Silver nanocubes monolayers as a SERS substrate for quantitative analysis
With adding 1-dodecanethiol-ethanol mixture, the Ag nanocubes was deposited as edge-to-edge monolayer onto the PE/gold film surface, leading to improved SERS efficiency. [Display omitted] Surface-enhanced Raman scattering (SERS) is a powerful spectroscopic tool in quantitative analysis of molecules,...
Saved in:
Published in | Chinese chemical letters Vol. 32; no. 4; pp. 1497 - 1501 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2021
Laboratory for Micro-sized Functional Materials, College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing 100048, China%School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China%Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China%College of Chemistry, Beijing Normal University, Beijing 100875, China%Department of Chemistry and Biochemistry, University of California, Santa Cruz, United States |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With adding 1-dodecanethiol-ethanol mixture, the Ag nanocubes was deposited as edge-to-edge monolayer onto the PE/gold film surface, leading to improved SERS efficiency.
[Display omitted]
Surface-enhanced Raman scattering (SERS) is a powerful spectroscopic tool in quantitative analysis of molecules, where the substrate plays a critical role in determining the detection performance. Herein, a silver nanocubes/polyelectrolyte/gold film sandwich structure was prepared as a reproducible, high-performance SERS substrate by the water/oil interfacial assembly method. In addition to the hot spots on the nanocubes surface, the edge-to-edge interspace of the Ag nanocubes led to marked enhancement of the SERS intensity, with a limit of detection of 10−11 mol/L and limit of quantitation of 10−10 mol/L for crystal violet. When rhodamine 6G and crystal violet were co-adsorbed on the Ag nanocube surfaces, the characteristic SERS peaks of the two molecules remained well resolved and separated, and the peak intensities varied with the respective concentration, which could be exploited for concurrent detection of dual molecules. Results from this work indicate that organized ensembles of Ag nanocubes can serve as effective SERS substrate can for sensitive analysis for complex molecular systems. |
---|---|
AbstractList | With adding 1-dodecanethiol-ethanol mixture, the Ag nanocubes was deposited as edge-to-edge monolayer onto the PE/gold film surface, leading to improved SERS efficiency.
[Display omitted]
Surface-enhanced Raman scattering (SERS) is a powerful spectroscopic tool in quantitative analysis of molecules, where the substrate plays a critical role in determining the detection performance. Herein, a silver nanocubes/polyelectrolyte/gold film sandwich structure was prepared as a reproducible, high-performance SERS substrate by the water/oil interfacial assembly method. In addition to the hot spots on the nanocubes surface, the edge-to-edge interspace of the Ag nanocubes led to marked enhancement of the SERS intensity, with a limit of detection of 10−11 mol/L and limit of quantitation of 10−10 mol/L for crystal violet. When rhodamine 6G and crystal violet were co-adsorbed on the Ag nanocube surfaces, the characteristic SERS peaks of the two molecules remained well resolved and separated, and the peak intensities varied with the respective concentration, which could be exploited for concurrent detection of dual molecules. Results from this work indicate that organized ensembles of Ag nanocubes can serve as effective SERS substrate can for sensitive analysis for complex molecular systems. Surface-enhanced Raman scattering (SERS) is a powerful spectroscopic tool in quantitative analysis of molecules, where the substrate plays a critical role in determining the detection performance. Herein, a silver nanocubes/polyelectrolyte/gold film sandwich structure was prepared as a reproducible, high-performance SERS substrate by the water/oil interfacial assembly method. In addition to the hot spots on the nanocubes surface, the edge-to-edge interspace of the Ag nanocubes led to marked enhancement of the SERS intensity, with a limit of detection of 10 11 mol/L and limit of quantitation of 10 10 mol/L for crystal violet. When rhodamine 6G and crystal violet were co-adsorbed on the Ag nanocube surfaces, the characteristic SERS peaks of the two molecules remained well resolved and separated, and the peak intensities varied with the respective concentration, which could be exploited for concurrent detection of dual molecules. Results from this work indicate that organized ensembles of Ag nanocubes can serve as effective SERS substrate can for sensitive analysis for complex molecular systems. |
Author | Zhang, Yang Zhou, Ziang Chen, Shaowei Li, Peishen Bai, Xiuhui Wu, Yunyun Wang, Qiang Wang, Changzheng Ding, Peiren Guo, Ming |
AuthorAffiliation | Laboratory for Micro-sized Functional Materials, College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing 100048, China%School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China%Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China%College of Chemistry, Beijing Normal University, Beijing 100875, China%Department of Chemistry and Biochemistry, University of California, Santa Cruz, United States |
AuthorAffiliation_xml | – name: Laboratory for Micro-sized Functional Materials, College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing 100048, China%School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China%Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China%College of Chemistry, Beijing Normal University, Beijing 100875, China%Department of Chemistry and Biochemistry, University of California, Santa Cruz, United States |
Author_xml | – sequence: 1 givenname: Ziang surname: Zhou fullname: Zhou, Ziang organization: Laboratory for Micro-sized Functional Materials, College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing 100048, China – sequence: 2 givenname: Xiuhui surname: Bai fullname: Bai, Xiuhui organization: School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China – sequence: 3 givenname: Peishen surname: Li fullname: Li, Peishen organization: Laboratory for Micro-sized Functional Materials, College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing 100048, China – sequence: 4 givenname: Changzheng orcidid: 0000-0001-9111-6866 surname: Wang fullname: Wang, Changzheng email: changzhwang@163.com organization: Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China – sequence: 5 givenname: Ming surname: Guo fullname: Guo, Ming organization: Laboratory for Micro-sized Functional Materials, College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing 100048, China – sequence: 6 givenname: Yang orcidid: 0000-0002-3002-4367 surname: Zhang fullname: Zhang, Yang email: y.zhang@bnu.edu.cn organization: College of Chemistry, Beijing Normal University, Beijing 100875, China – sequence: 7 givenname: Peiren surname: Ding fullname: Ding, Peiren organization: Laboratory for Micro-sized Functional Materials, College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing 100048, China – sequence: 8 givenname: Shaowei surname: Chen fullname: Chen, Shaowei email: shaowei@ucsc.edu organization: Department of Chemistry and Biochemistry, University of California, Santa Cruz, United States – sequence: 9 givenname: Yunyun surname: Wu fullname: Wu, Yunyun organization: Laboratory for Micro-sized Functional Materials, College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing 100048, China – sequence: 10 givenname: Qiang orcidid: 0000-0002-9118-5615 surname: Wang fullname: Wang, Qiang email: qwchem@gmail.com organization: Laboratory for Micro-sized Functional Materials, College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing 100048, China |
BookMark | eNqFkD1PwzAQQC1UJErhF7BkY0rwRxLHAwOqClSqhERhthzHLg6pDXZaKL8ep2ViAPkkn073TnfvFIysswqACwQzBFF51WZSdqrPMMRDJYMYHYExqmiVFqzMRzGHEKVVjugJOA2hhRBXFSnHYL403Vb5xArr5KZWIVk76zqxUz4kIkaynD0uk7CpQ-9FrxLtfPK-EbY3vejNViXCim4XTDgDx1p0QZ3__BPwfDt7mt6ni4e7-fRmkUpCij6tS1xCWWmKBK2pRoyUlDKYE5ILjHVTVDmTdU6Z1rARVGqUE1gwzUqkMcWETMDlYe6HsFrYFW_dxscdAv9avXy-1tEBgnl8sZMdOqV3IXiludwv7Ww8xXQcQT7Y4y3f2-ODvaEYB0SW_GLfvFkLv_uHuj5QKgrYGuV5kEZZqRrjlex548yf_DfANIul |
CitedBy_id | crossref_primary_10_1016_j_matchemphys_2022_126285 crossref_primary_10_1016_j_molstruc_2021_130992 crossref_primary_10_1016_j_optcom_2023_130183 crossref_primary_10_1016_j_matpr_2023_10_067 crossref_primary_10_1016_j_matpr_2022_09_513 crossref_primary_10_1016_j_talanta_2025_127979 crossref_primary_10_3390_ijms23010291 crossref_primary_10_1016_j_cclet_2022_107771 crossref_primary_10_1007_s00604_022_05328_z crossref_primary_10_1021_acssuschemeng_3c00069 crossref_primary_10_1016_j_jallcom_2024_177523 crossref_primary_10_3788_LOP231442 crossref_primary_10_2174_1573413719666230202122334 crossref_primary_10_1007_s00604_022_05539_4 crossref_primary_10_1016_j_ijbiomac_2023_127444 crossref_primary_10_3390_ijms25105116 crossref_primary_10_1038_s41598_024_72516_7 crossref_primary_10_1166_jno_2022_3241 crossref_primary_10_1088_1402_4896_ad754d crossref_primary_10_1016_j_jhazmat_2021_126368 crossref_primary_10_1039_D1NA00676B crossref_primary_10_1002_tcr_202100287 crossref_primary_10_1109_JPHOT_2024_3410697 crossref_primary_10_1016_j_foodchem_2023_136798 crossref_primary_10_1039_D4CE00835A crossref_primary_10_1016_j_colsurfa_2024_135096 crossref_primary_10_1016_j_saa_2022_121308 crossref_primary_10_3390_nano13030428 crossref_primary_10_1016_j_cej_2025_160813 crossref_primary_10_1039_D4CC01602E crossref_primary_10_1016_j_chemosphere_2022_134326 crossref_primary_10_1021_acsnano_2c04187 crossref_primary_10_1016_j_cclet_2025_110883 crossref_primary_10_1021_acssensors_3c01061 |
Cites_doi | 10.1016/j.foodchem.2014.02.121 10.1002/chem.201000341 10.1016/0022-0248(96)00151-0 10.1016/j.talanta.2011.06.074 10.1038/nature11615 10.1364/OE.14.009971 10.1103/PhysRevB.6.4370 10.1016/j.foodcont.2013.09.014 10.1364/OE.21.013502 10.1002/adfm.201100641 10.1021/es200255y 10.1016/j.saa.2018.08.035 10.1016/j.saa.2019.117484 10.1007/s11468-011-9230-7 10.1364/OE.25.020631 10.1021/nl080872f 10.1021/acsanm.9b02579 10.1088/0957-0233/15/6/009 10.1016/j.foodchem.2011.01.024 10.1002/smll.201200172 10.1021/acs.nanolett.6b01388 10.1007/s12274-017-1909-4 10.1021/nl402660s 10.1016/j.cplett.2018.11.024 10.1021/acs.jpcc.6b08276 10.1016/j.saa.2013.10.013 10.1021/ac0702084 10.1021/la7026847 10.1002/anie.201101632 10.1038/nature10344 10.1126/science.277.5330.1232 10.1021/acsami.7b07231 10.1039/C6CP07606H 10.1039/C6AN00319B |
ContentType | Journal Article |
Copyright | 2021 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2021 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1016/j.cclet.2020.10.021 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1878-5964 |
EndPage | 1501 |
ExternalDocumentID | zghxkb202104040 10_1016_j_cclet_2020_10_021 S1001841720306045 |
GrantInformation_xml | – fundername: This work was supported by the Natural Science Foundation of China funderid: (NSFC, Nos, 21471103, 51631001, 11574173 and 21603014) |
GroupedDBID | --K --M .~1 0R~ 188 1B1 1~. 1~5 29B 2B. 2C. 2WC 4.4 457 4G. 5GY 5VR 5VS 6J9 7-5 71M 8P~ 8RM 92E 92I 92Q 93N AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFUIB AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C1A CCEZO CDRFL CHBEP CS3 CW9 DU5 EBS EFJIC EFLBG EJD EO9 EP2 EP3 F5P FA0 FDB FEDTE FIRID FLBIZ FNPLU FYGXN GBLVA GX1 HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ S.. SDF SDG SDH SES SPC SPCBC SSK SSZ T5K TCJ TGP UNMZH UZ4 ~G- -SB -S~ 5XA 5XC AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CAJEB CITATION Q-- SSH U1G U5L 4A8 PSX |
ID | FETCH-LOGICAL-c335t-b6260c8f71a7b7f193677904334a22fd5849cb479ff0da7cf143059f961f27233 |
IEDL.DBID | .~1 |
ISSN | 1001-8417 |
IngestDate | Thu May 29 04:08:21 EDT 2025 Thu Apr 24 23:08:37 EDT 2025 Tue Jul 01 03:18:58 EDT 2025 Fri Feb 23 02:47:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Silver nanocube Crystal violet Surface enhanced raman scattering Rhodamine 6G Quantitative analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c335t-b6260c8f71a7b7f193677904334a22fd5849cb479ff0da7cf143059f961f27233 |
ORCID | 0000-0002-9118-5615 0000-0001-9111-6866 0000-0002-3002-4367 |
PageCount | 5 |
ParticipantIDs | wanfang_journals_zghxkb202104040 crossref_citationtrail_10_1016_j_cclet_2020_10_021 crossref_primary_10_1016_j_cclet_2020_10_021 elsevier_sciencedirect_doi_10_1016_j_cclet_2020_10_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese chemical letters |
PublicationTitle_FL | Chinese Chemical Letters |
PublicationYear | 2021 |
Publisher | Elsevier B.V Laboratory for Micro-sized Functional Materials, College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing 100048, China%School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China%Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China%College of Chemistry, Beijing Normal University, Beijing 100875, China%Department of Chemistry and Biochemistry, University of California, Santa Cruz, United States |
Publisher_xml | – name: Elsevier B.V – name: Laboratory for Micro-sized Functional Materials, College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing 100048, China%School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China%Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China%College of Chemistry, Beijing Normal University, Beijing 100875, China%Department of Chemistry and Biochemistry, University of California, Santa Cruz, United States |
References | Soltman, Subramanian (bib0125) 2008; 24 Srivastava, Li, Li, Abdulhalim (bib0035) 2016; 120 Kang, Lee, Lee, Kang (bib0140) 2004; 15 Rycenga, Xia, Moran (bib0020) 2011; 50 Rajeeva, Lin, Zheng (bib0085) 2018; 11 Xu, Kutsanedzie, Hassan, Li, Chen (bib0010) 2019; 206 Yunker, Still, Lohr, Yodh (bib0130) 2011; 476 Yang, Zhang, Liu (bib0075) 2011; 127 Savino, Monti (bib0135) 1996; 165 Leveque, Martin (bib0030) 2006; 14 Wang, Zhang, Zhou (bib0055) 2014; 121 Nishijima, Khurgin, Rosa, Fujiwara, Juodkazis (bib0065) 2013; 21 Restrepo, Ortiz, Ossa, Mesa (bib0080) 2014; 158 Lassiter, McGuire, Mock (bib0150) 2013; 13 Decher (bib0110) 1997; 277 Johnson, Christy (bib0115) 1972; 6 Kim, Kim, Choi (bib0160) 2019; 715 Gu, Hu, Li, Long (bib0155) 2016; 141 Li, Liu, Zhang (bib0015) 2017; 25 Mock, Hill, Degiron (bib0025) 2008; 8 Haiss, Thanh, Aveyard, Fernig (bib0120) 2007; 79 Kucheyev, Hayes, Biener (bib0170) 2006; 89 Fan, Lai, Rasco, Huang (bib0175) 2014; 37 Zhang, Li, Wen, Chen, Xia (bib0105) 2010; 16 Yi, Zhang, Wang (bib0040) 2011; 6 Kocisova, Petr, Sipova, Kylian, Prochazka (bib0045) 2016; 19 Ng, Zhang (bib0070) 2011; 85 Liebig, Sarhan, Sander (bib0100) 2017; 9 Que, Shao, Zhuo (bib0165) 2011; 21 Yang, Lee, Phang (bib0090) 2016; 16 Liu, Zhang, Qi, Wen, Yu (bib0095) 2012; 8 Moreau, Ciraci, Mock (bib0145) 2012; 492 Wang, Bai, Zhang, Zhou (bib0060) 2020; 3 Mekonnen, Chen, Osada, Su, Hwang (bib0005) 2020; 225 Halvorson, Vikesland (bib0050) 2011; 45 Xu (10.1016/j.cclet.2020.10.021_bib0010) 2019; 206 Yang (10.1016/j.cclet.2020.10.021_bib0090) 2016; 16 Savino (10.1016/j.cclet.2020.10.021_bib0135) 1996; 165 Kocisova (10.1016/j.cclet.2020.10.021_bib0045) 2016; 19 Srivastava (10.1016/j.cclet.2020.10.021_bib0035) 2016; 120 Lassiter (10.1016/j.cclet.2020.10.021_bib0150) 2013; 13 Gu (10.1016/j.cclet.2020.10.021_bib0155) 2016; 141 Li (10.1016/j.cclet.2020.10.021_bib0015) 2017; 25 Wang (10.1016/j.cclet.2020.10.021_bib0060) 2020; 3 Rajeeva (10.1016/j.cclet.2020.10.021_bib0085) 2018; 11 Mock (10.1016/j.cclet.2020.10.021_bib0025) 2008; 8 Kucheyev (10.1016/j.cclet.2020.10.021_bib0170) 2006; 89 Haiss (10.1016/j.cclet.2020.10.021_bib0120) 2007; 79 Yunker (10.1016/j.cclet.2020.10.021_bib0130) 2011; 476 Fan (10.1016/j.cclet.2020.10.021_bib0175) 2014; 37 Yang (10.1016/j.cclet.2020.10.021_bib0075) 2011; 127 Wang (10.1016/j.cclet.2020.10.021_bib0055) 2014; 121 Liebig (10.1016/j.cclet.2020.10.021_bib0100) 2017; 9 Restrepo (10.1016/j.cclet.2020.10.021_bib0080) 2014; 158 Soltman (10.1016/j.cclet.2020.10.021_bib0125) 2008; 24 Ng (10.1016/j.cclet.2020.10.021_bib0070) 2011; 85 Mekonnen (10.1016/j.cclet.2020.10.021_bib0005) 2020; 225 Yi (10.1016/j.cclet.2020.10.021_bib0040) 2011; 6 Kang (10.1016/j.cclet.2020.10.021_bib0140) 2004; 15 Que (10.1016/j.cclet.2020.10.021_bib0165) 2011; 21 Zhang (10.1016/j.cclet.2020.10.021_bib0105) 2010; 16 Moreau (10.1016/j.cclet.2020.10.021_bib0145) 2012; 492 Liu (10.1016/j.cclet.2020.10.021_bib0095) 2012; 8 Johnson (10.1016/j.cclet.2020.10.021_bib0115) 1972; 6 Halvorson (10.1016/j.cclet.2020.10.021_bib0050) 2011; 45 Nishijima (10.1016/j.cclet.2020.10.021_bib0065) 2013; 21 Rycenga (10.1016/j.cclet.2020.10.021_bib0020) 2011; 50 Decher (10.1016/j.cclet.2020.10.021_bib0110) 1997; 277 Leveque (10.1016/j.cclet.2020.10.021_bib0030) 2006; 14 Kim (10.1016/j.cclet.2020.10.021_bib0160) 2019; 715 |
References_xml | – volume: 16 start-page: 3872 year: 2016 end-page: 3878 ident: bib0090 publication-title: Nano Lett. – volume: 14 start-page: 9971 year: 2006 end-page: 9981 ident: bib0030 publication-title: Opt. Express – volume: 6 start-page: 4370 year: 1972 end-page: 4379 ident: bib0115 publication-title: Phys. Rev. B – volume: 21 start-page: 3337 year: 2011 end-page: 3343 ident: bib0165 publication-title: Adv. Funct. Mater. – volume: 21 start-page: 13502 year: 2013 end-page: 13514 ident: bib0065 publication-title: Opt. Express – volume: 277 start-page: 1232 year: 1997 end-page: 1237 ident: bib0110 publication-title: Science – volume: 225 year: 2020 ident: bib0005 publication-title: Spectrochim. Acta A – volume: 79 start-page: 4215 year: 2007 end-page: 4221 ident: bib0120 publication-title: Anal. Chem. – volume: 50 start-page: 5473 year: 2011 end-page: 5477 ident: bib0020 publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 20247 year: 2017 end-page: 20253 ident: bib0100 publication-title: ACS Appl. Mater. Inter. – volume: 25 start-page: 20631 year: 2017 end-page: 20641 ident: bib0015 publication-title: Opt. Express – volume: 89 year: 2006 ident: bib0170 publication-title: Appl. Phys. Lett. – volume: 127 start-page: 855 year: 2011 end-page: 865 ident: bib0075 publication-title: Food Chem. – volume: 476 start-page: 308 year: 2011 end-page: 311 ident: bib0130 publication-title: Nature – volume: 24 start-page: 2224 year: 2008 end-page: 2231 ident: bib0125 publication-title: Langmuir – volume: 141 start-page: 4359 year: 2016 end-page: 4365 ident: bib0155 publication-title: Analyst – volume: 19 start-page: 388 year: 2016 end-page: 393 ident: bib0045 publication-title: Phys. Chem. Chem. Phys. – volume: 158 start-page: 153 year: 2014 end-page: 161 ident: bib0080 publication-title: Food Chem. – volume: 45 start-page: 5644 year: 2011 end-page: 5651 ident: bib0050 publication-title: Environ. Sci. Technol. – volume: 121 start-page: 63 year: 2014 end-page: 69 ident: bib0055 publication-title: Spectrochim. Acta A. Mol. Biomol. Spectrosc. – volume: 3 start-page: 1934 year: 2020 end-page: 1941 ident: bib0060 publication-title: ACS Appl. Nano Mater. – volume: 37 start-page: 153 year: 2014 end-page: 157 ident: bib0175 publication-title: Food Control – volume: 206 start-page: 405 year: 2019 end-page: 412 ident: bib0010 publication-title: Spectrochim. Acta A – volume: 165 start-page: 308 year: 1996 end-page: 318 ident: bib0135 publication-title: J. Crystal Growth – volume: 8 start-page: 2412 year: 2012 end-page: 2420 ident: bib0095 publication-title: Small – volume: 11 start-page: 4423 year: 2018 end-page: 4440 ident: bib0085 publication-title: Nano Res. – volume: 85 start-page: 1766 year: 2011 end-page: 1771 ident: bib0070 publication-title: Talanta – volume: 16 start-page: 10234 year: 2010 end-page: 10239 ident: bib0105 publication-title: Chem. Eur. J. – volume: 492 start-page: 86 year: 2012 end-page: 89 ident: bib0145 publication-title: Nature – volume: 6 start-page: 515 year: 2011 end-page: 519 ident: bib0040 publication-title: Plasmonics – volume: 8 start-page: 2245 year: 2008 end-page: 2252 ident: bib0025 publication-title: Nano Lett. – volume: 13 start-page: 5866 year: 2013 end-page: 5872 ident: bib0150 publication-title: Nano Lett. – volume: 120 start-page: 28735 year: 2016 end-page: 28742 ident: bib0035 publication-title: J. Phys. Chem. C – volume: 15 start-page: 1104 year: 2004 end-page: 1112 ident: bib0140 publication-title: Measure. Sci. Technol. – volume: 715 start-page: 91 year: 2019 end-page: 99 ident: bib0160 publication-title: Chem. Phys. Lett. – volume: 158 start-page: 153 year: 2014 ident: 10.1016/j.cclet.2020.10.021_bib0080 publication-title: Food Chem. doi: 10.1016/j.foodchem.2014.02.121 – volume: 16 start-page: 10234 year: 2010 ident: 10.1016/j.cclet.2020.10.021_bib0105 publication-title: Chem. Eur. J. doi: 10.1002/chem.201000341 – volume: 165 start-page: 308 year: 1996 ident: 10.1016/j.cclet.2020.10.021_bib0135 publication-title: J. Crystal Growth doi: 10.1016/0022-0248(96)00151-0 – volume: 85 start-page: 1766 year: 2011 ident: 10.1016/j.cclet.2020.10.021_bib0070 publication-title: Talanta doi: 10.1016/j.talanta.2011.06.074 – volume: 492 start-page: 86 year: 2012 ident: 10.1016/j.cclet.2020.10.021_bib0145 publication-title: Nature doi: 10.1038/nature11615 – volume: 14 start-page: 9971 year: 2006 ident: 10.1016/j.cclet.2020.10.021_bib0030 publication-title: Opt. Express doi: 10.1364/OE.14.009971 – volume: 89 year: 2006 ident: 10.1016/j.cclet.2020.10.021_bib0170 publication-title: Appl. Phys. Lett. – volume: 6 start-page: 4370 year: 1972 ident: 10.1016/j.cclet.2020.10.021_bib0115 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.6.4370 – volume: 37 start-page: 153 year: 2014 ident: 10.1016/j.cclet.2020.10.021_bib0175 publication-title: Food Control doi: 10.1016/j.foodcont.2013.09.014 – volume: 21 start-page: 13502 year: 2013 ident: 10.1016/j.cclet.2020.10.021_bib0065 publication-title: Opt. Express doi: 10.1364/OE.21.013502 – volume: 21 start-page: 3337 year: 2011 ident: 10.1016/j.cclet.2020.10.021_bib0165 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201100641 – volume: 45 start-page: 5644 year: 2011 ident: 10.1016/j.cclet.2020.10.021_bib0050 publication-title: Environ. Sci. Technol. doi: 10.1021/es200255y – volume: 206 start-page: 405 year: 2019 ident: 10.1016/j.cclet.2020.10.021_bib0010 publication-title: Spectrochim. Acta A doi: 10.1016/j.saa.2018.08.035 – volume: 225 year: 2020 ident: 10.1016/j.cclet.2020.10.021_bib0005 publication-title: Spectrochim. Acta A doi: 10.1016/j.saa.2019.117484 – volume: 6 start-page: 515 year: 2011 ident: 10.1016/j.cclet.2020.10.021_bib0040 publication-title: Plasmonics doi: 10.1007/s11468-011-9230-7 – volume: 25 start-page: 20631 year: 2017 ident: 10.1016/j.cclet.2020.10.021_bib0015 publication-title: Opt. Express doi: 10.1364/OE.25.020631 – volume: 8 start-page: 2245 year: 2008 ident: 10.1016/j.cclet.2020.10.021_bib0025 publication-title: Nano Lett. doi: 10.1021/nl080872f – volume: 3 start-page: 1934 year: 2020 ident: 10.1016/j.cclet.2020.10.021_bib0060 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b02579 – volume: 15 start-page: 1104 year: 2004 ident: 10.1016/j.cclet.2020.10.021_bib0140 publication-title: Measure. Sci. Technol. doi: 10.1088/0957-0233/15/6/009 – volume: 127 start-page: 855 year: 2011 ident: 10.1016/j.cclet.2020.10.021_bib0075 publication-title: Food Chem. doi: 10.1016/j.foodchem.2011.01.024 – volume: 8 start-page: 2412 year: 2012 ident: 10.1016/j.cclet.2020.10.021_bib0095 publication-title: Small doi: 10.1002/smll.201200172 – volume: 16 start-page: 3872 year: 2016 ident: 10.1016/j.cclet.2020.10.021_bib0090 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01388 – volume: 11 start-page: 4423 year: 2018 ident: 10.1016/j.cclet.2020.10.021_bib0085 publication-title: Nano Res. doi: 10.1007/s12274-017-1909-4 – volume: 13 start-page: 5866 year: 2013 ident: 10.1016/j.cclet.2020.10.021_bib0150 publication-title: Nano Lett. doi: 10.1021/nl402660s – volume: 715 start-page: 91 year: 2019 ident: 10.1016/j.cclet.2020.10.021_bib0160 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2018.11.024 – volume: 120 start-page: 28735 year: 2016 ident: 10.1016/j.cclet.2020.10.021_bib0035 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b08276 – volume: 121 start-page: 63 year: 2014 ident: 10.1016/j.cclet.2020.10.021_bib0055 publication-title: Spectrochim. Acta A. Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2013.10.013 – volume: 79 start-page: 4215 year: 2007 ident: 10.1016/j.cclet.2020.10.021_bib0120 publication-title: Anal. Chem. doi: 10.1021/ac0702084 – volume: 24 start-page: 2224 year: 2008 ident: 10.1016/j.cclet.2020.10.021_bib0125 publication-title: Langmuir doi: 10.1021/la7026847 – volume: 50 start-page: 5473 year: 2011 ident: 10.1016/j.cclet.2020.10.021_bib0020 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201101632 – volume: 476 start-page: 308 year: 2011 ident: 10.1016/j.cclet.2020.10.021_bib0130 publication-title: Nature doi: 10.1038/nature10344 – volume: 277 start-page: 1232 year: 1997 ident: 10.1016/j.cclet.2020.10.021_bib0110 publication-title: Science doi: 10.1126/science.277.5330.1232 – volume: 9 start-page: 20247 year: 2017 ident: 10.1016/j.cclet.2020.10.021_bib0100 publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.7b07231 – volume: 19 start-page: 388 year: 2016 ident: 10.1016/j.cclet.2020.10.021_bib0045 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP07606H – volume: 141 start-page: 4359 year: 2016 ident: 10.1016/j.cclet.2020.10.021_bib0155 publication-title: Analyst doi: 10.1039/C6AN00319B |
SSID | ssj0028836 |
Score | 2.4090877 |
Snippet | With adding 1-dodecanethiol-ethanol mixture, the Ag nanocubes was deposited as edge-to-edge monolayer onto the PE/gold film surface, leading to improved SERS... Surface-enhanced Raman scattering (SERS) is a powerful spectroscopic tool in quantitative analysis of molecules, where the substrate plays a critical role in... |
SourceID | wanfang crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1497 |
SubjectTerms | Crystal violet Quantitative analysis Rhodamine 6G Silver nanocube Surface enhanced raman scattering |
Title | Silver nanocubes monolayers as a SERS substrate for quantitative analysis |
URI | https://dx.doi.org/10.1016/j.cclet.2020.10.021 https://d.wanfangdata.com.cn/periodical/zghxkb202104040 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4IxujF-DPiD9KDRwd061Z2JAQCGjmIJNyWtlsRNQMFovHg3-57W0f0IAeznZq2WV7fvr2Xfe97hFxxKXRDx9oRMfccnkCCIhMtHe2zGKBQSqOxGvluEPRG_Gbsj0ukXdTCIK3SYn-O6Rla25G6tWZ9Pp3Wh6ge1OQM_yOiAgwWmnMu0MtrX2uaBzbTzSqMkDqEswvloYzjpWEzJFS6OFJruOyvr9P2u0yNTCc_vj3dfbJng0bayp_rgJSS9JDstItebUekP5wiw5mmMp3plUoWFLwLklaMp6mEmw4790O6AJTI1GgphKr0dSXTrMQMAI9KK05yTEbdzkO759gmCY72PH_pKMxIdNMIJoUSBuKxACUEuedx6bomhgAj1IqL0JhGDAdjGIp8hSYMmHGF63knpJzO0uSUUG6ajOlEhkIpDnmHMlIkAYuD0I-xvVCFuIVxIm0VxLGRxUtUUMWeosyiEVoUB8GiFXK9XjTPBTQ2Tw8Kq0e__CACiN-8kNoziuxbuIg-J48fz8rFtJbDdfbfvc_JLm6SE3YuSHn5tkouIRZZqmrmbFWy1erf9gbf40PdlA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELUQCMEFsYodH-BGaO24cXPggFjUsh0oSNyM7dhQQGFpK5YDP8UPMpM6CA5wQELJyYqtZDyZJXnzhpBVoaWt2sxGMhNxJBwkKNpZHdkay8AUau0tViMfHSeNM7F_XjsfIO9lLQzCKoPt79v0wlqHkUqQZuW-3a60kD2oLhj-R0QGmBJZeeBeniBv62w2d2CT1zjf2z3dbkShtUBk47jWjQzG8bbuJdPSSA9RTILEeyKOhebcZ-CWU2uETL2vZvA4niE1VurThHkuOX4FBbs_JMBcYNuEjbdPXAl27y1KmhCrhLdXUh0VoDILd48ITo4jG1XOfnKHw0869zq__OLs9sbJWIhS6VZfEBNkwOWTZGS7bA43RZqtNkKqaa7zO9szrkNBnSFLxgCeajhpa_ekRTtglgr6WwqxMX3o6byoaQMLS3VgQ5kmZ_8iuhkymN_lbpZQ4euMWadTaYyARMd4LV3CsiStZdjPaI7wUjjKBspy7Jxxq0ps2rUqJKpQojgIEp0j65-T7vuMHb9fnpRSV98UT4FP-X0iDXukwmvfUa-XV883hmMeLeCY_-vaK2SkcXp0qA6bxwcLZBQX7KOFFslg97HnliAQ6prlQvEoufhvTf8AbCUXUw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silver+nanocubes+monolayers+as+a+SERS+substrate+for+quantitative+analysis&rft.jtitle=Chinese+chemical+letters&rft.au=Zhou%2C+Ziang&rft.au=Bai%2C+Xiuhui&rft.au=Li%2C+Peishen&rft.au=Wang%2C+Changzheng&rft.date=2021-04-01&rft.issn=1001-8417&rft.volume=32&rft.issue=4&rft.spage=1497&rft.epage=1501&rft_id=info:doi/10.1016%2Fj.cclet.2020.10.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cclet_2020_10_021 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghxkb%2Fzghxkb.jpg |