
10.1038/s41566-021-00796-w
10.1109/5.726791
10.1364/OE.415542
ContentType Journal Article
Copyright The Optical Society of Japan 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Optical Society of Japan 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s10043-023-00810-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1349-9432
EndPage 396
ExternalDocumentID 10_1007_s10043_023_00810_2
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
.86
.VR
0R~
0VY
123
1N0
2.D
203
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
53G
5VS
67Z
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AFBBN
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JSF
JSH
JZLTJ
KDC
KOV
KQ8
LAS
LLZTM
M4Y
MA-
MC8
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OK1
PF0
PT4
QTG
R9I
RHV
RJT
RNS
ROL
RPX
RSV
RZJ
S16
S1Z
S27
S3B
SAP
SCLPG
SDH
SGB
SHX
SISQX
SJN
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TKC
TR2
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Y
Z7Z
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c335t-c5bfc80b2ace4e0eff1e51f8353e7c69d33ba2b7f2c861f7218f75ba7ef6b7ee3
IEDL.DBID AGYKE
ISSN 1340-6000
IngestDate Tue Jul 01 04:25:32 EDT 2025
Thu Apr 24 23:05:51 EDT 2025
Fri Feb 21 02:43:19 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Optical neural network
Self-referential holography
Optical information processing
Holographic data storage
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c335t-c5bfc80b2ace4e0eff1e51f8353e7c69d33ba2b7f2c861f7218f75ba7ef6b7ee3
OpenAccessLink https://kyutech.repo.nii.ac.jp/records/2000809
PageCount 10
ParticipantIDs crossref_primary_10_1007_s10043_023_00810_2
crossref_citationtrail_10_1007_s10043_023_00810_2
springer_journals_10_1007_s10043_023_00810_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Optical review (Tokyo, Japan)
PublicationTitleAbbrev Opt Rev
PublicationYear 2023
Publisher Springer Japan
Publisher_xml – name: Springer Japan
References Popoff, Lerosey, Fink, Boccara, Gigan (CR14) 2010; 1
Rafayelyan, Dong, Tan, Krzakala, Gigan (CR7) 2020; 10
Katano, Nobukawa, Muroi, Kinoshita, Ishii (CR17) 2021; 9
Li, Luo, Bai, Ozcan (CR21) 2022
Rahman, Li, Mengu, Rivenson, Ozcan (CR9) 2021; 10
Katano, Muroi, Kinoshita, Ishii, Hayashi (CR18) 2018; 57
Sadeghzadeh, Koohi (CR6) 2022; 12
Miscuglio, Hu, Li, George, Capanna, Dalir, Bardet, Gupta, Sorger (CR4) 2020; 7
Chang, Sitzmann, Dun, Heidrich, Wetzstein (CR3) 2018; 8
Shi, Huang, Huang, Hu, Chen, Yang, Chen (CR5) 2022; 11
Lecun, Bottou, Bengio, Haffner (CR15) 1998; 86
Hao, Lin, Chen, Lin, Liu, Song, Lin, Tan (CR16) 2022; 1
Sakib Rahman, Ozcan (CR20) 2021; 8
Wu, Zhou, Khoram, Liu, Yu (CR2) 2020; 8
Gu, Gao, Liu (CR10) 2021; 29
Shimobaba, Kuwata, Homma, Takahashi, Nagahama, Sano, Hasegawa, Hirayama, Kakue, Shiraki, Takada, Ito (CR19) 2017; 56
Lin, Rivenson, Yardimci, Veli, Luo, Jarrahi, Ozcan (CR1) 2018; 361
Takabayashi, Okamoto (CR12) 2013; 21
Popoff, Lerosey, Carminati, Fink, Boccara, Gigan (CR13) 2010; 104
Dou, Deng, Yan, Wu, Lin, Dai (CR8) 2020; 45
Zhou, Lin, Wu, Chen, Xie, Li, Fan, Wu, Fang, Dai (CR11) 2021; 15
M Takabayashi (810_CR12) 2013; 21
Y Lecun (810_CR15) 1998; 86
Y Katano (810_CR17) 2021; 9
Y Li (810_CR21) 2022
W Shi (810_CR5) 2022; 11
T Zhou (810_CR11) 2021; 15
MS Sakib Rahman (810_CR20) 2021; 8
MSS Rahman (810_CR9) 2021; 10
H Dou (810_CR8) 2020; 45
T Shimobaba (810_CR19) 2017; 56
J Chang (810_CR3) 2018; 8
S Popoff (810_CR14) 2010; 1
H Sadeghzadeh (810_CR6) 2022; 12
M Miscuglio (810_CR4) 2020; 7
SM Popoff (810_CR13) 2010; 104
Y Katano (810_CR18) 2018; 57
J Hao (810_CR16) 2022; 1
X Lin (810_CR1) 2018; 361
M Rafayelyan (810_CR7) 2020; 10
Z Gu (810_CR10) 2021; 29
Z Wu (810_CR2) 2020; 8
References_xml – volume: 56
  start-page: 7327
  issue: 26
  year: 2017
  end-page: 7330
  ident: CR19
  article-title: Convolutional neural network-based data page classification for holographic memory
  publication-title: Appl. Opt.
  doi: 10.1364/AO.56.007327
– volume: 11
  start-page: 121
  issue: 1
  year: 2022
  ident: CR5
  article-title: Loen: Lensless opto-electronic neural network empowered machine vision
  publication-title: Light: Sci. Appl.
  doi: 10.1038/s41377-022-00809-5
– volume: 8
  start-page: 46
  issue: 1
  year: 2020
  end-page: 50
  ident: CR2
  article-title: Neuromorphic metasurface
  publication-title: Photon. Res.
  doi: 10.1364/PRJ.8.000046
– volume: 8
  start-page: 3375
  issue: 11
  year: 2021
  end-page: 3384
  ident: CR20
  article-title: Computer-free, all-optical reconstruction of holograms using diffractive networks
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.1c01365
– volume: 57
  start-page: 09SC01
  issue: 9S1
  year: 2018
  ident: CR18
  article-title: Data demodulation using convolutional neural networks for holographic data storage
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.57.09SC01
– volume: 10
  start-page: 041037
  year: 2020
  ident: CR7
  article-title: Large-scale optical reservoir computing for spatiotemporal chaotic systems prediction
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.10.041037
– volume: 45
  start-page: 2688
  issue: 10
  year: 2020
  end-page: 2691
  ident: CR8
  article-title: Residual D2NN: training diffractive deep neural networks via learnable light shortcuts
  publication-title: Opt. Lett.
  doi: 10.1364/OL.389696
– volume: 361
  start-page: 1004
  issue: 6406
  year: 2018
  end-page: 1008
  ident: CR1
  article-title: All-optical machine learning using diffractive deep neural networks
  publication-title: Science
  doi: 10.1126/science.aat8084
– volume: 104
  start-page: 100601
  year: 2010
  ident: CR13
  article-title: Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.100601
– volume: 9
  start-page: 161
  issue: 3
  year: 2021
  end-page: 168
  ident: CR17
  article-title: Efficient decoding method for holographic data storage combining convolutional neural network and spatially coupled low-density parity-check code
  publication-title: ITE Trans. Media Technol. Appl.
  doi: 10.3169/mta.9.161
– volume: 12
  start-page: 17232
  issue: 1
  year: 2022
  ident: CR6
  article-title: Translation-invariant optical neural network for image classification
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-22291-0
– volume: 21
  start-page: 3669
  issue: 3
  year: 2013
  end-page: 3681
  ident: CR12
  article-title: Self-referential holography and its applications to data storage and phase-to-intensity conversion
  publication-title: Opt. Express
  doi: 10.1364/OE.21.003669
– volume: 1
  start-page: 81
  issue: 1
  year: 2010
  ident: CR14
  article-title: Image transmission through an opaque material
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1078
– year: 2022
  ident: CR21
  article-title: Analysis of diffractive neural networks for seeing through random diffusers
  publication-title: IEEE J. Select. Topics Quantum Electron.
  doi: 10.1109/JSTQE.2022.3194574
– volume: 10
  start-page: 14
  issue: 1
  year: 2021
  ident: CR9
  article-title: Ensemble learning of diffractive optical networks
  publication-title: Light: Sci. Appl.
  doi: 10.1038/s41377-020-00446-w
– volume: 8
  start-page: 12324
  issue: 1
  year: 2018
  ident: CR3
  article-title: Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30619-y
– volume: 1
  start-page: 51
  issue: 1
  year: 2022
  end-page: 62
  ident: CR16
  article-title: Phase retrieval combined with the deep learning denoising method in holographic data storage
  publication-title: Opt. Continuum
  doi: 10.1364/OPTCON.444882
– volume: 7
  start-page: 1812
  issue: 12
  year: 2020
  end-page: 1819
  ident: CR4
  article-title: Massively parallel amplitude-only Fourier neural network
  publication-title: Optica
  doi: 10.1364/OPTICA.408659
– volume: 15
  start-page: 367
  issue: 5
  year: 2021
  end-page: 373
  ident: CR11
  article-title: Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-021-00796-w
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  end-page: 2324
  ident: CR15
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 29
  start-page: 5877
  issue: 4
  year: 2021
  end-page: 5889
  ident: CR10
  article-title: Optronic convolutional neural networks of multi-layers with different functions executed in optics for image classification
  publication-title: Opt. Express
  doi: 10.1364/OE.415542
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 810_CR15
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 15
  start-page: 367
  issue: 5
  year: 2021
  ident: 810_CR11
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-021-00796-w
– volume: 361
  start-page: 1004
  issue: 6406
  year: 2018
  ident: 810_CR1
  publication-title: Science
  doi: 10.1126/science.aat8084
– volume: 57
  start-page: 09SC01
  issue: 9S1
  year: 2018
  ident: 810_CR18
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.57.09SC01
– volume: 10
  start-page: 041037
  year: 2020
  ident: 810_CR7
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.10.041037
– volume: 21
  start-page: 3669
  issue: 3
  year: 2013
  ident: 810_CR12
  publication-title: Opt. Express
  doi: 10.1364/OE.21.003669
– volume: 1
  start-page: 81
  issue: 1
  year: 2010
  ident: 810_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1078
– volume: 11
  start-page: 121
  issue: 1
  year: 2022
  ident: 810_CR5
  publication-title: Light: Sci. Appl.
  doi: 10.1038/s41377-022-00809-5
– volume: 29
  start-page: 5877
  issue: 4
  year: 2021
  ident: 810_CR10
  publication-title: Opt. Express
  doi: 10.1364/OE.415542
– volume: 104
  start-page: 100601
  year: 2010
  ident: 810_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.100601
– volume: 10
  start-page: 14
  issue: 1
  year: 2021
  ident: 810_CR9
  publication-title: Light: Sci. Appl.
  doi: 10.1038/s41377-020-00446-w
– volume: 8
  start-page: 3375
  issue: 11
  year: 2021
  ident: 810_CR20
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.1c01365
– volume: 45
  start-page: 2688
  issue: 10
  year: 2020
  ident: 810_CR8
  publication-title: Opt. Lett.
  doi: 10.1364/OL.389696
– volume: 7
  start-page: 1812
  issue: 12
  year: 2020
  ident: 810_CR4
  publication-title: Optica
  doi: 10.1364/OPTICA.408659
– volume: 1
  start-page: 51
  issue: 1
  year: 2022
  ident: 810_CR16
  publication-title: Opt. Continuum
  doi: 10.1364/OPTCON.444882
– volume: 9
  start-page: 161
  issue: 3
  year: 2021
  ident: 810_CR17
  publication-title: ITE Trans. Media Technol. Appl.
  doi: 10.3169/mta.9.161
– volume: 56
  start-page: 7327
  issue: 26
  year: 2017
  ident: 810_CR19
  publication-title: Appl. Opt.
  doi: 10.1364/AO.56.007327
– year: 2022
  ident: 810_CR21
  publication-title: IEEE J. Select. Topics Quantum Electron.
  doi: 10.1109/JSTQE.2022.3194574
– volume: 12
  start-page: 17232
  issue: 1
  year: 2022
  ident: 810_CR6
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-22291-0
– volume: 8
  start-page: 12324
  issue: 1
  year: 2018
  ident: 810_CR3
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30619-y
– volume: 8
  start-page: 46
  issue: 1
  year: 2020
  ident: 810_CR2
  publication-title: Photon. Res.
  doi: 10.1364/PRJ.8.000046
SSID ssj0025396
Score 2.3173296
Snippet We propose a novel optoelectronic deep neural network (OE-DNN) hardware called the self-referential holographic deep neural network (SR-HDNN). The SR-HDNN...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 387
SubjectTerms Atomic
International Symposium on Imaging
Japan
Lasers
Microwaves
Molecular
Optical and Plasma Physics
Optical Devices
Optical Memory (ISOM’ 22)
Optics
Photonics
Physics
Physics and Astronomy
Quantum Optics
RF and Optical Engineering
Sapporo
Sensing
Special Section: Regular Paper
Title Numerical simulations on optoelectronic deep neural network hardware based on self-referential holography
URI https://link.springer.com/article/10.1007/s10043-023-00810-2
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aEbz4Fuuj5OBNI7vJPrLHVqyi2JMFPS1JdoLFui3dLYK_3mQ3Wx9IwfskhEwyM8nMfB9CZxYFSxijR0IPAhJQYeygopxkMQeR2IhC2A_9h0F0OwzunsIn1xRWNNXuTUqystTfmt1sptj4GGL9mEeM4V0LfZ7wFlrr3jzfXy8eWiGreLl8ZkvbzZ13zTJ_z_LTIf3MhlZOpr-Fhs3y6tqS18t5KS_Vxy_kxv-ufxttuqgTd-tjsoNWIN9F61X1pyr20GgwrxM3Y1yM3hyhV4EnOZ5My8kXUw7OAKbYQmAaybwuIMe2betdzABbh5jZQQWMNXH8JcaAjPHLAhl7Hw37149Xt8RxMBDFWFgSFUqtuCepUBCAB1r7EPraxG0MYhUlGWNSUBlrqnjka_Oe5DoOpYhBRzIGYAeolU9yOEQ4SgJmNBJwDyJLkiU0UBPbA-jMY5InbeQ3ikiVAyi3PBnj9Ata2W5harYwrbYwpW10vhgzreE5lkpfNKpJ3VUtlogf_U_8GG3QSrv2i-YEtcrZHE5NxFLKjjmg_V5v0HEHtYNWh7T7CYWw45A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yEb2Inzg_c_CmgTbpR3oc4pi67bTBbiVNX3BQ27F2-O-btOnmQAbeX3J4yXvvl7yPH0KPZgqW0E6P-A54xKNC-0FJOUlDDiIyiEKYD_3ROBhMvfeZP7NNYWVb7d6mJGtP_avZzWSKdYwhJo45RDvefQ0GuOEtmNLe-pnls5qVy2WmsF1bvG2V-XuP7XC0nQutQ0z_BB1bbIh7zWGeoj3Iz9BBXaMpy3M0H6-a9EqGy_mXpd0qcZHjYlEVGz4bnAIssBlUqSXzpswbm-aqb7EEbMJWahaVkCliWUa0mWf4cz2_-gJN-6-TlwGxTAlEMuZXRPqJktxJqJDggQNKueC7SqMrBqEMopSxRNAkVFTywFX61cdV6CciBBUkIQC7RJ28yOEK4SDymNacxx0IDJWVUEA1AgdQqcMSHnWR2yoslnaMuGGzyOLNAGSj5FgrOa6VHNMuelqvWTRDNHZKP7fnEFuDKneIX_9P_AEdDiajYTx8G3_coCNa3wXzqXKLOtVyBXcaY1TJfX2lfgAuQsco
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QEIgL4inGMwduEK1N-tpxAqbxmjgwabcqTR0xqbTV2om_T9x2LwlN4u7k4Di2E9vfR8gtomBJ4_SYa4HDHC6NH1Q8YLEfgOxiRiHxQ_996A1GzsvYHa9M8Vfd7vOSZD3TgChNadnJY91ZGXzDqrGJNwxjmsWME9427thGSx_x3uLJ5YqKocsW2ORubn8zNvP3Huuhab0uWoWb_gHZb_JE2qsP9pBsQXpEdqp-TVUck8lwVpdaElpMvhsKroJmKc3yMlty29AYIKcIWmkk07rlm-Kg1Y-cAsUQFuOiAhLNGsYRc-UT-rXAsj4ho_7T58OANawJTAnhlky5kVaBFXGpwAELtLbBtbXJtAT4yuvGQkSSR77mKvBsbV6AgfbdSPqgvcgHEKeklWYpnBHqdR1hNOcEFnhIayU1cJONA-jYElHQbRN7rrBQNZDiyGyRhEswZFRyaJQcVkoOeZvcLdbkNaDGRun7-TmEzeUqNoif_0_8hux-PPbDt-fh6wXZ45Up4P_KJWmV0xlcmXSjjK4ri_oF5_jLZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulations+on+optoelectronic+deep+neural+network+hardware+based+on+self-referential+holography&rft.jtitle=Optical+review+%28Tokyo%2C+Japan%29&rft.au=Tomioka%2C+Rio&rft.au=Takabayashi%2C+Masanori&rft.date=2023-06-01&rft.issn=1340-6000&rft.eissn=1349-9432&rft.volume=30&rft.issue=3&rft.spage=387&rft.epage=396&rft_id=info:doi/10.1007%2Fs10043-023-00810-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10043_023_00810_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1340-6000&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1340-6000&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1340-6000&client=summon