Facial expression recognition on a quantum computer
We address the problem of facial expression recognition and show a possible solution using a quantum machine learning approach. In order to define an efficient classifier for a given dataset, our approach substantially exploits quantum interference. By representing face expressions via graphs, we de...
Saved in:
Published in | Quantum machine intelligence Vol. 3; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We address the problem of facial expression recognition and show a possible solution using a quantum machine learning approach. In order to define an efficient classifier for a given dataset, our approach substantially exploits quantum interference. By representing face expressions via graphs, we define a classifier as a quantum circuit that manipulates the graphs adjacency matrices encoded into the amplitudes of some appropriately defined quantum states. We discuss the accuracy of the quantum classifier evaluated on the quantum simulator available on the IBM Quantum Experience cloud platform, and compare it with the accuracy of one of the best classical classifier. |
---|---|
AbstractList | We address the problem of facial expression recognition and show a possible solution using a quantum machine learning approach. In order to define an efficient classifier for a given dataset, our approach substantially exploits quantum interference. By representing face expressions via graphs, we define a classifier as a quantum circuit that manipulates the graphs adjacency matrices encoded into the amplitudes of some appropriately defined quantum states. We discuss the accuracy of the quantum classifier evaluated on the quantum simulator available on the IBM Quantum Experience cloud platform, and compare it with the accuracy of one of the best classical classifier. |
ArticleNumber | 8 |
Author | Mengoni, Riccardo Di Pierro, Alessandra Incudini, Massimiliano |
Author_xml | – sequence: 1 givenname: Riccardo surname: Mengoni fullname: Mengoni, Riccardo email: riccardo.mengoni@univr.it organization: Department of Informatics, University of Verona – sequence: 2 givenname: Massimiliano surname: Incudini fullname: Incudini, Massimiliano organization: Department of Informatics, University of Verona – sequence: 3 givenname: Alessandra surname: Di Pierro fullname: Di Pierro, Alessandra organization: Department of Informatics, University of Verona |
BookMark | eNp9j01Lw0AQhhepYK39A57yB1Znv5rkKMWqUPCi52WzmS1bkk3cTUD_vakRDx4KA_Me3meG55osQheQkFsGdwwgv0-Sy0JS4EABQCiqLsiSKy6pLJlc_GXYXJF1SsepxHMhC9gsidgZ602T4WcfMSXfhSyi7Q7BD6c8jck-RhOGsc1s1_bjgPGGXDrTJFz_7hV53z2-bZ_p_vXpZfuwp1YINdAqVwZlXfOikkoYxa2qSl7mUgh0rhaydIC5yWvLCsewqirDOHIBRQnS1UysCJ_v2tilFNHpPvrWxC_NQJ_M9WyuJ3P9Y67VBBX_IOsHc5IZovHNeVTMaJr-hANGfezGGCbFc9Q3XBdveg |
CitedBy_id | crossref_primary_10_1016_j_tcs_2024_114466 crossref_primary_10_1088_1742_6596_2090_1_012171 crossref_primary_10_1109_ACCESS_2022_3216890 crossref_primary_10_1139_cjp_2020_0592 crossref_primary_10_1142_S0219749923500041 crossref_primary_10_1007_s11128_024_04437_3 crossref_primary_10_1007_s00521_024_10968_8 crossref_primary_10_1186_s40537_025_01069_x |
Cites_doi | 10.1209/0295-5075/119/60002 10.1007/978-3-319-13560-1_17 10.1080/00107514.2014.964942 10.1038/nature23474 10.1109/TCAD.2005.855930 10.1088/1367-2630/17/12/123010 10.5281/zenodo.2562111 10.1007/978-3-662-04245-8_9 10.1007/978-3-540-77974-2 10.1109/CVPRW.2010.5543262 10.1016/j.physleta.2020.126422 10.1098/rspa.2017.0551 10.1088/1367-2630/18/2/023023 10.1007/978-3-642-31537-4_32 10.1038/s41598-019-40439-3 10.1007/978-1-349-03521-2 10.1103/PhysRevLett.113.130503 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 |
Copyright_xml | – notice: The Author(s) 2021 |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s42484-020-00035-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2524-4914 |
ExternalDocumentID | 10_1007_s42484_020_00035_5 |
GrantInformation_xml | – fundername: Università degli Studi di Verona |
GroupedDBID | -EM 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABDZT ABECU ABFTV ABJNI ABKCH ABMQK ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACHSB ACMLO ACOKC ACPIV ACZOJ ADKNI ADTPH ADURQ ADYFF AEFQL AEJRE AEMSY AESKC AFBBN AFQWF AGDGC AGJBK AGMZJ AGQEE AGRTI AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AXYYD BGNMA C6C DPUIP EBLON EBS EJD FIGPU FINBP FNLPD FSGXE GGCAI H13 IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 PT4 ROL RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW STPWE TSG UOJIU UTJUX VEKWB VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c335t-b75ae4dd28b453a52c5b9297433effd349f0e7a7dc18f1ebbba12e2308904fd13 |
IEDL.DBID | C6C |
ISSN | 2524-4906 |
IngestDate | Tue Jul 01 01:38:40 EDT 2025 Thu Apr 24 23:08:21 EDT 2025 Fri Feb 21 02:48:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Facial expression recognition Quantum computing Graph theory Quantum machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c335t-b75ae4dd28b453a52c5b9297433effd349f0e7a7dc18f1ebbba12e2308904fd13 |
OpenAccessLink | https://doi.org/10.1007/s42484-020-00035-5 |
ParticipantIDs | crossref_primary_10_1007_s42484_020_00035_5 crossref_citationtrail_10_1007_s42484_020_00035_5 springer_journals_10_1007_s42484_020_00035_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210600 2021-06-00 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 6 year: 2021 text: 20210600 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationTitle | Quantum machine intelligence |
PublicationTitleAbbrev | Quantum Mach. Intell |
PublicationYear | 2021 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | Park DK, Blank C, Petruccione F (2020) The theory of the quantum kernel-based binary classifier. Phys Lett A, pp 126422. https://doi.org/10.1016/j.physleta.2020.126422. https://www.sciencedirect.com/science/article/pii/S0375960120302541 NielsenMAChuangILQuantum computation and quantum information, 10th Anniversary2011CambridgeCambridge University Press1288.81001 McCleanJRRomeroJBabbushRAspuru-GuzikAThe theory of variational hybrid quantum-classical algorithmsNew J Phys201618202302310.1088/1367-2630/18/2/0230231456.81149 ArunachalamSGheorghiuVJochym-O’ConnorTMoscaMSrinivasanPVOn the robustness of bucket brigade quantum RAMNew J Phys2015171212301010.1088/1367-2630/17/12/1230101452.81061 CilibertoCHerbsterMIalongoADPontilMRocchettoASeveriniSWossnigLQuantum machine learning: a classical perspectiveProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences2018474220920170551376288710.1098/rspa.2017.05511402.68154 MottonenMVartiainenJJBergholmVSalomaaMMTransformation of quantum states using uniformly controlled rotationsQuant Inf Comp2005546721675271213.81093 BiamonteJWittekPPancottiNRebentrostPWiebeNLloydSQuantum machine learningNature201754919520210.1038/nature23474 Aleksandrowicz G, Alexander T, Barkoutsos P, Bello L, Ben-Haim Y, Bucher D, Zoufal C (2019) Qiskit: an open-source framework for quantum computing (Version 0.7.2). Zenodo. https://doi.org/10.5281/zenodo.2562111. https://zenodo.org/record/2562111/export/hx#.YA6jbXdKhQI Zhao Z, Fitzsimons JK, Rebentrost P, Dunjko V, Fitzsimons JF (2018) Smooth input preparation for quantum and quantum-inspired machine learning. arXiv:1804.00281 Bondy JA (1976) Graph theory with applications. Elsevier Science Ltd., GBR RebentrostPMohseniMLloydSQuantum support vector machine for big data classificationPhys Rev Lett201411313050310.1103/PhysRevLett.113.130503 SchuldMSinayskiyIPetruccioneFAn introduction to quantum machine learningContemp Phys201556217218510.1080/00107514.2014.9649421342.81091 Lucey P, Cohn JF, Kanade T, Saragih J, Ambadar Z, Matthews I (2010) The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer society conference on computer vision and pattern recognition – workshops, pp 94–101 SchuldMFingerhuthMPetruccioneFImplementing a distance-based classifier with a quantum interference circuitEPL (Europhysics Letters)201711966000210.1209/0295-5075/119/60002 de BergMCheongOvan KreveldMOvermarsMComputational geometry: algorithms and applications2008BerlinSpringer10.1007/978-3-540-77974-2 Schuld M, Sinayskiy I, Petruccione F (2014) Quantum computing for pattern classification. In: Pham DN, Park SB (eds) Trends in artificial intelligence. PRICAI 2014, Lecture Notes in Computer Science, vol 8862. Springer, Cham de Berg M, van Kreveld M, Overmars M, Schwarzkopf OC (2000) Delaunay triangulations. In: Computational geometry: algorithms and applications, pp 183–210. Springer ParkDKPetruccioneFRheeJ-KKCircuit-based quantum random access memory for classical dataScientific Reports201991394910.1038/s41598-019-40439-3 ShendeVVBullockSSMarkovILSynthesis of quantum-logic circuitsIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems20062561000101010.1109/TCAD.2005.855930 Piatokowska E, Martyna J (2012) Computer recognition of facial expressions of emotion. In: P P (ed) Machine learning and data mining in pattern recognition. MLDM 2012, Lecture Notes in Computer Science vol 8862. Springer, Berlin, Heidelberg (7376) WittekPQuantum machine learning: what quantum computing means to data mining2016AmsterdamElsevier Science1349.68006 35_CR21 DK Park (35_CR13) 2019; 9 35_CR12 M Schuld (35_CR18) 2015; 56 VV Shende (35_CR19) 2006; 25 MA Nielsen (35_CR11) 2011 M Schuld (35_CR16) 2017; 119 35_CR8 M de Berg (35_CR6) 2008 C Ciliberto (35_CR5) 2018; 474 35_CR7 35_CR4 S Arunachalam (35_CR2) 2015; 17 M Mottonen (35_CR10) 2005; 5 cr-split#-35_CR14.1 P Wittek (35_CR20) 2016 35_CR1 JR McClean (35_CR9) 2016; 18 cr-split#-35_CR14.2 35_CR17 J Biamonte (35_CR3) 2017; 549 P Rebentrost (35_CR15) 2014; 113 |
References_xml | – reference: Aleksandrowicz G, Alexander T, Barkoutsos P, Bello L, Ben-Haim Y, Bucher D, Zoufal C (2019) Qiskit: an open-source framework for quantum computing (Version 0.7.2). Zenodo. https://doi.org/10.5281/zenodo.2562111. https://zenodo.org/record/2562111/export/hx#.YA6jbXdKhQI – reference: SchuldMFingerhuthMPetruccioneFImplementing a distance-based classifier with a quantum interference circuitEPL (Europhysics Letters)201711966000210.1209/0295-5075/119/60002 – reference: de Berg M, van Kreveld M, Overmars M, Schwarzkopf OC (2000) Delaunay triangulations. In: Computational geometry: algorithms and applications, pp 183–210. Springer – reference: CilibertoCHerbsterMIalongoADPontilMRocchettoASeveriniSWossnigLQuantum machine learning: a classical perspectiveProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences2018474220920170551376288710.1098/rspa.2017.05511402.68154 – reference: ArunachalamSGheorghiuVJochym-O’ConnorTMoscaMSrinivasanPVOn the robustness of bucket brigade quantum RAMNew J Phys2015171212301010.1088/1367-2630/17/12/1230101452.81061 – reference: WittekPQuantum machine learning: what quantum computing means to data mining2016AmsterdamElsevier Science1349.68006 – reference: Schuld M, Sinayskiy I, Petruccione F (2014) Quantum computing for pattern classification. In: Pham DN, Park SB (eds) Trends in artificial intelligence. PRICAI 2014, Lecture Notes in Computer Science, vol 8862. Springer, Cham – reference: de BergMCheongOvan KreveldMOvermarsMComputational geometry: algorithms and applications2008BerlinSpringer10.1007/978-3-540-77974-2 – reference: BiamonteJWittekPPancottiNRebentrostPWiebeNLloydSQuantum machine learningNature201754919520210.1038/nature23474 – reference: MottonenMVartiainenJJBergholmVSalomaaMMTransformation of quantum states using uniformly controlled rotationsQuant Inf Comp2005546721675271213.81093 – reference: RebentrostPMohseniMLloydSQuantum support vector machine for big data classificationPhys Rev Lett201411313050310.1103/PhysRevLett.113.130503 – reference: ParkDKPetruccioneFRheeJ-KKCircuit-based quantum random access memory for classical dataScientific Reports201991394910.1038/s41598-019-40439-3 – reference: Bondy JA (1976) Graph theory with applications. Elsevier Science Ltd., GBR – reference: Lucey P, Cohn JF, Kanade T, Saragih J, Ambadar Z, Matthews I (2010) The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer society conference on computer vision and pattern recognition – workshops, pp 94–101 – reference: NielsenMAChuangILQuantum computation and quantum information, 10th Anniversary2011CambridgeCambridge University Press1288.81001 – reference: Park DK, Blank C, Petruccione F (2020) The theory of the quantum kernel-based binary classifier. Phys Lett A, pp 126422. https://doi.org/10.1016/j.physleta.2020.126422. https://www.sciencedirect.com/science/article/pii/S0375960120302541 – reference: McCleanJRRomeroJBabbushRAspuru-GuzikAThe theory of variational hybrid quantum-classical algorithmsNew J Phys201618202302310.1088/1367-2630/18/2/0230231456.81149 – reference: ShendeVVBullockSSMarkovILSynthesis of quantum-logic circuitsIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems20062561000101010.1109/TCAD.2005.855930 – reference: Piatokowska E, Martyna J (2012) Computer recognition of facial expressions of emotion. In: P P (ed) Machine learning and data mining in pattern recognition. MLDM 2012, Lecture Notes in Computer Science vol 8862. Springer, Berlin, Heidelberg (7376) – reference: SchuldMSinayskiyIPetruccioneFAn introduction to quantum machine learningContemp Phys201556217218510.1080/00107514.2014.9649421342.81091 – reference: Zhao Z, Fitzsimons JK, Rebentrost P, Dunjko V, Fitzsimons JF (2018) Smooth input preparation for quantum and quantum-inspired machine learning. arXiv:1804.00281 – volume: 119 start-page: 60002 issue: 6 year: 2017 ident: 35_CR16 publication-title: EPL (Europhysics Letters) doi: 10.1209/0295-5075/119/60002 – ident: 35_CR17 doi: 10.1007/978-3-319-13560-1_17 – volume: 56 start-page: 172 issue: 2 year: 2015 ident: 35_CR18 publication-title: Contemp Phys doi: 10.1080/00107514.2014.964942 – volume: 549 start-page: 195 year: 2017 ident: 35_CR3 publication-title: Nature doi: 10.1038/nature23474 – volume: 25 start-page: 1000 issue: 6 year: 2006 ident: 35_CR19 publication-title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems doi: 10.1109/TCAD.2005.855930 – volume: 17 start-page: 123010 issue: 12 year: 2015 ident: 35_CR2 publication-title: New J Phys doi: 10.1088/1367-2630/17/12/123010 – volume-title: Quantum computation and quantum information, 10th Anniversary year: 2011 ident: 35_CR11 – ident: 35_CR1 doi: 10.5281/zenodo.2562111 – ident: 35_CR7 doi: 10.1007/978-3-662-04245-8_9 – ident: 35_CR21 – ident: #cr-split#-35_CR14.2 – volume-title: Computational geometry: algorithms and applications year: 2008 ident: 35_CR6 doi: 10.1007/978-3-540-77974-2 – ident: 35_CR8 doi: 10.1109/CVPRW.2010.5543262 – ident: 35_CR12 doi: 10.1016/j.physleta.2020.126422 – volume: 474 start-page: 20170551 issue: 2209 year: 2018 ident: 35_CR5 publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rspa.2017.0551 – volume: 18 start-page: 023023 issue: 2 year: 2016 ident: 35_CR9 publication-title: New J Phys doi: 10.1088/1367-2630/18/2/023023 – ident: #cr-split#-35_CR14.1 doi: 10.1007/978-3-642-31537-4_32 – volume-title: Quantum machine learning: what quantum computing means to data mining year: 2016 ident: 35_CR20 – volume: 9 start-page: 3949 issue: 1 year: 2019 ident: 35_CR13 publication-title: Scientific Reports doi: 10.1038/s41598-019-40439-3 – ident: 35_CR4 doi: 10.1007/978-1-349-03521-2 – volume: 113 start-page: 130503 year: 2014 ident: 35_CR15 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.113.130503 – volume: 5 start-page: 467 year: 2005 ident: 35_CR10 publication-title: Quant Inf Comp |
SSID | ssj0002734806 |
Score | 2.2329812 |
Snippet | We address the problem of facial expression recognition and show a possible solution using a quantum machine learning approach. In order to define an efficient... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | Artificial Intelligence Computational Intelligence Engineering Quantum Information Technology Research Article Spintronics |
Title | Facial expression recognition on a quantum computer |
URI | https://link.springer.com/article/10.1007/s42484-020-00035-5 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAGP3Q9qIHccW6lBy86eCsWY5tMRTBniz0FmY9aVzagj_fyXQarEhByCGHLwN5k_Ct8x7ADdWYk0JaJHTuEE81RkoIjXzqjE2OtWG6Keg_TdLxlD_OxCzS5DRnYX717-_nnPKcoybJCV0vJHahKwjLGpmGUTpq6ymBpiVIaVJBOeIFTuMZmb-X2fRDm03Q4FvKQziIQWEyWO3iEezY-hj2f1AFngArZVPcTuxXnFytk3b2x9_7SyYfSw_T8jXRUanhFKblw_NojKLgAdKMiQVSmZCWG0NzxQWTgmqhfPjinTyzzhnGC4dtJjOjSe6IVUpJQq1PIvICc2cIO4NO_Vbbc0icLTKVW-4yv6JkRjHspAt9OO60sz0g69evdGQDb0QpXqqWxzhAVnnIqgBZJXpw2z7zvuLC2Gp9t0a1iv_FfIv5xf_ML2GPNtMloR5yBZ3F59Je-_BgofrQHZTD4aQfvo9vSwewXQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFH6CMgAD4hTlzMAGFo6PxBlRRVWg7dRK3SKfE4SjrcTPx3HdiCKEhJTBw8uT8sXWO_09gCuiMUsLaRHXwiGWaYwU5xr50BkbgbWhuk7oD4ZZb8weJ3wSaXLquzA_6ve3U0aYYKgOckLVC_F12PDaRb2bO1mnyacEmpYwSpNwwhArcBbvyPyuZtUOrRZBg23p7sJOdAqTu8Vf3IM1W-3D9jeqwAOgXVkntxP7GTtXq6Tp_fFr_8jkfe5hmr8kOk5qOIRx937U6aE48ABpSvkMqZxLy4whQjFOJSeaK---eCNPrXOGssJhm8vc6FS41CqlZEqsDyJEgZkzKT2CVvVa2WNInC1yJSxzudcoqVEUO-lCHY457Wwb0uXnlzqygddDKZ7Lhsc4QFZ6yMoAWcnbcN2887bgwvhT-maJahnPxfQP8ZP_iV_CZm806Jf9h-HTKWyRutMk5EbOoDX7mNtz7yrM1EXYI188RLHX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH5oBdGDuGJdc_CmQyezZDlKNdSteLDQW5j1pLFqCv58J9NpaEEEIYc5vAzkmwxv_x7ABVGYxbkwiKvMIpYojCTnCjnXGesMK01VE9B_GiaDEbsf8_FCF7-vdp-nJGc9DQ1LU1X3Jtr22sY3RljGUOP6-FwY4quw5jyVuHG_-km_jbJ48hY_YJNwwhDLcRI6Z37fZlk7LadGvcYptmErmIrR9exsd2DFVLuwuUAguAe0EE3IOzLfoZ61itqKILd2j4g-pg686VukwvyGfRgVty_9AQpjEJCilNdIplwYpjXJJONUcKK4dEaNU_3UWKspyy02qUi1ijMbGymliIlxrkWWY2Z1TA-gU71X5hAia_JUZobZ1O0oqJYUW2F9do5ZZU0X4vnnlypwhDejKl7Llt3YQ1Y6yEoPWcm7cNm-M5kxZPwpfTVHtQy35esP8aP_iZ_D-vNNUT7eDR-OYYM05Sc-YHICnfpzak6d_VDLM_-L_ABRsLoe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facial+expression+recognition+on+a+quantum+computer&rft.jtitle=Quantum+machine+intelligence&rft.au=Mengoni%2C+Riccardo&rft.au=Incudini%2C+Massimiliano&rft.au=Di+Pierro%2C+Alessandra&rft.date=2021-06-01&rft.issn=2524-4906&rft.eissn=2524-4914&rft.volume=3&rft.issue=1&rft_id=info:doi/10.1007%2Fs42484-020-00035-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42484_020_00035_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-4906&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-4906&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-4906&client=summon |