Matrix Anisotropy Promotes a Transition of Collective to Disseminated Cell Migration via a Collective Vortex Motion

Cells detached and disseminated away from collectively migrating cells are frequently found during tumor invasion at the invasion front, where extracellular matrix (ECM) fibers are parallel to the cell migration direction. However, it remains unclear how anisotropic topography promotes the transitio...

Full description

Saved in:
Bibliographic Details
Published inAdvanced biology Vol. 7; no. 10; p. e2300026
Main Authors Su, Chia‐Yi, Matsubara, Tatsuya, Wu, Alex, Ahn, Eun Hyun, Kim, Deok‐Ho
Format Journal Article
LanguageEnglish
Published Germany 01.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cells detached and disseminated away from collectively migrating cells are frequently found during tumor invasion at the invasion front, where extracellular matrix (ECM) fibers are parallel to the cell migration direction. However, it remains unclear how anisotropic topography promotes the transition of collective to disseminated cell migration. This study applies a collective cell migration model with and without 800 nm wide aligned nanogrooves parallel, perpendicular, or diagonal to the cell migration direction. After 120 hour migration, MCF7‐GFP‐H2B‐mCherry breast cancer cells display more disseminated cells at the migration front on parallel topography than on other topographies. Notably, a fluid‐like collective motion with high vorticity is enhanced at the migration front on parallel topography. Furthermore, high vorticity but not velocity is correlated with disseminated cell numbers on parallel topography. Enhanced collective vortex motion colocalizes with cell monolayer defects where cells extend protrusions into the free space, suggesting that topography‐driven cell crawling for defect closure promotes the collective vortex motion. In addition, elongated cell morphology and frequent protrusions induced by topography may further contribute to the collective vortex motion. Overall, a high‐vorticity collective motion at the migration front promoted by parallel topography suggests a cause of the transition of collective to disseminated cell migration.
AbstractList Cells detached and disseminated away from collectively migrating cells are frequently found during tumor invasion at the invasion front, where extracellular matrix (ECM) fibers are parallel to the cell migration direction. However, it remains unclear how anisotropic topography promotes the transition of collective to disseminated cell migration. This study applies a collective cell migration model with and without 800 nm wide aligned nanogrooves parallel, perpendicular, or diagonal to the cell migration direction. After 120 hour migration, MCF7‐GFP‐H2B‐mCherry breast cancer cells display more disseminated cells at the migration front on parallel topography than on other topographies. Notably, a fluid‐like collective motion with high vorticity is enhanced at the migration front on parallel topography. Furthermore, high vorticity but not velocity is correlated with disseminated cell numbers on parallel topography. Enhanced collective vortex motion colocalizes with cell monolayer defects where cells extend protrusions into the free space, suggesting that topography‐driven cell crawling for defect closure promotes the collective vortex motion. In addition, elongated cell morphology and frequent protrusions induced by topography may further contribute to the collective vortex motion. Overall, a high‐vorticity collective motion at the migration front promoted by parallel topography suggests a cause of the transition of collective to disseminated cell migration.
Cells detached and disseminated away from collectively migrating cells are frequently found during tumor invasion at the invasion front, where extracellular matrix (ECM) fibers are parallel to the cell migration direction. However, it remains unclear how anisotropic topography promotes the transition of collective to disseminated cell migration. This study applies a collective cell migration model with and without 800 nm wide aligned nanogrooves parallel, perpendicular, or diagonal to the cell migration direction. After 120 hour migration, MCF7-GFP-H2B-mCherry breast cancer cells display more disseminated cells at the migration front on parallel topography than on other topographies. Notably, a fluid-like collective motion with high vorticity is enhanced at the migration front on parallel topography. Furthermore, high vorticity but not velocity is correlated with disseminated cell numbers on parallel topography. Enhanced collective vortex motion colocalizes with cell monolayer defects where cells extend protrusions into the free space, suggesting that topography-driven cell crawling for defect closure promotes the collective vortex motion. In addition, elongated cell morphology and frequent protrusions induced by topography may further contribute to the collective vortex motion. Overall, a high-vorticity collective motion at the migration front promoted by parallel topography suggests a cause of the transition of collective to disseminated cell migration.Cells detached and disseminated away from collectively migrating cells are frequently found during tumor invasion at the invasion front, where extracellular matrix (ECM) fibers are parallel to the cell migration direction. However, it remains unclear how anisotropic topography promotes the transition of collective to disseminated cell migration. This study applies a collective cell migration model with and without 800 nm wide aligned nanogrooves parallel, perpendicular, or diagonal to the cell migration direction. After 120 hour migration, MCF7-GFP-H2B-mCherry breast cancer cells display more disseminated cells at the migration front on parallel topography than on other topographies. Notably, a fluid-like collective motion with high vorticity is enhanced at the migration front on parallel topography. Furthermore, high vorticity but not velocity is correlated with disseminated cell numbers on parallel topography. Enhanced collective vortex motion colocalizes with cell monolayer defects where cells extend protrusions into the free space, suggesting that topography-driven cell crawling for defect closure promotes the collective vortex motion. In addition, elongated cell morphology and frequent protrusions induced by topography may further contribute to the collective vortex motion. Overall, a high-vorticity collective motion at the migration front promoted by parallel topography suggests a cause of the transition of collective to disseminated cell migration.
Author Ahn, Eun Hyun
Su, Chia‐Yi
Kim, Deok‐Ho
Matsubara, Tatsuya
Wu, Alex
Author_xml – sequence: 1
  givenname: Chia‐Yi
  orcidid: 0000-0002-9483-4510
  surname: Su
  fullname: Su, Chia‐Yi
  organization: Department of Biomedical Engineering Johns Hopkins University School of Medicine Baltimore MD 21205 USA
– sequence: 2
  givenname: Tatsuya
  orcidid: 0000-0003-0408-8751
  surname: Matsubara
  fullname: Matsubara, Tatsuya
  organization: Department of Biomedical Engineering Johns Hopkins University School of Medicine Baltimore MD 21205 USA
– sequence: 3
  givenname: Alex
  surname: Wu
  fullname: Wu, Alex
  organization: Department of Biomedical Engineering Johns Hopkins University School of Medicine Baltimore MD 21205 USA
– sequence: 4
  givenname: Eun Hyun
  surname: Ahn
  fullname: Ahn, Eun Hyun
  organization: Department of Biomedical Engineering Johns Hopkins University School of Medicine Baltimore MD 21205 USA
– sequence: 5
  givenname: Deok‐Ho
  orcidid: 0000-0002-6989-6074
  surname: Kim
  fullname: Kim, Deok‐Ho
  organization: Department of Biomedical Engineering Johns Hopkins University School of Medicine Baltimore MD 21205 USA, Department of Medicine Johns Hopkins University School of Medicine Baltimore MD 21205 USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36932886$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1PwzAMhiM0xMbYlSPKkUtHkzRNepzGp7QJDoNrlKYpCmqbkWTT9u9p94EmJE625ee1bL-XoNfYRgNwjeIximN8J4vcjHGMSdxW6RkYYBajKEYZ753kfTDy_qtDKCIYsQvQJ2lGMOfpAPi5DM5s4KQx3gZnl1v45mxtg_ZQwoWTjTfB2AbaEk5tVWkVzFrDYOG98V7XppFBF3CqqwrOzaeTO3htZKs-4T-sC3oD57ZrX4HzUlZejw5xCN4fHxbT52j2-vQyncwiRQgNUVZqxSklRDJUlAlLMSFZwRGjCnGVMl4yjinPuaScaiQlY2WaJ0pzmSYoV2QIbvdzl85-r7QPojZetZvKRtuVF5jTJGnfRLMWvTmgq7zWhVg6U0u3FcdHtUCyB5Sz3jtdCmXC7tjgpKkEikVniegsEb-WtLLxH9lx8j-CH-8ljfU
CitedBy_id crossref_primary_10_1002_adbi_202300039
crossref_primary_10_1016_j_pbiomolbio_2024_11_005
Cites_doi 10.1038/s41598-021-89130-6
10.1016/j.bpj.2017.01.007
10.1016/j.ajpath.2010.11.076
10.1039/c3ib40054a
10.1038/srep43800
10.1126/scitranslmed.3002564
10.1016/j.ymeth.2016.09.016
10.4161/cam.20567
10.1016/j.ceb.2016.04.006
10.1038/nrc.2016.123
10.1038/ncomms14923
10.1038/s41580-021-00366-6
10.1016/j.bpj.2018.09.010
10.1016/j.biomaterials.2021.120922
10.1039/C4IB00115J
10.1242/jcs.220277
10.1038/nrm3897
10.1242/dev.191767
10.1371/journal.pone.0083760
10.1016/j.bbcan.2020.188356
10.1016/j.bpj.2014.10.035
10.1016/j.bpj.2014.07.017
10.1126/science.34.870.279
10.1371/journal.pone.0153471
10.1016/j.tibtech.2015.01.004
10.1103/PhysRevLett.121.018101
10.1002/1878-0261.12019
10.1038/s41556-020-0552-6
10.5334/jors.bl
10.1016/j.bbagen.2014.03.020
10.1146/annurev-cellbio-111315-125201
10.1038/ncomms6720
10.1073/pnas.1119313109
10.4103/2153-3539.139707
10.1038/nmat4357
10.1186/1741-7015-4-38
10.3389/fmolb.2019.00160
10.1158/1055-9965.EPI-17-0720
ContentType Journal Article
Copyright 2023 The Authors. Advanced Biology published by Wiley-VCH GmbH.
Copyright_xml – notice: 2023 The Authors. Advanced Biology published by Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/adbi.202300026
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2701-0198
ExternalDocumentID 36932886
10_1002_adbi_202300026
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R21 CA220111
GroupedDBID 0R~
1OC
33P
AAHHS
AAHQN
AAMNL
AANLZ
AAYCA
AAYXX
ABJNI
ACCFJ
ACCZN
ACPOU
ACXQS
ADMLS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AEYWJ
AFFPM
AFWVQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
CITATION
DCZOG
EBS
HGLYW
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
ROL
SUPJJ
WXSBR
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c335t-9fec85533a71df4762339d8175c18c678f78258b8a585e1aa77f6b4ce8a641bc3
ISSN 2701-0198
IngestDate Fri Jul 11 12:43:44 EDT 2025
Mon Jul 21 05:53:52 EDT 2025
Tue Jul 01 04:14:51 EDT 2025
Thu Apr 24 22:54:41 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords anisotropic matrix topography
collective cell migration
cell dissemination
collective vortex motion
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
2023 The Authors. Advanced Biology published by Wiley-VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c335t-9fec85533a71df4762339d8175c18c678f78258b8a585e1aa77f6b4ce8a641bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0408-8751
0000-0002-6989-6074
0000-0002-9483-4510
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdf/10.1002/adbi.202300026
PMID 36932886
PQID 2854427059
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2854427059
pubmed_primary_36932886
crossref_citationtrail_10_1002_adbi_202300026
crossref_primary_10_1002_adbi_202300026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-00
2023-Oct
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-00
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Advanced biology
PublicationTitleAlternate Adv Biol (Weinh)
PublicationYear 2023
References e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_29_2
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_8_3
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_6_2
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_21_1
Staneva R. (e_1_2_8_18_1) 2019; 132
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_15_3
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_13_2
e_1_2_8_14_1
e_1_2_8_13_3
e_1_2_8_15_1
e_1_2_8_15_2
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
Macadangdang J. (e_1_2_8_20_1) 2014
e_1_2_8_30_1
References_xml – ident: e_1_2_8_30_1
  doi: 10.1038/s41598-021-89130-6
– ident: e_1_2_8_13_2
  doi: 10.1016/j.bpj.2017.01.007
– ident: e_1_2_8_15_3
  doi: 10.1016/j.ajpath.2010.11.076
– ident: e_1_2_8_29_1
  doi: 10.1039/c3ib40054a
– ident: e_1_2_8_31_1
  doi: 10.1038/srep43800
– ident: e_1_2_8_16_1
  doi: 10.1126/scitranslmed.3002564
– ident: e_1_2_8_22_1
  doi: 10.1016/j.ymeth.2016.09.016
– ident: e_1_2_8_14_1
  doi: 10.4161/cam.20567
– ident: e_1_2_8_27_1
  doi: 10.1016/j.ceb.2016.04.006
– ident: e_1_2_8_4_1
  doi: 10.1038/nrc.2016.123
– ident: e_1_2_8_13_1
  doi: 10.1038/ncomms14923
– ident: e_1_2_8_1_1
  doi: 10.1038/s41580-021-00366-6
– ident: e_1_2_8_8_2
  doi: 10.1016/j.bpj.2018.09.010
– ident: e_1_2_8_17_1
  doi: 10.1016/j.biomaterials.2021.120922
– ident: e_1_2_8_8_1
  doi: 10.1039/C4IB00115J
– volume: 132
  start-page: 6
  year: 2019
  ident: e_1_2_8_18_1
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.220277
– ident: e_1_2_8_3_1
  doi: 10.1038/nrm3897
– ident: e_1_2_8_7_1
  doi: 10.1242/dev.191767
– ident: e_1_2_8_28_1
  doi: 10.1371/journal.pone.0083760
– ident: e_1_2_8_10_1
  doi: 10.1016/j.bbcan.2020.188356
– ident: e_1_2_8_13_3
  doi: 10.1016/j.bpj.2014.10.035
– ident: e_1_2_8_25_1
  doi: 10.1016/j.bpj.2014.07.017
– ident: e_1_2_8_12_1
  doi: 10.1126/science.34.870.279
– ident: e_1_2_8_26_1
  doi: 10.1371/journal.pone.0153471
– ident: e_1_2_8_23_1
  doi: 10.1016/j.tibtech.2015.01.004
– ident: e_1_2_8_24_1
  doi: 10.1103/PhysRevLett.121.018101
– year: 2014
  ident: e_1_2_8_20_1
  publication-title: J. Vis. Exp.
– ident: e_1_2_8_5_1
  doi: 10.1002/1878-0261.12019
– ident: e_1_2_8_6_2
  doi: 10.1038/s41556-020-0552-6
– ident: e_1_2_8_21_1
  doi: 10.5334/jors.bl
– ident: e_1_2_8_6_1
  doi: 10.1016/j.bbagen.2014.03.020
– ident: e_1_2_8_2_1
  doi: 10.1146/annurev-cellbio-111315-125201
– ident: e_1_2_8_29_2
  doi: 10.1038/ncomms6720
– ident: e_1_2_8_9_1
  doi: 10.1073/pnas.1119313109
– ident: e_1_2_8_15_2
  doi: 10.4103/2153-3539.139707
– ident: e_1_2_8_8_3
  doi: 10.1038/nmat4357
– ident: e_1_2_8_19_1
  doi: 10.1186/1741-7015-4-38
– ident: e_1_2_8_11_1
  doi: 10.3389/fmolb.2019.00160
– ident: e_1_2_8_15_1
  doi: 10.1158/1055-9965.EPI-17-0720
SSID ssj0002513217
Score 2.255058
Snippet Cells detached and disseminated away from collectively migrating cells are frequently found during tumor invasion at the invasion front, where extracellular...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage e2300026
SubjectTerms Anisotropy
Cell Movement
Extracellular Matrix
Title Matrix Anisotropy Promotes a Transition of Collective to Disseminated Cell Migration via a Collective Vortex Motion
URI https://www.ncbi.nlm.nih.gov/pubmed/36932886
https://www.proquest.com/docview/2854427059
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF7ahEIvpe-6L7ZQ6MHItd6ro2kSTLHTQ-3insTuapUKjBQiKcT59Z3RSisZHEh7EfKyerDzeTSPnW8I-RypQAVRkFoqEMJCLWlxJuGMS2mHIfcShvXOy_Ngvva-b_xNH8puqksqMZG3B-tK_keqMAZyxSrZf5CsuSkMwDnIF44gYTjeS8ZL5Ne_Gc_yrCyqq-ISq_1wd50qx1zTlmedQdgECBrdhtbmCWbhcRNM1QR4t9vxMrtosXCNZVrD-b9wP-4N_PuNDDvW2m7_QMvk1CeYdCI_49bvrA95V2WNqY0GIfhj138R6q7WxuDvj44L1fl4vqvzYWzC6Xe5tSrMCZtghe4zPVEHxlodHA6hNh0oVAUuEvqJB7W9Zo_licgm-HQzcZ9W-_xHfLZeLOLV6Wb1kBw74E-AQjyenSwXP004Dsw812n6M5v36yg-p87X_UfsmzB3-CWNfbJ6Sp60jgWdaZQ8Iw9U_pw80q1Gdy9IqbFCe6zQDiuU0x4rtEhpL3taFXSIFYpYoQYrFLACVw_ma6xQjZWXZH12uvo2t9qGG5Z0Xb-yolRJ5oMDwEM7ST34TrpulDCwMKXNJJg1KdiTPhOMg5OpbM7DMA2EJxXjgWcL6b4iR3mRqzeEpulUMljKSDAXKfkiL7CVBFvQTmwVRmJErG4NY9my0WNTlG2sebSdGNc8Nms-Il_M_EvNw3LnzE-dSGJQlZj_4rkq6jLGYmEP3smPRuS1lpW5lxuAI8NY8PYeV78jj3uwvydH1VWtPoBpWomPLaz-Agk5kI4
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Matrix+Anisotropy+Promotes+a+Transition+of+Collective+to+Disseminated+Cell+Migration+via+a+Collective+Vortex+Motion&rft.jtitle=Advanced+biology&rft.au=Su%2C+Chia-Yi&rft.au=Matsubara%2C+Tatsuya&rft.au=Wu%2C+Alex&rft.au=Ahn%2C+Eun+Hyun&rft.date=2023-10-01&rft.issn=2701-0198&rft.eissn=2701-0198&rft.volume=7&rft.issue=10&rft.spage=e2300026&rft_id=info:doi/10.1002%2Fadbi.202300026&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2701-0198&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2701-0198&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2701-0198&client=summon