Tuning Stark effect by defect engineering on black titanium dioxide mesoporous spheres for enhanced hydrogen evolution
Defects can strongly affect the lattice, strain, and electronic structures of nanomaterials photocatalysts, like a double-edged sword of both positive significance and negative influence on photocatalytic performances. To date, most studies into defects only partially elucidated their beneficial or...
Saved in:
Published in | Chinese chemical letters Vol. 35; no. 11; pp. 110254 - 259 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2024
School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China%School of Astronautics,Harbin Institute of Technology,Harbin 150001,China%Center for High Pressure Science and Technology Advanced Research,Shanghai 201203,China%Qingdao University of Science and Technology,Qingdao 266061,China%State Key Laboratory of High Power Semiconductor Lasers,School of Physics,Changchun University of Science and Technology,Changchun 130022,China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Defects can strongly affect the lattice, strain, and electronic structures of nanomaterials photocatalysts, like a double-edged sword of both positive significance and negative influence on photocatalytic performances. To date, most studies into defects only partially elucidated their beneficial or detrimental roles in photocatalysis. However, a quantitative understanding of the photocatalytic performances modulated by defect concentration still needs to be discovered. Here, a series of TiO2−X mesoporous spheres (MS) with different oxygen vacancy concentrations for photocatalytic applications were prepared by high-temperature chemical reduction. The link between oxygen vacancy concentration and photocatalytic performance was successfully established. The localization of carriers dominated by the Stark effect is first enhanced and then weakened with increasing oxygen vacancy concentration, which is a crucial factor in explaining the double-edged sword role of defect concentration in photocatalysis. As the reduction temperature rises to 300 °C, carrier localization dominated by the quantum-confined Stark effect maximizes the separation ability of photo generated electron hole pairs, thus exhibiting the best catalytic performance for photocatalytic hydrogen production and the degradation of organic pollutants, as demonstrated by a hydrogen evolution rate of 523.7 µmol g-1 h-1 and a ninefold higher RhB photodegradation rate compared to TiO2 MS. The work offers excellent flexibility for precisely constructing high-performance photocatalysts by understanding vacancy engineering.
We propose an optimal defect doping level to enhance the Stark effect, promoting the separation of electron-hole pairs and thereby improving photocatalytic performance. [Display omitted] |
---|---|
AbstractList | Defects can strongly affect the lattice,strain,and electronic structures of nanomaterials photocatalysts,like a double-edged sword of both positive significance and negative influence on photocatalytic per-formances.To date,most studies into defects only partially elucidated their beneficial or detrimental roles in photocatalysis.However,a quantitative understanding of the photocatalytic performances modu-lated by defect concentration still needs to be discovered.Here,a series of TiO2-X mesoporous spheres(MS)with different oxygen vacancy concentrations for photocatalytic applications were prepared by high-temperature chemical reduction.The link between oxygen vacancy concentration and photocatalytic per-formance was successfully established.The localization of carriers dominated by the Stark effect is first enhanced and then weakened with increasing oxygen vacancy concentration,which is a crucial factor in explaining the double-edged sword role of defect concentration in photocatalysis.As the reduction tem-perature rises to 300 ℃,carrier localization dominated by the quantum-confined Stark effect maximizes the separation ability of photo generated electron hole pairs,thus exhibiting the best catalytic perfor-mance for photocatalytic hydrogen production and the degradation of organic pollutants,as demonstrated by a hydrogen evolution rate of 523.7 μmol g-1 h-1 and a ninefold higher RhB photodegradation rate compared to TiO2 MS.The work offers excellent flexibility for precisely constructing high-performance photocatalysts by understanding vacancy engineering. Defects can strongly affect the lattice, strain, and electronic structures of nanomaterials photocatalysts, like a double-edged sword of both positive significance and negative influence on photocatalytic performances. To date, most studies into defects only partially elucidated their beneficial or detrimental roles in photocatalysis. However, a quantitative understanding of the photocatalytic performances modulated by defect concentration still needs to be discovered. Here, a series of TiO2−X mesoporous spheres (MS) with different oxygen vacancy concentrations for photocatalytic applications were prepared by high-temperature chemical reduction. The link between oxygen vacancy concentration and photocatalytic performance was successfully established. The localization of carriers dominated by the Stark effect is first enhanced and then weakened with increasing oxygen vacancy concentration, which is a crucial factor in explaining the double-edged sword role of defect concentration in photocatalysis. As the reduction temperature rises to 300 °C, carrier localization dominated by the quantum-confined Stark effect maximizes the separation ability of photo generated electron hole pairs, thus exhibiting the best catalytic performance for photocatalytic hydrogen production and the degradation of organic pollutants, as demonstrated by a hydrogen evolution rate of 523.7 µmol g-1 h-1 and a ninefold higher RhB photodegradation rate compared to TiO2 MS. The work offers excellent flexibility for precisely constructing high-performance photocatalysts by understanding vacancy engineering. We propose an optimal defect doping level to enhance the Stark effect, promoting the separation of electron-hole pairs and thereby improving photocatalytic performance. [Display omitted] |
ArticleNumber | 110254 |
Author | Liu, Gang Zhang, Bingke Zhao, Chenchen Pan, Jingwen Wang, Jinzhong Liu, Sihang Liu, Donghao Zhao, Liancheng He, Wen Wang, Dongbo Fang, Xuan Cao, Jiamu Zhang, Weifeng |
AuthorAffiliation | School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China%School of Astronautics,Harbin Institute of Technology,Harbin 150001,China%Center for High Pressure Science and Technology Advanced Research,Shanghai 201203,China%Qingdao University of Science and Technology,Qingdao 266061,China%State Key Laboratory of High Power Semiconductor Lasers,School of Physics,Changchun University of Science and Technology,Changchun 130022,China |
AuthorAffiliation_xml | – name: School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China%School of Astronautics,Harbin Institute of Technology,Harbin 150001,China%Center for High Pressure Science and Technology Advanced Research,Shanghai 201203,China%Qingdao University of Science and Technology,Qingdao 266061,China%State Key Laboratory of High Power Semiconductor Lasers,School of Physics,Changchun University of Science and Technology,Changchun 130022,China |
Author_xml | – sequence: 1 givenname: Bingke surname: Zhang fullname: Zhang, Bingke organization: School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China – sequence: 2 givenname: Dongbo orcidid: 0000-0001-6058-9660 surname: Wang fullname: Wang, Dongbo email: wangdongbo@hit.edu.cn organization: School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China – sequence: 3 givenname: Jiamu surname: Cao fullname: Cao, Jiamu email: caojiamu@hit.edu.cn organization: School of Astronautics, Harbin Institute of Technology, Harbin 150001, China – sequence: 4 givenname: Wen surname: He fullname: He, Wen email: hewenmse@hit.edu.cn organization: School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China – sequence: 5 givenname: Gang surname: Liu fullname: Liu, Gang email: liugang@hpstar.ac.cn organization: Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China – sequence: 6 givenname: Donghao surname: Liu fullname: Liu, Donghao organization: School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China – sequence: 7 givenname: Chenchen orcidid: 0009-0004-7811-7185 surname: Zhao fullname: Zhao, Chenchen organization: School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China – sequence: 8 givenname: Jingwen surname: Pan fullname: Pan, Jingwen organization: School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China – sequence: 9 givenname: Sihang surname: Liu fullname: Liu, Sihang organization: School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China – sequence: 10 givenname: Weifeng surname: Zhang fullname: Zhang, Weifeng organization: Qingdao University of Science and Technology, Qingdao 266061, China – sequence: 11 givenname: Xuan surname: Fang fullname: Fang, Xuan email: fangx@cust.edu.cn organization: State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, Changchun 130022, China – sequence: 12 givenname: Liancheng surname: Zhao fullname: Zhao, Liancheng email: lczhao@hit.edu.cn organization: School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China – sequence: 13 givenname: Jinzhong surname: Wang fullname: Wang, Jinzhong email: jinzhong_wang@hit.edu.cn organization: School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China |
BookMark | eNqFkD1PwzAQhj0UiRb4BSzemFJs53tgQBVfUiUGuluOfUmcpnZlJ6Xl15M0TAww3Q3vc6f3WaCZsQYQuqVkSQlN7pullC10S0ZYtKSUsDiaoTklhAZZRNNLtPC-IYRlWZjM0WHTG20q_NEJt8VQliA7XJywgvMGptIGwI0Ra3DRCrnFne6E0f0OK22PWgHegbd762zvsd_X4MDj0roBroWRoHB9Us5WYDAcbNt32pprdFGK1sPNz7xCm-enzeo1WL-_vK0e14EMw7gLClEKiFVSRkomEQ1pkuVZmisRMSZzyUJZpCIn2RCO41wUQAuIKGQpEyosRHiF7qazn8KUwlS8sb0zw0P-VdXHbTE6GhUlQzKcktJZ7x2UfO_0TrgTp4SPXnnDz175yPDJ60Dlvyg5uBkLdk7o9h_2YWJh6H_Q4LiXGkZf2g3qubL6T_4bZWebwg |
CitedBy_id | crossref_primary_10_1016_j_mtcomm_2024_110564 |
Cites_doi | 10.1016/j.cclet.2021.10.068 10.1021/acscatal.8b04068 10.1038/s41586-021-03907-3 10.1038/s41929-020-00522-9 10.1103/PhysRevB.95.144205 10.1007/s12274-023-5905-6 10.1038/s41467-020-15993-4 10.1073/pnas.1609030113 10.1021/ic3026182 10.1126/science.1200448 10.1016/j.cclet.2021.08.103 10.1039/C8CP02270D 10.1016/j.chempr.2017.05.006 10.1021/ja504802q 10.1039/D0TA11505C 10.1039/C5NR07953E 10.1021/acssuschemeng.7b04188 10.1002/anie.201907954 10.1021/jacs.6b03714 10.1016/j.apsusc.2020.147289 10.1016/0031-8914(67)90062-6 10.1021/jp3088429 10.1002/solr.201970123 10.1002/ange.201709124 10.1016/j.apsusc.2017.07.153 10.1016/j.jcat.2017.10.023 10.1016/j.apcatb.2014.10.063 10.1016/j.apcatb.2012.05.036 10.1063/1.123275 10.1038/s41467-021-25381-1 10.1021/ja3012676 10.1016/j.jcrysgro.2006.10.266 10.1021/jacs.0c00138 10.1063/1.1784033 10.1016/j.cclet.2017.12.002 10.1021/am401083y 10.1016/j.cclet.2018.05.021 10.1016/j.apcatb.2017.09.072 10.1021/acsami.1c10943 10.1016/j.chemphys.2018.07.021 |
ContentType | Journal Article |
Copyright | 2024 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2024 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1016/j.cclet.2024.110254 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EndPage | 259 |
ExternalDocumentID | zghxkb202411026 10_1016_j_cclet_2024_110254 S1001841724007733 |
GroupedDBID | --K --M -SB -S~ .~1 0R~ 188 1B1 1~. 1~5 29B 2B. 2C. 2WC 4.4 457 4G. 5GY 5VR 5VS 5XA 5XC 6J9 7-5 71M 8P~ 8RM 92E 92I 92Q 93N AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXDM AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFUIB AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C1A CAJEB CCEZO CDRFL CHBEP CS3 CW9 DU5 EBS EFJIC EJD EO9 EP2 EP3 F5P FA0 FDB FEDTE FIRID FLBIZ FNPLU FYGXN GBLVA GX1 HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q-- Q38 RIG ROL RPZ S.. SDF SDG SDH SES SPC SPCBC SSK SSZ T5K TCJ TGP U1G U5L UNMZH UZ4 ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 4A8 PSX |
ID | FETCH-LOGICAL-c335t-bafae5d6f4dc64131689879da422c9c23cb7a908335559abe1be41e872ad3ba3 |
IEDL.DBID | .~1 |
ISSN | 1001-8417 |
IngestDate | Thu May 29 04:08:21 EDT 2025 Thu Apr 24 23:04:05 EDT 2025 Tue Jul 01 00:16:09 EDT 2025 Sat Oct 26 15:43:30 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Defect Carrier localization TiO2−X Stark effect Photocatalysis TiO2-X |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c335t-bafae5d6f4dc64131689879da422c9c23cb7a908335559abe1be41e872ad3ba3 |
ORCID | 0009-0004-7811-7185 0000-0001-6058-9660 |
PageCount | 6 |
ParticipantIDs | wanfang_journals_zghxkb202411026 crossref_primary_10_1016_j_cclet_2024_110254 crossref_citationtrail_10_1016_j_cclet_2024_110254 elsevier_sciencedirect_doi_10_1016_j_cclet_2024_110254 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese chemical letters |
PublicationTitle_FL | Chinese Chemical Letters |
PublicationYear | 2024 |
Publisher | Elsevier B.V School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China%School of Astronautics,Harbin Institute of Technology,Harbin 150001,China%Center for High Pressure Science and Technology Advanced Research,Shanghai 201203,China%Qingdao University of Science and Technology,Qingdao 266061,China%State Key Laboratory of High Power Semiconductor Lasers,School of Physics,Changchun University of Science and Technology,Changchun 130022,China |
Publisher_xml | – name: Elsevier B.V – name: School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China%School of Astronautics,Harbin Institute of Technology,Harbin 150001,China%Center for High Pressure Science and Technology Advanced Research,Shanghai 201203,China%Qingdao University of Science and Technology,Qingdao 266061,China%State Key Laboratory of High Power Semiconductor Lasers,School of Physics,Changchun University of Science and Technology,Changchun 130022,China |
References | Oh, Kim, Lee (bib0041) 2021; 9 Wang, Li, Xu (bib0034) 2017; 426 Zhao, Zhao, Shi (bib0023) 2019; 31 He, Lu, Cai (bib0044) 2023; 457 Zhang, Zhao, Cao (bib0015) 2015; 165 Zhang, Zhang, Yin (bib0033) 2018; 5134 Xie, Wang, Zhao (bib0003) 2021; 12 Wang, Liu, Liu (bib0050) 2004; 85 Park, Kim, Latthe (bib0038) 2013; 13 Li, Yu, Liu (bib0037) 2023; 452 Xiao, Feng, Fu (bib0046) 2020; 3 Li, Wang, Wu, Zhou (bib0002) 2022; 156 Naldoni, Allieta, Santo (bib0025) 2012; 134 Göde, Gümüs, Zor (bib0039) 2007; 299 Zhou, Wang, Chen (bib0018) 2020; 267 Cai, Wu, Wang (bib0031) 2017; 2 Zhu, Shan, Liu (bib0024) 2016; 8 Huang, Wang, Xiao (bib0020) 2023; 34 Mao, Foucher, Montini (bib0022) 2020; 142 Wang, Jiao, Zhao (bib0051) 2013; 117 Li, Li, Zhou, Sheng, Lang (bib0019) 2022; 33 Sun, Bu, Zhou (bib0016) 2021; 13 Seadira, Sadanandam, Scurrell (bib0017) 2018; 222 Zeng, Wang, Zhang, Zhong (bib0027) 2018; 20 Pelaez, Nolan, Pillai (bib0030) 2012; 125 Wang, Xie, Sun (bib0026) 2023; 16 Li, Li, Wang, Yang, Zhou (bib0011) 2022; 427 Hu, Xie, Gu (bib0043) 2024; 506 Zhao, Wang, Cao (bib0053) 2024; 17 Sun, Zhou, Li (bib0005) 2018; 30 Zhou, Li, Wang (bib0009) 2014; 136 Yin, Han, Jin (bib0029) 2016; 138 Kong, Liu, Gong (bib0045) 2016; 113 Ni, Guo, Wang (bib0047) 2018; 6 Chen, Pan, Yin, Ma, Wang (bib0010) 2023; 34 Huang, Wu, Tang (bib0004) 2018; 29 Pan, Dong, Jiang (bib0040) 2019; 3 Park, Kim, Yoon (bib0042) 2013; 5 Chen, Tang, Wang (bib0007) 2022; 33 Martin, Middleton, O’Donnel (bib0052) 1999; 74 Lin, Liu, Sun (bib0048) 2023; 34 Varshni (bib0049) 1967; 34 Piccardo, Li, Wu (bib0054) 2017; 95 Dong, Liu, Li, Zhang (bib0032) 2018; 29 Cao, Xing, Zhou (bib0014) 2017; 356 Nishiyama, Yamada, Nakabayashi (bib0001) 2021; 598 Chen, Liu, Yu (bib0008) 2012; 331 Grabstanowicz, Gao, Li (bib0036) 2013; 52 Cao, Gu, Gao (bib0012) 2020; 530 Naldoni, Altomare, Zoppellaro (bib0035) 2019; 9 Murata, Mahara, Satsuma (bib0021) 2017; 129 Zhang, Xu, Li (bib0006) 2019; 58 Hu, Pan, Wang (bib0028) 2020; 11 Fan, He, Pan (bib0013) 2024; 35 Martin (10.1016/j.cclet.2024.110254_bib0052) 1999; 74 Zeng (10.1016/j.cclet.2024.110254_bib0027) 2018; 20 Li (10.1016/j.cclet.2024.110254_bib0002) 2022; 156 Zhang (10.1016/j.cclet.2024.110254_bib0006) 2019; 58 Xiao (10.1016/j.cclet.2024.110254_bib0046) 2020; 3 Varshni (10.1016/j.cclet.2024.110254_bib0049) 1967; 34 Grabstanowicz (10.1016/j.cclet.2024.110254_bib0036) 2013; 52 Wang (10.1016/j.cclet.2024.110254_bib0051) 2013; 117 Oh (10.1016/j.cclet.2024.110254_bib0041) 2021; 9 Zhao (10.1016/j.cclet.2024.110254_bib0023) 2019; 31 Yin (10.1016/j.cclet.2024.110254_bib0029) 2016; 138 Hu (10.1016/j.cclet.2024.110254_bib0043) 2024; 506 Cao (10.1016/j.cclet.2024.110254_bib0014) 2017; 356 Zhao (10.1016/j.cclet.2024.110254_bib0053) 2024; 17 Naldoni (10.1016/j.cclet.2024.110254_bib0025) 2012; 134 Göde (10.1016/j.cclet.2024.110254_bib0039) 2007; 299 Cao (10.1016/j.cclet.2024.110254_bib0012) 2020; 530 Zhang (10.1016/j.cclet.2024.110254_bib0033) 2018; 5134 Nishiyama (10.1016/j.cclet.2024.110254_bib0001) 2021; 598 Naldoni (10.1016/j.cclet.2024.110254_bib0035) 2019; 9 Huang (10.1016/j.cclet.2024.110254_bib0020) 2023; 34 Park (10.1016/j.cclet.2024.110254_bib0038) 2013; 13 Murata (10.1016/j.cclet.2024.110254_bib0021) 2017; 129 Park (10.1016/j.cclet.2024.110254_bib0042) 2013; 5 Zhou (10.1016/j.cclet.2024.110254_bib0009) 2014; 136 Fan (10.1016/j.cclet.2024.110254_bib0013) 2024; 35 Xie (10.1016/j.cclet.2024.110254_bib0003) 2021; 12 Zhang (10.1016/j.cclet.2024.110254_bib0015) 2015; 165 Pan (10.1016/j.cclet.2024.110254_bib0040) 2019; 3 Chen (10.1016/j.cclet.2024.110254_bib0008) 2012; 331 He (10.1016/j.cclet.2024.110254_bib0044) 2023; 457 Sun (10.1016/j.cclet.2024.110254_bib0016) 2021; 13 Wang (10.1016/j.cclet.2024.110254_bib0026) 2023; 16 Ni (10.1016/j.cclet.2024.110254_bib0047) 2018; 6 Lin (10.1016/j.cclet.2024.110254_bib0048) 2023; 34 Cai (10.1016/j.cclet.2024.110254_bib0031) 2017; 2 Dong (10.1016/j.cclet.2024.110254_bib0032) 2018; 29 Huang (10.1016/j.cclet.2024.110254_bib0004) 2018; 29 Hu (10.1016/j.cclet.2024.110254_bib0028) 2020; 11 Pelaez (10.1016/j.cclet.2024.110254_bib0030) 2012; 125 Zhu (10.1016/j.cclet.2024.110254_bib0024) 2016; 8 Piccardo (10.1016/j.cclet.2024.110254_bib0054) 2017; 95 Kong (10.1016/j.cclet.2024.110254_bib0045) 2016; 113 Zhou (10.1016/j.cclet.2024.110254_bib0018) 2020; 267 Seadira (10.1016/j.cclet.2024.110254_bib0017) 2018; 222 Sun (10.1016/j.cclet.2024.110254_bib0005) 2018; 30 Wang (10.1016/j.cclet.2024.110254_bib0034) 2017; 426 Chen (10.1016/j.cclet.2024.110254_bib0007) 2022; 33 Li (10.1016/j.cclet.2024.110254_bib0011) 2022; 427 Mao (10.1016/j.cclet.2024.110254_bib0022) 2020; 142 Chen (10.1016/j.cclet.2024.110254_bib0010) 2023; 34 Li (10.1016/j.cclet.2024.110254_bib0037) 2023; 452 Wang (10.1016/j.cclet.2024.110254_bib0050) 2004; 85 Li (10.1016/j.cclet.2024.110254_bib0019) 2022; 33 |
References_xml | – volume: 142 start-page: 10373 year: 2020 end-page: 10382 ident: bib0022 publication-title: J. Am. Chem. Soc. – volume: 331 start-page: 746 year: 2012 end-page: 750 ident: bib0008 publication-title: Science – volume: 31 year: 2019 ident: bib0023 publication-title: Adv. Mater. – volume: 16 start-page: 1 year: 2023 ident: bib0026 publication-title: Nano-Micro Lett. – volume: 20 start-page: 22744 year: 2018 end-page: 22752 ident: bib0027 publication-title: Phys. Chem. Chem. Phys. – volume: 35 year: 2024 ident: bib0013 publication-title: Chin. Chem. Lett. – volume: 356 start-page: 246 year: 2017 end-page: 254 ident: bib0014 publication-title: J. Catal. – volume: 52 start-page: 3884 year: 2013 end-page: 3890 ident: bib0036 publication-title: Inorg. Chem. – volume: 506 year: 2024 ident: bib0043 publication-title: Coordin. Chem. Rev. – volume: 34 start-page: 149 year: 1967 end-page: 154 ident: bib0049 publication-title: Physica – volume: 12 start-page: 5070 year: 2021 ident: bib0003 publication-title: Nat. Commun. – volume: 29 start-page: 725 year: 2018 end-page: 726 ident: bib0004 publication-title: Chin. Chem. Lett. – volume: 5134 start-page: 86 year: 2018 end-page: 93 ident: bib0033 publication-title: Chem. Phys. – volume: 6 start-page: 7265 year: 2018 end-page: 7272 ident: bib0047 publication-title: ACS Sustainable Chem. Eng. – volume: 125 start-page: 331 year: 2012 end-page: 349 ident: bib0030 publication-title: Appl. Catal. B: Environ. – volume: 9 start-page: 345 year: 2019 end-page: 364 ident: bib0035 publication-title: ACS Catal. – volume: 165 start-page: 715 year: 2015 end-page: 722 ident: bib0015 publication-title: Appl. Catal. B: Environ. – volume: 113 start-page: 8910 year: 2016 end-page: 8915 ident: bib0045 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 30 year: 2018 ident: bib0005 publication-title: Adv. Mater. – volume: 117 start-page: 543 year: 2013 end-page: 548 ident: bib0051 publication-title: J. Phys. Chem. C – volume: 95 start-page: 144205 year: 2017 ident: bib0054 publication-title: Phys. Rev. B – volume: 2 start-page: 877 year: 2017 end-page: 892 ident: bib0031 publication-title: Chem – volume: 530 year: 2020 ident: bib0012 publication-title: Appl. Surf. Sci. – volume: 5 start-page: 6155 year: 2013 end-page: 6160 ident: bib0042 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 37545 year: 2021 end-page: 37552 ident: bib0016 publication-title: ACS Appl. Mater. Interfaces – volume: 134 start-page: 7600 year: 2012 end-page: 7603 ident: bib0025 publication-title: J. Am. Chem. Soc. – volume: 34 year: 2023 ident: bib0048 publication-title: Chin. Chem. Lett. – volume: 427 year: 2022 ident: bib0011 publication-title: Chem. Eng. J. – volume: 17 start-page: 1864 year: 2024 end-page: 1874 ident: bib0053 publication-title: Nano. Res. – volume: 426 start-page: 325 year: 2017 end-page: 332 ident: bib0034 publication-title: Appl. Surf. Sci. – volume: 33 start-page: 1468 year: 2022 end-page: 1474 ident: bib0007 publication-title: Chin. Chem. Lett. – volume: 3 year: 2019 ident: bib0040 publication-title: Sol. Rrl. – volume: 58 start-page: 14229 year: 2019 end-page: 14233 ident: bib0006 publication-title: Angew. Chem. Int. Ed. – volume: 74 start-page: 263 year: 1999 end-page: 265 ident: bib0052 publication-title: Appl. Phys. Lett. – volume: 34 year: 2023 ident: bib0010 publication-title: Chin. Chem. Lett. – volume: 9 start-page: 4822 year: 2021 end-page: 4830 ident: bib0041 publication-title: J. Mater. Chem. A – volume: 33 start-page: 3733 year: 2022 end-page: 3738 ident: bib0019 publication-title: Chin. Chem. Lett. – volume: 8 start-page: 4705 year: 2016 end-page: 4712 ident: bib0024 publication-title: Nanoscale – volume: 598 start-page: 304 year: 2021 end-page: 307 ident: bib0001 publication-title: Nature – volume: 138 start-page: 7965 year: 2016 end-page: 7972 ident: bib0029 publication-title: J. Am. Chem. Soc. – volume: 129 start-page: 16209 year: 2017 end-page: 16213 ident: bib0021 publication-title: Angew. Chem. Int. Ed. – volume: 267 year: 2020 ident: bib0018 publication-title: Appl. Catal. B: Environ. – volume: 222 start-page: 133 year: 2018 end-page: 145 ident: bib0017 publication-title: Appl. Catal. B: Environ. – volume: 136 start-page: 9280 year: 2014 end-page: 9283 ident: bib0009 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 2129 year: 2020 ident: bib0028 publication-title: Nat. Commun. – volume: 452 year: 2023 ident: bib0037 publication-title: Chem. Eng. J. – volume: 3 start-page: 932 year: 2020 end-page: 940 ident: bib0046 publication-title: Nat. Catal. – volume: 457 year: 2023 ident: bib0044 publication-title: J. Hazard. Mater. – volume: 156 year: 2022 ident: bib0002 publication-title: Renew. Sust. Energy Rev. – volume: 29 start-page: 671 year: 2018 end-page: 680 ident: bib0032 publication-title: Chin. Chem. Lett. – volume: 13 start-page: 6155 year: 2013 end-page: 6160 ident: bib0038 publication-title: ACS Appl. Mater. Interfaces – volume: 85 start-page: 1371 year: 2004 end-page: 1373 ident: bib0050 publication-title: Appl. Phys. Lett. – volume: 34 year: 2023 ident: bib0020 publication-title: Chin. Chem. Lett. – volume: 299 start-page: 136 year: 2007 end-page: 141 ident: bib0039 publication-title: J. Cryst. Growth – volume: 33 start-page: 3733 year: 2022 ident: 10.1016/j.cclet.2024.110254_bib0019 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.10.068 – volume: 9 start-page: 345 year: 2019 ident: 10.1016/j.cclet.2024.110254_bib0035 publication-title: ACS Catal. doi: 10.1021/acscatal.8b04068 – volume: 598 start-page: 304 year: 2021 ident: 10.1016/j.cclet.2024.110254_bib0001 publication-title: Nature doi: 10.1038/s41586-021-03907-3 – volume: 3 start-page: 932 year: 2020 ident: 10.1016/j.cclet.2024.110254_bib0046 publication-title: Nat. Catal. doi: 10.1038/s41929-020-00522-9 – volume: 95 start-page: 144205 year: 2017 ident: 10.1016/j.cclet.2024.110254_bib0054 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.144205 – volume: 17 start-page: 1864 year: 2024 ident: 10.1016/j.cclet.2024.110254_bib0053 publication-title: Nano. Res. doi: 10.1007/s12274-023-5905-6 – volume: 156 year: 2022 ident: 10.1016/j.cclet.2024.110254_bib0002 publication-title: Renew. Sust. Energy Rev. – volume: 11 start-page: 2129 year: 2020 ident: 10.1016/j.cclet.2024.110254_bib0028 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15993-4 – volume: 113 start-page: 8910 year: 2016 ident: 10.1016/j.cclet.2024.110254_bib0045 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1609030113 – volume: 52 start-page: 3884 year: 2013 ident: 10.1016/j.cclet.2024.110254_bib0036 publication-title: Inorg. Chem. doi: 10.1021/ic3026182 – volume: 30 year: 2018 ident: 10.1016/j.cclet.2024.110254_bib0005 publication-title: Adv. Mater. – volume: 331 start-page: 746 year: 2012 ident: 10.1016/j.cclet.2024.110254_bib0008 publication-title: Science doi: 10.1126/science.1200448 – volume: 33 start-page: 1468 year: 2022 ident: 10.1016/j.cclet.2024.110254_bib0007 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.08.103 – volume: 20 start-page: 22744 year: 2018 ident: 10.1016/j.cclet.2024.110254_bib0027 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP02270D – volume: 2 start-page: 877 year: 2017 ident: 10.1016/j.cclet.2024.110254_bib0031 publication-title: Chem doi: 10.1016/j.chempr.2017.05.006 – volume: 136 start-page: 9280 year: 2014 ident: 10.1016/j.cclet.2024.110254_bib0009 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja504802q – volume: 9 start-page: 4822 year: 2021 ident: 10.1016/j.cclet.2024.110254_bib0041 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA11505C – volume: 8 start-page: 4705 year: 2016 ident: 10.1016/j.cclet.2024.110254_bib0024 publication-title: Nanoscale doi: 10.1039/C5NR07953E – volume: 6 start-page: 7265 year: 2018 ident: 10.1016/j.cclet.2024.110254_bib0047 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b04188 – volume: 457 year: 2023 ident: 10.1016/j.cclet.2024.110254_bib0044 publication-title: J. Hazard. Mater. – volume: 58 start-page: 14229 year: 2019 ident: 10.1016/j.cclet.2024.110254_bib0006 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201907954 – volume: 138 start-page: 7965 year: 2016 ident: 10.1016/j.cclet.2024.110254_bib0029 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03714 – volume: 530 year: 2020 ident: 10.1016/j.cclet.2024.110254_bib0012 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147289 – volume: 34 start-page: 149 year: 1967 ident: 10.1016/j.cclet.2024.110254_bib0049 publication-title: Physica doi: 10.1016/0031-8914(67)90062-6 – volume: 35 year: 2024 ident: 10.1016/j.cclet.2024.110254_bib0013 publication-title: Chin. Chem. Lett. – volume: 117 start-page: 543 year: 2013 ident: 10.1016/j.cclet.2024.110254_bib0051 publication-title: J. Phys. Chem. C doi: 10.1021/jp3088429 – volume: 452 year: 2023 ident: 10.1016/j.cclet.2024.110254_bib0037 publication-title: Chem. Eng. J. – volume: 3 year: 2019 ident: 10.1016/j.cclet.2024.110254_bib0040 publication-title: Sol. Rrl. doi: 10.1002/solr.201970123 – volume: 506 year: 2024 ident: 10.1016/j.cclet.2024.110254_bib0043 publication-title: Coordin. Chem. Rev. – volume: 129 start-page: 16209 year: 2017 ident: 10.1016/j.cclet.2024.110254_bib0021 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201709124 – volume: 426 start-page: 325 year: 2017 ident: 10.1016/j.cclet.2024.110254_bib0034 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.07.153 – volume: 356 start-page: 246 year: 2017 ident: 10.1016/j.cclet.2024.110254_bib0014 publication-title: J. Catal. doi: 10.1016/j.jcat.2017.10.023 – volume: 165 start-page: 715 year: 2015 ident: 10.1016/j.cclet.2024.110254_bib0015 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2014.10.063 – volume: 125 start-page: 331 year: 2012 ident: 10.1016/j.cclet.2024.110254_bib0030 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2012.05.036 – volume: 74 start-page: 263 year: 1999 ident: 10.1016/j.cclet.2024.110254_bib0052 publication-title: Appl. Phys. Lett. doi: 10.1063/1.123275 – volume: 12 start-page: 5070 year: 2021 ident: 10.1016/j.cclet.2024.110254_bib0003 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25381-1 – volume: 31 year: 2019 ident: 10.1016/j.cclet.2024.110254_bib0023 publication-title: Adv. Mater. – volume: 134 start-page: 7600 year: 2012 ident: 10.1016/j.cclet.2024.110254_bib0025 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3012676 – volume: 299 start-page: 136 year: 2007 ident: 10.1016/j.cclet.2024.110254_bib0039 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2006.10.266 – volume: 142 start-page: 10373 year: 2020 ident: 10.1016/j.cclet.2024.110254_bib0022 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00138 – volume: 85 start-page: 1371 year: 2004 ident: 10.1016/j.cclet.2024.110254_bib0050 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1784033 – volume: 29 start-page: 671 year: 2018 ident: 10.1016/j.cclet.2024.110254_bib0032 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2017.12.002 – volume: 5 start-page: 6155 year: 2013 ident: 10.1016/j.cclet.2024.110254_bib0042 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am401083y – volume: 29 start-page: 725 year: 2018 ident: 10.1016/j.cclet.2024.110254_bib0004 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2018.05.021 – volume: 222 start-page: 133 year: 2018 ident: 10.1016/j.cclet.2024.110254_bib0017 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.09.072 – volume: 13 start-page: 6155 year: 2013 ident: 10.1016/j.cclet.2024.110254_bib0038 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am401083y – volume: 427 year: 2022 ident: 10.1016/j.cclet.2024.110254_bib0011 publication-title: Chem. Eng. J. – volume: 13 start-page: 37545 year: 2021 ident: 10.1016/j.cclet.2024.110254_bib0016 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c10943 – volume: 34 year: 2023 ident: 10.1016/j.cclet.2024.110254_bib0010 publication-title: Chin. Chem. Lett. – volume: 34 year: 2023 ident: 10.1016/j.cclet.2024.110254_bib0020 publication-title: Chin. Chem. Lett. – volume: 34 year: 2023 ident: 10.1016/j.cclet.2024.110254_bib0048 publication-title: Chin. Chem. Lett. – volume: 16 start-page: 1 year: 2023 ident: 10.1016/j.cclet.2024.110254_bib0026 publication-title: Nano-Micro Lett. – volume: 5134 start-page: 86 year: 2018 ident: 10.1016/j.cclet.2024.110254_bib0033 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2018.07.021 – volume: 267 year: 2020 ident: 10.1016/j.cclet.2024.110254_bib0018 publication-title: Appl. Catal. B: Environ. |
SSID | ssj0028836 |
Score | 2.373102 |
Snippet | Defects can strongly affect the lattice, strain, and electronic structures of nanomaterials photocatalysts, like a double-edged sword of both positive... Defects can strongly affect the lattice,strain,and electronic structures of nanomaterials photocatalysts,like a double-edged sword of both positive... |
SourceID | wanfang crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 110254 |
SubjectTerms | Carrier localization Defect Photocatalysis Stark effect TiO2−X |
Title | Tuning Stark effect by defect engineering on black titanium dioxide mesoporous spheres for enhanced hydrogen evolution |
URI | https://dx.doi.org/10.1016/j.cclet.2024.110254 https://d.wanfangdata.com.cn/periodical/zghxkb202411026 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQCMGCeIq3PDASmsaOnYxVRVVAsFAkNst2HBoeSdW05THw2_ElDo8BBrYkOlvR-eL7Yn33HUJHihvO0jT2SOhLj0rNPUli4lHj68CmQMlCqHe-vGL9G3p-G97OoW5TCwO0Srf313t6tVu7Jy3nzdYoy1rXoB4UUZuAobU3J6D4SSmHKD95_6R5QDPdqsIIqENg3SgPVRwvbScDQmVAgQ4fhPS37LT4LPNU5nffck9vFa040Ig79XutoTmTr6OlbtOrbQPNBlM438AWOo4fcM3RwOoVJ6a6Ml-ig7jIsYJDOwzVZXk2fcJJVrxkicFPpiwsGi-mJS5BbMCU2CJaO3hYsQTw8DUZFzbesJm5eN1Eg97poNv3XEcFTxMSTjwlU2nChKU00cymrzaL4ojHiaRBoGMdEK24jH0oxLJ_GlKZtjK0bSIeyIQoSbbQfF7kZhth7eswVVz7xk8Bg0WAIyLmK2n_iJTkOyhoHCm0UxuHphePoqGV3YvK-wK8L2rv76Djz0GjWmzjb3PWrJD4ETPCpoO_B2K3nsJ9saV4uxu-PCgwAhu2-9-599Ay3NXlivtofjKemgOLWybqsArMQ7TQObvoX30AYinuJw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESoXxFOUpw9wI2zWdpzkwAEVqi19XFik3izbmXRDaVJtdtsuB34Uv5CZxClwoAek3qLEtqKxPfPZ-mY-xl65FFJdlnkkk9hGyvo0sjKXkYLYCwyBVieU77x_oCdf1KfD5HCN_RxyYYhWGXx_79M7bx3ejII1R6dVNfpM1YMyhQGYpL1TOShY78LqHM9t7budDzjJr4XY_jjdmkRBWiDyUiaLyNnSQlLoUhVeox8f6wwP33lhlRA-90J6l9o8powkhNzWwdiBGkOWCltIZyUOe4PdVOgtSDXh7Y9LWgmJ93YZTURVor8bKh11nDKPP08ETqGIfi8S9a9oeOvc1qWtj_6Iddt32Z0AUvn73g732BrU99nG1qAN94CdTZd0n8IRqs6Pec8J4W7FC-ie4HeRQ97U3NElIadstrpanvCiai6qAvgJtA2i_2bZ8paKG0DLEUFj51nHSuCzVTFvcH1zOAv74yGbXoeZH7H1uqnhMeM-9knpUh9DXBLmywi3ZDp2Fk9gzqabTAyGND5UNyeRjW9moLF9NZ31DVnf9NbfZG8uO532xT2ubq6HGTJ_rVGD4efqjjzMpwkeojXfj2YXx44aURv95H_Hfsk2JtP9PbO3c7D7lN2mL32q5DO2vpgv4TlipoV70S1Szsw1b4pfoFQp7g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+Stark+effect+by+defect+engineering+on+black+titanium+dioxide+mesoporous+spheres+for+enhanced+hydrogen+evolution&rft.jtitle=Chinese+chemical+letters&rft.au=Zhang%2C+Bingke&rft.au=Wang%2C+Dongbo&rft.au=Cao%2C+Jiamu&rft.au=He%2C+Wen&rft.date=2024-11-01&rft.pub=Elsevier+B.V&rft.issn=1001-8417&rft.volume=35&rft.issue=11&rft_id=info:doi/10.1016%2Fj.cclet.2024.110254&rft.externalDocID=S1001841724007733 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghxkb%2Fzghxkb.jpg |