Strategies for constructing manganese-based oxide electrode materials for aqueous rechargeable zinc-ion batteries

Commercial lithium-ion batteries (LIBs) have been widely used in various energy storage systems. However, many unfavorable factors of LIBs have prompted researchers to turn their attention to the development of emerging secondary batteries. Aqueous zinc ion batteries (AZIBs) present some prominent a...

Full description

Saved in:
Bibliographic Details
Published inChinese chemical letters Vol. 33; no. 3; pp. 1236 - 1244
Main Authors Liu, Ying, Wu, Xiang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2022
State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao 066004,China
School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China%School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China
State Key Laboratory of High-Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Commercial lithium-ion batteries (LIBs) have been widely used in various energy storage systems. However, many unfavorable factors of LIBs have prompted researchers to turn their attention to the development of emerging secondary batteries. Aqueous zinc ion batteries (AZIBs) present some prominent advantages with environmental friendliness, low cost and convenient operation feature. MnO2 electrode is the first to be discovered as promising cathode material. So far, manganese-based oxides have made significant progresses in improving the inherent capacity and energy density. Herein, we summarize comprehensively recent advances of Mn-based compounds as electrode materials for ZIBs. Especially, this review focuses on the design strategies of electrode structures, optimization of the electrochemical performance and the clarification of energy storage mechanisms. Finally, their future research directions and perspective are also proposed. A plenty of work has focused on polymorphic Mn-based compounds due to their non-toxicity, low cost and rich crystal structure. In fact, the connection mode of MnO6 octahedrons determines MnO2 crystal structure, including α-, β-, γ-, λ-, R-, δ-, ε- and T-MnO2. These structures can be mutually transformed and seriously affect their electrochemical performance [Display omitted] .
AbstractList Commercial lithium-ion batteries(LIBs)have been widely used in various energy storage systems.How-ever,many unfavorable factors of LIBs have prompted researchers to turn their attention to the devel-opment of emerging secondary batteries.Aqueous zinc ion batteries(AZIBs)present some prominent advantages with environmental friendliness,low cost and convenient operation feature.MnO2 electrode is the first to be discovered as promising cathode material.So far,manganese-based oxides have made significant progresses in improving the inherent capacity and energy density.Herein,we summarize com-prehensively recent advances of Mn-based compounds as electrode materials for ZIBs.Especially,this review focuses on the design strategies of electrode structures,optimization of the electrochemical per-formance and the clarification of energy storage mechanisms.Finally,their future research directions and perspective are also proposed.
Commercial lithium-ion batteries (LIBs) have been widely used in various energy storage systems. However, many unfavorable factors of LIBs have prompted researchers to turn their attention to the development of emerging secondary batteries. Aqueous zinc ion batteries (AZIBs) present some prominent advantages with environmental friendliness, low cost and convenient operation feature. MnO2 electrode is the first to be discovered as promising cathode material. So far, manganese-based oxides have made significant progresses in improving the inherent capacity and energy density. Herein, we summarize comprehensively recent advances of Mn-based compounds as electrode materials for ZIBs. Especially, this review focuses on the design strategies of electrode structures, optimization of the electrochemical performance and the clarification of energy storage mechanisms. Finally, their future research directions and perspective are also proposed. A plenty of work has focused on polymorphic Mn-based compounds due to their non-toxicity, low cost and rich crystal structure. In fact, the connection mode of MnO6 octahedrons determines MnO2 crystal structure, including α-, β-, γ-, λ-, R-, δ-, ε- and T-MnO2. These structures can be mutually transformed and seriously affect their electrochemical performance [Display omitted] .
Author Liu, Ying
Wu, Xiang
AuthorAffiliation School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China%School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China;State Key Laboratory of High-Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China;State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao 066004,China
AuthorAffiliation_xml – name: School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China%School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China;State Key Laboratory of High-Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China;State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao 066004,China
Author_xml – sequence: 1
  givenname: Ying
  surname: Liu
  fullname: Liu, Ying
  organization: School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
– sequence: 2
  givenname: Xiang
  orcidid: 0000-0001-8894-5188
  surname: Wu
  fullname: Wu, Xiang
  email: wuxiang05@sut.edu.cn
  organization: School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
BookMark eNqFkE1PAyEQhonRxPrxC7zszdNW2G1ZevBgGr8SEw_qmbAwbKlbsEC19tc7tZ48aDKBCbwPZJ4jsu-DB0LOGB0yyvjFfKh1D3lY0YoNqcBie2TARCPK8YSP9rGnlJVixJpDcpTSnNJKiJoPyPIpR5Whc5AKG2Khg085rnR2visWynfKQ4KyVQlMEdbOQAE96BwDdgsko1P9DlXLFYRVKiLomYodqLaHYuO8Ll3wRavyNgzphBxYROD0Zz8mLzfXz9O78uHx9n569VDquh7nsq2MaU0lLDfciqZmzUjreqzEhInWWC44A9429aQZ4aFWouKNUKqyY4srXhyT8927H8pbHETOwyp6_FFuutn6tUVXFa0pY5isd0kdQ0oRrHyLbqHip2RUbv3Kufz2K7d-JRVYW2ryi9Iuq4yzolHX_8Ne7lhAAe8OokzagddgHNrL0gT3J_8FPTqc_A
CitedBy_id crossref_primary_10_1016_j_cej_2023_142033
crossref_primary_10_1021_acs_cgd_2c00699
crossref_primary_10_1002_smll_202204534
crossref_primary_10_1002_batt_202400660
crossref_primary_10_1016_j_jechem_2023_08_022
crossref_primary_10_1016_j_cclet_2023_109326
crossref_primary_10_1002_tcr_202300212
crossref_primary_10_1016_j_jpowsour_2023_232915
crossref_primary_10_1007_s12598_022_02026_w
crossref_primary_10_1002_chem_202500219
crossref_primary_10_1002_anie_202500434
crossref_primary_10_1016_j_jiec_2024_02_042
crossref_primary_10_1016_j_cclet_2022_107839
crossref_primary_10_1149_1945_7111_ad4b5f
crossref_primary_10_1007_s11581_024_06011_4
crossref_primary_10_3390_nano12193298
crossref_primary_10_1016_j_cclet_2024_110726
crossref_primary_10_1016_j_ensm_2023_01_006
crossref_primary_10_1016_j_jpowsour_2023_233854
crossref_primary_10_1021_acssuschemeng_3c02379
crossref_primary_10_1016_j_isci_2024_110926
crossref_primary_10_1016_j_jcis_2024_05_151
crossref_primary_10_1002_adfm_202214538
crossref_primary_10_1016_j_ccr_2022_215009
crossref_primary_10_1021_acsanm_3c02148
crossref_primary_10_1016_j_cclet_2024_109551
crossref_primary_10_1039_D3NR04996E
crossref_primary_10_1007_s12598_022_02030_0
crossref_primary_10_1016_j_jallcom_2022_166682
crossref_primary_10_1016_j_ccr_2024_216255
crossref_primary_10_1016_j_nanoen_2023_108736
crossref_primary_10_1016_j_cclet_2022_06_052
crossref_primary_10_1063_5_0203943
crossref_primary_10_1016_j_jelechem_2024_118701
crossref_primary_10_1051_matecconf_202338201015
crossref_primary_10_1039_D2CE00741J
crossref_primary_10_1007_s11581_023_05236_z
crossref_primary_10_1149_1945_7111_ac5baa
crossref_primary_10_1002_tcr_202300341
crossref_primary_10_1016_j_electacta_2024_144945
crossref_primary_10_1016_j_jallcom_2023_170714
crossref_primary_10_1002_adsu_202400578
crossref_primary_10_2139_ssrn_4117162
crossref_primary_10_1016_j_cclet_2023_108698
crossref_primary_10_1039_D4MH00544A
crossref_primary_10_1016_j_cclet_2024_110701
crossref_primary_10_1002_eom2_12409
crossref_primary_10_1007_s11581_024_05747_3
crossref_primary_10_1016_j_jechem_2023_03_052
crossref_primary_10_1002_ange_202500434
crossref_primary_10_1002_batt_202200569
crossref_primary_10_3390_molecules28114459
crossref_primary_10_1007_s10008_023_05488_9
crossref_primary_10_1016_j_cplett_2025_141872
crossref_primary_10_1016_j_jallcom_2022_164882
crossref_primary_10_1021_acsnano_2c11357
crossref_primary_10_1021_acs_cgd_3c00864
crossref_primary_10_1002_tcr_202200088
crossref_primary_10_1016_j_jallcom_2024_177165
crossref_primary_10_1016_j_jelechem_2023_117636
crossref_primary_10_1021_acsami_2c02960
crossref_primary_10_1016_j_apsusc_2022_154685
crossref_primary_10_1016_j_cclet_2022_05_052
crossref_primary_10_1016_j_cej_2024_151112
crossref_primary_10_1016_j_jallcom_2023_169366
crossref_primary_10_1016_j_mtcomm_2024_108942
crossref_primary_10_1021_acs_langmuir_3c00773
crossref_primary_10_1021_acsmaterialslett_4c00308
crossref_primary_10_1039_D2TA06449A
crossref_primary_10_1002_adsu_202300545
crossref_primary_10_1002_aenm_202304303
crossref_primary_10_1039_D3CE00053B
crossref_primary_10_1039_D3NR05225G
crossref_primary_10_1002_slct_202402489
crossref_primary_10_1021_acsanm_4c06593
crossref_primary_10_1016_j_jcis_2023_04_062
crossref_primary_10_3390_molecules27217344
crossref_primary_10_1016_j_cclet_2023_108421
crossref_primary_10_1016_j_cclet_2022_107885
crossref_primary_10_1007_s10008_024_05856_z
crossref_primary_10_1016_j_compositesb_2023_110770
crossref_primary_10_1016_j_partic_2022_12_003
crossref_primary_10_3390_nano13233017
crossref_primary_10_1016_j_jpowsour_2024_235409
crossref_primary_10_1016_j_cclet_2022_06_016
crossref_primary_10_1016_j_jcis_2022_08_046
crossref_primary_10_1016_j_mtsust_2023_100433
crossref_primary_10_1039_D1MA00983D
crossref_primary_10_1021_acsami_2c00001
crossref_primary_10_1039_D3NR00466J
crossref_primary_10_1016_j_enchem_2022_100092
crossref_primary_10_1002_adfm_202413684
crossref_primary_10_1016_j_cclet_2023_108406
crossref_primary_10_1016_j_jics_2024_101564
crossref_primary_10_1039_D1CE01658J
crossref_primary_10_1007_s10971_024_06499_2
crossref_primary_10_1021_acsaem_4c00191
crossref_primary_10_1016_j_jallcom_2025_178843
crossref_primary_10_1016_j_nanoen_2024_109416
crossref_primary_10_1016_j_cclet_2024_110185
crossref_primary_10_1016_j_cis_2025_103469
crossref_primary_10_1016_j_mtchem_2023_101686
crossref_primary_10_1016_j_est_2023_107614
Cites_doi 10.1002/cssc.201600702
10.1021/acsenergylett.8b01105
10.1016/j.jechem.2020.07.027
10.1016/j.ensm.2019.04.022
10.1016/j.jpowsour.2015.04.140
10.1039/C6TA09829K
10.1038/s41467-018-04949-4
10.1002/anie.201505487
10.1021/acsnano.9b07222
10.1002/adma.201601357
10.1021/acs.jpcc.9b05535
10.1039/C8TA01198B
10.1016/j.nanoen.2020.104715
10.1007/s40820-020-0401-y
10.1016/j.nanoen.2019.03.034
10.1021/acsnano.9b04916
10.1016/j.ensm.2018.12.019
10.1016/j.nanoen.2017.10.058
10.1021/jacs.6b04629
10.1039/C9EE02526J
10.1021/jacs.6b05958
10.1038/35104644
10.1016/j.ensm.2019.03.006
10.1007/s40820-019-0322-9
10.1039/C9TA03541A
10.1016/j.electacta.2017.01.163
10.1021/acsaem.9b01632
10.1016/j.electacta.2019.134867
10.1039/C9TA08049J
10.1016/j.mattod.2019.05.021
10.1016/j.elecom.2015.08.019
10.1007/s40820-019-0256-2
10.1016/j.nanoen.2019.01.068
10.1016/j.jpowsour.2007.12.075
10.1016/j.jpowsour.2019.03.022
10.1016/j.cclet.2017.11.038
10.1016/j.jechem.2020.08.016
10.1016/S0020-1693(00)82175-1
10.1021/cm504717p
10.1016/j.cclet.2020.03.014
10.1007/s40820-020-0397-3
10.1016/j.ensm.2019.12.021
10.1126/science.1213003
10.1007/s12598-020-01576-1
10.1016/j.apsusc.2017.02.009
10.1016/j.electacta.2013.08.136
10.1016/j.ensm.2020.04.003
10.1016/j.jpowsour.2015.09.096
10.1002/anie.201904174
10.1016/j.cclet.2020.08.030
10.1038/nenergy.2016.39
10.1016/j.jechem.2019.08.011
10.1007/s40820-020-00445-x
10.1016/j.mser.2018.10.002
10.1016/j.electacta.2014.04.001
10.1016/j.cclet.2019.11.002
10.1021/jacs.7b04471
10.1039/C9TA08418E
10.1016/j.ensm.2019.07.030
ContentType Journal Article
Copyright 2021
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2021
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/j.cclet.2021.08.081
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1878-5964
EndPage 1244
ExternalDocumentID zghxkb202203011
10_1016_j_cclet_2021_08_081
S1001841721006550
GroupedDBID --K
--M
.~1
0R~
188
1B1
1~.
1~5
29B
2B.
2C.
2WC
4.4
457
4G.
5GY
5VR
5VS
6J9
7-5
71M
8P~
8RM
92E
92I
92Q
93N
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C1A
CCEZO
CDRFL
CHBEP
CS3
CW9
DU5
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
F5P
FA0
FDB
FEDTE
FIRID
FLBIZ
FNPLU
FYGXN
GBLVA
GX1
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
S..
SDF
SDG
SDH
SES
SPC
SPCBC
SSK
SSZ
T5K
TCJ
TGP
UNMZH
UZ4
~G-
-SB
-S~
5XA
5XC
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CAJEB
CITATION
Q--
SSH
U1G
U5L
4A8
PSX
ID FETCH-LOGICAL-c335t-b2ddbd28f6d6f873174cc35a8918bdf6861e6b739745a8ca82678aa2f5faa2b73
IEDL.DBID .~1
ISSN 1001-8417
IngestDate Thu May 29 04:08:24 EDT 2025
Tue Jul 01 03:19:02 EDT 2025
Thu Apr 24 23:10:11 EDT 2025
Fri Feb 23 02:40:54 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords MnO2
Aqueous zinc ion batteries
Secondary batteries
Mn-based compounds
Cathode materials
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c335t-b2ddbd28f6d6f873174cc35a8918bdf6861e6b739745a8ca82678aa2f5faa2b73
ORCID 0000-0001-8894-5188
PageCount 9
ParticipantIDs wanfang_journals_zghxkb202203011
crossref_primary_10_1016_j_cclet_2021_08_081
crossref_citationtrail_10_1016_j_cclet_2021_08_081
elsevier_sciencedirect_doi_10_1016_j_cclet_2021_08_081
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese chemical letters
PublicationTitle_FL Chinese Chemical Letters
PublicationYear 2022
Publisher Elsevier B.V
State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao 066004,China
School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China%School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China
State Key Laboratory of High-Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China
Publisher_xml – name: Elsevier B.V
– name: School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China%School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China
– name: State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao 066004,China
– name: State Key Laboratory of High-Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China
References Liu, Wu (bib0016) 2021; 56
Nakayama, Kanaya, Lee, Popov (bib0049) 2008; 179
Xu, Wang (bib0058) 2019; 11
Liu, Huang, Bi (bib0047) 2019; 7
Guo, Zhou, Liu (bib0076) 2019; 324
Zhang, Cheng, Liu (bib0064) 2016; 138
Zeng, Hao, Wang, Mao (bib0029) 2019; 20
Sun, Wang, Hou (bib0017) 2017; 139
Verma, Kumar, Manalastas (bib0027) 2019; 2
Alfaruqi, Gim, Kim (bib0068) 2015; 288
Wu, Li, Li (bib0036) 2015; 300
Song, Jiao, Tu (bib0013) 2017; 5
Li, Rui, Chen (bib0021) 2020; 12
Zhang, Li, Ye (bib0040) 2016; 138
Zhang, Liu, Wang (bib0054) 2019; 7
Alfaruqi, Gim, Kim (bib0051) 2015; 60
Soundharrajan, Sambandam, Kim (bib0078) 2018; 3
Wu, Yao (bib0004) 2017; 42
Zhu, Fang, Zhou (bib0060) 2018; 6
Gao, Wu, Li (bib0074) 2020; 16
Liu, Zhang, Huang (bib0038) 2021; 56
Xiong, Zhang, Lee, Xue (bib0063) 2020; 10
Liu, Wu (bib0020) 2021; 86
Fang, Zhu, Chen (bib0037) 2019; 29
Liu, Chen, Fang (bib0022) 2019; 11
Jin, Zou, Liu (bib0052) 2019; 31
Huang, He, Zhang, Lu (bib0039) 2018; 11
Bi, Wu, Cao (bib0018) 2020
Jiang, Xu, Wu (bib0032) 2017; 229
Voskanyan, Ho, Chan (bib0050) 2019; 421
Yamamoto, Shoji (bib0028) 1986; 117
Zhao, Dai, Zhao (bib0002) 2020; 72
Su, Liu, Wang, Lu, Yan (bib0003) 2020; 31
Pan, Shao, Yan (bib0045) 2016; 1
Fang, Jiang, Zheng (bib0010) 2020; 40
Zhang, Deng, Li (bib0019) 2020; 29
Gogotsi, Simon (bib0001) 2011; 334
Chao, Zhou, Ye (bib0067) 2019; 58
Wu, Zhang, Yan (bib0046) 2018; 14
Lee, Seo, Lee (bib0070) 2016; 9
Zhang, Wang, Liu (bib0065) 2019; 21
Kasiri, Glenneberg, Hashemi, Kun, La Mantia (bib0025) 2019; 19
Tarascon, Armand (bib0005) 2001; 414
Yang, Mo, Liu (bib0024) 2019; 31
Guo, Zhou, Bai (bib0073) 2020; 16
Zhu, Fang, Liang (bib0069) 2020; 24
Yan, Yang, Wang, Ma (bib0012) 2020; 31
Song, Tan, Chao, Fan (bib0008) 2018; 28
Wang, Zeng, Xiao (bib0044) 2020; 43
Yuan, Kong, Li, Zhang (bib0007) 2017; 28
Lee, Ju, Cho, Cho, Oh (bib0048) 2013; 112
Shi, Wang, Shen (bib0061) 2020; 399
Zhong, Xu, Veder (bib0055) 2020; 23
Xiong, Yu, Wu (bib0066) 2019; 9
Xu, Li, Wei (bib0033) 2014; 133
Wang, Wang, Liu, Wei, Kang (bib0071) 2019; 7
Liu, Wu, Wang (bib0006) 2020; 392
Elia, Marquardt, Hoeppner (bib0011) 2016; 28
Liang, Mo, Li (bib0072) 2019; 9
Wang, Sun, Zhao (bib0057) 2019; 123
Qi, Yang, Hou (bib0009) 2021; 32
Soundharrajan, Sambandam, Kim (bib0035) 2020; 28
Hu, Zhu, Wang (bib0026) 2019; 58
Chen, Rui, Zhang (bib0023) 2019; 60
Wang, Wang, Liang (bib0053) 2019; 13
Huang, Zeng, Zhu, Zhang, Liu (bib0030) 2020; 12
Ming, Guo, Xia, Wang, Alshareef (bib0034) 2019; 135
Zou, Zhang, Chen (bib0042) 2019; 13
Kim, Nam, Lee (bib0059) 2015; 54
Liu, Hu, Liu, Wu, Zhi (bib0014) 2020; 17
Alfaruqi, Mathew, Gim (bib0043) 2015; 27
Tang, Shan, Liang, Zhou (bib0015) 2019; 12
Sun, Nian, Zheng, Shi (bib0056) 2020; 16
Han, Huang, Liang (bib0041) 2020; 23
Xie, Yan, Chen (bib0062) 2019; 31
Alfaruqi, Islam, Mathew (bib0031) 2017; 404
Zhai, Qu, Hao (bib0077) 2020; 12
Huang, Wang, Hou (bib0075) 2018; 9
Lee (10.1016/j.cclet.2021.08.081_bib0070) 2016; 9
Xiong (10.1016/j.cclet.2021.08.081_bib0066) 2019; 9
Yuan (10.1016/j.cclet.2021.08.081_bib0007) 2017; 28
Guo (10.1016/j.cclet.2021.08.081_bib0073) 2020; 16
Tarascon (10.1016/j.cclet.2021.08.081_bib0005) 2001; 414
Tang (10.1016/j.cclet.2021.08.081_bib0015) 2019; 12
Fang (10.1016/j.cclet.2021.08.081_bib0010) 2020; 40
Liu (10.1016/j.cclet.2021.08.081_bib0022) 2019; 11
Xu (10.1016/j.cclet.2021.08.081_bib0033) 2014; 133
Liang (10.1016/j.cclet.2021.08.081_bib0072) 2019; 9
Zhu (10.1016/j.cclet.2021.08.081_bib0060) 2018; 6
Sun (10.1016/j.cclet.2021.08.081_bib0017) 2017; 139
Wang (10.1016/j.cclet.2021.08.081_bib0044) 2020; 43
Zhong (10.1016/j.cclet.2021.08.081_bib0055) 2020; 23
Zhang (10.1016/j.cclet.2021.08.081_bib0065) 2019; 21
Guo (10.1016/j.cclet.2021.08.081_bib0076) 2019; 324
Voskanyan (10.1016/j.cclet.2021.08.081_bib0050) 2019; 421
Xiong (10.1016/j.cclet.2021.08.081_bib0063) 2020; 10
Gao (10.1016/j.cclet.2021.08.081_bib0074) 2020; 16
Yang (10.1016/j.cclet.2021.08.081_bib0024) 2019; 31
Liu (10.1016/j.cclet.2021.08.081_bib0020) 2021; 86
Pan (10.1016/j.cclet.2021.08.081_bib0045) 2016; 1
Zhang (10.1016/j.cclet.2021.08.081_bib0040) 2016; 138
Elia (10.1016/j.cclet.2021.08.081_bib0011) 2016; 28
Liu (10.1016/j.cclet.2021.08.081_bib0047) 2019; 7
Wu (10.1016/j.cclet.2021.08.081_bib0004) 2017; 42
Wang (10.1016/j.cclet.2021.08.081_bib0053) 2019; 13
Chao (10.1016/j.cclet.2021.08.081_bib0067) 2019; 58
Su (10.1016/j.cclet.2021.08.081_bib0003) 2020; 31
Alfaruqi (10.1016/j.cclet.2021.08.081_bib0068) 2015; 288
Liu (10.1016/j.cclet.2021.08.081_bib0014) 2020; 17
Alfaruqi (10.1016/j.cclet.2021.08.081_bib0043) 2015; 27
Huang (10.1016/j.cclet.2021.08.081_bib0075) 2018; 9
Li (10.1016/j.cclet.2021.08.081_bib0021) 2020; 12
Yamamoto (10.1016/j.cclet.2021.08.081_bib0028) 1986; 117
Fang (10.1016/j.cclet.2021.08.081_bib0037) 2019; 29
Zhu (10.1016/j.cclet.2021.08.081_bib0069) 2020; 24
Verma (10.1016/j.cclet.2021.08.081_bib0027) 2019; 2
Lee (10.1016/j.cclet.2021.08.081_bib0048) 2013; 112
Song (10.1016/j.cclet.2021.08.081_bib0008) 2018; 28
Qi (10.1016/j.cclet.2021.08.081_bib0009) 2021; 32
Shi (10.1016/j.cclet.2021.08.081_bib0061) 2020; 399
Wang (10.1016/j.cclet.2021.08.081_bib0057) 2019; 123
Zhang (10.1016/j.cclet.2021.08.081_bib0064) 2016; 138
Song (10.1016/j.cclet.2021.08.081_bib0013) 2017; 5
Zeng (10.1016/j.cclet.2021.08.081_bib0029) 2019; 20
Nakayama (10.1016/j.cclet.2021.08.081_bib0049) 2008; 179
Kim (10.1016/j.cclet.2021.08.081_bib0059) 2015; 54
Jiang (10.1016/j.cclet.2021.08.081_bib0032) 2017; 229
Liu (10.1016/j.cclet.2021.08.081_bib0006) 2020; 392
Yan (10.1016/j.cclet.2021.08.081_bib0012) 2020; 31
Soundharrajan (10.1016/j.cclet.2021.08.081_bib0035) 2020; 28
Sun (10.1016/j.cclet.2021.08.081_bib0056) 2020; 16
Hu (10.1016/j.cclet.2021.08.081_bib0026) 2019; 58
Gogotsi (10.1016/j.cclet.2021.08.081_bib0001) 2011; 334
Ming (10.1016/j.cclet.2021.08.081_bib0034) 2019; 135
Liu (10.1016/j.cclet.2021.08.081_bib0016) 2021; 56
Wang (10.1016/j.cclet.2021.08.081_bib0071) 2019; 7
Huang (10.1016/j.cclet.2021.08.081_bib0030) 2020; 12
Zhang (10.1016/j.cclet.2021.08.081_bib0054) 2019; 7
Jin (10.1016/j.cclet.2021.08.081_bib0052) 2019; 31
Kasiri (10.1016/j.cclet.2021.08.081_bib0025) 2019; 19
Soundharrajan (10.1016/j.cclet.2021.08.081_bib0078) 2018; 3
Alfaruqi (10.1016/j.cclet.2021.08.081_bib0031) 2017; 404
Wu (10.1016/j.cclet.2021.08.081_bib0036) 2015; 300
Zou (10.1016/j.cclet.2021.08.081_bib0042) 2019; 13
Wu (10.1016/j.cclet.2021.08.081_bib0046) 2018; 14
Huang (10.1016/j.cclet.2021.08.081_bib0039) 2018; 11
Bi (10.1016/j.cclet.2021.08.081_bib0018) 2020
Alfaruqi (10.1016/j.cclet.2021.08.081_bib0051) 2015; 60
Xu (10.1016/j.cclet.2021.08.081_bib0058) 2019; 11
Zhang (10.1016/j.cclet.2021.08.081_bib0019) 2020; 29
Xie (10.1016/j.cclet.2021.08.081_bib0062) 2019; 31
Liu (10.1016/j.cclet.2021.08.081_bib0038) 2021; 56
Chen (10.1016/j.cclet.2021.08.081_bib0023) 2019; 60
Zhai (10.1016/j.cclet.2021.08.081_bib0077) 2020; 12
Han (10.1016/j.cclet.2021.08.081_bib0041) 2020; 23
Zhao (10.1016/j.cclet.2021.08.081_bib0002) 2020; 72
References_xml – volume: 31
  year: 2019
  ident: bib0024
  publication-title: Adv. Mater.
– volume: 24
  start-page: 394
  year: 2020
  end-page: 401
  ident: bib0069
  publication-title: Energy Storage Mater.
– volume: 324
  year: 2019
  ident: bib0076
  publication-title: Electrochim. Acta
– volume: 179
  start-page: 361
  year: 2008
  end-page: 366
  ident: bib0049
  publication-title: J. Power Sources
– volume: 3
  start-page: 1998
  year: 2018
  end-page: 2004
  ident: bib0078
  publication-title: ACS Energy Lett.
– volume: 23
  year: 2020
  ident: bib0041
  publication-title: iScience
– volume: 40
  start-page: 433
  year: 2020
  end-page: 439
  ident: bib0010
  publication-title: Rare Metals
– volume: 28
  start-page: 407
  year: 2020
  end-page: 417
  ident: bib0035
  publication-title: Energy Storage Mater
– volume: 23
  year: 2020
  ident: bib0055
  publication-title: Z. Shao, iScience
– volume: 58
  start-page: 7823
  year: 2019
  end-page: 7828
  ident: bib0067
  publication-title: Angew. Chem. Int. Ed.
– volume: 16
  year: 2020
  ident: bib0074
  publication-title: Small
– volume: 399
  year: 2020
  ident: bib0061
  publication-title: Chem. Eng. J.
– volume: 20
  start-page: 410
  year: 2019
  end-page: 437
  ident: bib0029
  publication-title: Z. Guo, Energy Storage Mater.
– volume: 17
  year: 2020
  ident: bib0014
  publication-title: Mater. Today Energy
– volume: 112
  start-page: 138
  year: 2013
  end-page: 143
  ident: bib0048
  publication-title: Electrochim. Acta
– volume: 86
  year: 2021
  ident: bib0020
  publication-title: Nano Energy
– volume: 43
  start-page: 182
  year: 2020
  end-page: 187
  ident: bib0044
  publication-title: J. Energy Chem.
– volume: 16
  year: 2020
  ident: bib0073
  publication-title: Mater. Today Energy
– volume: 31
  start-page: 2358
  year: 2020
  end-page: 2364
  ident: bib0003
  publication-title: Chin. Chem. Lett.
– volume: 58
  start-page: 492
  year: 2019
  end-page: 498
  ident: bib0026
  publication-title: Nano Energy
– volume: 60
  start-page: 121
  year: 2015
  end-page: 125
  ident: bib0051
  publication-title: Electrochem. Commun.
– volume: 334
  start-page: 917
  year: 2011
  end-page: 918
  ident: bib0001
  publication-title: Science
– volume: 29
  year: 2019
  ident: bib0037
  publication-title: Adv. Funct. Mater.
– volume: 10
  year: 2020
  ident: bib0063
  publication-title: Adv. Energy Mater.
– volume: 135
  start-page: 58
  year: 2019
  end-page: 84
  ident: bib0034
  publication-title: Mater. Sci. Eng. R: Rep.
– volume: 421
  start-page: 162
  year: 2019
  end-page: 168
  ident: bib0050
  publication-title: J. Power Sources
– volume: 138
  start-page: 8928
  year: 2016
  end-page: 8935
  ident: bib0040
  publication-title: J. Am. Chem. Soc.
– volume: 11
  year: 2018
  ident: bib0039
  publication-title: Funct. Mater. Lett.
– volume: 28
  start-page: 7564
  year: 2016
  end-page: 7579
  ident: bib0011
  publication-title: Adv. Mater.
– volume: 9
  year: 2019
  ident: bib0066
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 2180
  year: 2017
  end-page: 2194
  ident: bib0007
  publication-title: Chin. Chem. Lett.
– volume: 1
  start-page: 16039
  year: 2016
  ident: bib0045
  publication-title: Nat. Energy
– volume: 54
  start-page: 15094
  year: 2015
  end-page: 15099
  ident: bib0059
  publication-title: Angew. Chem. Int. Ed.
– volume: 414
  start-page: 359
  year: 2001
  end-page: 367
  ident: bib0005
  publication-title: Nature
– volume: 139
  start-page: 9775
  year: 2017
  end-page: 9778
  ident: bib0017
  publication-title: J Am. Chem. Soc.
– volume: 31
  year: 2019
  ident: bib0052
  publication-title: Adv. Mater.
– volume: 11
  start-page: 90
  year: 2019
  ident: bib0058
  publication-title: Nano-Micro Lett.
– volume: 16
  year: 2020
  ident: bib0056
  publication-title: Z. Tao, Small
– volume: 21
  start-page: 154
  year: 2019
  end-page: 161
  ident: bib0065
  publication-title: Energy Storage Mater.
– volume: 133
  start-page: 254
  year: 2014
  end-page: 261
  ident: bib0033
  publication-title: Electrochim. Acta
– volume: 12
  start-page: 56
  year: 2020
  ident: bib0077
  publication-title: Nano-Micro Lett.
– volume: 229
  start-page: 422
  year: 2017
  end-page: 428
  ident: bib0032
  publication-title: Electrochim. Acta
– volume: 7
  start-page: 22079
  year: 2019
  end-page: 22083
  ident: bib0054
  publication-title: J. Mater. Chem. A
– volume: 28
  year: 2018
  ident: bib0008
  publication-title: Adv. Funct. Mater.
– volume: 404
  start-page: 435
  year: 2017
  end-page: 442
  ident: bib0031
  publication-title: Appl. Surf. Sci.
– volume: 12
  start-page: 110
  year: 2020
  ident: bib0030
  publication-title: Nano-Micro Lett.
– volume: 7
  start-page: 20806
  year: 2019
  end-page: 20812
  ident: bib0047
  publication-title: J. Mater. Chem. A
– volume: 31
  start-page: 583
  year: 2020
  end-page: 588
  ident: bib0012
  publication-title: Chin. Chem. Lett.
– volume: 12
  start-page: 67
  year: 2020
  ident: bib0021
  publication-title: Nano Micro. Lett.
– volume: 7
  start-page: 13727
  year: 2019
  end-page: 13735
  ident: bib0071
  publication-title: J. Mater. Chem. A
– volume: 32
  start-page: 1117
  year: 2021
  end-page: 1120
  ident: bib0009
  publication-title: Chin. Chem. Lett.
– volume: 5
  start-page: 1282
  year: 2017
  end-page: 1291
  ident: bib0013
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 10643
  year: 2019
  end-page: 10652
  ident: bib0053
  publication-title: ACS Nano
– volume: 138
  start-page: 12894
  year: 2016
  end-page: 12901
  ident: bib0064
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 8667
  year: 2019
  end-page: 8674
  ident: bib0027
  publication-title: ACS Appl. Energy Mater.
– volume: 56
  start-page: 223
  year: 2021
  end-page: 237
  ident: bib0016
  publication-title: J. Energy Chem.
– volume: 392
  year: 2020
  ident: bib0006
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 3288
  year: 2019
  end-page: 3304
  ident: bib0015
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 2062
  year: 2019
  end-page: 2071
  ident: bib0042
  publication-title: ACS Nano
– volume: 11
  start-page: 25
  year: 2019
  ident: bib0022
  publication-title: Nano-Micro Lett.
– volume: 60
  start-page: 171
  year: 2019
  end-page: 178
  ident: bib0023
  publication-title: Nano Energy
– volume: 9
  start-page: 2906
  year: 2018
  ident: bib0075
  publication-title: Nat. Commun.
– volume: 42
  start-page: 143
  year: 2017
  end-page: 150
  ident: bib0004
  publication-title: Nano Energy
– volume: 19
  start-page: 360
  year: 2019
  end-page: 369
  ident: bib0025
  publication-title: Energy Storage Mater.
– volume: 14
  year: 2018
  ident: bib0046
  publication-title: Small
– volume: 31
  start-page: 47
  year: 2019
  end-page: 68
  ident: bib0062
  publication-title: Mater. Today
– volume: 117
  start-page: L27
  year: 1986
  end-page: L28
  ident: bib0028
  publication-title: Inorg. Chim. Acta
– volume: 9
  start-page: 2948
  year: 2016
  end-page: 2956
  ident: bib0070
  publication-title: ChemSusChem
– volume: 27
  start-page: 3609
  year: 2015
  end-page: 3620
  ident: bib0043
  publication-title: Chem. Mater.
– volume: 123
  start-page: 22735
  year: 2019
  end-page: 22741
  ident: bib0057
  publication-title: J. Phys. Chem. C
– volume: 9
  year: 2019
  ident: bib0072
  publication-title: A, Adv. Energy Mater.
– volume: 29
  start-page: 52
  year: 2020
  end-page: 59
  ident: bib0019
  publication-title: Energy Storage Mater.
– volume: 288
  start-page: 320
  year: 2015
  end-page: 327
  ident: bib0068
  publication-title: J. Power Sources
– start-page: 18
  year: 2020
  ident: bib0018
  publication-title: Mater. Today Energy
– volume: 300
  start-page: 453
  year: 2015
  end-page: 459
  ident: bib0036
  publication-title: J. Power Sources
– volume: 72
  year: 2020
  ident: bib0002
  publication-title: Nano Energy
– volume: 56
  start-page: 365
  year: 2021
  end-page: 373
  ident: bib0038
  publication-title: J. Energy Chem.
– volume: 6
  start-page: 9677
  year: 2018
  end-page: 9683
  ident: bib0060
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 2948
  year: 2016
  ident: 10.1016/j.cclet.2021.08.081_bib0070
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201600702
– volume: 3
  start-page: 1998
  year: 2018
  ident: 10.1016/j.cclet.2021.08.081_bib0078
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01105
– volume: 56
  start-page: 365
  year: 2021
  ident: 10.1016/j.cclet.2021.08.081_bib0038
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.07.027
– volume: 20
  start-page: 410
  year: 2019
  ident: 10.1016/j.cclet.2021.08.081_bib0029
  publication-title: Z. Guo, Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.04.022
– volume: 288
  start-page: 320
  year: 2015
  ident: 10.1016/j.cclet.2021.08.081_bib0068
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.04.140
– volume: 5
  start-page: 1282
  year: 2017
  ident: 10.1016/j.cclet.2021.08.081_bib0013
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09829K
– volume: 9
  start-page: 2906
  year: 2018
  ident: 10.1016/j.cclet.2021.08.081_bib0075
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04949-4
– volume: 10
  year: 2020
  ident: 10.1016/j.cclet.2021.08.081_bib0063
  publication-title: Adv. Energy Mater.
– volume: 54
  start-page: 15094
  year: 2015
  ident: 10.1016/j.cclet.2021.08.081_bib0059
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201505487
– volume: 16
  year: 2020
  ident: 10.1016/j.cclet.2021.08.081_bib0073
  publication-title: Mater. Today Energy
– volume: 13
  start-page: 2062
  year: 2019
  ident: 10.1016/j.cclet.2021.08.081_bib0042
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b07222
– volume: 9
  year: 2019
  ident: 10.1016/j.cclet.2021.08.081_bib0072
  publication-title: A, Adv. Energy Mater.
– volume: 16
  year: 2020
  ident: 10.1016/j.cclet.2021.08.081_bib0074
  publication-title: Small
– volume: 28
  start-page: 7564
  year: 2016
  ident: 10.1016/j.cclet.2021.08.081_bib0011
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601357
– volume: 123
  start-page: 22735
  year: 2019
  ident: 10.1016/j.cclet.2021.08.081_bib0057
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b05535
– volume: 6
  start-page: 9677
  year: 2018
  ident: 10.1016/j.cclet.2021.08.081_bib0060
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01198B
– volume: 72
  year: 2020
  ident: 10.1016/j.cclet.2021.08.081_bib0002
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104715
– volume: 12
  start-page: 67
  year: 2020
  ident: 10.1016/j.cclet.2021.08.081_bib0021
  publication-title: Nano Micro. Lett.
  doi: 10.1007/s40820-020-0401-y
– volume: 60
  start-page: 171
  year: 2019
  ident: 10.1016/j.cclet.2021.08.081_bib0023
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.034
– volume: 14
  year: 2018
  ident: 10.1016/j.cclet.2021.08.081_bib0046
  publication-title: Small
– volume: 13
  start-page: 10643
  year: 2019
  ident: 10.1016/j.cclet.2021.08.081_bib0053
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04916
– volume: 21
  start-page: 154
  year: 2019
  ident: 10.1016/j.cclet.2021.08.081_bib0065
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.12.019
– volume: 42
  start-page: 143
  year: 2017
  ident: 10.1016/j.cclet.2021.08.081_bib0004
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.10.058
– volume: 138
  start-page: 8928
  year: 2016
  ident: 10.1016/j.cclet.2021.08.081_bib0040
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04629
– volume: 12
  start-page: 3288
  year: 2019
  ident: 10.1016/j.cclet.2021.08.081_bib0015
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE02526J
– volume: 17
  year: 2020
  ident: 10.1016/j.cclet.2021.08.081_bib0014
  publication-title: Mater. Today Energy
– volume: 399
  year: 2020
  ident: 10.1016/j.cclet.2021.08.081_bib0061
  publication-title: Chem. Eng. J.
– volume: 138
  start-page: 12894
  year: 2016
  ident: 10.1016/j.cclet.2021.08.081_bib0064
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05958
– volume: 392
  year: 2020
  ident: 10.1016/j.cclet.2021.08.081_bib0006
  publication-title: Chem. Eng. J.
– start-page: 18
  year: 2020
  ident: 10.1016/j.cclet.2021.08.081_bib0018
  publication-title: Mater. Today Energy
– volume: 414
  start-page: 359
  year: 2001
  ident: 10.1016/j.cclet.2021.08.081_bib0005
  publication-title: Nature
  doi: 10.1038/35104644
– volume: 19
  start-page: 360
  year: 2019
  ident: 10.1016/j.cclet.2021.08.081_bib0025
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.03.006
– volume: 11
  start-page: 90
  year: 2019
  ident: 10.1016/j.cclet.2021.08.081_bib0058
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0322-9
– volume: 7
  start-page: 13727
  year: 2019
  ident: 10.1016/j.cclet.2021.08.081_bib0071
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03541A
– volume: 229
  start-page: 422
  year: 2017
  ident: 10.1016/j.cclet.2021.08.081_bib0032
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.01.163
– volume: 2
  start-page: 8667
  year: 2019
  ident: 10.1016/j.cclet.2021.08.081_bib0027
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b01632
– volume: 324
  year: 2019
  ident: 10.1016/j.cclet.2021.08.081_bib0076
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.134867
– volume: 7
  start-page: 20806
  year: 2019
  ident: 10.1016/j.cclet.2021.08.081_bib0047
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA08049J
– volume: 28
  year: 2018
  ident: 10.1016/j.cclet.2021.08.081_bib0008
  publication-title: Adv. Funct. Mater.
– volume: 31
  start-page: 47
  year: 2019
  ident: 10.1016/j.cclet.2021.08.081_bib0062
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2019.05.021
– volume: 60
  start-page: 121
  year: 2015
  ident: 10.1016/j.cclet.2021.08.081_bib0051
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2015.08.019
– volume: 11
  start-page: 25
  year: 2019
  ident: 10.1016/j.cclet.2021.08.081_bib0022
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0256-2
– volume: 58
  start-page: 492
  year: 2019
  ident: 10.1016/j.cclet.2021.08.081_bib0026
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.068
– volume: 31
  year: 2019
  ident: 10.1016/j.cclet.2021.08.081_bib0052
  publication-title: Adv. Mater.
– volume: 31
  year: 2019
  ident: 10.1016/j.cclet.2021.08.081_bib0024
  publication-title: Adv. Mater.
– volume: 179
  start-page: 361
  year: 2008
  ident: 10.1016/j.cclet.2021.08.081_bib0049
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.12.075
– volume: 421
  start-page: 162
  year: 2019
  ident: 10.1016/j.cclet.2021.08.081_bib0050
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.03.022
– volume: 28
  start-page: 2180
  year: 2017
  ident: 10.1016/j.cclet.2021.08.081_bib0007
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2017.11.038
– volume: 16
  year: 2020
  ident: 10.1016/j.cclet.2021.08.081_bib0056
  publication-title: Z. Tao, Small
– volume: 56
  start-page: 223
  year: 2021
  ident: 10.1016/j.cclet.2021.08.081_bib0016
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.08.016
– volume: 117
  start-page: L27
  year: 1986
  ident: 10.1016/j.cclet.2021.08.081_bib0028
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/S0020-1693(00)82175-1
– volume: 27
  start-page: 3609
  year: 2015
  ident: 10.1016/j.cclet.2021.08.081_bib0043
  publication-title: Chem. Mater.
  doi: 10.1021/cm504717p
– volume: 29
  year: 2019
  ident: 10.1016/j.cclet.2021.08.081_bib0037
  publication-title: Adv. Funct. Mater.
– volume: 31
  start-page: 2358
  year: 2020
  ident: 10.1016/j.cclet.2021.08.081_bib0003
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2020.03.014
– volume: 12
  start-page: 56
  year: 2020
  ident: 10.1016/j.cclet.2021.08.081_bib0077
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-0397-3
– volume: 28
  start-page: 407
  year: 2020
  ident: 10.1016/j.cclet.2021.08.081_bib0035
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2019.12.021
– volume: 9
  year: 2019
  ident: 10.1016/j.cclet.2021.08.081_bib0066
  publication-title: Adv. Energy Mater.
– volume: 334
  start-page: 917
  year: 2011
  ident: 10.1016/j.cclet.2021.08.081_bib0001
  publication-title: Science
  doi: 10.1126/science.1213003
– volume: 40
  start-page: 433
  year: 2020
  ident: 10.1016/j.cclet.2021.08.081_bib0010
  publication-title: Rare Metals
  doi: 10.1007/s12598-020-01576-1
– volume: 404
  start-page: 435
  year: 2017
  ident: 10.1016/j.cclet.2021.08.081_bib0031
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.02.009
– volume: 112
  start-page: 138
  year: 2013
  ident: 10.1016/j.cclet.2021.08.081_bib0048
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.08.136
– volume: 29
  start-page: 52
  year: 2020
  ident: 10.1016/j.cclet.2021.08.081_bib0019
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.04.003
– volume: 300
  start-page: 453
  year: 2015
  ident: 10.1016/j.cclet.2021.08.081_bib0036
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.09.096
– volume: 11
  year: 2018
  ident: 10.1016/j.cclet.2021.08.081_bib0039
  publication-title: Funct. Mater. Lett.
– volume: 58
  start-page: 7823
  year: 2019
  ident: 10.1016/j.cclet.2021.08.081_bib0067
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201904174
– volume: 32
  start-page: 1117
  year: 2021
  ident: 10.1016/j.cclet.2021.08.081_bib0009
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2020.08.030
– volume: 86
  year: 2021
  ident: 10.1016/j.cclet.2021.08.081_bib0020
  publication-title: Nano Energy
– volume: 1
  start-page: 16039
  year: 2016
  ident: 10.1016/j.cclet.2021.08.081_bib0045
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.39
– volume: 43
  start-page: 182
  year: 2020
  ident: 10.1016/j.cclet.2021.08.081_bib0044
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2019.08.011
– volume: 23
  year: 2020
  ident: 10.1016/j.cclet.2021.08.081_bib0041
  publication-title: iScience
– volume: 12
  start-page: 110
  year: 2020
  ident: 10.1016/j.cclet.2021.08.081_bib0030
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-00445-x
– volume: 135
  start-page: 58
  year: 2019
  ident: 10.1016/j.cclet.2021.08.081_bib0034
  publication-title: Mater. Sci. Eng. R: Rep.
  doi: 10.1016/j.mser.2018.10.002
– volume: 133
  start-page: 254
  year: 2014
  ident: 10.1016/j.cclet.2021.08.081_bib0033
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.04.001
– volume: 23
  year: 2020
  ident: 10.1016/j.cclet.2021.08.081_bib0055
  publication-title: Z. Shao, iScience
– volume: 31
  start-page: 583
  year: 2020
  ident: 10.1016/j.cclet.2021.08.081_bib0012
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2019.11.002
– volume: 139
  start-page: 9775
  year: 2017
  ident: 10.1016/j.cclet.2021.08.081_bib0017
  publication-title: J Am. Chem. Soc.
  doi: 10.1021/jacs.7b04471
– volume: 7
  start-page: 22079
  year: 2019
  ident: 10.1016/j.cclet.2021.08.081_bib0054
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA08418E
– volume: 24
  start-page: 394
  year: 2020
  ident: 10.1016/j.cclet.2021.08.081_bib0069
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.07.030
SSID ssj0028836
Score 2.5648868
SecondaryResourceType review_article
Snippet Commercial lithium-ion batteries (LIBs) have been widely used in various energy storage systems. However, many unfavorable factors of LIBs have prompted...
Commercial lithium-ion batteries(LIBs)have been widely used in various energy storage systems.How-ever,many unfavorable factors of LIBs have prompted...
SourceID wanfang
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1236
SubjectTerms Aqueous zinc ion batteries
Cathode materials
Mn-based compounds
MnO2
Secondary batteries
Title Strategies for constructing manganese-based oxide electrode materials for aqueous rechargeable zinc-ion batteries
URI https://dx.doi.org/10.1016/j.cclet.2021.08.081
https://d.wanfangdata.com.cn/periodical/zghxkb202203011
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iiF7EJ77JwaNxt22axqMsyqroRQVvIc91fXSVVRQP_nZn0lT0oAcvpaTJtMxM5wEz3xCy0821FNYaFqyzjHtXMgiOJPOVs3kVuvs-It6cnYv-FT-5Lq8nSK_thcGyymT7G5serXVa6SRudh6Hw84FogdJjikM-tGYt3NeoZbvfXyVeeAw3dhhhKVDuLtFHoo1XhaIYUFl3uB4yuw37zT9quug68E333M0T-ZS0EgPmu9aIBO-XiQzvXZW2xJ5akFm_ZhCFErtqAWGrQf0AShqHDTJ0GU5OnobOk_T_Bu4g5i1UcN4VIOjGL2MKXAFQZQ8tlbR92FtGUiQmgjHCa9ZJldHh5e9PkvDFJgtivKZmdw543IZhBNBVhA2cGuLUsv9TBoXhBSZF6aC8ITDotWQdlRS6zyUAa7wYIVM1qParxKKeN7BQWolbcbLqjCVdJLrrtCmG4pSrpG8ZaKyCWkcB17cq7ak7FZFzivkvMIxmDJbI7tfhx4boI2_t4tWOuqHvihwBX8fpEmWKv2tY_U-uHm7Mzk2HaO9W_8v7Q0yi0SaErVNMgmC9lsQszyb7aiU22Tq4Pi0f_4JwkrujA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6hIASXqvQhaAvdA0dWiV_ryRFFoNCEXACJ22qfITwcUFI1yq_vjL1G9ACHXixrvTO2ZtbzkGa-Yeyol2qQ1hoRrLMi964QGByB8KWzaRl6fV8j3lxM5PA6_3VT3GywQdsLQ2WV0fY3Nr221nGlG6XZfZrNupeEHgQ5pTDkRylv3yR0qqLDNk_OR8PJS94FUE8KpP2CCFrwobrMyyI_qqlMGyhPSN5yUFt_dBV0NX3lfs4-sg8xbuQnzaftsg1ffWLbg3Zc22f23OLM-gXHQJTbeYsNW035I3LUNGtSkNdyfL6aOc_jCBy8w7C1OYk1qUZfMf-94CgYwlHy1F3F17PKClQiNzUiJ77mC7s-O70aDEWcpyBslhVLYVLnjEshSCcDlBg55NZmhYZ-AsYFCTLx0pQYoeS4aDVmHiVonYYi4BUffGWdal75PcYJ0js4zK7AJnlRZqYEB7nuSW16IStgn6WtEJWNYOM08-JBtVVld6qWvCLJK5qECck-O34hemqwNt7fLlvtqH-OjEJv8D4hj7pU8YddqPX0dnVvUuo7JpP37X95_2Tbw6uLsRqfT0bf2Q4xbCrWfrAOKt0fYAizNIfxiP4F7RXxPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strategies+for+constructing+manganese-based+oxide+electrode+materials+for+aqueous+rechargeable+zinc-ion+batteries&rft.jtitle=%E4%B8%AD%E5%9B%BD%E5%8C%96%E5%AD%A6%E5%BF%AB%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Ying+Liu&rft.au=Xiang+Wu&rft.date=2022-03-01&rft.pub=State+Key+Laboratory+of+Metastable+Materials+Science+and+Technology%2CYanshan+University%2CQinhuangdao+066004%2CChina&rft.issn=1001-8417&rft.volume=33&rft.issue=3&rft.spage=1236&rft.epage=1244&rft_id=info:doi/10.1016%2Fj.cclet.2021.08.081&rft.externalDocID=zghxkb202203011
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghxkb%2Fzghxkb.jpg