Tuning Stark effect by defect engineering on black titanium dioxide mesoporous spheres for enhanced hydrogen evolution

Defects can strongly affect the lattice, strain, and electronic structures of nanomaterials photocatalysts, like a double-edged sword of both positive significance and negative influence on photocatalytic performances. To date, most studies into defects only partially elucidated their beneficial or...

Full description

Saved in:
Bibliographic Details
Published inChinese chemical letters Vol. 35; no. 11; pp. 110254 - 259
Main Authors Zhang, Bingke, Wang, Dongbo, Cao, Jiamu, He, Wen, Liu, Gang, Liu, Donghao, Zhao, Chenchen, Pan, Jingwen, Liu, Sihang, Zhang, Weifeng, Fang, Xuan, Zhao, Liancheng, Wang, Jinzhong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2024
School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China%School of Astronautics,Harbin Institute of Technology,Harbin 150001,China%Center for High Pressure Science and Technology Advanced Research,Shanghai 201203,China%Qingdao University of Science and Technology,Qingdao 266061,China%State Key Laboratory of High Power Semiconductor Lasers,School of Physics,Changchun University of Science and Technology,Changchun 130022,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Defects can strongly affect the lattice, strain, and electronic structures of nanomaterials photocatalysts, like a double-edged sword of both positive significance and negative influence on photocatalytic performances. To date, most studies into defects only partially elucidated their beneficial or detrimental roles in photocatalysis. However, a quantitative understanding of the photocatalytic performances modulated by defect concentration still needs to be discovered. Here, a series of TiO2−X mesoporous spheres (MS) with different oxygen vacancy concentrations for photocatalytic applications were prepared by high-temperature chemical reduction. The link between oxygen vacancy concentration and photocatalytic performance was successfully established. The localization of carriers dominated by the Stark effect is first enhanced and then weakened with increasing oxygen vacancy concentration, which is a crucial factor in explaining the double-edged sword role of defect concentration in photocatalysis. As the reduction temperature rises to 300 °C, carrier localization dominated by the quantum-confined Stark effect maximizes the separation ability of photo generated electron hole pairs, thus exhibiting the best catalytic performance for photocatalytic hydrogen production and the degradation of organic pollutants, as demonstrated by a hydrogen evolution rate of 523.7 µmol g-1 h-1 and a ninefold higher RhB photodegradation rate compared to TiO2 MS. The work offers excellent flexibility for precisely constructing high-performance photocatalysts by understanding vacancy engineering. We propose an optimal defect doping level to enhance the Stark effect, promoting the separation of electron-hole pairs and thereby improving photocatalytic performance. [Display omitted]
AbstractList Defects can strongly affect the lattice,strain,and electronic structures of nanomaterials photocatalysts,like a double-edged sword of both positive significance and negative influence on photocatalytic per-formances.To date,most studies into defects only partially elucidated their beneficial or detrimental roles in photocatalysis.However,a quantitative understanding of the photocatalytic performances modu-lated by defect concentration still needs to be discovered.Here,a series of TiO2-X mesoporous spheres(MS)with different oxygen vacancy concentrations for photocatalytic applications were prepared by high-temperature chemical reduction.The link between oxygen vacancy concentration and photocatalytic per-formance was successfully established.The localization of carriers dominated by the Stark effect is first enhanced and then weakened with increasing oxygen vacancy concentration,which is a crucial factor in explaining the double-edged sword role of defect concentration in photocatalysis.As the reduction tem-perature rises to 300 ℃,carrier localization dominated by the quantum-confined Stark effect maximizes the separation ability of photo generated electron hole pairs,thus exhibiting the best catalytic perfor-mance for photocatalytic hydrogen production and the degradation of organic pollutants,as demonstrated by a hydrogen evolution rate of 523.7 μmol g-1 h-1 and a ninefold higher RhB photodegradation rate compared to TiO2 MS.The work offers excellent flexibility for precisely constructing high-performance photocatalysts by understanding vacancy engineering.
Defects can strongly affect the lattice, strain, and electronic structures of nanomaterials photocatalysts, like a double-edged sword of both positive significance and negative influence on photocatalytic performances. To date, most studies into defects only partially elucidated their beneficial or detrimental roles in photocatalysis. However, a quantitative understanding of the photocatalytic performances modulated by defect concentration still needs to be discovered. Here, a series of TiO2−X mesoporous spheres (MS) with different oxygen vacancy concentrations for photocatalytic applications were prepared by high-temperature chemical reduction. The link between oxygen vacancy concentration and photocatalytic performance was successfully established. The localization of carriers dominated by the Stark effect is first enhanced and then weakened with increasing oxygen vacancy concentration, which is a crucial factor in explaining the double-edged sword role of defect concentration in photocatalysis. As the reduction temperature rises to 300 °C, carrier localization dominated by the quantum-confined Stark effect maximizes the separation ability of photo generated electron hole pairs, thus exhibiting the best catalytic performance for photocatalytic hydrogen production and the degradation of organic pollutants, as demonstrated by a hydrogen evolution rate of 523.7 µmol g-1 h-1 and a ninefold higher RhB photodegradation rate compared to TiO2 MS. The work offers excellent flexibility for precisely constructing high-performance photocatalysts by understanding vacancy engineering. We propose an optimal defect doping level to enhance the Stark effect, promoting the separation of electron-hole pairs and thereby improving photocatalytic performance. [Display omitted]
ArticleNumber 110254
Author Liu, Gang
Zhang, Bingke
Zhao, Chenchen
Pan, Jingwen
Wang, Jinzhong
Liu, Sihang
Liu, Donghao
Zhao, Liancheng
He, Wen
Wang, Dongbo
Fang, Xuan
Cao, Jiamu
Zhang, Weifeng
AuthorAffiliation School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China%School of Astronautics,Harbin Institute of Technology,Harbin 150001,China%Center for High Pressure Science and Technology Advanced Research,Shanghai 201203,China%Qingdao University of Science and Technology,Qingdao 266061,China%State Key Laboratory of High Power Semiconductor Lasers,School of Physics,Changchun University of Science and Technology,Changchun 130022,China
AuthorAffiliation_xml – name: School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China%School of Astronautics,Harbin Institute of Technology,Harbin 150001,China%Center for High Pressure Science and Technology Advanced Research,Shanghai 201203,China%Qingdao University of Science and Technology,Qingdao 266061,China%State Key Laboratory of High Power Semiconductor Lasers,School of Physics,Changchun University of Science and Technology,Changchun 130022,China
Author_xml – sequence: 1
  givenname: Bingke
  surname: Zhang
  fullname: Zhang, Bingke
  organization: School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
– sequence: 2
  givenname: Dongbo
  orcidid: 0000-0001-6058-9660
  surname: Wang
  fullname: Wang, Dongbo
  email: wangdongbo@hit.edu.cn
  organization: School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
– sequence: 3
  givenname: Jiamu
  surname: Cao
  fullname: Cao, Jiamu
  email: caojiamu@hit.edu.cn
  organization: School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
– sequence: 4
  givenname: Wen
  surname: He
  fullname: He, Wen
  email: hewenmse@hit.edu.cn
  organization: School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
– sequence: 5
  givenname: Gang
  surname: Liu
  fullname: Liu, Gang
  email: liugang@hpstar.ac.cn
  organization: Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
– sequence: 6
  givenname: Donghao
  surname: Liu
  fullname: Liu, Donghao
  organization: School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
– sequence: 7
  givenname: Chenchen
  orcidid: 0009-0004-7811-7185
  surname: Zhao
  fullname: Zhao, Chenchen
  organization: School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
– sequence: 8
  givenname: Jingwen
  surname: Pan
  fullname: Pan, Jingwen
  organization: School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
– sequence: 9
  givenname: Sihang
  surname: Liu
  fullname: Liu, Sihang
  organization: School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
– sequence: 10
  givenname: Weifeng
  surname: Zhang
  fullname: Zhang, Weifeng
  organization: Qingdao University of Science and Technology, Qingdao 266061, China
– sequence: 11
  givenname: Xuan
  surname: Fang
  fullname: Fang, Xuan
  email: fangx@cust.edu.cn
  organization: State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
– sequence: 12
  givenname: Liancheng
  surname: Zhao
  fullname: Zhao, Liancheng
  email: lczhao@hit.edu.cn
  organization: School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
– sequence: 13
  givenname: Jinzhong
  surname: Wang
  fullname: Wang, Jinzhong
  email: jinzhong_wang@hit.edu.cn
  organization: School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
BookMark eNqFkD1PwzAQhj0UiRb4BSzemFJs53tgQBVfUiUGuluOfUmcpnZlJ6Xl15M0TAww3Q3vc6f3WaCZsQYQuqVkSQlN7pullC10S0ZYtKSUsDiaoTklhAZZRNNLtPC-IYRlWZjM0WHTG20q_NEJt8VQliA7XJywgvMGptIGwI0Ra3DRCrnFne6E0f0OK22PWgHegbd762zvsd_X4MDj0roBroWRoHB9Us5WYDAcbNt32pprdFGK1sPNz7xCm-enzeo1WL-_vK0e14EMw7gLClEKiFVSRkomEQ1pkuVZmisRMSZzyUJZpCIn2RCO41wUQAuIKGQpEyosRHiF7qazn8KUwlS8sb0zw0P-VdXHbTE6GhUlQzKcktJZ7x2UfO_0TrgTp4SPXnnDz175yPDJ60Dlvyg5uBkLdk7o9h_2YWJh6H_Q4LiXGkZf2g3qubL6T_4bZWebwg
CitedBy_id crossref_primary_10_1016_j_mtcomm_2024_110564
Cites_doi 10.1016/j.cclet.2021.10.068
10.1021/acscatal.8b04068
10.1038/s41586-021-03907-3
10.1038/s41929-020-00522-9
10.1103/PhysRevB.95.144205
10.1007/s12274-023-5905-6
10.1038/s41467-020-15993-4
10.1073/pnas.1609030113
10.1021/ic3026182
10.1126/science.1200448
10.1016/j.cclet.2021.08.103
10.1039/C8CP02270D
10.1016/j.chempr.2017.05.006
10.1021/ja504802q
10.1039/D0TA11505C
10.1039/C5NR07953E
10.1021/acssuschemeng.7b04188
10.1002/anie.201907954
10.1021/jacs.6b03714
10.1016/j.apsusc.2020.147289
10.1016/0031-8914(67)90062-6
10.1021/jp3088429
10.1002/solr.201970123
10.1002/ange.201709124
10.1016/j.apsusc.2017.07.153
10.1016/j.jcat.2017.10.023
10.1016/j.apcatb.2014.10.063
10.1016/j.apcatb.2012.05.036
10.1063/1.123275
10.1038/s41467-021-25381-1
10.1021/ja3012676
10.1016/j.jcrysgro.2006.10.266
10.1021/jacs.0c00138
10.1063/1.1784033
10.1016/j.cclet.2017.12.002
10.1021/am401083y
10.1016/j.cclet.2018.05.021
10.1016/j.apcatb.2017.09.072
10.1021/acsami.1c10943
10.1016/j.chemphys.2018.07.021
ContentType Journal Article
Copyright 2024
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2024
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/j.cclet.2024.110254
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EndPage 259
ExternalDocumentID zghxkb202411026
10_1016_j_cclet_2024_110254
S1001841724007733
GroupedDBID --K
--M
-SB
-S~
.~1
0R~
188
1B1
1~.
1~5
29B
2B.
2C.
2WC
4.4
457
4G.
5GY
5VR
5VS
5XA
5XC
6J9
7-5
71M
8P~
8RM
92E
92I
92Q
93N
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXDM
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C1A
CAJEB
CCEZO
CDRFL
CHBEP
CS3
CW9
DU5
EBS
EFJIC
EJD
EO9
EP2
EP3
F5P
FA0
FDB
FEDTE
FIRID
FLBIZ
FNPLU
FYGXN
GBLVA
GX1
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q--
Q38
RIG
ROL
RPZ
S..
SDF
SDG
SDH
SES
SPC
SPCBC
SSK
SSZ
T5K
TCJ
TGP
U1G
U5L
UNMZH
UZ4
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
4A8
PSX
ID FETCH-LOGICAL-c335t-bafae5d6f4dc64131689879da422c9c23cb7a908335559abe1be41e872ad3ba3
IEDL.DBID .~1
ISSN 1001-8417
IngestDate Thu May 29 04:08:21 EDT 2025
Thu Apr 24 23:04:05 EDT 2025
Tue Jul 01 00:16:09 EDT 2025
Sat Oct 26 15:43:30 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Defect
Carrier localization
TiO2−X
Stark effect
Photocatalysis
TiO2-X
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c335t-bafae5d6f4dc64131689879da422c9c23cb7a908335559abe1be41e872ad3ba3
ORCID 0009-0004-7811-7185
0000-0001-6058-9660
PageCount 6
ParticipantIDs wanfang_journals_zghxkb202411026
crossref_primary_10_1016_j_cclet_2024_110254
crossref_citationtrail_10_1016_j_cclet_2024_110254
elsevier_sciencedirect_doi_10_1016_j_cclet_2024_110254
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese chemical letters
PublicationTitle_FL Chinese Chemical Letters
PublicationYear 2024
Publisher Elsevier B.V
School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China%School of Astronautics,Harbin Institute of Technology,Harbin 150001,China%Center for High Pressure Science and Technology Advanced Research,Shanghai 201203,China%Qingdao University of Science and Technology,Qingdao 266061,China%State Key Laboratory of High Power Semiconductor Lasers,School of Physics,Changchun University of Science and Technology,Changchun 130022,China
Publisher_xml – name: Elsevier B.V
– name: School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China%School of Astronautics,Harbin Institute of Technology,Harbin 150001,China%Center for High Pressure Science and Technology Advanced Research,Shanghai 201203,China%Qingdao University of Science and Technology,Qingdao 266061,China%State Key Laboratory of High Power Semiconductor Lasers,School of Physics,Changchun University of Science and Technology,Changchun 130022,China
References Oh, Kim, Lee (bib0041) 2021; 9
Wang, Li, Xu (bib0034) 2017; 426
Zhao, Zhao, Shi (bib0023) 2019; 31
He, Lu, Cai (bib0044) 2023; 457
Zhang, Zhao, Cao (bib0015) 2015; 165
Zhang, Zhang, Yin (bib0033) 2018; 5134
Xie, Wang, Zhao (bib0003) 2021; 12
Wang, Liu, Liu (bib0050) 2004; 85
Park, Kim, Latthe (bib0038) 2013; 13
Li, Yu, Liu (bib0037) 2023; 452
Xiao, Feng, Fu (bib0046) 2020; 3
Li, Wang, Wu, Zhou (bib0002) 2022; 156
Naldoni, Allieta, Santo (bib0025) 2012; 134
Göde, Gümüs, Zor (bib0039) 2007; 299
Zhou, Wang, Chen (bib0018) 2020; 267
Cai, Wu, Wang (bib0031) 2017; 2
Zhu, Shan, Liu (bib0024) 2016; 8
Huang, Wang, Xiao (bib0020) 2023; 34
Mao, Foucher, Montini (bib0022) 2020; 142
Wang, Jiao, Zhao (bib0051) 2013; 117
Li, Li, Zhou, Sheng, Lang (bib0019) 2022; 33
Sun, Bu, Zhou (bib0016) 2021; 13
Seadira, Sadanandam, Scurrell (bib0017) 2018; 222
Zeng, Wang, Zhang, Zhong (bib0027) 2018; 20
Pelaez, Nolan, Pillai (bib0030) 2012; 125
Wang, Xie, Sun (bib0026) 2023; 16
Li, Li, Wang, Yang, Zhou (bib0011) 2022; 427
Hu, Xie, Gu (bib0043) 2024; 506
Zhao, Wang, Cao (bib0053) 2024; 17
Sun, Zhou, Li (bib0005) 2018; 30
Zhou, Li, Wang (bib0009) 2014; 136
Yin, Han, Jin (bib0029) 2016; 138
Kong, Liu, Gong (bib0045) 2016; 113
Ni, Guo, Wang (bib0047) 2018; 6
Chen, Pan, Yin, Ma, Wang (bib0010) 2023; 34
Huang, Wu, Tang (bib0004) 2018; 29
Pan, Dong, Jiang (bib0040) 2019; 3
Park, Kim, Yoon (bib0042) 2013; 5
Chen, Tang, Wang (bib0007) 2022; 33
Martin, Middleton, O’Donnel (bib0052) 1999; 74
Lin, Liu, Sun (bib0048) 2023; 34
Varshni (bib0049) 1967; 34
Piccardo, Li, Wu (bib0054) 2017; 95
Dong, Liu, Li, Zhang (bib0032) 2018; 29
Cao, Xing, Zhou (bib0014) 2017; 356
Nishiyama, Yamada, Nakabayashi (bib0001) 2021; 598
Chen, Liu, Yu (bib0008) 2012; 331
Grabstanowicz, Gao, Li (bib0036) 2013; 52
Cao, Gu, Gao (bib0012) 2020; 530
Naldoni, Altomare, Zoppellaro (bib0035) 2019; 9
Murata, Mahara, Satsuma (bib0021) 2017; 129
Zhang, Xu, Li (bib0006) 2019; 58
Hu, Pan, Wang (bib0028) 2020; 11
Fan, He, Pan (bib0013) 2024; 35
Martin (10.1016/j.cclet.2024.110254_bib0052) 1999; 74
Zeng (10.1016/j.cclet.2024.110254_bib0027) 2018; 20
Li (10.1016/j.cclet.2024.110254_bib0002) 2022; 156
Zhang (10.1016/j.cclet.2024.110254_bib0006) 2019; 58
Xiao (10.1016/j.cclet.2024.110254_bib0046) 2020; 3
Varshni (10.1016/j.cclet.2024.110254_bib0049) 1967; 34
Grabstanowicz (10.1016/j.cclet.2024.110254_bib0036) 2013; 52
Wang (10.1016/j.cclet.2024.110254_bib0051) 2013; 117
Oh (10.1016/j.cclet.2024.110254_bib0041) 2021; 9
Zhao (10.1016/j.cclet.2024.110254_bib0023) 2019; 31
Yin (10.1016/j.cclet.2024.110254_bib0029) 2016; 138
Hu (10.1016/j.cclet.2024.110254_bib0043) 2024; 506
Cao (10.1016/j.cclet.2024.110254_bib0014) 2017; 356
Zhao (10.1016/j.cclet.2024.110254_bib0053) 2024; 17
Naldoni (10.1016/j.cclet.2024.110254_bib0025) 2012; 134
Göde (10.1016/j.cclet.2024.110254_bib0039) 2007; 299
Cao (10.1016/j.cclet.2024.110254_bib0012) 2020; 530
Zhang (10.1016/j.cclet.2024.110254_bib0033) 2018; 5134
Nishiyama (10.1016/j.cclet.2024.110254_bib0001) 2021; 598
Naldoni (10.1016/j.cclet.2024.110254_bib0035) 2019; 9
Huang (10.1016/j.cclet.2024.110254_bib0020) 2023; 34
Park (10.1016/j.cclet.2024.110254_bib0038) 2013; 13
Murata (10.1016/j.cclet.2024.110254_bib0021) 2017; 129
Park (10.1016/j.cclet.2024.110254_bib0042) 2013; 5
Zhou (10.1016/j.cclet.2024.110254_bib0009) 2014; 136
Fan (10.1016/j.cclet.2024.110254_bib0013) 2024; 35
Xie (10.1016/j.cclet.2024.110254_bib0003) 2021; 12
Zhang (10.1016/j.cclet.2024.110254_bib0015) 2015; 165
Pan (10.1016/j.cclet.2024.110254_bib0040) 2019; 3
Chen (10.1016/j.cclet.2024.110254_bib0008) 2012; 331
He (10.1016/j.cclet.2024.110254_bib0044) 2023; 457
Sun (10.1016/j.cclet.2024.110254_bib0016) 2021; 13
Wang (10.1016/j.cclet.2024.110254_bib0026) 2023; 16
Ni (10.1016/j.cclet.2024.110254_bib0047) 2018; 6
Lin (10.1016/j.cclet.2024.110254_bib0048) 2023; 34
Cai (10.1016/j.cclet.2024.110254_bib0031) 2017; 2
Dong (10.1016/j.cclet.2024.110254_bib0032) 2018; 29
Huang (10.1016/j.cclet.2024.110254_bib0004) 2018; 29
Hu (10.1016/j.cclet.2024.110254_bib0028) 2020; 11
Pelaez (10.1016/j.cclet.2024.110254_bib0030) 2012; 125
Zhu (10.1016/j.cclet.2024.110254_bib0024) 2016; 8
Piccardo (10.1016/j.cclet.2024.110254_bib0054) 2017; 95
Kong (10.1016/j.cclet.2024.110254_bib0045) 2016; 113
Zhou (10.1016/j.cclet.2024.110254_bib0018) 2020; 267
Seadira (10.1016/j.cclet.2024.110254_bib0017) 2018; 222
Sun (10.1016/j.cclet.2024.110254_bib0005) 2018; 30
Wang (10.1016/j.cclet.2024.110254_bib0034) 2017; 426
Chen (10.1016/j.cclet.2024.110254_bib0007) 2022; 33
Li (10.1016/j.cclet.2024.110254_bib0011) 2022; 427
Mao (10.1016/j.cclet.2024.110254_bib0022) 2020; 142
Chen (10.1016/j.cclet.2024.110254_bib0010) 2023; 34
Li (10.1016/j.cclet.2024.110254_bib0037) 2023; 452
Wang (10.1016/j.cclet.2024.110254_bib0050) 2004; 85
Li (10.1016/j.cclet.2024.110254_bib0019) 2022; 33
References_xml – volume: 142
  start-page: 10373
  year: 2020
  end-page: 10382
  ident: bib0022
  publication-title: J. Am. Chem. Soc.
– volume: 331
  start-page: 746
  year: 2012
  end-page: 750
  ident: bib0008
  publication-title: Science
– volume: 31
  year: 2019
  ident: bib0023
  publication-title: Adv. Mater.
– volume: 16
  start-page: 1
  year: 2023
  ident: bib0026
  publication-title: Nano-Micro Lett.
– volume: 20
  start-page: 22744
  year: 2018
  end-page: 22752
  ident: bib0027
  publication-title: Phys. Chem. Chem. Phys.
– volume: 35
  year: 2024
  ident: bib0013
  publication-title: Chin. Chem. Lett.
– volume: 356
  start-page: 246
  year: 2017
  end-page: 254
  ident: bib0014
  publication-title: J. Catal.
– volume: 52
  start-page: 3884
  year: 2013
  end-page: 3890
  ident: bib0036
  publication-title: Inorg. Chem.
– volume: 506
  year: 2024
  ident: bib0043
  publication-title: Coordin. Chem. Rev.
– volume: 34
  start-page: 149
  year: 1967
  end-page: 154
  ident: bib0049
  publication-title: Physica
– volume: 12
  start-page: 5070
  year: 2021
  ident: bib0003
  publication-title: Nat. Commun.
– volume: 29
  start-page: 725
  year: 2018
  end-page: 726
  ident: bib0004
  publication-title: Chin. Chem. Lett.
– volume: 5134
  start-page: 86
  year: 2018
  end-page: 93
  ident: bib0033
  publication-title: Chem. Phys.
– volume: 6
  start-page: 7265
  year: 2018
  end-page: 7272
  ident: bib0047
  publication-title: ACS Sustainable Chem. Eng.
– volume: 125
  start-page: 331
  year: 2012
  end-page: 349
  ident: bib0030
  publication-title: Appl. Catal. B: Environ.
– volume: 9
  start-page: 345
  year: 2019
  end-page: 364
  ident: bib0035
  publication-title: ACS Catal.
– volume: 165
  start-page: 715
  year: 2015
  end-page: 722
  ident: bib0015
  publication-title: Appl. Catal. B: Environ.
– volume: 113
  start-page: 8910
  year: 2016
  end-page: 8915
  ident: bib0045
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 30
  year: 2018
  ident: bib0005
  publication-title: Adv. Mater.
– volume: 117
  start-page: 543
  year: 2013
  end-page: 548
  ident: bib0051
  publication-title: J. Phys. Chem. C
– volume: 95
  start-page: 144205
  year: 2017
  ident: bib0054
  publication-title: Phys. Rev. B
– volume: 2
  start-page: 877
  year: 2017
  end-page: 892
  ident: bib0031
  publication-title: Chem
– volume: 530
  year: 2020
  ident: bib0012
  publication-title: Appl. Surf. Sci.
– volume: 5
  start-page: 6155
  year: 2013
  end-page: 6160
  ident: bib0042
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 37545
  year: 2021
  end-page: 37552
  ident: bib0016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 134
  start-page: 7600
  year: 2012
  end-page: 7603
  ident: bib0025
  publication-title: J. Am. Chem. Soc.
– volume: 34
  year: 2023
  ident: bib0048
  publication-title: Chin. Chem. Lett.
– volume: 427
  year: 2022
  ident: bib0011
  publication-title: Chem. Eng. J.
– volume: 17
  start-page: 1864
  year: 2024
  end-page: 1874
  ident: bib0053
  publication-title: Nano. Res.
– volume: 426
  start-page: 325
  year: 2017
  end-page: 332
  ident: bib0034
  publication-title: Appl. Surf. Sci.
– volume: 33
  start-page: 1468
  year: 2022
  end-page: 1474
  ident: bib0007
  publication-title: Chin. Chem. Lett.
– volume: 3
  year: 2019
  ident: bib0040
  publication-title: Sol. Rrl.
– volume: 58
  start-page: 14229
  year: 2019
  end-page: 14233
  ident: bib0006
  publication-title: Angew. Chem. Int. Ed.
– volume: 74
  start-page: 263
  year: 1999
  end-page: 265
  ident: bib0052
  publication-title: Appl. Phys. Lett.
– volume: 34
  year: 2023
  ident: bib0010
  publication-title: Chin. Chem. Lett.
– volume: 9
  start-page: 4822
  year: 2021
  end-page: 4830
  ident: bib0041
  publication-title: J. Mater. Chem. A
– volume: 33
  start-page: 3733
  year: 2022
  end-page: 3738
  ident: bib0019
  publication-title: Chin. Chem. Lett.
– volume: 8
  start-page: 4705
  year: 2016
  end-page: 4712
  ident: bib0024
  publication-title: Nanoscale
– volume: 598
  start-page: 304
  year: 2021
  end-page: 307
  ident: bib0001
  publication-title: Nature
– volume: 138
  start-page: 7965
  year: 2016
  end-page: 7972
  ident: bib0029
  publication-title: J. Am. Chem. Soc.
– volume: 129
  start-page: 16209
  year: 2017
  end-page: 16213
  ident: bib0021
  publication-title: Angew. Chem. Int. Ed.
– volume: 267
  year: 2020
  ident: bib0018
  publication-title: Appl. Catal. B: Environ.
– volume: 222
  start-page: 133
  year: 2018
  end-page: 145
  ident: bib0017
  publication-title: Appl. Catal. B: Environ.
– volume: 136
  start-page: 9280
  year: 2014
  end-page: 9283
  ident: bib0009
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 2129
  year: 2020
  ident: bib0028
  publication-title: Nat. Commun.
– volume: 452
  year: 2023
  ident: bib0037
  publication-title: Chem. Eng. J.
– volume: 3
  start-page: 932
  year: 2020
  end-page: 940
  ident: bib0046
  publication-title: Nat. Catal.
– volume: 457
  year: 2023
  ident: bib0044
  publication-title: J. Hazard. Mater.
– volume: 156
  year: 2022
  ident: bib0002
  publication-title: Renew. Sust. Energy Rev.
– volume: 29
  start-page: 671
  year: 2018
  end-page: 680
  ident: bib0032
  publication-title: Chin. Chem. Lett.
– volume: 13
  start-page: 6155
  year: 2013
  end-page: 6160
  ident: bib0038
  publication-title: ACS Appl. Mater. Interfaces
– volume: 85
  start-page: 1371
  year: 2004
  end-page: 1373
  ident: bib0050
  publication-title: Appl. Phys. Lett.
– volume: 34
  year: 2023
  ident: bib0020
  publication-title: Chin. Chem. Lett.
– volume: 299
  start-page: 136
  year: 2007
  end-page: 141
  ident: bib0039
  publication-title: J. Cryst. Growth
– volume: 33
  start-page: 3733
  year: 2022
  ident: 10.1016/j.cclet.2024.110254_bib0019
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2021.10.068
– volume: 9
  start-page: 345
  year: 2019
  ident: 10.1016/j.cclet.2024.110254_bib0035
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b04068
– volume: 598
  start-page: 304
  year: 2021
  ident: 10.1016/j.cclet.2024.110254_bib0001
  publication-title: Nature
  doi: 10.1038/s41586-021-03907-3
– volume: 3
  start-page: 932
  year: 2020
  ident: 10.1016/j.cclet.2024.110254_bib0046
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-00522-9
– volume: 95
  start-page: 144205
  year: 2017
  ident: 10.1016/j.cclet.2024.110254_bib0054
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.144205
– volume: 17
  start-page: 1864
  year: 2024
  ident: 10.1016/j.cclet.2024.110254_bib0053
  publication-title: Nano. Res.
  doi: 10.1007/s12274-023-5905-6
– volume: 156
  year: 2022
  ident: 10.1016/j.cclet.2024.110254_bib0002
  publication-title: Renew. Sust. Energy Rev.
– volume: 11
  start-page: 2129
  year: 2020
  ident: 10.1016/j.cclet.2024.110254_bib0028
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15993-4
– volume: 113
  start-page: 8910
  year: 2016
  ident: 10.1016/j.cclet.2024.110254_bib0045
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1609030113
– volume: 52
  start-page: 3884
  year: 2013
  ident: 10.1016/j.cclet.2024.110254_bib0036
  publication-title: Inorg. Chem.
  doi: 10.1021/ic3026182
– volume: 30
  year: 2018
  ident: 10.1016/j.cclet.2024.110254_bib0005
  publication-title: Adv. Mater.
– volume: 331
  start-page: 746
  year: 2012
  ident: 10.1016/j.cclet.2024.110254_bib0008
  publication-title: Science
  doi: 10.1126/science.1200448
– volume: 33
  start-page: 1468
  year: 2022
  ident: 10.1016/j.cclet.2024.110254_bib0007
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2021.08.103
– volume: 20
  start-page: 22744
  year: 2018
  ident: 10.1016/j.cclet.2024.110254_bib0027
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP02270D
– volume: 2
  start-page: 877
  year: 2017
  ident: 10.1016/j.cclet.2024.110254_bib0031
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.05.006
– volume: 136
  start-page: 9280
  year: 2014
  ident: 10.1016/j.cclet.2024.110254_bib0009
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja504802q
– volume: 9
  start-page: 4822
  year: 2021
  ident: 10.1016/j.cclet.2024.110254_bib0041
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA11505C
– volume: 8
  start-page: 4705
  year: 2016
  ident: 10.1016/j.cclet.2024.110254_bib0024
  publication-title: Nanoscale
  doi: 10.1039/C5NR07953E
– volume: 6
  start-page: 7265
  year: 2018
  ident: 10.1016/j.cclet.2024.110254_bib0047
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b04188
– volume: 457
  year: 2023
  ident: 10.1016/j.cclet.2024.110254_bib0044
  publication-title: J. Hazard. Mater.
– volume: 58
  start-page: 14229
  year: 2019
  ident: 10.1016/j.cclet.2024.110254_bib0006
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201907954
– volume: 138
  start-page: 7965
  year: 2016
  ident: 10.1016/j.cclet.2024.110254_bib0029
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b03714
– volume: 530
  year: 2020
  ident: 10.1016/j.cclet.2024.110254_bib0012
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147289
– volume: 34
  start-page: 149
  year: 1967
  ident: 10.1016/j.cclet.2024.110254_bib0049
  publication-title: Physica
  doi: 10.1016/0031-8914(67)90062-6
– volume: 35
  year: 2024
  ident: 10.1016/j.cclet.2024.110254_bib0013
  publication-title: Chin. Chem. Lett.
– volume: 117
  start-page: 543
  year: 2013
  ident: 10.1016/j.cclet.2024.110254_bib0051
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp3088429
– volume: 452
  year: 2023
  ident: 10.1016/j.cclet.2024.110254_bib0037
  publication-title: Chem. Eng. J.
– volume: 3
  year: 2019
  ident: 10.1016/j.cclet.2024.110254_bib0040
  publication-title: Sol. Rrl.
  doi: 10.1002/solr.201970123
– volume: 506
  year: 2024
  ident: 10.1016/j.cclet.2024.110254_bib0043
  publication-title: Coordin. Chem. Rev.
– volume: 129
  start-page: 16209
  year: 2017
  ident: 10.1016/j.cclet.2024.110254_bib0021
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201709124
– volume: 426
  start-page: 325
  year: 2017
  ident: 10.1016/j.cclet.2024.110254_bib0034
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.07.153
– volume: 356
  start-page: 246
  year: 2017
  ident: 10.1016/j.cclet.2024.110254_bib0014
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2017.10.023
– volume: 165
  start-page: 715
  year: 2015
  ident: 10.1016/j.cclet.2024.110254_bib0015
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2014.10.063
– volume: 125
  start-page: 331
  year: 2012
  ident: 10.1016/j.cclet.2024.110254_bib0030
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2012.05.036
– volume: 74
  start-page: 263
  year: 1999
  ident: 10.1016/j.cclet.2024.110254_bib0052
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.123275
– volume: 12
  start-page: 5070
  year: 2021
  ident: 10.1016/j.cclet.2024.110254_bib0003
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25381-1
– volume: 31
  year: 2019
  ident: 10.1016/j.cclet.2024.110254_bib0023
  publication-title: Adv. Mater.
– volume: 134
  start-page: 7600
  year: 2012
  ident: 10.1016/j.cclet.2024.110254_bib0025
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3012676
– volume: 299
  start-page: 136
  year: 2007
  ident: 10.1016/j.cclet.2024.110254_bib0039
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2006.10.266
– volume: 142
  start-page: 10373
  year: 2020
  ident: 10.1016/j.cclet.2024.110254_bib0022
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00138
– volume: 85
  start-page: 1371
  year: 2004
  ident: 10.1016/j.cclet.2024.110254_bib0050
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1784033
– volume: 29
  start-page: 671
  year: 2018
  ident: 10.1016/j.cclet.2024.110254_bib0032
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2017.12.002
– volume: 5
  start-page: 6155
  year: 2013
  ident: 10.1016/j.cclet.2024.110254_bib0042
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am401083y
– volume: 29
  start-page: 725
  year: 2018
  ident: 10.1016/j.cclet.2024.110254_bib0004
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2018.05.021
– volume: 222
  start-page: 133
  year: 2018
  ident: 10.1016/j.cclet.2024.110254_bib0017
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2017.09.072
– volume: 13
  start-page: 6155
  year: 2013
  ident: 10.1016/j.cclet.2024.110254_bib0038
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am401083y
– volume: 427
  year: 2022
  ident: 10.1016/j.cclet.2024.110254_bib0011
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 37545
  year: 2021
  ident: 10.1016/j.cclet.2024.110254_bib0016
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c10943
– volume: 34
  year: 2023
  ident: 10.1016/j.cclet.2024.110254_bib0010
  publication-title: Chin. Chem. Lett.
– volume: 34
  year: 2023
  ident: 10.1016/j.cclet.2024.110254_bib0020
  publication-title: Chin. Chem. Lett.
– volume: 34
  year: 2023
  ident: 10.1016/j.cclet.2024.110254_bib0048
  publication-title: Chin. Chem. Lett.
– volume: 16
  start-page: 1
  year: 2023
  ident: 10.1016/j.cclet.2024.110254_bib0026
  publication-title: Nano-Micro Lett.
– volume: 5134
  start-page: 86
  year: 2018
  ident: 10.1016/j.cclet.2024.110254_bib0033
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2018.07.021
– volume: 267
  year: 2020
  ident: 10.1016/j.cclet.2024.110254_bib0018
  publication-title: Appl. Catal. B: Environ.
SSID ssj0028836
Score 2.373102
Snippet Defects can strongly affect the lattice, strain, and electronic structures of nanomaterials photocatalysts, like a double-edged sword of both positive...
Defects can strongly affect the lattice,strain,and electronic structures of nanomaterials photocatalysts,like a double-edged sword of both positive...
SourceID wanfang
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110254
SubjectTerms Carrier localization
Defect
Photocatalysis
Stark effect
TiO2−X
Title Tuning Stark effect by defect engineering on black titanium dioxide mesoporous spheres for enhanced hydrogen evolution
URI https://dx.doi.org/10.1016/j.cclet.2024.110254
https://d.wanfangdata.com.cn/periodical/zghxkb202411026
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQCMGCeIq3PDASmsaOnYxVRVVAsFAkNst2HBoeSdW05THw2_ElDo8BBrYkOlvR-eL7Yn33HUJHihvO0jT2SOhLj0rNPUli4lHj68CmQMlCqHe-vGL9G3p-G97OoW5TCwO0Srf313t6tVu7Jy3nzdYoy1rXoB4UUZuAobU3J6D4SSmHKD95_6R5QDPdqsIIqENg3SgPVRwvbScDQmVAgQ4fhPS37LT4LPNU5nffck9vFa040Ig79XutoTmTr6OlbtOrbQPNBlM438AWOo4fcM3RwOoVJ6a6Ml-ig7jIsYJDOwzVZXk2fcJJVrxkicFPpiwsGi-mJS5BbMCU2CJaO3hYsQTw8DUZFzbesJm5eN1Eg97poNv3XEcFTxMSTjwlU2nChKU00cymrzaL4ojHiaRBoGMdEK24jH0oxLJ_GlKZtjK0bSIeyIQoSbbQfF7kZhth7eswVVz7xk8Bg0WAIyLmK2n_iJTkOyhoHCm0UxuHphePoqGV3YvK-wK8L2rv76Djz0GjWmzjb3PWrJD4ETPCpoO_B2K3nsJ9saV4uxu-PCgwAhu2-9-599Ay3NXlivtofjKemgOLWybqsArMQ7TQObvoX30AYinuJw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESoXxFOUpw9wI2zWdpzkwAEVqi19XFik3izbmXRDaVJtdtsuB34Uv5CZxClwoAek3qLEtqKxPfPZ-mY-xl65FFJdlnkkk9hGyvo0sjKXkYLYCwyBVieU77x_oCdf1KfD5HCN_RxyYYhWGXx_79M7bx3ejII1R6dVNfpM1YMyhQGYpL1TOShY78LqHM9t7budDzjJr4XY_jjdmkRBWiDyUiaLyNnSQlLoUhVeox8f6wwP33lhlRA-90J6l9o8powkhNzWwdiBGkOWCltIZyUOe4PdVOgtSDXh7Y9LWgmJ93YZTURVor8bKh11nDKPP08ETqGIfi8S9a9oeOvc1qWtj_6Iddt32Z0AUvn73g732BrU99nG1qAN94CdTZd0n8IRqs6Pec8J4W7FC-ie4HeRQ97U3NElIadstrpanvCiai6qAvgJtA2i_2bZ8paKG0DLEUFj51nHSuCzVTFvcH1zOAv74yGbXoeZH7H1uqnhMeM-9knpUh9DXBLmywi3ZDp2Fk9gzqabTAyGND5UNyeRjW9moLF9NZ31DVnf9NbfZG8uO532xT2ubq6HGTJ_rVGD4efqjjzMpwkeojXfj2YXx44aURv95H_Hfsk2JtP9PbO3c7D7lN2mL32q5DO2vpgv4TlipoV70S1Szsw1b4pfoFQp7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+Stark+effect+by+defect+engineering+on+black+titanium+dioxide+mesoporous+spheres+for+enhanced+hydrogen+evolution&rft.jtitle=Chinese+chemical+letters&rft.au=Zhang%2C+Bingke&rft.au=Wang%2C+Dongbo&rft.au=Cao%2C+Jiamu&rft.au=He%2C+Wen&rft.date=2024-11-01&rft.pub=Elsevier+B.V&rft.issn=1001-8417&rft.volume=35&rft.issue=11&rft_id=info:doi/10.1016%2Fj.cclet.2024.110254&rft.externalDocID=S1001841724007733
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghxkb%2Fzghxkb.jpg