Facial expression recognition on a quantum computer

We address the problem of facial expression recognition and show a possible solution using a quantum machine learning approach. In order to define an efficient classifier for a given dataset, our approach substantially exploits quantum interference. By representing face expressions via graphs, we de...

Full description

Saved in:
Bibliographic Details
Published inQuantum machine intelligence Vol. 3; no. 1
Main Authors Mengoni, Riccardo, Incudini, Massimiliano, Di Pierro, Alessandra
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We address the problem of facial expression recognition and show a possible solution using a quantum machine learning approach. In order to define an efficient classifier for a given dataset, our approach substantially exploits quantum interference. By representing face expressions via graphs, we define a classifier as a quantum circuit that manipulates the graphs adjacency matrices encoded into the amplitudes of some appropriately defined quantum states. We discuss the accuracy of the quantum classifier evaluated on the quantum simulator available on the IBM Quantum Experience cloud platform, and compare it with the accuracy of one of the best classical classifier.
AbstractList We address the problem of facial expression recognition and show a possible solution using a quantum machine learning approach. In order to define an efficient classifier for a given dataset, our approach substantially exploits quantum interference. By representing face expressions via graphs, we define a classifier as a quantum circuit that manipulates the graphs adjacency matrices encoded into the amplitudes of some appropriately defined quantum states. We discuss the accuracy of the quantum classifier evaluated on the quantum simulator available on the IBM Quantum Experience cloud platform, and compare it with the accuracy of one of the best classical classifier.
ArticleNumber 8
Author Mengoni, Riccardo
Di Pierro, Alessandra
Incudini, Massimiliano
Author_xml – sequence: 1
  givenname: Riccardo
  surname: Mengoni
  fullname: Mengoni, Riccardo
  email: riccardo.mengoni@univr.it
  organization: Department of Informatics, University of Verona
– sequence: 2
  givenname: Massimiliano
  surname: Incudini
  fullname: Incudini, Massimiliano
  organization: Department of Informatics, University of Verona
– sequence: 3
  givenname: Alessandra
  surname: Di Pierro
  fullname: Di Pierro, Alessandra
  organization: Department of Informatics, University of Verona
BookMark eNp9j01Lw0AQhhepYK39A57yB1Znv5rkKMWqUPCi52WzmS1bkk3cTUD_vakRDx4KA_Me3meG55osQheQkFsGdwwgv0-Sy0JS4EABQCiqLsiSKy6pLJlc_GXYXJF1SsepxHMhC9gsidgZ602T4WcfMSXfhSyi7Q7BD6c8jck-RhOGsc1s1_bjgPGGXDrTJFz_7hV53z2-bZ_p_vXpZfuwp1YINdAqVwZlXfOikkoYxa2qSl7mUgh0rhaydIC5yWvLCsewqirDOHIBRQnS1UysCJ_v2tilFNHpPvrWxC_NQJ_M9WyuJ3P9Y67VBBX_IOsHc5IZovHNeVTMaJr-hANGfezGGCbFc9Q3XBdveg
CitedBy_id crossref_primary_10_1016_j_tcs_2024_114466
crossref_primary_10_1088_1742_6596_2090_1_012171
crossref_primary_10_1109_ACCESS_2022_3216890
crossref_primary_10_1139_cjp_2020_0592
crossref_primary_10_1142_S0219749923500041
crossref_primary_10_1007_s11128_024_04437_3
crossref_primary_10_1007_s00521_024_10968_8
crossref_primary_10_1186_s40537_025_01069_x
Cites_doi 10.1209/0295-5075/119/60002
10.1007/978-3-319-13560-1_17
10.1080/00107514.2014.964942
10.1038/nature23474
10.1109/TCAD.2005.855930
10.1088/1367-2630/17/12/123010
10.5281/zenodo.2562111
10.1007/978-3-662-04245-8_9
10.1007/978-3-540-77974-2
10.1109/CVPRW.2010.5543262
10.1016/j.physleta.2020.126422
10.1098/rspa.2017.0551
10.1088/1367-2630/18/2/023023
10.1007/978-3-642-31537-4_32
10.1038/s41598-019-40439-3
10.1007/978-1-349-03521-2
10.1103/PhysRevLett.113.130503
ContentType Journal Article
Copyright The Author(s) 2021
Copyright_xml – notice: The Author(s) 2021
DBID C6C
AAYXX
CITATION
DOI 10.1007/s42484-020-00035-5
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2524-4914
ExternalDocumentID 10_1007_s42484_020_00035_5
GrantInformation_xml – fundername: Università degli Studi di Verona
GroupedDBID -EM
0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AXYYD
BGNMA
C6C
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
H13
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c335t-b75ae4dd28b453a52c5b9297433effd349f0e7a7dc18f1ebbba12e2308904fd13
IEDL.DBID C6C
ISSN 2524-4906
IngestDate Tue Jul 01 01:38:40 EDT 2025
Thu Apr 24 23:08:21 EDT 2025
Fri Feb 21 02:48:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Facial expression recognition
Quantum computing
Graph theory
Quantum machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c335t-b75ae4dd28b453a52c5b9297433effd349f0e7a7dc18f1ebbba12e2308904fd13
OpenAccessLink https://doi.org/10.1007/s42484-020-00035-5
ParticipantIDs crossref_primary_10_1007_s42484_020_00035_5
crossref_citationtrail_10_1007_s42484_020_00035_5
springer_journals_10_1007_s42484_020_00035_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210600
2021-06-00
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 6
  year: 2021
  text: 20210600
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Quantum machine intelligence
PublicationTitleAbbrev Quantum Mach. Intell
PublicationYear 2021
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Park DK, Blank C, Petruccione F (2020) The theory of the quantum kernel-based binary classifier. Phys Lett A, pp 126422. https://doi.org/10.1016/j.physleta.2020.126422. https://www.sciencedirect.com/science/article/pii/S0375960120302541
NielsenMAChuangILQuantum computation and quantum information, 10th Anniversary2011CambridgeCambridge University Press1288.81001
McCleanJRRomeroJBabbushRAspuru-GuzikAThe theory of variational hybrid quantum-classical algorithmsNew J Phys201618202302310.1088/1367-2630/18/2/0230231456.81149
ArunachalamSGheorghiuVJochym-O’ConnorTMoscaMSrinivasanPVOn the robustness of bucket brigade quantum RAMNew J Phys2015171212301010.1088/1367-2630/17/12/1230101452.81061
CilibertoCHerbsterMIalongoADPontilMRocchettoASeveriniSWossnigLQuantum machine learning: a classical perspectiveProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences2018474220920170551376288710.1098/rspa.2017.05511402.68154
MottonenMVartiainenJJBergholmVSalomaaMMTransformation of quantum states using uniformly controlled rotationsQuant Inf Comp2005546721675271213.81093
BiamonteJWittekPPancottiNRebentrostPWiebeNLloydSQuantum machine learningNature201754919520210.1038/nature23474
Aleksandrowicz G, Alexander T, Barkoutsos P, Bello L, Ben-Haim Y, Bucher D, Zoufal C (2019) Qiskit: an open-source framework for quantum computing (Version 0.7.2). Zenodo. https://doi.org/10.5281/zenodo.2562111. https://zenodo.org/record/2562111/export/hx#.YA6jbXdKhQI
Zhao Z, Fitzsimons JK, Rebentrost P, Dunjko V, Fitzsimons JF (2018) Smooth input preparation for quantum and quantum-inspired machine learning. arXiv:1804.00281
Bondy JA (1976) Graph theory with applications. Elsevier Science Ltd., GBR
RebentrostPMohseniMLloydSQuantum support vector machine for big data classificationPhys Rev Lett201411313050310.1103/PhysRevLett.113.130503
SchuldMSinayskiyIPetruccioneFAn introduction to quantum machine learningContemp Phys201556217218510.1080/00107514.2014.9649421342.81091
Lucey P, Cohn JF, Kanade T, Saragih J, Ambadar Z, Matthews I (2010) The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer society conference on computer vision and pattern recognition – workshops, pp 94–101
SchuldMFingerhuthMPetruccioneFImplementing a distance-based classifier with a quantum interference circuitEPL (Europhysics Letters)201711966000210.1209/0295-5075/119/60002
de BergMCheongOvan KreveldMOvermarsMComputational geometry: algorithms and applications2008BerlinSpringer10.1007/978-3-540-77974-2
Schuld M, Sinayskiy I, Petruccione F (2014) Quantum computing for pattern classification. In: Pham DN, Park SB (eds) Trends in artificial intelligence. PRICAI 2014, Lecture Notes in Computer Science, vol 8862. Springer, Cham
de Berg M, van Kreveld M, Overmars M, Schwarzkopf OC (2000) Delaunay triangulations. In: Computational geometry: algorithms and applications, pp 183–210. Springer
ParkDKPetruccioneFRheeJ-KKCircuit-based quantum random access memory for classical dataScientific Reports201991394910.1038/s41598-019-40439-3
ShendeVVBullockSSMarkovILSynthesis of quantum-logic circuitsIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems20062561000101010.1109/TCAD.2005.855930
Piatokowska E, Martyna J (2012) Computer recognition of facial expressions of emotion. In: P P (ed) Machine learning and data mining in pattern recognition. MLDM 2012, Lecture Notes in Computer Science vol 8862. Springer, Berlin, Heidelberg (7376)
WittekPQuantum machine learning: what quantum computing means to data mining2016AmsterdamElsevier Science1349.68006
35_CR21
DK Park (35_CR13) 2019; 9
35_CR12
M Schuld (35_CR18) 2015; 56
VV Shende (35_CR19) 2006; 25
MA Nielsen (35_CR11) 2011
M Schuld (35_CR16) 2017; 119
35_CR8
M de Berg (35_CR6) 2008
C Ciliberto (35_CR5) 2018; 474
35_CR7
35_CR4
S Arunachalam (35_CR2) 2015; 17
M Mottonen (35_CR10) 2005; 5
cr-split#-35_CR14.1
P Wittek (35_CR20) 2016
35_CR1
JR McClean (35_CR9) 2016; 18
cr-split#-35_CR14.2
35_CR17
J Biamonte (35_CR3) 2017; 549
P Rebentrost (35_CR15) 2014; 113
References_xml – reference: Aleksandrowicz G, Alexander T, Barkoutsos P, Bello L, Ben-Haim Y, Bucher D, Zoufal C (2019) Qiskit: an open-source framework for quantum computing (Version 0.7.2). Zenodo. https://doi.org/10.5281/zenodo.2562111. https://zenodo.org/record/2562111/export/hx#.YA6jbXdKhQI
– reference: SchuldMFingerhuthMPetruccioneFImplementing a distance-based classifier with a quantum interference circuitEPL (Europhysics Letters)201711966000210.1209/0295-5075/119/60002
– reference: de Berg M, van Kreveld M, Overmars M, Schwarzkopf OC (2000) Delaunay triangulations. In: Computational geometry: algorithms and applications, pp 183–210. Springer
– reference: CilibertoCHerbsterMIalongoADPontilMRocchettoASeveriniSWossnigLQuantum machine learning: a classical perspectiveProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences2018474220920170551376288710.1098/rspa.2017.05511402.68154
– reference: ArunachalamSGheorghiuVJochym-O’ConnorTMoscaMSrinivasanPVOn the robustness of bucket brigade quantum RAMNew J Phys2015171212301010.1088/1367-2630/17/12/1230101452.81061
– reference: WittekPQuantum machine learning: what quantum computing means to data mining2016AmsterdamElsevier Science1349.68006
– reference: Schuld M, Sinayskiy I, Petruccione F (2014) Quantum computing for pattern classification. In: Pham DN, Park SB (eds) Trends in artificial intelligence. PRICAI 2014, Lecture Notes in Computer Science, vol 8862. Springer, Cham
– reference: de BergMCheongOvan KreveldMOvermarsMComputational geometry: algorithms and applications2008BerlinSpringer10.1007/978-3-540-77974-2
– reference: BiamonteJWittekPPancottiNRebentrostPWiebeNLloydSQuantum machine learningNature201754919520210.1038/nature23474
– reference: MottonenMVartiainenJJBergholmVSalomaaMMTransformation of quantum states using uniformly controlled rotationsQuant Inf Comp2005546721675271213.81093
– reference: RebentrostPMohseniMLloydSQuantum support vector machine for big data classificationPhys Rev Lett201411313050310.1103/PhysRevLett.113.130503
– reference: ParkDKPetruccioneFRheeJ-KKCircuit-based quantum random access memory for classical dataScientific Reports201991394910.1038/s41598-019-40439-3
– reference: Bondy JA (1976) Graph theory with applications. Elsevier Science Ltd., GBR
– reference: Lucey P, Cohn JF, Kanade T, Saragih J, Ambadar Z, Matthews I (2010) The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer society conference on computer vision and pattern recognition – workshops, pp 94–101
– reference: NielsenMAChuangILQuantum computation and quantum information, 10th Anniversary2011CambridgeCambridge University Press1288.81001
– reference: Park DK, Blank C, Petruccione F (2020) The theory of the quantum kernel-based binary classifier. Phys Lett A, pp 126422. https://doi.org/10.1016/j.physleta.2020.126422. https://www.sciencedirect.com/science/article/pii/S0375960120302541
– reference: McCleanJRRomeroJBabbushRAspuru-GuzikAThe theory of variational hybrid quantum-classical algorithmsNew J Phys201618202302310.1088/1367-2630/18/2/0230231456.81149
– reference: ShendeVVBullockSSMarkovILSynthesis of quantum-logic circuitsIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems20062561000101010.1109/TCAD.2005.855930
– reference: Piatokowska E, Martyna J (2012) Computer recognition of facial expressions of emotion. In: P P (ed) Machine learning and data mining in pattern recognition. MLDM 2012, Lecture Notes in Computer Science vol 8862. Springer, Berlin, Heidelberg (7376)
– reference: SchuldMSinayskiyIPetruccioneFAn introduction to quantum machine learningContemp Phys201556217218510.1080/00107514.2014.9649421342.81091
– reference: Zhao Z, Fitzsimons JK, Rebentrost P, Dunjko V, Fitzsimons JF (2018) Smooth input preparation for quantum and quantum-inspired machine learning. arXiv:1804.00281
– volume: 119
  start-page: 60002
  issue: 6
  year: 2017
  ident: 35_CR16
  publication-title: EPL (Europhysics Letters)
  doi: 10.1209/0295-5075/119/60002
– ident: 35_CR17
  doi: 10.1007/978-3-319-13560-1_17
– volume: 56
  start-page: 172
  issue: 2
  year: 2015
  ident: 35_CR18
  publication-title: Contemp Phys
  doi: 10.1080/00107514.2014.964942
– volume: 549
  start-page: 195
  year: 2017
  ident: 35_CR3
  publication-title: Nature
  doi: 10.1038/nature23474
– volume: 25
  start-page: 1000
  issue: 6
  year: 2006
  ident: 35_CR19
  publication-title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  doi: 10.1109/TCAD.2005.855930
– volume: 17
  start-page: 123010
  issue: 12
  year: 2015
  ident: 35_CR2
  publication-title: New J Phys
  doi: 10.1088/1367-2630/17/12/123010
– volume-title: Quantum computation and quantum information, 10th Anniversary
  year: 2011
  ident: 35_CR11
– ident: 35_CR1
  doi: 10.5281/zenodo.2562111
– ident: 35_CR7
  doi: 10.1007/978-3-662-04245-8_9
– ident: 35_CR21
– ident: #cr-split#-35_CR14.2
– volume-title: Computational geometry: algorithms and applications
  year: 2008
  ident: 35_CR6
  doi: 10.1007/978-3-540-77974-2
– ident: 35_CR8
  doi: 10.1109/CVPRW.2010.5543262
– ident: 35_CR12
  doi: 10.1016/j.physleta.2020.126422
– volume: 474
  start-page: 20170551
  issue: 2209
  year: 2018
  ident: 35_CR5
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rspa.2017.0551
– volume: 18
  start-page: 023023
  issue: 2
  year: 2016
  ident: 35_CR9
  publication-title: New J Phys
  doi: 10.1088/1367-2630/18/2/023023
– ident: #cr-split#-35_CR14.1
  doi: 10.1007/978-3-642-31537-4_32
– volume-title: Quantum machine learning: what quantum computing means to data mining
  year: 2016
  ident: 35_CR20
– volume: 9
  start-page: 3949
  issue: 1
  year: 2019
  ident: 35_CR13
  publication-title: Scientific Reports
  doi: 10.1038/s41598-019-40439-3
– ident: 35_CR4
  doi: 10.1007/978-1-349-03521-2
– volume: 113
  start-page: 130503
  year: 2014
  ident: 35_CR15
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.113.130503
– volume: 5
  start-page: 467
  year: 2005
  ident: 35_CR10
  publication-title: Quant Inf Comp
SSID ssj0002734806
Score 2.2329812
Snippet We address the problem of facial expression recognition and show a possible solution using a quantum machine learning approach. In order to define an efficient...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Artificial Intelligence
Computational Intelligence
Engineering
Quantum Information Technology
Research Article
Spintronics
Title Facial expression recognition on a quantum computer
URI https://link.springer.com/article/10.1007/s42484-020-00035-5
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAGP3Q9qIHccW6lBy86eCsWY5tMRTBniz0FmY9aVzagj_fyXQarEhByCGHLwN5k_Ct8x7ADdWYk0JaJHTuEE81RkoIjXzqjE2OtWG6Keg_TdLxlD_OxCzS5DRnYX717-_nnPKcoybJCV0vJHahKwjLGpmGUTpq6ymBpiVIaVJBOeIFTuMZmb-X2fRDm03Q4FvKQziIQWEyWO3iEezY-hj2f1AFngArZVPcTuxXnFytk3b2x9_7SyYfSw_T8jXRUanhFKblw_NojKLgAdKMiQVSmZCWG0NzxQWTgmqhfPjinTyzzhnGC4dtJjOjSe6IVUpJQq1PIvICc2cIO4NO_Vbbc0icLTKVW-4yv6JkRjHspAt9OO60sz0g69evdGQDb0QpXqqWxzhAVnnIqgBZJXpw2z7zvuLC2Gp9t0a1iv_FfIv5xf_ML2GPNtMloR5yBZ3F59Je-_BgofrQHZTD4aQfvo9vSwewXQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFH6CMgAD4hTlzMAGFo6PxBlRRVWg7dRK3SKfE4SjrcTPx3HdiCKEhJTBw8uT8sXWO_09gCuiMUsLaRHXwiGWaYwU5xr50BkbgbWhuk7oD4ZZb8weJ3wSaXLquzA_6ve3U0aYYKgOckLVC_F12PDaRb2bO1mnyacEmpYwSpNwwhArcBbvyPyuZtUOrRZBg23p7sJOdAqTu8Vf3IM1W-3D9jeqwAOgXVkntxP7GTtXq6Tp_fFr_8jkfe5hmr8kOk5qOIRx937U6aE48ABpSvkMqZxLy4whQjFOJSeaK---eCNPrXOGssJhm8vc6FS41CqlZEqsDyJEgZkzKT2CVvVa2WNInC1yJSxzudcoqVEUO-lCHY457Wwb0uXnlzqygddDKZ7Lhsc4QFZ6yMoAWcnbcN2887bgwvhT-maJahnPxfQP8ZP_iV_CZm806Jf9h-HTKWyRutMk5EbOoDX7mNtz7yrM1EXYI188RLHX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH5oBdGDuGJdc_CmQyezZDlKNdSteLDQW5j1pLFqCv58J9NpaEEEIYc5vAzkmwxv_x7ABVGYxbkwiKvMIpYojCTnCjnXGesMK01VE9B_GiaDEbsf8_FCF7-vdp-nJGc9DQ1LU1X3Jtr22sY3RljGUOP6-FwY4quw5jyVuHG_-km_jbJ48hY_YJNwwhDLcRI6Z37fZlk7LadGvcYptmErmIrR9exsd2DFVLuwuUAguAe0EE3IOzLfoZ61itqKILd2j4g-pg686VukwvyGfRgVty_9AQpjEJCilNdIplwYpjXJJONUcKK4dEaNU_3UWKspyy02qUi1ijMbGymliIlxrkWWY2Z1TA-gU71X5hAia_JUZobZ1O0oqJYUW2F9do5ZZU0X4vnnlypwhDejKl7Llt3YQ1Y6yEoPWcm7cNm-M5kxZPwpfTVHtQy35esP8aP_iZ_D-vNNUT7eDR-OYYM05Sc-YHICnfpzak6d_VDLM_-L_ABRsLoe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facial+expression+recognition+on+a+quantum+computer&rft.jtitle=Quantum+machine+intelligence&rft.au=Mengoni%2C+Riccardo&rft.au=Incudini%2C+Massimiliano&rft.au=Di+Pierro%2C+Alessandra&rft.date=2021-06-01&rft.issn=2524-4906&rft.eissn=2524-4914&rft.volume=3&rft.issue=1&rft_id=info:doi/10.1007%2Fs42484-020-00035-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42484_020_00035_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-4906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-4906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-4906&client=summon