Strategies for constructing manganese-based oxide electrode materials for aqueous rechargeable zinc-ion batteries
Commercial lithium-ion batteries (LIBs) have been widely used in various energy storage systems. However, many unfavorable factors of LIBs have prompted researchers to turn their attention to the development of emerging secondary batteries. Aqueous zinc ion batteries (AZIBs) present some prominent a...
Saved in:
Published in | Chinese chemical letters Vol. 33; no. 3; pp. 1236 - 1244 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2022
State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao 066004,China School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China%School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China State Key Laboratory of High-Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Commercial lithium-ion batteries (LIBs) have been widely used in various energy storage systems. However, many unfavorable factors of LIBs have prompted researchers to turn their attention to the development of emerging secondary batteries. Aqueous zinc ion batteries (AZIBs) present some prominent advantages with environmental friendliness, low cost and convenient operation feature. MnO2 electrode is the first to be discovered as promising cathode material. So far, manganese-based oxides have made significant progresses in improving the inherent capacity and energy density. Herein, we summarize comprehensively recent advances of Mn-based compounds as electrode materials for ZIBs. Especially, this review focuses on the design strategies of electrode structures, optimization of the electrochemical performance and the clarification of energy storage mechanisms. Finally, their future research directions and perspective are also proposed.
A plenty of work has focused on polymorphic Mn-based compounds due to their non-toxicity, low cost and rich crystal structure. In fact, the connection mode of MnO6 octahedrons determines MnO2 crystal structure, including α-, β-, γ-, λ-, R-, δ-, ε- and T-MnO2. These structures can be mutually transformed and seriously affect their electrochemical performance [Display omitted] . |
---|---|
AbstractList | Commercial lithium-ion batteries(LIBs)have been widely used in various energy storage systems.How-ever,many unfavorable factors of LIBs have prompted researchers to turn their attention to the devel-opment of emerging secondary batteries.Aqueous zinc ion batteries(AZIBs)present some prominent advantages with environmental friendliness,low cost and convenient operation feature.MnO2 electrode is the first to be discovered as promising cathode material.So far,manganese-based oxides have made significant progresses in improving the inherent capacity and energy density.Herein,we summarize com-prehensively recent advances of Mn-based compounds as electrode materials for ZIBs.Especially,this review focuses on the design strategies of electrode structures,optimization of the electrochemical per-formance and the clarification of energy storage mechanisms.Finally,their future research directions and perspective are also proposed. Commercial lithium-ion batteries (LIBs) have been widely used in various energy storage systems. However, many unfavorable factors of LIBs have prompted researchers to turn their attention to the development of emerging secondary batteries. Aqueous zinc ion batteries (AZIBs) present some prominent advantages with environmental friendliness, low cost and convenient operation feature. MnO2 electrode is the first to be discovered as promising cathode material. So far, manganese-based oxides have made significant progresses in improving the inherent capacity and energy density. Herein, we summarize comprehensively recent advances of Mn-based compounds as electrode materials for ZIBs. Especially, this review focuses on the design strategies of electrode structures, optimization of the electrochemical performance and the clarification of energy storage mechanisms. Finally, their future research directions and perspective are also proposed. A plenty of work has focused on polymorphic Mn-based compounds due to their non-toxicity, low cost and rich crystal structure. In fact, the connection mode of MnO6 octahedrons determines MnO2 crystal structure, including α-, β-, γ-, λ-, R-, δ-, ε- and T-MnO2. These structures can be mutually transformed and seriously affect their electrochemical performance [Display omitted] . |
Author | Liu, Ying Wu, Xiang |
AuthorAffiliation | School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China%School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China;State Key Laboratory of High-Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China;State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao 066004,China |
AuthorAffiliation_xml | – name: School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China%School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China;State Key Laboratory of High-Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China;State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao 066004,China |
Author_xml | – sequence: 1 givenname: Ying surname: Liu fullname: Liu, Ying organization: School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China – sequence: 2 givenname: Xiang orcidid: 0000-0001-8894-5188 surname: Wu fullname: Wu, Xiang email: wuxiang05@sut.edu.cn organization: School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China |
BookMark | eNqFkE1PAyEQhonRxPrxC7zszdNW2G1ZevBgGr8SEw_qmbAwbKlbsEC19tc7tZ48aDKBCbwPZJ4jsu-DB0LOGB0yyvjFfKh1D3lY0YoNqcBie2TARCPK8YSP9rGnlJVixJpDcpTSnNJKiJoPyPIpR5Whc5AKG2Khg085rnR2visWynfKQ4KyVQlMEdbOQAE96BwDdgsko1P9DlXLFYRVKiLomYodqLaHYuO8Ll3wRavyNgzphBxYROD0Zz8mLzfXz9O78uHx9n569VDquh7nsq2MaU0lLDfciqZmzUjreqzEhInWWC44A9429aQZ4aFWouKNUKqyY4srXhyT8927H8pbHETOwyp6_FFuutn6tUVXFa0pY5isd0kdQ0oRrHyLbqHip2RUbv3Kufz2K7d-JRVYW2ryi9Iuq4yzolHX_8Ne7lhAAe8OokzagddgHNrL0gT3J_8FPTqc_A |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_142033 crossref_primary_10_1021_acs_cgd_2c00699 crossref_primary_10_1002_smll_202204534 crossref_primary_10_1002_batt_202400660 crossref_primary_10_1016_j_jechem_2023_08_022 crossref_primary_10_1016_j_cclet_2023_109326 crossref_primary_10_1002_tcr_202300212 crossref_primary_10_1016_j_jpowsour_2023_232915 crossref_primary_10_1007_s12598_022_02026_w crossref_primary_10_1002_chem_202500219 crossref_primary_10_1002_anie_202500434 crossref_primary_10_1016_j_jiec_2024_02_042 crossref_primary_10_1016_j_cclet_2022_107839 crossref_primary_10_1149_1945_7111_ad4b5f crossref_primary_10_1007_s11581_024_06011_4 crossref_primary_10_3390_nano12193298 crossref_primary_10_1016_j_cclet_2024_110726 crossref_primary_10_1016_j_ensm_2023_01_006 crossref_primary_10_1016_j_jpowsour_2023_233854 crossref_primary_10_1021_acssuschemeng_3c02379 crossref_primary_10_1016_j_isci_2024_110926 crossref_primary_10_1016_j_jcis_2024_05_151 crossref_primary_10_1002_adfm_202214538 crossref_primary_10_1016_j_ccr_2022_215009 crossref_primary_10_1021_acsanm_3c02148 crossref_primary_10_1016_j_cclet_2024_109551 crossref_primary_10_1039_D3NR04996E crossref_primary_10_1007_s12598_022_02030_0 crossref_primary_10_1016_j_jallcom_2022_166682 crossref_primary_10_1016_j_ccr_2024_216255 crossref_primary_10_1016_j_nanoen_2023_108736 crossref_primary_10_1016_j_cclet_2022_06_052 crossref_primary_10_1063_5_0203943 crossref_primary_10_1016_j_jelechem_2024_118701 crossref_primary_10_1051_matecconf_202338201015 crossref_primary_10_1039_D2CE00741J crossref_primary_10_1007_s11581_023_05236_z crossref_primary_10_1149_1945_7111_ac5baa crossref_primary_10_1002_tcr_202300341 crossref_primary_10_1016_j_electacta_2024_144945 crossref_primary_10_1016_j_jallcom_2023_170714 crossref_primary_10_1002_adsu_202400578 crossref_primary_10_2139_ssrn_4117162 crossref_primary_10_1016_j_cclet_2023_108698 crossref_primary_10_1039_D4MH00544A crossref_primary_10_1016_j_cclet_2024_110701 crossref_primary_10_1002_eom2_12409 crossref_primary_10_1007_s11581_024_05747_3 crossref_primary_10_1016_j_jechem_2023_03_052 crossref_primary_10_1002_ange_202500434 crossref_primary_10_1002_batt_202200569 crossref_primary_10_3390_molecules28114459 crossref_primary_10_1007_s10008_023_05488_9 crossref_primary_10_1016_j_cplett_2025_141872 crossref_primary_10_1016_j_jallcom_2022_164882 crossref_primary_10_1021_acsnano_2c11357 crossref_primary_10_1021_acs_cgd_3c00864 crossref_primary_10_1002_tcr_202200088 crossref_primary_10_1016_j_jallcom_2024_177165 crossref_primary_10_1016_j_jelechem_2023_117636 crossref_primary_10_1021_acsami_2c02960 crossref_primary_10_1016_j_apsusc_2022_154685 crossref_primary_10_1016_j_cclet_2022_05_052 crossref_primary_10_1016_j_cej_2024_151112 crossref_primary_10_1016_j_jallcom_2023_169366 crossref_primary_10_1016_j_mtcomm_2024_108942 crossref_primary_10_1021_acs_langmuir_3c00773 crossref_primary_10_1021_acsmaterialslett_4c00308 crossref_primary_10_1039_D2TA06449A crossref_primary_10_1002_adsu_202300545 crossref_primary_10_1002_aenm_202304303 crossref_primary_10_1039_D3CE00053B crossref_primary_10_1039_D3NR05225G crossref_primary_10_1002_slct_202402489 crossref_primary_10_1021_acsanm_4c06593 crossref_primary_10_1016_j_jcis_2023_04_062 crossref_primary_10_3390_molecules27217344 crossref_primary_10_1016_j_cclet_2023_108421 crossref_primary_10_1016_j_cclet_2022_107885 crossref_primary_10_1007_s10008_024_05856_z crossref_primary_10_1016_j_compositesb_2023_110770 crossref_primary_10_1016_j_partic_2022_12_003 crossref_primary_10_3390_nano13233017 crossref_primary_10_1016_j_jpowsour_2024_235409 crossref_primary_10_1016_j_cclet_2022_06_016 crossref_primary_10_1016_j_jcis_2022_08_046 crossref_primary_10_1016_j_mtsust_2023_100433 crossref_primary_10_1039_D1MA00983D crossref_primary_10_1021_acsami_2c00001 crossref_primary_10_1039_D3NR00466J crossref_primary_10_1016_j_enchem_2022_100092 crossref_primary_10_1002_adfm_202413684 crossref_primary_10_1016_j_cclet_2023_108406 crossref_primary_10_1016_j_jics_2024_101564 crossref_primary_10_1039_D1CE01658J crossref_primary_10_1007_s10971_024_06499_2 crossref_primary_10_1021_acsaem_4c00191 crossref_primary_10_1016_j_jallcom_2025_178843 crossref_primary_10_1016_j_nanoen_2024_109416 crossref_primary_10_1016_j_cclet_2024_110185 crossref_primary_10_1016_j_cis_2025_103469 crossref_primary_10_1016_j_mtchem_2023_101686 crossref_primary_10_1016_j_est_2023_107614 |
Cites_doi | 10.1002/cssc.201600702 10.1021/acsenergylett.8b01105 10.1016/j.jechem.2020.07.027 10.1016/j.ensm.2019.04.022 10.1016/j.jpowsour.2015.04.140 10.1039/C6TA09829K 10.1038/s41467-018-04949-4 10.1002/anie.201505487 10.1021/acsnano.9b07222 10.1002/adma.201601357 10.1021/acs.jpcc.9b05535 10.1039/C8TA01198B 10.1016/j.nanoen.2020.104715 10.1007/s40820-020-0401-y 10.1016/j.nanoen.2019.03.034 10.1021/acsnano.9b04916 10.1016/j.ensm.2018.12.019 10.1016/j.nanoen.2017.10.058 10.1021/jacs.6b04629 10.1039/C9EE02526J 10.1021/jacs.6b05958 10.1038/35104644 10.1016/j.ensm.2019.03.006 10.1007/s40820-019-0322-9 10.1039/C9TA03541A 10.1016/j.electacta.2017.01.163 10.1021/acsaem.9b01632 10.1016/j.electacta.2019.134867 10.1039/C9TA08049J 10.1016/j.mattod.2019.05.021 10.1016/j.elecom.2015.08.019 10.1007/s40820-019-0256-2 10.1016/j.nanoen.2019.01.068 10.1016/j.jpowsour.2007.12.075 10.1016/j.jpowsour.2019.03.022 10.1016/j.cclet.2017.11.038 10.1016/j.jechem.2020.08.016 10.1016/S0020-1693(00)82175-1 10.1021/cm504717p 10.1016/j.cclet.2020.03.014 10.1007/s40820-020-0397-3 10.1016/j.ensm.2019.12.021 10.1126/science.1213003 10.1007/s12598-020-01576-1 10.1016/j.apsusc.2017.02.009 10.1016/j.electacta.2013.08.136 10.1016/j.ensm.2020.04.003 10.1016/j.jpowsour.2015.09.096 10.1002/anie.201904174 10.1016/j.cclet.2020.08.030 10.1038/nenergy.2016.39 10.1016/j.jechem.2019.08.011 10.1007/s40820-020-00445-x 10.1016/j.mser.2018.10.002 10.1016/j.electacta.2014.04.001 10.1016/j.cclet.2019.11.002 10.1021/jacs.7b04471 10.1039/C9TA08418E 10.1016/j.ensm.2019.07.030 |
ContentType | Journal Article |
Copyright | 2021 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2021 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1016/j.cclet.2021.08.081 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1878-5964 |
EndPage | 1244 |
ExternalDocumentID | zghxkb202203011 10_1016_j_cclet_2021_08_081 S1001841721006550 |
GroupedDBID | --K --M .~1 0R~ 188 1B1 1~. 1~5 29B 2B. 2C. 2WC 4.4 457 4G. 5GY 5VR 5VS 6J9 7-5 71M 8P~ 8RM 92E 92I 92Q 93N AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFUIB AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C1A CCEZO CDRFL CHBEP CS3 CW9 DU5 EBS EFJIC EFLBG EJD EO9 EP2 EP3 F5P FA0 FDB FEDTE FIRID FLBIZ FNPLU FYGXN GBLVA GX1 HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ S.. SDF SDG SDH SES SPC SPCBC SSK SSZ T5K TCJ TGP UNMZH UZ4 ~G- -SB -S~ 5XA 5XC AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CAJEB CITATION Q-- SSH U1G U5L 4A8 PSX |
ID | FETCH-LOGICAL-c335t-b2ddbd28f6d6f873174cc35a8918bdf6861e6b739745a8ca82678aa2f5faa2b73 |
IEDL.DBID | .~1 |
ISSN | 1001-8417 |
IngestDate | Thu May 29 04:08:24 EDT 2025 Tue Jul 01 03:19:02 EDT 2025 Thu Apr 24 23:10:11 EDT 2025 Fri Feb 23 02:40:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | MnO2 Aqueous zinc ion batteries Secondary batteries Mn-based compounds Cathode materials |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c335t-b2ddbd28f6d6f873174cc35a8918bdf6861e6b739745a8ca82678aa2f5faa2b73 |
ORCID | 0000-0001-8894-5188 |
PageCount | 9 |
ParticipantIDs | wanfang_journals_zghxkb202203011 crossref_primary_10_1016_j_cclet_2021_08_081 crossref_citationtrail_10_1016_j_cclet_2021_08_081 elsevier_sciencedirect_doi_10_1016_j_cclet_2021_08_081 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese chemical letters |
PublicationTitle_FL | Chinese Chemical Letters |
PublicationYear | 2022 |
Publisher | Elsevier B.V State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao 066004,China School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China%School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China State Key Laboratory of High-Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China |
Publisher_xml | – name: Elsevier B.V – name: School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China%School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China – name: State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao 066004,China – name: State Key Laboratory of High-Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China |
References | Liu, Wu (bib0016) 2021; 56 Nakayama, Kanaya, Lee, Popov (bib0049) 2008; 179 Xu, Wang (bib0058) 2019; 11 Liu, Huang, Bi (bib0047) 2019; 7 Guo, Zhou, Liu (bib0076) 2019; 324 Zhang, Cheng, Liu (bib0064) 2016; 138 Zeng, Hao, Wang, Mao (bib0029) 2019; 20 Sun, Wang, Hou (bib0017) 2017; 139 Verma, Kumar, Manalastas (bib0027) 2019; 2 Alfaruqi, Gim, Kim (bib0068) 2015; 288 Wu, Li, Li (bib0036) 2015; 300 Song, Jiao, Tu (bib0013) 2017; 5 Li, Rui, Chen (bib0021) 2020; 12 Zhang, Li, Ye (bib0040) 2016; 138 Zhang, Liu, Wang (bib0054) 2019; 7 Alfaruqi, Gim, Kim (bib0051) 2015; 60 Soundharrajan, Sambandam, Kim (bib0078) 2018; 3 Wu, Yao (bib0004) 2017; 42 Zhu, Fang, Zhou (bib0060) 2018; 6 Gao, Wu, Li (bib0074) 2020; 16 Liu, Zhang, Huang (bib0038) 2021; 56 Xiong, Zhang, Lee, Xue (bib0063) 2020; 10 Liu, Wu (bib0020) 2021; 86 Fang, Zhu, Chen (bib0037) 2019; 29 Liu, Chen, Fang (bib0022) 2019; 11 Jin, Zou, Liu (bib0052) 2019; 31 Huang, He, Zhang, Lu (bib0039) 2018; 11 Bi, Wu, Cao (bib0018) 2020 Jiang, Xu, Wu (bib0032) 2017; 229 Voskanyan, Ho, Chan (bib0050) 2019; 421 Yamamoto, Shoji (bib0028) 1986; 117 Zhao, Dai, Zhao (bib0002) 2020; 72 Su, Liu, Wang, Lu, Yan (bib0003) 2020; 31 Pan, Shao, Yan (bib0045) 2016; 1 Fang, Jiang, Zheng (bib0010) 2020; 40 Zhang, Deng, Li (bib0019) 2020; 29 Gogotsi, Simon (bib0001) 2011; 334 Chao, Zhou, Ye (bib0067) 2019; 58 Wu, Zhang, Yan (bib0046) 2018; 14 Lee, Seo, Lee (bib0070) 2016; 9 Zhang, Wang, Liu (bib0065) 2019; 21 Kasiri, Glenneberg, Hashemi, Kun, La Mantia (bib0025) 2019; 19 Tarascon, Armand (bib0005) 2001; 414 Yang, Mo, Liu (bib0024) 2019; 31 Guo, Zhou, Bai (bib0073) 2020; 16 Zhu, Fang, Liang (bib0069) 2020; 24 Yan, Yang, Wang, Ma (bib0012) 2020; 31 Song, Tan, Chao, Fan (bib0008) 2018; 28 Wang, Zeng, Xiao (bib0044) 2020; 43 Yuan, Kong, Li, Zhang (bib0007) 2017; 28 Lee, Ju, Cho, Cho, Oh (bib0048) 2013; 112 Shi, Wang, Shen (bib0061) 2020; 399 Zhong, Xu, Veder (bib0055) 2020; 23 Xiong, Yu, Wu (bib0066) 2019; 9 Xu, Li, Wei (bib0033) 2014; 133 Wang, Wang, Liu, Wei, Kang (bib0071) 2019; 7 Liu, Wu, Wang (bib0006) 2020; 392 Elia, Marquardt, Hoeppner (bib0011) 2016; 28 Liang, Mo, Li (bib0072) 2019; 9 Wang, Sun, Zhao (bib0057) 2019; 123 Qi, Yang, Hou (bib0009) 2021; 32 Soundharrajan, Sambandam, Kim (bib0035) 2020; 28 Hu, Zhu, Wang (bib0026) 2019; 58 Chen, Rui, Zhang (bib0023) 2019; 60 Wang, Wang, Liang (bib0053) 2019; 13 Huang, Zeng, Zhu, Zhang, Liu (bib0030) 2020; 12 Ming, Guo, Xia, Wang, Alshareef (bib0034) 2019; 135 Zou, Zhang, Chen (bib0042) 2019; 13 Kim, Nam, Lee (bib0059) 2015; 54 Liu, Hu, Liu, Wu, Zhi (bib0014) 2020; 17 Alfaruqi, Mathew, Gim (bib0043) 2015; 27 Tang, Shan, Liang, Zhou (bib0015) 2019; 12 Sun, Nian, Zheng, Shi (bib0056) 2020; 16 Han, Huang, Liang (bib0041) 2020; 23 Xie, Yan, Chen (bib0062) 2019; 31 Alfaruqi, Islam, Mathew (bib0031) 2017; 404 Zhai, Qu, Hao (bib0077) 2020; 12 Huang, Wang, Hou (bib0075) 2018; 9 Lee (10.1016/j.cclet.2021.08.081_bib0070) 2016; 9 Xiong (10.1016/j.cclet.2021.08.081_bib0066) 2019; 9 Yuan (10.1016/j.cclet.2021.08.081_bib0007) 2017; 28 Guo (10.1016/j.cclet.2021.08.081_bib0073) 2020; 16 Tarascon (10.1016/j.cclet.2021.08.081_bib0005) 2001; 414 Tang (10.1016/j.cclet.2021.08.081_bib0015) 2019; 12 Fang (10.1016/j.cclet.2021.08.081_bib0010) 2020; 40 Liu (10.1016/j.cclet.2021.08.081_bib0022) 2019; 11 Xu (10.1016/j.cclet.2021.08.081_bib0033) 2014; 133 Liang (10.1016/j.cclet.2021.08.081_bib0072) 2019; 9 Zhu (10.1016/j.cclet.2021.08.081_bib0060) 2018; 6 Sun (10.1016/j.cclet.2021.08.081_bib0017) 2017; 139 Wang (10.1016/j.cclet.2021.08.081_bib0044) 2020; 43 Zhong (10.1016/j.cclet.2021.08.081_bib0055) 2020; 23 Zhang (10.1016/j.cclet.2021.08.081_bib0065) 2019; 21 Guo (10.1016/j.cclet.2021.08.081_bib0076) 2019; 324 Voskanyan (10.1016/j.cclet.2021.08.081_bib0050) 2019; 421 Xiong (10.1016/j.cclet.2021.08.081_bib0063) 2020; 10 Gao (10.1016/j.cclet.2021.08.081_bib0074) 2020; 16 Yang (10.1016/j.cclet.2021.08.081_bib0024) 2019; 31 Liu (10.1016/j.cclet.2021.08.081_bib0020) 2021; 86 Pan (10.1016/j.cclet.2021.08.081_bib0045) 2016; 1 Zhang (10.1016/j.cclet.2021.08.081_bib0040) 2016; 138 Elia (10.1016/j.cclet.2021.08.081_bib0011) 2016; 28 Liu (10.1016/j.cclet.2021.08.081_bib0047) 2019; 7 Wu (10.1016/j.cclet.2021.08.081_bib0004) 2017; 42 Wang (10.1016/j.cclet.2021.08.081_bib0053) 2019; 13 Chao (10.1016/j.cclet.2021.08.081_bib0067) 2019; 58 Su (10.1016/j.cclet.2021.08.081_bib0003) 2020; 31 Alfaruqi (10.1016/j.cclet.2021.08.081_bib0068) 2015; 288 Liu (10.1016/j.cclet.2021.08.081_bib0014) 2020; 17 Alfaruqi (10.1016/j.cclet.2021.08.081_bib0043) 2015; 27 Huang (10.1016/j.cclet.2021.08.081_bib0075) 2018; 9 Li (10.1016/j.cclet.2021.08.081_bib0021) 2020; 12 Yamamoto (10.1016/j.cclet.2021.08.081_bib0028) 1986; 117 Fang (10.1016/j.cclet.2021.08.081_bib0037) 2019; 29 Zhu (10.1016/j.cclet.2021.08.081_bib0069) 2020; 24 Verma (10.1016/j.cclet.2021.08.081_bib0027) 2019; 2 Lee (10.1016/j.cclet.2021.08.081_bib0048) 2013; 112 Song (10.1016/j.cclet.2021.08.081_bib0008) 2018; 28 Qi (10.1016/j.cclet.2021.08.081_bib0009) 2021; 32 Shi (10.1016/j.cclet.2021.08.081_bib0061) 2020; 399 Wang (10.1016/j.cclet.2021.08.081_bib0057) 2019; 123 Zhang (10.1016/j.cclet.2021.08.081_bib0064) 2016; 138 Song (10.1016/j.cclet.2021.08.081_bib0013) 2017; 5 Zeng (10.1016/j.cclet.2021.08.081_bib0029) 2019; 20 Nakayama (10.1016/j.cclet.2021.08.081_bib0049) 2008; 179 Kim (10.1016/j.cclet.2021.08.081_bib0059) 2015; 54 Jiang (10.1016/j.cclet.2021.08.081_bib0032) 2017; 229 Liu (10.1016/j.cclet.2021.08.081_bib0006) 2020; 392 Yan (10.1016/j.cclet.2021.08.081_bib0012) 2020; 31 Soundharrajan (10.1016/j.cclet.2021.08.081_bib0035) 2020; 28 Sun (10.1016/j.cclet.2021.08.081_bib0056) 2020; 16 Hu (10.1016/j.cclet.2021.08.081_bib0026) 2019; 58 Gogotsi (10.1016/j.cclet.2021.08.081_bib0001) 2011; 334 Ming (10.1016/j.cclet.2021.08.081_bib0034) 2019; 135 Liu (10.1016/j.cclet.2021.08.081_bib0016) 2021; 56 Wang (10.1016/j.cclet.2021.08.081_bib0071) 2019; 7 Huang (10.1016/j.cclet.2021.08.081_bib0030) 2020; 12 Zhang (10.1016/j.cclet.2021.08.081_bib0054) 2019; 7 Jin (10.1016/j.cclet.2021.08.081_bib0052) 2019; 31 Kasiri (10.1016/j.cclet.2021.08.081_bib0025) 2019; 19 Soundharrajan (10.1016/j.cclet.2021.08.081_bib0078) 2018; 3 Alfaruqi (10.1016/j.cclet.2021.08.081_bib0031) 2017; 404 Wu (10.1016/j.cclet.2021.08.081_bib0036) 2015; 300 Zou (10.1016/j.cclet.2021.08.081_bib0042) 2019; 13 Wu (10.1016/j.cclet.2021.08.081_bib0046) 2018; 14 Huang (10.1016/j.cclet.2021.08.081_bib0039) 2018; 11 Bi (10.1016/j.cclet.2021.08.081_bib0018) 2020 Alfaruqi (10.1016/j.cclet.2021.08.081_bib0051) 2015; 60 Xu (10.1016/j.cclet.2021.08.081_bib0058) 2019; 11 Zhang (10.1016/j.cclet.2021.08.081_bib0019) 2020; 29 Xie (10.1016/j.cclet.2021.08.081_bib0062) 2019; 31 Liu (10.1016/j.cclet.2021.08.081_bib0038) 2021; 56 Chen (10.1016/j.cclet.2021.08.081_bib0023) 2019; 60 Zhai (10.1016/j.cclet.2021.08.081_bib0077) 2020; 12 Han (10.1016/j.cclet.2021.08.081_bib0041) 2020; 23 Zhao (10.1016/j.cclet.2021.08.081_bib0002) 2020; 72 |
References_xml | – volume: 31 year: 2019 ident: bib0024 publication-title: Adv. Mater. – volume: 24 start-page: 394 year: 2020 end-page: 401 ident: bib0069 publication-title: Energy Storage Mater. – volume: 324 year: 2019 ident: bib0076 publication-title: Electrochim. Acta – volume: 179 start-page: 361 year: 2008 end-page: 366 ident: bib0049 publication-title: J. Power Sources – volume: 3 start-page: 1998 year: 2018 end-page: 2004 ident: bib0078 publication-title: ACS Energy Lett. – volume: 23 year: 2020 ident: bib0041 publication-title: iScience – volume: 40 start-page: 433 year: 2020 end-page: 439 ident: bib0010 publication-title: Rare Metals – volume: 28 start-page: 407 year: 2020 end-page: 417 ident: bib0035 publication-title: Energy Storage Mater – volume: 23 year: 2020 ident: bib0055 publication-title: Z. Shao, iScience – volume: 58 start-page: 7823 year: 2019 end-page: 7828 ident: bib0067 publication-title: Angew. Chem. Int. Ed. – volume: 16 year: 2020 ident: bib0074 publication-title: Small – volume: 399 year: 2020 ident: bib0061 publication-title: Chem. Eng. J. – volume: 20 start-page: 410 year: 2019 end-page: 437 ident: bib0029 publication-title: Z. Guo, Energy Storage Mater. – volume: 17 year: 2020 ident: bib0014 publication-title: Mater. Today Energy – volume: 112 start-page: 138 year: 2013 end-page: 143 ident: bib0048 publication-title: Electrochim. Acta – volume: 86 year: 2021 ident: bib0020 publication-title: Nano Energy – volume: 43 start-page: 182 year: 2020 end-page: 187 ident: bib0044 publication-title: J. Energy Chem. – volume: 16 year: 2020 ident: bib0073 publication-title: Mater. Today Energy – volume: 31 start-page: 2358 year: 2020 end-page: 2364 ident: bib0003 publication-title: Chin. Chem. Lett. – volume: 58 start-page: 492 year: 2019 end-page: 498 ident: bib0026 publication-title: Nano Energy – volume: 60 start-page: 121 year: 2015 end-page: 125 ident: bib0051 publication-title: Electrochem. Commun. – volume: 334 start-page: 917 year: 2011 end-page: 918 ident: bib0001 publication-title: Science – volume: 29 year: 2019 ident: bib0037 publication-title: Adv. Funct. Mater. – volume: 10 year: 2020 ident: bib0063 publication-title: Adv. Energy Mater. – volume: 135 start-page: 58 year: 2019 end-page: 84 ident: bib0034 publication-title: Mater. Sci. Eng. R: Rep. – volume: 421 start-page: 162 year: 2019 end-page: 168 ident: bib0050 publication-title: J. Power Sources – volume: 138 start-page: 8928 year: 2016 end-page: 8935 ident: bib0040 publication-title: J. Am. Chem. Soc. – volume: 11 year: 2018 ident: bib0039 publication-title: Funct. Mater. Lett. – volume: 28 start-page: 7564 year: 2016 end-page: 7579 ident: bib0011 publication-title: Adv. Mater. – volume: 9 year: 2019 ident: bib0066 publication-title: Adv. Energy Mater. – volume: 28 start-page: 2180 year: 2017 end-page: 2194 ident: bib0007 publication-title: Chin. Chem. Lett. – volume: 1 start-page: 16039 year: 2016 ident: bib0045 publication-title: Nat. Energy – volume: 54 start-page: 15094 year: 2015 end-page: 15099 ident: bib0059 publication-title: Angew. Chem. Int. Ed. – volume: 414 start-page: 359 year: 2001 end-page: 367 ident: bib0005 publication-title: Nature – volume: 139 start-page: 9775 year: 2017 end-page: 9778 ident: bib0017 publication-title: J Am. Chem. Soc. – volume: 31 year: 2019 ident: bib0052 publication-title: Adv. Mater. – volume: 11 start-page: 90 year: 2019 ident: bib0058 publication-title: Nano-Micro Lett. – volume: 16 year: 2020 ident: bib0056 publication-title: Z. Tao, Small – volume: 21 start-page: 154 year: 2019 end-page: 161 ident: bib0065 publication-title: Energy Storage Mater. – volume: 133 start-page: 254 year: 2014 end-page: 261 ident: bib0033 publication-title: Electrochim. Acta – volume: 12 start-page: 56 year: 2020 ident: bib0077 publication-title: Nano-Micro Lett. – volume: 229 start-page: 422 year: 2017 end-page: 428 ident: bib0032 publication-title: Electrochim. Acta – volume: 7 start-page: 22079 year: 2019 end-page: 22083 ident: bib0054 publication-title: J. Mater. Chem. A – volume: 28 year: 2018 ident: bib0008 publication-title: Adv. Funct. Mater. – volume: 404 start-page: 435 year: 2017 end-page: 442 ident: bib0031 publication-title: Appl. Surf. Sci. – volume: 12 start-page: 110 year: 2020 ident: bib0030 publication-title: Nano-Micro Lett. – volume: 7 start-page: 20806 year: 2019 end-page: 20812 ident: bib0047 publication-title: J. Mater. Chem. A – volume: 31 start-page: 583 year: 2020 end-page: 588 ident: bib0012 publication-title: Chin. Chem. Lett. – volume: 12 start-page: 67 year: 2020 ident: bib0021 publication-title: Nano Micro. Lett. – volume: 7 start-page: 13727 year: 2019 end-page: 13735 ident: bib0071 publication-title: J. Mater. Chem. A – volume: 32 start-page: 1117 year: 2021 end-page: 1120 ident: bib0009 publication-title: Chin. Chem. Lett. – volume: 5 start-page: 1282 year: 2017 end-page: 1291 ident: bib0013 publication-title: J. Mater. Chem. A – volume: 13 start-page: 10643 year: 2019 end-page: 10652 ident: bib0053 publication-title: ACS Nano – volume: 138 start-page: 12894 year: 2016 end-page: 12901 ident: bib0064 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 8667 year: 2019 end-page: 8674 ident: bib0027 publication-title: ACS Appl. Energy Mater. – volume: 56 start-page: 223 year: 2021 end-page: 237 ident: bib0016 publication-title: J. Energy Chem. – volume: 392 year: 2020 ident: bib0006 publication-title: Chem. Eng. J. – volume: 12 start-page: 3288 year: 2019 end-page: 3304 ident: bib0015 publication-title: Energy Environ. Sci. – volume: 13 start-page: 2062 year: 2019 end-page: 2071 ident: bib0042 publication-title: ACS Nano – volume: 11 start-page: 25 year: 2019 ident: bib0022 publication-title: Nano-Micro Lett. – volume: 60 start-page: 171 year: 2019 end-page: 178 ident: bib0023 publication-title: Nano Energy – volume: 9 start-page: 2906 year: 2018 ident: bib0075 publication-title: Nat. Commun. – volume: 42 start-page: 143 year: 2017 end-page: 150 ident: bib0004 publication-title: Nano Energy – volume: 19 start-page: 360 year: 2019 end-page: 369 ident: bib0025 publication-title: Energy Storage Mater. – volume: 14 year: 2018 ident: bib0046 publication-title: Small – volume: 31 start-page: 47 year: 2019 end-page: 68 ident: bib0062 publication-title: Mater. Today – volume: 117 start-page: L27 year: 1986 end-page: L28 ident: bib0028 publication-title: Inorg. Chim. Acta – volume: 9 start-page: 2948 year: 2016 end-page: 2956 ident: bib0070 publication-title: ChemSusChem – volume: 27 start-page: 3609 year: 2015 end-page: 3620 ident: bib0043 publication-title: Chem. Mater. – volume: 123 start-page: 22735 year: 2019 end-page: 22741 ident: bib0057 publication-title: J. Phys. Chem. C – volume: 9 year: 2019 ident: bib0072 publication-title: A, Adv. Energy Mater. – volume: 29 start-page: 52 year: 2020 end-page: 59 ident: bib0019 publication-title: Energy Storage Mater. – volume: 288 start-page: 320 year: 2015 end-page: 327 ident: bib0068 publication-title: J. Power Sources – start-page: 18 year: 2020 ident: bib0018 publication-title: Mater. Today Energy – volume: 300 start-page: 453 year: 2015 end-page: 459 ident: bib0036 publication-title: J. Power Sources – volume: 72 year: 2020 ident: bib0002 publication-title: Nano Energy – volume: 56 start-page: 365 year: 2021 end-page: 373 ident: bib0038 publication-title: J. Energy Chem. – volume: 6 start-page: 9677 year: 2018 end-page: 9683 ident: bib0060 publication-title: J. Mater. Chem. A – volume: 9 start-page: 2948 year: 2016 ident: 10.1016/j.cclet.2021.08.081_bib0070 publication-title: ChemSusChem doi: 10.1002/cssc.201600702 – volume: 3 start-page: 1998 year: 2018 ident: 10.1016/j.cclet.2021.08.081_bib0078 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01105 – volume: 56 start-page: 365 year: 2021 ident: 10.1016/j.cclet.2021.08.081_bib0038 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.07.027 – volume: 20 start-page: 410 year: 2019 ident: 10.1016/j.cclet.2021.08.081_bib0029 publication-title: Z. Guo, Energy Storage Mater. doi: 10.1016/j.ensm.2019.04.022 – volume: 288 start-page: 320 year: 2015 ident: 10.1016/j.cclet.2021.08.081_bib0068 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.04.140 – volume: 5 start-page: 1282 year: 2017 ident: 10.1016/j.cclet.2021.08.081_bib0013 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09829K – volume: 9 start-page: 2906 year: 2018 ident: 10.1016/j.cclet.2021.08.081_bib0075 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04949-4 – volume: 10 year: 2020 ident: 10.1016/j.cclet.2021.08.081_bib0063 publication-title: Adv. Energy Mater. – volume: 54 start-page: 15094 year: 2015 ident: 10.1016/j.cclet.2021.08.081_bib0059 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201505487 – volume: 16 year: 2020 ident: 10.1016/j.cclet.2021.08.081_bib0073 publication-title: Mater. Today Energy – volume: 13 start-page: 2062 year: 2019 ident: 10.1016/j.cclet.2021.08.081_bib0042 publication-title: ACS Nano doi: 10.1021/acsnano.9b07222 – volume: 9 year: 2019 ident: 10.1016/j.cclet.2021.08.081_bib0072 publication-title: A, Adv. Energy Mater. – volume: 16 year: 2020 ident: 10.1016/j.cclet.2021.08.081_bib0074 publication-title: Small – volume: 28 start-page: 7564 year: 2016 ident: 10.1016/j.cclet.2021.08.081_bib0011 publication-title: Adv. Mater. doi: 10.1002/adma.201601357 – volume: 123 start-page: 22735 year: 2019 ident: 10.1016/j.cclet.2021.08.081_bib0057 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b05535 – volume: 6 start-page: 9677 year: 2018 ident: 10.1016/j.cclet.2021.08.081_bib0060 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01198B – volume: 72 year: 2020 ident: 10.1016/j.cclet.2021.08.081_bib0002 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104715 – volume: 12 start-page: 67 year: 2020 ident: 10.1016/j.cclet.2021.08.081_bib0021 publication-title: Nano Micro. Lett. doi: 10.1007/s40820-020-0401-y – volume: 60 start-page: 171 year: 2019 ident: 10.1016/j.cclet.2021.08.081_bib0023 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.034 – volume: 14 year: 2018 ident: 10.1016/j.cclet.2021.08.081_bib0046 publication-title: Small – volume: 13 start-page: 10643 year: 2019 ident: 10.1016/j.cclet.2021.08.081_bib0053 publication-title: ACS Nano doi: 10.1021/acsnano.9b04916 – volume: 21 start-page: 154 year: 2019 ident: 10.1016/j.cclet.2021.08.081_bib0065 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.12.019 – volume: 42 start-page: 143 year: 2017 ident: 10.1016/j.cclet.2021.08.081_bib0004 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.10.058 – volume: 138 start-page: 8928 year: 2016 ident: 10.1016/j.cclet.2021.08.081_bib0040 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04629 – volume: 12 start-page: 3288 year: 2019 ident: 10.1016/j.cclet.2021.08.081_bib0015 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE02526J – volume: 17 year: 2020 ident: 10.1016/j.cclet.2021.08.081_bib0014 publication-title: Mater. Today Energy – volume: 399 year: 2020 ident: 10.1016/j.cclet.2021.08.081_bib0061 publication-title: Chem. Eng. J. – volume: 138 start-page: 12894 year: 2016 ident: 10.1016/j.cclet.2021.08.081_bib0064 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05958 – volume: 392 year: 2020 ident: 10.1016/j.cclet.2021.08.081_bib0006 publication-title: Chem. Eng. J. – start-page: 18 year: 2020 ident: 10.1016/j.cclet.2021.08.081_bib0018 publication-title: Mater. Today Energy – volume: 414 start-page: 359 year: 2001 ident: 10.1016/j.cclet.2021.08.081_bib0005 publication-title: Nature doi: 10.1038/35104644 – volume: 19 start-page: 360 year: 2019 ident: 10.1016/j.cclet.2021.08.081_bib0025 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.03.006 – volume: 11 start-page: 90 year: 2019 ident: 10.1016/j.cclet.2021.08.081_bib0058 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0322-9 – volume: 7 start-page: 13727 year: 2019 ident: 10.1016/j.cclet.2021.08.081_bib0071 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA03541A – volume: 229 start-page: 422 year: 2017 ident: 10.1016/j.cclet.2021.08.081_bib0032 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.01.163 – volume: 2 start-page: 8667 year: 2019 ident: 10.1016/j.cclet.2021.08.081_bib0027 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b01632 – volume: 324 year: 2019 ident: 10.1016/j.cclet.2021.08.081_bib0076 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.134867 – volume: 7 start-page: 20806 year: 2019 ident: 10.1016/j.cclet.2021.08.081_bib0047 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA08049J – volume: 28 year: 2018 ident: 10.1016/j.cclet.2021.08.081_bib0008 publication-title: Adv. Funct. Mater. – volume: 31 start-page: 47 year: 2019 ident: 10.1016/j.cclet.2021.08.081_bib0062 publication-title: Mater. Today doi: 10.1016/j.mattod.2019.05.021 – volume: 60 start-page: 121 year: 2015 ident: 10.1016/j.cclet.2021.08.081_bib0051 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2015.08.019 – volume: 11 start-page: 25 year: 2019 ident: 10.1016/j.cclet.2021.08.081_bib0022 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0256-2 – volume: 58 start-page: 492 year: 2019 ident: 10.1016/j.cclet.2021.08.081_bib0026 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.068 – volume: 31 year: 2019 ident: 10.1016/j.cclet.2021.08.081_bib0052 publication-title: Adv. Mater. – volume: 31 year: 2019 ident: 10.1016/j.cclet.2021.08.081_bib0024 publication-title: Adv. Mater. – volume: 179 start-page: 361 year: 2008 ident: 10.1016/j.cclet.2021.08.081_bib0049 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.12.075 – volume: 421 start-page: 162 year: 2019 ident: 10.1016/j.cclet.2021.08.081_bib0050 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.03.022 – volume: 28 start-page: 2180 year: 2017 ident: 10.1016/j.cclet.2021.08.081_bib0007 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2017.11.038 – volume: 16 year: 2020 ident: 10.1016/j.cclet.2021.08.081_bib0056 publication-title: Z. Tao, Small – volume: 56 start-page: 223 year: 2021 ident: 10.1016/j.cclet.2021.08.081_bib0016 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.08.016 – volume: 117 start-page: L27 year: 1986 ident: 10.1016/j.cclet.2021.08.081_bib0028 publication-title: Inorg. Chim. Acta doi: 10.1016/S0020-1693(00)82175-1 – volume: 27 start-page: 3609 year: 2015 ident: 10.1016/j.cclet.2021.08.081_bib0043 publication-title: Chem. Mater. doi: 10.1021/cm504717p – volume: 29 year: 2019 ident: 10.1016/j.cclet.2021.08.081_bib0037 publication-title: Adv. Funct. Mater. – volume: 31 start-page: 2358 year: 2020 ident: 10.1016/j.cclet.2021.08.081_bib0003 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2020.03.014 – volume: 12 start-page: 56 year: 2020 ident: 10.1016/j.cclet.2021.08.081_bib0077 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-0397-3 – volume: 28 start-page: 407 year: 2020 ident: 10.1016/j.cclet.2021.08.081_bib0035 publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2019.12.021 – volume: 9 year: 2019 ident: 10.1016/j.cclet.2021.08.081_bib0066 publication-title: Adv. Energy Mater. – volume: 334 start-page: 917 year: 2011 ident: 10.1016/j.cclet.2021.08.081_bib0001 publication-title: Science doi: 10.1126/science.1213003 – volume: 40 start-page: 433 year: 2020 ident: 10.1016/j.cclet.2021.08.081_bib0010 publication-title: Rare Metals doi: 10.1007/s12598-020-01576-1 – volume: 404 start-page: 435 year: 2017 ident: 10.1016/j.cclet.2021.08.081_bib0031 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.02.009 – volume: 112 start-page: 138 year: 2013 ident: 10.1016/j.cclet.2021.08.081_bib0048 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.08.136 – volume: 29 start-page: 52 year: 2020 ident: 10.1016/j.cclet.2021.08.081_bib0019 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.04.003 – volume: 300 start-page: 453 year: 2015 ident: 10.1016/j.cclet.2021.08.081_bib0036 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.09.096 – volume: 11 year: 2018 ident: 10.1016/j.cclet.2021.08.081_bib0039 publication-title: Funct. Mater. Lett. – volume: 58 start-page: 7823 year: 2019 ident: 10.1016/j.cclet.2021.08.081_bib0067 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201904174 – volume: 32 start-page: 1117 year: 2021 ident: 10.1016/j.cclet.2021.08.081_bib0009 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2020.08.030 – volume: 86 year: 2021 ident: 10.1016/j.cclet.2021.08.081_bib0020 publication-title: Nano Energy – volume: 1 start-page: 16039 year: 2016 ident: 10.1016/j.cclet.2021.08.081_bib0045 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.39 – volume: 43 start-page: 182 year: 2020 ident: 10.1016/j.cclet.2021.08.081_bib0044 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2019.08.011 – volume: 23 year: 2020 ident: 10.1016/j.cclet.2021.08.081_bib0041 publication-title: iScience – volume: 12 start-page: 110 year: 2020 ident: 10.1016/j.cclet.2021.08.081_bib0030 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-00445-x – volume: 135 start-page: 58 year: 2019 ident: 10.1016/j.cclet.2021.08.081_bib0034 publication-title: Mater. Sci. Eng. R: Rep. doi: 10.1016/j.mser.2018.10.002 – volume: 133 start-page: 254 year: 2014 ident: 10.1016/j.cclet.2021.08.081_bib0033 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.04.001 – volume: 23 year: 2020 ident: 10.1016/j.cclet.2021.08.081_bib0055 publication-title: Z. Shao, iScience – volume: 31 start-page: 583 year: 2020 ident: 10.1016/j.cclet.2021.08.081_bib0012 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2019.11.002 – volume: 139 start-page: 9775 year: 2017 ident: 10.1016/j.cclet.2021.08.081_bib0017 publication-title: J Am. Chem. Soc. doi: 10.1021/jacs.7b04471 – volume: 7 start-page: 22079 year: 2019 ident: 10.1016/j.cclet.2021.08.081_bib0054 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA08418E – volume: 24 start-page: 394 year: 2020 ident: 10.1016/j.cclet.2021.08.081_bib0069 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.07.030 |
SSID | ssj0028836 |
Score | 2.5648868 |
SecondaryResourceType | review_article |
Snippet | Commercial lithium-ion batteries (LIBs) have been widely used in various energy storage systems. However, many unfavorable factors of LIBs have prompted... Commercial lithium-ion batteries(LIBs)have been widely used in various energy storage systems.How-ever,many unfavorable factors of LIBs have prompted... |
SourceID | wanfang crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1236 |
SubjectTerms | Aqueous zinc ion batteries Cathode materials Mn-based compounds MnO2 Secondary batteries |
Title | Strategies for constructing manganese-based oxide electrode materials for aqueous rechargeable zinc-ion batteries |
URI | https://dx.doi.org/10.1016/j.cclet.2021.08.081 https://d.wanfangdata.com.cn/periodical/zghxkb202203011 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iiF7EJ77JwaNxt22axqMsyqroRQVvIc91fXSVVRQP_nZn0lT0oAcvpaTJtMxM5wEz3xCy0821FNYaFqyzjHtXMgiOJPOVs3kVuvs-It6cnYv-FT-5Lq8nSK_thcGyymT7G5serXVa6SRudh6Hw84FogdJjikM-tGYt3NeoZbvfXyVeeAw3dhhhKVDuLtFHoo1XhaIYUFl3uB4yuw37zT9quug68E333M0T-ZS0EgPmu9aIBO-XiQzvXZW2xJ5akFm_ZhCFErtqAWGrQf0AShqHDTJ0GU5OnobOk_T_Bu4g5i1UcN4VIOjGL2MKXAFQZQ8tlbR92FtGUiQmgjHCa9ZJldHh5e9PkvDFJgtivKZmdw543IZhBNBVhA2cGuLUsv9TBoXhBSZF6aC8ITDotWQdlRS6zyUAa7wYIVM1qParxKKeN7BQWolbcbLqjCVdJLrrtCmG4pSrpG8ZaKyCWkcB17cq7ak7FZFzivkvMIxmDJbI7tfhx4boI2_t4tWOuqHvihwBX8fpEmWKv2tY_U-uHm7Mzk2HaO9W_8v7Q0yi0SaErVNMgmC9lsQszyb7aiU22Tq4Pi0f_4JwkrujA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6hIASXqvQhaAvdA0dWiV_ryRFFoNCEXACJ22qfITwcUFI1yq_vjL1G9ACHXixrvTO2ZtbzkGa-Yeyol2qQ1hoRrLMi964QGByB8KWzaRl6fV8j3lxM5PA6_3VT3GywQdsLQ2WV0fY3Nr221nGlG6XZfZrNupeEHgQ5pTDkRylv3yR0qqLDNk_OR8PJS94FUE8KpP2CCFrwobrMyyI_qqlMGyhPSN5yUFt_dBV0NX3lfs4-sg8xbuQnzaftsg1ffWLbg3Zc22f23OLM-gXHQJTbeYsNW035I3LUNGtSkNdyfL6aOc_jCBy8w7C1OYk1qUZfMf-94CgYwlHy1F3F17PKClQiNzUiJ77mC7s-O70aDEWcpyBslhVLYVLnjEshSCcDlBg55NZmhYZ-AsYFCTLx0pQYoeS4aDVmHiVonYYi4BUffGWdal75PcYJ0js4zK7AJnlRZqYEB7nuSW16IStgn6WtEJWNYOM08-JBtVVld6qWvCLJK5qECck-O34hemqwNt7fLlvtqH-OjEJv8D4hj7pU8YddqPX0dnVvUuo7JpP37X95_2Tbw6uLsRqfT0bf2Q4xbCrWfrAOKt0fYAizNIfxiP4F7RXxPQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strategies+for+constructing+manganese-based+oxide+electrode+materials+for+aqueous+rechargeable+zinc-ion+batteries&rft.jtitle=%E4%B8%AD%E5%9B%BD%E5%8C%96%E5%AD%A6%E5%BF%AB%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Ying+Liu&rft.au=Xiang+Wu&rft.date=2022-03-01&rft.pub=State+Key+Laboratory+of+Metastable+Materials+Science+and+Technology%2CYanshan+University%2CQinhuangdao+066004%2CChina&rft.issn=1001-8417&rft.volume=33&rft.issue=3&rft.spage=1236&rft.epage=1244&rft_id=info:doi/10.1016%2Fj.cclet.2021.08.081&rft.externalDocID=zghxkb202203011 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghxkb%2Fzghxkb.jpg |