Silver nanocubes monolayers as a SERS substrate for quantitative analysis

With adding 1-dodecanethiol-ethanol mixture, the Ag nanocubes was deposited as edge-to-edge monolayer onto the PE/gold film surface, leading to improved SERS efficiency. [Display omitted] Surface-enhanced Raman scattering (SERS) is a powerful spectroscopic tool in quantitative analysis of molecules,...

Full description

Saved in:
Bibliographic Details
Published inChinese chemical letters Vol. 32; no. 4; pp. 1497 - 1501
Main Authors Zhou, Ziang, Bai, Xiuhui, Li, Peishen, Wang, Changzheng, Guo, Ming, Zhang, Yang, Ding, Peiren, Chen, Shaowei, Wu, Yunyun, Wang, Qiang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2021
Laboratory for Micro-sized Functional Materials, College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing 100048, China%School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China%Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China%College of Chemistry, Beijing Normal University, Beijing 100875, China%Department of Chemistry and Biochemistry, University of California, Santa Cruz, United States
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With adding 1-dodecanethiol-ethanol mixture, the Ag nanocubes was deposited as edge-to-edge monolayer onto the PE/gold film surface, leading to improved SERS efficiency. [Display omitted] Surface-enhanced Raman scattering (SERS) is a powerful spectroscopic tool in quantitative analysis of molecules, where the substrate plays a critical role in determining the detection performance. Herein, a silver nanocubes/polyelectrolyte/gold film sandwich structure was prepared as a reproducible, high-performance SERS substrate by the water/oil interfacial assembly method. In addition to the hot spots on the nanocubes surface, the edge-to-edge interspace of the Ag nanocubes led to marked enhancement of the SERS intensity, with a limit of detection of 10−11 mol/L and limit of quantitation of 10−10 mol/L for crystal violet. When rhodamine 6G and crystal violet were co-adsorbed on the Ag nanocube surfaces, the characteristic SERS peaks of the two molecules remained well resolved and separated, and the peak intensities varied with the respective concentration, which could be exploited for concurrent detection of dual molecules. Results from this work indicate that organized ensembles of Ag nanocubes can serve as effective SERS substrate can for sensitive analysis for complex molecular systems.
AbstractList With adding 1-dodecanethiol-ethanol mixture, the Ag nanocubes was deposited as edge-to-edge monolayer onto the PE/gold film surface, leading to improved SERS efficiency. [Display omitted] Surface-enhanced Raman scattering (SERS) is a powerful spectroscopic tool in quantitative analysis of molecules, where the substrate plays a critical role in determining the detection performance. Herein, a silver nanocubes/polyelectrolyte/gold film sandwich structure was prepared as a reproducible, high-performance SERS substrate by the water/oil interfacial assembly method. In addition to the hot spots on the nanocubes surface, the edge-to-edge interspace of the Ag nanocubes led to marked enhancement of the SERS intensity, with a limit of detection of 10−11 mol/L and limit of quantitation of 10−10 mol/L for crystal violet. When rhodamine 6G and crystal violet were co-adsorbed on the Ag nanocube surfaces, the characteristic SERS peaks of the two molecules remained well resolved and separated, and the peak intensities varied with the respective concentration, which could be exploited for concurrent detection of dual molecules. Results from this work indicate that organized ensembles of Ag nanocubes can serve as effective SERS substrate can for sensitive analysis for complex molecular systems.
Surface-enhanced Raman scattering (SERS) is a powerful spectroscopic tool in quantitative analysis of molecules, where the substrate plays a critical role in determining the detection performance. Herein, a silver nanocubes/polyelectrolyte/gold film sandwich structure was prepared as a reproducible, high-performance SERS substrate by the water/oil interfacial assembly method. In addition to the hot spots on the nanocubes surface, the edge-to-edge interspace of the Ag nanocubes led to marked enhancement of the SERS intensity, with a limit of detection of 10 11 mol/L and limit of quantitation of 10 10 mol/L for crystal violet. When rhodamine 6G and crystal violet were co-adsorbed on the Ag nanocube surfaces, the characteristic SERS peaks of the two molecules remained well resolved and separated, and the peak intensities varied with the respective concentration, which could be exploited for concurrent detection of dual molecules. Results from this work indicate that organized ensembles of Ag nanocubes can serve as effective SERS substrate can for sensitive analysis for complex molecular systems.
Author Zhang, Yang
Zhou, Ziang
Chen, Shaowei
Li, Peishen
Bai, Xiuhui
Wu, Yunyun
Wang, Qiang
Wang, Changzheng
Ding, Peiren
Guo, Ming
AuthorAffiliation Laboratory for Micro-sized Functional Materials, College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing 100048, China%School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China%Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China%College of Chemistry, Beijing Normal University, Beijing 100875, China%Department of Chemistry and Biochemistry, University of California, Santa Cruz, United States
AuthorAffiliation_xml – name: Laboratory for Micro-sized Functional Materials, College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing 100048, China%School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China%Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China%College of Chemistry, Beijing Normal University, Beijing 100875, China%Department of Chemistry and Biochemistry, University of California, Santa Cruz, United States
Author_xml – sequence: 1
  givenname: Ziang
  surname: Zhou
  fullname: Zhou, Ziang
  organization: Laboratory for Micro-sized Functional Materials, College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing 100048, China
– sequence: 2
  givenname: Xiuhui
  surname: Bai
  fullname: Bai, Xiuhui
  organization: School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
– sequence: 3
  givenname: Peishen
  surname: Li
  fullname: Li, Peishen
  organization: Laboratory for Micro-sized Functional Materials, College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing 100048, China
– sequence: 4
  givenname: Changzheng
  orcidid: 0000-0001-9111-6866
  surname: Wang
  fullname: Wang, Changzheng
  email: changzhwang@163.com
  organization: Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
– sequence: 5
  givenname: Ming
  surname: Guo
  fullname: Guo, Ming
  organization: Laboratory for Micro-sized Functional Materials, College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing 100048, China
– sequence: 6
  givenname: Yang
  orcidid: 0000-0002-3002-4367
  surname: Zhang
  fullname: Zhang, Yang
  email: y.zhang@bnu.edu.cn
  organization: College of Chemistry, Beijing Normal University, Beijing 100875, China
– sequence: 7
  givenname: Peiren
  surname: Ding
  fullname: Ding, Peiren
  organization: Laboratory for Micro-sized Functional Materials, College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing 100048, China
– sequence: 8
  givenname: Shaowei
  surname: Chen
  fullname: Chen, Shaowei
  email: shaowei@ucsc.edu
  organization: Department of Chemistry and Biochemistry, University of California, Santa Cruz, United States
– sequence: 9
  givenname: Yunyun
  surname: Wu
  fullname: Wu, Yunyun
  organization: Laboratory for Micro-sized Functional Materials, College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing 100048, China
– sequence: 10
  givenname: Qiang
  orcidid: 0000-0002-9118-5615
  surname: Wang
  fullname: Wang, Qiang
  email: qwchem@gmail.com
  organization: Laboratory for Micro-sized Functional Materials, College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing 100048, China
BookMark eNqFkD1PwzAQQC1UJErhF7BkY0rwRxLHAwOqClSqhERhthzHLg6pDXZaKL8ep2ViAPkkn073TnfvFIysswqACwQzBFF51WZSdqrPMMRDJYMYHYExqmiVFqzMRzGHEKVVjugJOA2hhRBXFSnHYL403Vb5xArr5KZWIVk76zqxUz4kIkaynD0uk7CpQ-9FrxLtfPK-EbY3vejNViXCim4XTDgDx1p0QZ3__BPwfDt7mt6ni4e7-fRmkUpCij6tS1xCWWmKBK2pRoyUlDKYE5ILjHVTVDmTdU6Z1rARVGqUE1gwzUqkMcWETMDlYe6HsFrYFW_dxscdAv9avXy-1tEBgnl8sZMdOqV3IXiludwv7Ww8xXQcQT7Y4y3f2-ODvaEYB0SW_GLfvFkLv_uHuj5QKgrYGuV5kEZZqRrjlex548yf_DfANIul
CitedBy_id crossref_primary_10_1016_j_matchemphys_2022_126285
crossref_primary_10_1016_j_molstruc_2021_130992
crossref_primary_10_1016_j_optcom_2023_130183
crossref_primary_10_1016_j_matpr_2023_10_067
crossref_primary_10_1016_j_matpr_2022_09_513
crossref_primary_10_1016_j_talanta_2025_127979
crossref_primary_10_3390_ijms23010291
crossref_primary_10_1016_j_cclet_2022_107771
crossref_primary_10_1007_s00604_022_05328_z
crossref_primary_10_1021_acssuschemeng_3c00069
crossref_primary_10_1016_j_jallcom_2024_177523
crossref_primary_10_3788_LOP231442
crossref_primary_10_2174_1573413719666230202122334
crossref_primary_10_1007_s00604_022_05539_4
crossref_primary_10_1016_j_ijbiomac_2023_127444
crossref_primary_10_3390_ijms25105116
crossref_primary_10_1038_s41598_024_72516_7
crossref_primary_10_1166_jno_2022_3241
crossref_primary_10_1088_1402_4896_ad754d
crossref_primary_10_1016_j_jhazmat_2021_126368
crossref_primary_10_1039_D1NA00676B
crossref_primary_10_1002_tcr_202100287
crossref_primary_10_1109_JPHOT_2024_3410697
crossref_primary_10_1016_j_foodchem_2023_136798
crossref_primary_10_1039_D4CE00835A
crossref_primary_10_1016_j_colsurfa_2024_135096
crossref_primary_10_1016_j_saa_2022_121308
crossref_primary_10_3390_nano13030428
crossref_primary_10_1016_j_cej_2025_160813
crossref_primary_10_1039_D4CC01602E
crossref_primary_10_1016_j_chemosphere_2022_134326
crossref_primary_10_1021_acsnano_2c04187
crossref_primary_10_1016_j_cclet_2025_110883
crossref_primary_10_1021_acssensors_3c01061
Cites_doi 10.1016/j.foodchem.2014.02.121
10.1002/chem.201000341
10.1016/0022-0248(96)00151-0
10.1016/j.talanta.2011.06.074
10.1038/nature11615
10.1364/OE.14.009971
10.1103/PhysRevB.6.4370
10.1016/j.foodcont.2013.09.014
10.1364/OE.21.013502
10.1002/adfm.201100641
10.1021/es200255y
10.1016/j.saa.2018.08.035
10.1016/j.saa.2019.117484
10.1007/s11468-011-9230-7
10.1364/OE.25.020631
10.1021/nl080872f
10.1021/acsanm.9b02579
10.1088/0957-0233/15/6/009
10.1016/j.foodchem.2011.01.024
10.1002/smll.201200172
10.1021/acs.nanolett.6b01388
10.1007/s12274-017-1909-4
10.1021/nl402660s
10.1016/j.cplett.2018.11.024
10.1021/acs.jpcc.6b08276
10.1016/j.saa.2013.10.013
10.1021/ac0702084
10.1021/la7026847
10.1002/anie.201101632
10.1038/nature10344
10.1126/science.277.5330.1232
10.1021/acsami.7b07231
10.1039/C6CP07606H
10.1039/C6AN00319B
ContentType Journal Article
Copyright 2021
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2021
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/j.cclet.2020.10.021
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1878-5964
EndPage 1501
ExternalDocumentID zghxkb202104040
10_1016_j_cclet_2020_10_021
S1001841720306045
GrantInformation_xml – fundername: This work was supported by the Natural Science Foundation of China
  funderid: (NSFC, Nos, 21471103, 51631001, 11574173 and 21603014)
GroupedDBID --K
--M
.~1
0R~
188
1B1
1~.
1~5
29B
2B.
2C.
2WC
4.4
457
4G.
5GY
5VR
5VS
6J9
7-5
71M
8P~
8RM
92E
92I
92Q
93N
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C1A
CCEZO
CDRFL
CHBEP
CS3
CW9
DU5
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
F5P
FA0
FDB
FEDTE
FIRID
FLBIZ
FNPLU
FYGXN
GBLVA
GX1
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
S..
SDF
SDG
SDH
SES
SPC
SPCBC
SSK
SSZ
T5K
TCJ
TGP
UNMZH
UZ4
~G-
-SB
-S~
5XA
5XC
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CAJEB
CITATION
Q--
SSH
U1G
U5L
4A8
PSX
ID FETCH-LOGICAL-c335t-b6260c8f71a7b7f193677904334a22fd5849cb479ff0da7cf143059f961f27233
IEDL.DBID .~1
ISSN 1001-8417
IngestDate Thu May 29 04:08:21 EDT 2025
Thu Apr 24 23:08:37 EDT 2025
Tue Jul 01 03:18:58 EDT 2025
Fri Feb 23 02:47:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Silver nanocube
Crystal violet
Surface enhanced raman scattering
Rhodamine 6G
Quantitative analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c335t-b6260c8f71a7b7f193677904334a22fd5849cb479ff0da7cf143059f961f27233
ORCID 0000-0002-9118-5615
0000-0001-9111-6866
0000-0002-3002-4367
PageCount 5
ParticipantIDs wanfang_journals_zghxkb202104040
crossref_citationtrail_10_1016_j_cclet_2020_10_021
crossref_primary_10_1016_j_cclet_2020_10_021
elsevier_sciencedirect_doi_10_1016_j_cclet_2020_10_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese chemical letters
PublicationTitle_FL Chinese Chemical Letters
PublicationYear 2021
Publisher Elsevier B.V
Laboratory for Micro-sized Functional Materials, College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing 100048, China%School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China%Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China%College of Chemistry, Beijing Normal University, Beijing 100875, China%Department of Chemistry and Biochemistry, University of California, Santa Cruz, United States
Publisher_xml – name: Elsevier B.V
– name: Laboratory for Micro-sized Functional Materials, College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing 100048, China%School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China%Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China%College of Chemistry, Beijing Normal University, Beijing 100875, China%Department of Chemistry and Biochemistry, University of California, Santa Cruz, United States
References Soltman, Subramanian (bib0125) 2008; 24
Srivastava, Li, Li, Abdulhalim (bib0035) 2016; 120
Kang, Lee, Lee, Kang (bib0140) 2004; 15
Rycenga, Xia, Moran (bib0020) 2011; 50
Rajeeva, Lin, Zheng (bib0085) 2018; 11
Xu, Kutsanedzie, Hassan, Li, Chen (bib0010) 2019; 206
Yunker, Still, Lohr, Yodh (bib0130) 2011; 476
Yang, Zhang, Liu (bib0075) 2011; 127
Savino, Monti (bib0135) 1996; 165
Leveque, Martin (bib0030) 2006; 14
Wang, Zhang, Zhou (bib0055) 2014; 121
Nishijima, Khurgin, Rosa, Fujiwara, Juodkazis (bib0065) 2013; 21
Restrepo, Ortiz, Ossa, Mesa (bib0080) 2014; 158
Lassiter, McGuire, Mock (bib0150) 2013; 13
Decher (bib0110) 1997; 277
Johnson, Christy (bib0115) 1972; 6
Kim, Kim, Choi (bib0160) 2019; 715
Gu, Hu, Li, Long (bib0155) 2016; 141
Li, Liu, Zhang (bib0015) 2017; 25
Mock, Hill, Degiron (bib0025) 2008; 8
Haiss, Thanh, Aveyard, Fernig (bib0120) 2007; 79
Kucheyev, Hayes, Biener (bib0170) 2006; 89
Fan, Lai, Rasco, Huang (bib0175) 2014; 37
Zhang, Li, Wen, Chen, Xia (bib0105) 2010; 16
Yi, Zhang, Wang (bib0040) 2011; 6
Kocisova, Petr, Sipova, Kylian, Prochazka (bib0045) 2016; 19
Ng, Zhang (bib0070) 2011; 85
Liebig, Sarhan, Sander (bib0100) 2017; 9
Que, Shao, Zhuo (bib0165) 2011; 21
Yang, Lee, Phang (bib0090) 2016; 16
Liu, Zhang, Qi, Wen, Yu (bib0095) 2012; 8
Moreau, Ciraci, Mock (bib0145) 2012; 492
Wang, Bai, Zhang, Zhou (bib0060) 2020; 3
Mekonnen, Chen, Osada, Su, Hwang (bib0005) 2020; 225
Halvorson, Vikesland (bib0050) 2011; 45
Xu (10.1016/j.cclet.2020.10.021_bib0010) 2019; 206
Yang (10.1016/j.cclet.2020.10.021_bib0090) 2016; 16
Savino (10.1016/j.cclet.2020.10.021_bib0135) 1996; 165
Kocisova (10.1016/j.cclet.2020.10.021_bib0045) 2016; 19
Srivastava (10.1016/j.cclet.2020.10.021_bib0035) 2016; 120
Lassiter (10.1016/j.cclet.2020.10.021_bib0150) 2013; 13
Gu (10.1016/j.cclet.2020.10.021_bib0155) 2016; 141
Li (10.1016/j.cclet.2020.10.021_bib0015) 2017; 25
Wang (10.1016/j.cclet.2020.10.021_bib0060) 2020; 3
Rajeeva (10.1016/j.cclet.2020.10.021_bib0085) 2018; 11
Mock (10.1016/j.cclet.2020.10.021_bib0025) 2008; 8
Kucheyev (10.1016/j.cclet.2020.10.021_bib0170) 2006; 89
Haiss (10.1016/j.cclet.2020.10.021_bib0120) 2007; 79
Yunker (10.1016/j.cclet.2020.10.021_bib0130) 2011; 476
Fan (10.1016/j.cclet.2020.10.021_bib0175) 2014; 37
Yang (10.1016/j.cclet.2020.10.021_bib0075) 2011; 127
Wang (10.1016/j.cclet.2020.10.021_bib0055) 2014; 121
Liebig (10.1016/j.cclet.2020.10.021_bib0100) 2017; 9
Restrepo (10.1016/j.cclet.2020.10.021_bib0080) 2014; 158
Soltman (10.1016/j.cclet.2020.10.021_bib0125) 2008; 24
Ng (10.1016/j.cclet.2020.10.021_bib0070) 2011; 85
Mekonnen (10.1016/j.cclet.2020.10.021_bib0005) 2020; 225
Yi (10.1016/j.cclet.2020.10.021_bib0040) 2011; 6
Kang (10.1016/j.cclet.2020.10.021_bib0140) 2004; 15
Que (10.1016/j.cclet.2020.10.021_bib0165) 2011; 21
Zhang (10.1016/j.cclet.2020.10.021_bib0105) 2010; 16
Moreau (10.1016/j.cclet.2020.10.021_bib0145) 2012; 492
Liu (10.1016/j.cclet.2020.10.021_bib0095) 2012; 8
Johnson (10.1016/j.cclet.2020.10.021_bib0115) 1972; 6
Halvorson (10.1016/j.cclet.2020.10.021_bib0050) 2011; 45
Nishijima (10.1016/j.cclet.2020.10.021_bib0065) 2013; 21
Rycenga (10.1016/j.cclet.2020.10.021_bib0020) 2011; 50
Decher (10.1016/j.cclet.2020.10.021_bib0110) 1997; 277
Leveque (10.1016/j.cclet.2020.10.021_bib0030) 2006; 14
Kim (10.1016/j.cclet.2020.10.021_bib0160) 2019; 715
References_xml – volume: 16
  start-page: 3872
  year: 2016
  end-page: 3878
  ident: bib0090
  publication-title: Nano Lett.
– volume: 14
  start-page: 9971
  year: 2006
  end-page: 9981
  ident: bib0030
  publication-title: Opt. Express
– volume: 6
  start-page: 4370
  year: 1972
  end-page: 4379
  ident: bib0115
  publication-title: Phys. Rev. B
– volume: 21
  start-page: 3337
  year: 2011
  end-page: 3343
  ident: bib0165
  publication-title: Adv. Funct. Mater.
– volume: 21
  start-page: 13502
  year: 2013
  end-page: 13514
  ident: bib0065
  publication-title: Opt. Express
– volume: 277
  start-page: 1232
  year: 1997
  end-page: 1237
  ident: bib0110
  publication-title: Science
– volume: 225
  year: 2020
  ident: bib0005
  publication-title: Spectrochim. Acta A
– volume: 79
  start-page: 4215
  year: 2007
  end-page: 4221
  ident: bib0120
  publication-title: Anal. Chem.
– volume: 50
  start-page: 5473
  year: 2011
  end-page: 5477
  ident: bib0020
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 20247
  year: 2017
  end-page: 20253
  ident: bib0100
  publication-title: ACS Appl. Mater. Inter.
– volume: 25
  start-page: 20631
  year: 2017
  end-page: 20641
  ident: bib0015
  publication-title: Opt. Express
– volume: 89
  year: 2006
  ident: bib0170
  publication-title: Appl. Phys. Lett.
– volume: 127
  start-page: 855
  year: 2011
  end-page: 865
  ident: bib0075
  publication-title: Food Chem.
– volume: 476
  start-page: 308
  year: 2011
  end-page: 311
  ident: bib0130
  publication-title: Nature
– volume: 24
  start-page: 2224
  year: 2008
  end-page: 2231
  ident: bib0125
  publication-title: Langmuir
– volume: 141
  start-page: 4359
  year: 2016
  end-page: 4365
  ident: bib0155
  publication-title: Analyst
– volume: 19
  start-page: 388
  year: 2016
  end-page: 393
  ident: bib0045
  publication-title: Phys. Chem. Chem. Phys.
– volume: 158
  start-page: 153
  year: 2014
  end-page: 161
  ident: bib0080
  publication-title: Food Chem.
– volume: 45
  start-page: 5644
  year: 2011
  end-page: 5651
  ident: bib0050
  publication-title: Environ. Sci. Technol.
– volume: 121
  start-page: 63
  year: 2014
  end-page: 69
  ident: bib0055
  publication-title: Spectrochim. Acta A. Mol. Biomol. Spectrosc.
– volume: 3
  start-page: 1934
  year: 2020
  end-page: 1941
  ident: bib0060
  publication-title: ACS Appl. Nano Mater.
– volume: 37
  start-page: 153
  year: 2014
  end-page: 157
  ident: bib0175
  publication-title: Food Control
– volume: 206
  start-page: 405
  year: 2019
  end-page: 412
  ident: bib0010
  publication-title: Spectrochim. Acta A
– volume: 165
  start-page: 308
  year: 1996
  end-page: 318
  ident: bib0135
  publication-title: J. Crystal Growth
– volume: 8
  start-page: 2412
  year: 2012
  end-page: 2420
  ident: bib0095
  publication-title: Small
– volume: 11
  start-page: 4423
  year: 2018
  end-page: 4440
  ident: bib0085
  publication-title: Nano Res.
– volume: 85
  start-page: 1766
  year: 2011
  end-page: 1771
  ident: bib0070
  publication-title: Talanta
– volume: 16
  start-page: 10234
  year: 2010
  end-page: 10239
  ident: bib0105
  publication-title: Chem. Eur. J.
– volume: 492
  start-page: 86
  year: 2012
  end-page: 89
  ident: bib0145
  publication-title: Nature
– volume: 6
  start-page: 515
  year: 2011
  end-page: 519
  ident: bib0040
  publication-title: Plasmonics
– volume: 8
  start-page: 2245
  year: 2008
  end-page: 2252
  ident: bib0025
  publication-title: Nano Lett.
– volume: 13
  start-page: 5866
  year: 2013
  end-page: 5872
  ident: bib0150
  publication-title: Nano Lett.
– volume: 120
  start-page: 28735
  year: 2016
  end-page: 28742
  ident: bib0035
  publication-title: J. Phys. Chem. C
– volume: 15
  start-page: 1104
  year: 2004
  end-page: 1112
  ident: bib0140
  publication-title: Measure. Sci. Technol.
– volume: 715
  start-page: 91
  year: 2019
  end-page: 99
  ident: bib0160
  publication-title: Chem. Phys. Lett.
– volume: 158
  start-page: 153
  year: 2014
  ident: 10.1016/j.cclet.2020.10.021_bib0080
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2014.02.121
– volume: 16
  start-page: 10234
  year: 2010
  ident: 10.1016/j.cclet.2020.10.021_bib0105
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201000341
– volume: 165
  start-page: 308
  year: 1996
  ident: 10.1016/j.cclet.2020.10.021_bib0135
  publication-title: J. Crystal Growth
  doi: 10.1016/0022-0248(96)00151-0
– volume: 85
  start-page: 1766
  year: 2011
  ident: 10.1016/j.cclet.2020.10.021_bib0070
  publication-title: Talanta
  doi: 10.1016/j.talanta.2011.06.074
– volume: 492
  start-page: 86
  year: 2012
  ident: 10.1016/j.cclet.2020.10.021_bib0145
  publication-title: Nature
  doi: 10.1038/nature11615
– volume: 14
  start-page: 9971
  year: 2006
  ident: 10.1016/j.cclet.2020.10.021_bib0030
  publication-title: Opt. Express
  doi: 10.1364/OE.14.009971
– volume: 89
  year: 2006
  ident: 10.1016/j.cclet.2020.10.021_bib0170
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 4370
  year: 1972
  ident: 10.1016/j.cclet.2020.10.021_bib0115
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.6.4370
– volume: 37
  start-page: 153
  year: 2014
  ident: 10.1016/j.cclet.2020.10.021_bib0175
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2013.09.014
– volume: 21
  start-page: 13502
  year: 2013
  ident: 10.1016/j.cclet.2020.10.021_bib0065
  publication-title: Opt. Express
  doi: 10.1364/OE.21.013502
– volume: 21
  start-page: 3337
  year: 2011
  ident: 10.1016/j.cclet.2020.10.021_bib0165
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201100641
– volume: 45
  start-page: 5644
  year: 2011
  ident: 10.1016/j.cclet.2020.10.021_bib0050
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es200255y
– volume: 206
  start-page: 405
  year: 2019
  ident: 10.1016/j.cclet.2020.10.021_bib0010
  publication-title: Spectrochim. Acta A
  doi: 10.1016/j.saa.2018.08.035
– volume: 225
  year: 2020
  ident: 10.1016/j.cclet.2020.10.021_bib0005
  publication-title: Spectrochim. Acta A
  doi: 10.1016/j.saa.2019.117484
– volume: 6
  start-page: 515
  year: 2011
  ident: 10.1016/j.cclet.2020.10.021_bib0040
  publication-title: Plasmonics
  doi: 10.1007/s11468-011-9230-7
– volume: 25
  start-page: 20631
  year: 2017
  ident: 10.1016/j.cclet.2020.10.021_bib0015
  publication-title: Opt. Express
  doi: 10.1364/OE.25.020631
– volume: 8
  start-page: 2245
  year: 2008
  ident: 10.1016/j.cclet.2020.10.021_bib0025
  publication-title: Nano Lett.
  doi: 10.1021/nl080872f
– volume: 3
  start-page: 1934
  year: 2020
  ident: 10.1016/j.cclet.2020.10.021_bib0060
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b02579
– volume: 15
  start-page: 1104
  year: 2004
  ident: 10.1016/j.cclet.2020.10.021_bib0140
  publication-title: Measure. Sci. Technol.
  doi: 10.1088/0957-0233/15/6/009
– volume: 127
  start-page: 855
  year: 2011
  ident: 10.1016/j.cclet.2020.10.021_bib0075
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2011.01.024
– volume: 8
  start-page: 2412
  year: 2012
  ident: 10.1016/j.cclet.2020.10.021_bib0095
  publication-title: Small
  doi: 10.1002/smll.201200172
– volume: 16
  start-page: 3872
  year: 2016
  ident: 10.1016/j.cclet.2020.10.021_bib0090
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01388
– volume: 11
  start-page: 4423
  year: 2018
  ident: 10.1016/j.cclet.2020.10.021_bib0085
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1909-4
– volume: 13
  start-page: 5866
  year: 2013
  ident: 10.1016/j.cclet.2020.10.021_bib0150
  publication-title: Nano Lett.
  doi: 10.1021/nl402660s
– volume: 715
  start-page: 91
  year: 2019
  ident: 10.1016/j.cclet.2020.10.021_bib0160
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2018.11.024
– volume: 120
  start-page: 28735
  year: 2016
  ident: 10.1016/j.cclet.2020.10.021_bib0035
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b08276
– volume: 121
  start-page: 63
  year: 2014
  ident: 10.1016/j.cclet.2020.10.021_bib0055
  publication-title: Spectrochim. Acta A. Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2013.10.013
– volume: 79
  start-page: 4215
  year: 2007
  ident: 10.1016/j.cclet.2020.10.021_bib0120
  publication-title: Anal. Chem.
  doi: 10.1021/ac0702084
– volume: 24
  start-page: 2224
  year: 2008
  ident: 10.1016/j.cclet.2020.10.021_bib0125
  publication-title: Langmuir
  doi: 10.1021/la7026847
– volume: 50
  start-page: 5473
  year: 2011
  ident: 10.1016/j.cclet.2020.10.021_bib0020
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201101632
– volume: 476
  start-page: 308
  year: 2011
  ident: 10.1016/j.cclet.2020.10.021_bib0130
  publication-title: Nature
  doi: 10.1038/nature10344
– volume: 277
  start-page: 1232
  year: 1997
  ident: 10.1016/j.cclet.2020.10.021_bib0110
  publication-title: Science
  doi: 10.1126/science.277.5330.1232
– volume: 9
  start-page: 20247
  year: 2017
  ident: 10.1016/j.cclet.2020.10.021_bib0100
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.7b07231
– volume: 19
  start-page: 388
  year: 2016
  ident: 10.1016/j.cclet.2020.10.021_bib0045
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP07606H
– volume: 141
  start-page: 4359
  year: 2016
  ident: 10.1016/j.cclet.2020.10.021_bib0155
  publication-title: Analyst
  doi: 10.1039/C6AN00319B
SSID ssj0028836
Score 2.4090877
Snippet With adding 1-dodecanethiol-ethanol mixture, the Ag nanocubes was deposited as edge-to-edge monolayer onto the PE/gold film surface, leading to improved SERS...
Surface-enhanced Raman scattering (SERS) is a powerful spectroscopic tool in quantitative analysis of molecules, where the substrate plays a critical role in...
SourceID wanfang
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1497
SubjectTerms Crystal violet
Quantitative analysis
Rhodamine 6G
Silver nanocube
Surface enhanced raman scattering
Title Silver nanocubes monolayers as a SERS substrate for quantitative analysis
URI https://dx.doi.org/10.1016/j.cclet.2020.10.021
https://d.wanfangdata.com.cn/periodical/zghxkb202104040
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4IxujF-DPiD9KDRwd061Z2JAQCGjmIJNyWtlsRNQMFovHg3-57W0f0IAeznZq2WV7fvr2Xfe97hFxxKXRDx9oRMfccnkCCIhMtHe2zGKBQSqOxGvluEPRG_Gbsj0ukXdTCIK3SYn-O6Rla25G6tWZ9Pp3Wh6ge1OQM_yOiAgwWmnMu0MtrX2uaBzbTzSqMkDqEswvloYzjpWEzJFS6OFJruOyvr9P2u0yNTCc_vj3dfbJng0bayp_rgJSS9JDstItebUekP5wiw5mmMp3plUoWFLwLklaMp6mEmw4790O6AJTI1GgphKr0dSXTrMQMAI9KK05yTEbdzkO759gmCY72PH_pKMxIdNMIJoUSBuKxACUEuedx6bomhgAj1IqL0JhGDAdjGIp8hSYMmHGF63knpJzO0uSUUG6ajOlEhkIpDnmHMlIkAYuD0I-xvVCFuIVxIm0VxLGRxUtUUMWeosyiEVoUB8GiFXK9XjTPBTQ2Tw8Kq0e__CACiN-8kNoziuxbuIg-J48fz8rFtJbDdfbfvc_JLm6SE3YuSHn5tkouIRZZqmrmbFWy1erf9gbf40PdlA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELUQCMEFsYodH-BGaO24cXPggFjUsh0oSNyM7dhQQGFpK5YDP8UPMpM6CA5wQELJyYqtZDyZJXnzhpBVoaWt2sxGMhNxJBwkKNpZHdkay8AUau0tViMfHSeNM7F_XjsfIO9lLQzCKoPt79v0wlqHkUqQZuW-3a60kD2oLhj-R0QGmBJZeeBeniBv62w2d2CT1zjf2z3dbkShtUBk47jWjQzG8bbuJdPSSA9RTILEeyKOhebcZ-CWU2uETL2vZvA4niE1VurThHkuOX4FBbs_JMBcYNuEjbdPXAl27y1KmhCrhLdXUh0VoDILd48ITo4jG1XOfnKHw0869zq__OLs9sbJWIhS6VZfEBNkwOWTZGS7bA43RZqtNkKqaa7zO9szrkNBnSFLxgCeajhpa_ekRTtglgr6WwqxMX3o6byoaQMLS3VgQ5kmZ_8iuhkymN_lbpZQ4euMWadTaYyARMd4LV3CsiStZdjPaI7wUjjKBspy7Jxxq0ps2rUqJKpQojgIEp0j65-T7vuMHb9fnpRSV98UT4FP-X0iDXukwmvfUa-XV883hmMeLeCY_-vaK2SkcXp0qA6bxwcLZBQX7KOFFslg97HnliAQ6prlQvEoufhvTf8AbCUXUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silver+nanocubes+monolayers+as+a+SERS+substrate+for+quantitative+analysis&rft.jtitle=Chinese+chemical+letters&rft.au=Zhou%2C+Ziang&rft.au=Bai%2C+Xiuhui&rft.au=Li%2C+Peishen&rft.au=Wang%2C+Changzheng&rft.date=2021-04-01&rft.issn=1001-8417&rft.volume=32&rft.issue=4&rft.spage=1497&rft.epage=1501&rft_id=info:doi/10.1016%2Fj.cclet.2020.10.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cclet_2020_10_021
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghxkb%2Fzghxkb.jpg