Matrix Anisotropy Promotes a Transition of Collective to Disseminated Cell Migration via a Collective Vortex Motion
Cells detached and disseminated away from collectively migrating cells are frequently found during tumor invasion at the invasion front, where extracellular matrix (ECM) fibers are parallel to the cell migration direction. However, it remains unclear how anisotropic topography promotes the transitio...
Saved in:
Published in | Advanced biology Vol. 7; no. 10; p. e2300026 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
01.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cells detached and disseminated away from collectively migrating cells are frequently found during tumor invasion at the invasion front, where extracellular matrix (ECM) fibers are parallel to the cell migration direction. However, it remains unclear how anisotropic topography promotes the transition of collective to disseminated cell migration. This study applies a collective cell migration model with and without 800 nm wide aligned nanogrooves parallel, perpendicular, or diagonal to the cell migration direction. After 120 hour migration, MCF7‐GFP‐H2B‐mCherry breast cancer cells display more disseminated cells at the migration front on parallel topography than on other topographies. Notably, a fluid‐like collective motion with high vorticity is enhanced at the migration front on parallel topography. Furthermore, high vorticity but not velocity is correlated with disseminated cell numbers on parallel topography. Enhanced collective vortex motion colocalizes with cell monolayer defects where cells extend protrusions into the free space, suggesting that topography‐driven cell crawling for defect closure promotes the collective vortex motion. In addition, elongated cell morphology and frequent protrusions induced by topography may further contribute to the collective vortex motion. Overall, a high‐vorticity collective motion at the migration front promoted by parallel topography suggests a cause of the transition of collective to disseminated cell migration. |
---|---|
AbstractList | Cells detached and disseminated away from collectively migrating cells are frequently found during tumor invasion at the invasion front, where extracellular matrix (ECM) fibers are parallel to the cell migration direction. However, it remains unclear how anisotropic topography promotes the transition of collective to disseminated cell migration. This study applies a collective cell migration model with and without 800 nm wide aligned nanogrooves parallel, perpendicular, or diagonal to the cell migration direction. After 120 hour migration, MCF7‐GFP‐H2B‐mCherry breast cancer cells display more disseminated cells at the migration front on parallel topography than on other topographies. Notably, a fluid‐like collective motion with high vorticity is enhanced at the migration front on parallel topography. Furthermore, high vorticity but not velocity is correlated with disseminated cell numbers on parallel topography. Enhanced collective vortex motion colocalizes with cell monolayer defects where cells extend protrusions into the free space, suggesting that topography‐driven cell crawling for defect closure promotes the collective vortex motion. In addition, elongated cell morphology and frequent protrusions induced by topography may further contribute to the collective vortex motion. Overall, a high‐vorticity collective motion at the migration front promoted by parallel topography suggests a cause of the transition of collective to disseminated cell migration. Cells detached and disseminated away from collectively migrating cells are frequently found during tumor invasion at the invasion front, where extracellular matrix (ECM) fibers are parallel to the cell migration direction. However, it remains unclear how anisotropic topography promotes the transition of collective to disseminated cell migration. This study applies a collective cell migration model with and without 800 nm wide aligned nanogrooves parallel, perpendicular, or diagonal to the cell migration direction. After 120 hour migration, MCF7-GFP-H2B-mCherry breast cancer cells display more disseminated cells at the migration front on parallel topography than on other topographies. Notably, a fluid-like collective motion with high vorticity is enhanced at the migration front on parallel topography. Furthermore, high vorticity but not velocity is correlated with disseminated cell numbers on parallel topography. Enhanced collective vortex motion colocalizes with cell monolayer defects where cells extend protrusions into the free space, suggesting that topography-driven cell crawling for defect closure promotes the collective vortex motion. In addition, elongated cell morphology and frequent protrusions induced by topography may further contribute to the collective vortex motion. Overall, a high-vorticity collective motion at the migration front promoted by parallel topography suggests a cause of the transition of collective to disseminated cell migration.Cells detached and disseminated away from collectively migrating cells are frequently found during tumor invasion at the invasion front, where extracellular matrix (ECM) fibers are parallel to the cell migration direction. However, it remains unclear how anisotropic topography promotes the transition of collective to disseminated cell migration. This study applies a collective cell migration model with and without 800 nm wide aligned nanogrooves parallel, perpendicular, or diagonal to the cell migration direction. After 120 hour migration, MCF7-GFP-H2B-mCherry breast cancer cells display more disseminated cells at the migration front on parallel topography than on other topographies. Notably, a fluid-like collective motion with high vorticity is enhanced at the migration front on parallel topography. Furthermore, high vorticity but not velocity is correlated with disseminated cell numbers on parallel topography. Enhanced collective vortex motion colocalizes with cell monolayer defects where cells extend protrusions into the free space, suggesting that topography-driven cell crawling for defect closure promotes the collective vortex motion. In addition, elongated cell morphology and frequent protrusions induced by topography may further contribute to the collective vortex motion. Overall, a high-vorticity collective motion at the migration front promoted by parallel topography suggests a cause of the transition of collective to disseminated cell migration. |
Author | Ahn, Eun Hyun Su, Chia‐Yi Kim, Deok‐Ho Matsubara, Tatsuya Wu, Alex |
Author_xml | – sequence: 1 givenname: Chia‐Yi orcidid: 0000-0002-9483-4510 surname: Su fullname: Su, Chia‐Yi organization: Department of Biomedical Engineering Johns Hopkins University School of Medicine Baltimore MD 21205 USA – sequence: 2 givenname: Tatsuya orcidid: 0000-0003-0408-8751 surname: Matsubara fullname: Matsubara, Tatsuya organization: Department of Biomedical Engineering Johns Hopkins University School of Medicine Baltimore MD 21205 USA – sequence: 3 givenname: Alex surname: Wu fullname: Wu, Alex organization: Department of Biomedical Engineering Johns Hopkins University School of Medicine Baltimore MD 21205 USA – sequence: 4 givenname: Eun Hyun surname: Ahn fullname: Ahn, Eun Hyun organization: Department of Biomedical Engineering Johns Hopkins University School of Medicine Baltimore MD 21205 USA – sequence: 5 givenname: Deok‐Ho orcidid: 0000-0002-6989-6074 surname: Kim fullname: Kim, Deok‐Ho organization: Department of Biomedical Engineering Johns Hopkins University School of Medicine Baltimore MD 21205 USA, Department of Medicine Johns Hopkins University School of Medicine Baltimore MD 21205 USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36932886$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1PwzAMhiM0xMbYlSPKkUtHkzRNepzGp7QJDoNrlKYpCmqbkWTT9u9p94EmJE625ee1bL-XoNfYRgNwjeIximN8J4vcjHGMSdxW6RkYYBajKEYZ753kfTDy_qtDKCIYsQvQJ2lGMOfpAPi5DM5s4KQx3gZnl1v45mxtg_ZQwoWTjTfB2AbaEk5tVWkVzFrDYOG98V7XppFBF3CqqwrOzaeTO3htZKs-4T-sC3oD57ZrX4HzUlZejw5xCN4fHxbT52j2-vQyncwiRQgNUVZqxSklRDJUlAlLMSFZwRGjCnGVMl4yjinPuaScaiQlY2WaJ0pzmSYoV2QIbvdzl85-r7QPojZetZvKRtuVF5jTJGnfRLMWvTmgq7zWhVg6U0u3FcdHtUCyB5Sz3jtdCmXC7tjgpKkEikVniegsEb-WtLLxH9lx8j-CH-8ljfU |
CitedBy_id | crossref_primary_10_1002_adbi_202300039 crossref_primary_10_1016_j_pbiomolbio_2024_11_005 |
Cites_doi | 10.1038/s41598-021-89130-6 10.1016/j.bpj.2017.01.007 10.1016/j.ajpath.2010.11.076 10.1039/c3ib40054a 10.1038/srep43800 10.1126/scitranslmed.3002564 10.1016/j.ymeth.2016.09.016 10.4161/cam.20567 10.1016/j.ceb.2016.04.006 10.1038/nrc.2016.123 10.1038/ncomms14923 10.1038/s41580-021-00366-6 10.1016/j.bpj.2018.09.010 10.1016/j.biomaterials.2021.120922 10.1039/C4IB00115J 10.1242/jcs.220277 10.1038/nrm3897 10.1242/dev.191767 10.1371/journal.pone.0083760 10.1016/j.bbcan.2020.188356 10.1016/j.bpj.2014.10.035 10.1016/j.bpj.2014.07.017 10.1126/science.34.870.279 10.1371/journal.pone.0153471 10.1016/j.tibtech.2015.01.004 10.1103/PhysRevLett.121.018101 10.1002/1878-0261.12019 10.1038/s41556-020-0552-6 10.5334/jors.bl 10.1016/j.bbagen.2014.03.020 10.1146/annurev-cellbio-111315-125201 10.1038/ncomms6720 10.1073/pnas.1119313109 10.4103/2153-3539.139707 10.1038/nmat4357 10.1186/1741-7015-4-38 10.3389/fmolb.2019.00160 10.1158/1055-9965.EPI-17-0720 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Advanced Biology published by Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 The Authors. Advanced Biology published by Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/adbi.202300026 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2701-0198 |
ExternalDocumentID | 36932886 10_1002_adbi_202300026 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R21 CA220111 |
GroupedDBID | 0R~ 1OC 33P AAHHS AAHQN AAMNL AANLZ AAYCA AAYXX ABJNI ACCFJ ACCZN ACPOU ACXQS ADMLS ADZMN AEEZP AEIGN AEQDE AEUYR AEYWJ AFFPM AFWVQ AGHNM AGYGG AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ CITATION DCZOG EBS HGLYW LATKE LEEKS LOXES LUTES LYRES MEWTI ROL SUPJJ WXSBR AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c335t-9fec85533a71df4762339d8175c18c678f78258b8a585e1aa77f6b4ce8a641bc3 |
ISSN | 2701-0198 |
IngestDate | Fri Jul 11 12:43:44 EDT 2025 Mon Jul 21 05:53:52 EDT 2025 Tue Jul 01 04:14:51 EDT 2025 Thu Apr 24 22:54:41 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | anisotropic matrix topography collective cell migration cell dissemination collective vortex motion |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/4.0 2023 The Authors. Advanced Biology published by Wiley-VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c335t-9fec85533a71df4762339d8175c18c678f78258b8a585e1aa77f6b4ce8a641bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0408-8751 0000-0002-6989-6074 0000-0002-9483-4510 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdf/10.1002/adbi.202300026 |
PMID | 36932886 |
PQID | 2854427059 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2854427059 pubmed_primary_36932886 crossref_citationtrail_10_1002_adbi_202300026 crossref_primary_10_1002_adbi_202300026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-00 2023-Oct 20231001 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-00 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Advanced biology |
PublicationTitleAlternate | Adv Biol (Weinh) |
PublicationYear | 2023 |
References | e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_29_2 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_8_3 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_6_2 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_21_1 Staneva R. (e_1_2_8_18_1) 2019; 132 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_15_3 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_13_2 e_1_2_8_14_1 e_1_2_8_13_3 e_1_2_8_15_1 e_1_2_8_15_2 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_12_1 Macadangdang J. (e_1_2_8_20_1) 2014 e_1_2_8_30_1 |
References_xml | – ident: e_1_2_8_30_1 doi: 10.1038/s41598-021-89130-6 – ident: e_1_2_8_13_2 doi: 10.1016/j.bpj.2017.01.007 – ident: e_1_2_8_15_3 doi: 10.1016/j.ajpath.2010.11.076 – ident: e_1_2_8_29_1 doi: 10.1039/c3ib40054a – ident: e_1_2_8_31_1 doi: 10.1038/srep43800 – ident: e_1_2_8_16_1 doi: 10.1126/scitranslmed.3002564 – ident: e_1_2_8_22_1 doi: 10.1016/j.ymeth.2016.09.016 – ident: e_1_2_8_14_1 doi: 10.4161/cam.20567 – ident: e_1_2_8_27_1 doi: 10.1016/j.ceb.2016.04.006 – ident: e_1_2_8_4_1 doi: 10.1038/nrc.2016.123 – ident: e_1_2_8_13_1 doi: 10.1038/ncomms14923 – ident: e_1_2_8_1_1 doi: 10.1038/s41580-021-00366-6 – ident: e_1_2_8_8_2 doi: 10.1016/j.bpj.2018.09.010 – ident: e_1_2_8_17_1 doi: 10.1016/j.biomaterials.2021.120922 – ident: e_1_2_8_8_1 doi: 10.1039/C4IB00115J – volume: 132 start-page: 6 year: 2019 ident: e_1_2_8_18_1 publication-title: J. Cell Sci. doi: 10.1242/jcs.220277 – ident: e_1_2_8_3_1 doi: 10.1038/nrm3897 – ident: e_1_2_8_7_1 doi: 10.1242/dev.191767 – ident: e_1_2_8_28_1 doi: 10.1371/journal.pone.0083760 – ident: e_1_2_8_10_1 doi: 10.1016/j.bbcan.2020.188356 – ident: e_1_2_8_13_3 doi: 10.1016/j.bpj.2014.10.035 – ident: e_1_2_8_25_1 doi: 10.1016/j.bpj.2014.07.017 – ident: e_1_2_8_12_1 doi: 10.1126/science.34.870.279 – ident: e_1_2_8_26_1 doi: 10.1371/journal.pone.0153471 – ident: e_1_2_8_23_1 doi: 10.1016/j.tibtech.2015.01.004 – ident: e_1_2_8_24_1 doi: 10.1103/PhysRevLett.121.018101 – year: 2014 ident: e_1_2_8_20_1 publication-title: J. Vis. Exp. – ident: e_1_2_8_5_1 doi: 10.1002/1878-0261.12019 – ident: e_1_2_8_6_2 doi: 10.1038/s41556-020-0552-6 – ident: e_1_2_8_21_1 doi: 10.5334/jors.bl – ident: e_1_2_8_6_1 doi: 10.1016/j.bbagen.2014.03.020 – ident: e_1_2_8_2_1 doi: 10.1146/annurev-cellbio-111315-125201 – ident: e_1_2_8_29_2 doi: 10.1038/ncomms6720 – ident: e_1_2_8_9_1 doi: 10.1073/pnas.1119313109 – ident: e_1_2_8_15_2 doi: 10.4103/2153-3539.139707 – ident: e_1_2_8_8_3 doi: 10.1038/nmat4357 – ident: e_1_2_8_19_1 doi: 10.1186/1741-7015-4-38 – ident: e_1_2_8_11_1 doi: 10.3389/fmolb.2019.00160 – ident: e_1_2_8_15_1 doi: 10.1158/1055-9965.EPI-17-0720 |
SSID | ssj0002513217 |
Score | 2.255058 |
Snippet | Cells detached and disseminated away from collectively migrating cells are frequently found during tumor invasion at the invasion front, where extracellular... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | e2300026 |
SubjectTerms | Anisotropy Cell Movement Extracellular Matrix |
Title | Matrix Anisotropy Promotes a Transition of Collective to Disseminated Cell Migration via a Collective Vortex Motion |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36932886 https://www.proquest.com/docview/2854427059 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF7ahEIvpe-6L7ZQ6MHItd6ro2kSTLHTQ-3insTuapUKjBQiKcT59Z3RSisZHEh7EfKyerDzeTSPnW8I-RypQAVRkFoqEMJCLWlxJuGMS2mHIfcShvXOy_Ngvva-b_xNH8puqksqMZG3B-tK_keqMAZyxSrZf5CsuSkMwDnIF44gYTjeS8ZL5Ne_Gc_yrCyqq-ISq_1wd50qx1zTlmedQdgECBrdhtbmCWbhcRNM1QR4t9vxMrtosXCNZVrD-b9wP-4N_PuNDDvW2m7_QMvk1CeYdCI_49bvrA95V2WNqY0GIfhj138R6q7WxuDvj44L1fl4vqvzYWzC6Xe5tSrMCZtghe4zPVEHxlodHA6hNh0oVAUuEvqJB7W9Zo_licgm-HQzcZ9W-_xHfLZeLOLV6Wb1kBw74E-AQjyenSwXP004Dsw812n6M5v36yg-p87X_UfsmzB3-CWNfbJ6Sp60jgWdaZQ8Iw9U_pw80q1Gdy9IqbFCe6zQDiuU0x4rtEhpL3taFXSIFYpYoQYrFLACVw_ma6xQjZWXZH12uvo2t9qGG5Z0Xb-yolRJ5oMDwEM7ST34TrpulDCwMKXNJJg1KdiTPhOMg5OpbM7DMA2EJxXjgWcL6b4iR3mRqzeEpulUMljKSDAXKfkiL7CVBFvQTmwVRmJErG4NY9my0WNTlG2sebSdGNc8Nms-Il_M_EvNw3LnzE-dSGJQlZj_4rkq6jLGYmEP3smPRuS1lpW5lxuAI8NY8PYeV78jj3uwvydH1VWtPoBpWomPLaz-Agk5kI4 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Matrix+Anisotropy+Promotes+a+Transition+of+Collective+to+Disseminated+Cell+Migration+via+a+Collective+Vortex+Motion&rft.jtitle=Advanced+biology&rft.au=Su%2C+Chia-Yi&rft.au=Matsubara%2C+Tatsuya&rft.au=Wu%2C+Alex&rft.au=Ahn%2C+Eun+Hyun&rft.date=2023-10-01&rft.issn=2701-0198&rft.eissn=2701-0198&rft.volume=7&rft.issue=10&rft.spage=e2300026&rft_id=info:doi/10.1002%2Fadbi.202300026&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2701-0198&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2701-0198&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2701-0198&client=summon |