Single valued neutrosophic $ (m, n) $-ideals of ordered semirings

The aim of this paper is to combine the innovative concept of single valued neutrosophic sets and ordered semirings. It studies ordered semirings by the properties of their single valued neutrosphic subsets. In this regard, we define single valued neutrosophic $ (m, n) $-ideals (SVN-$ (m, n) $-ideal...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 7; no. 1; pp. 1211 - 1223
Main Authors Al-Kaseasbeh, Saba, Tahan, Madeline Al, Davvaz, Bijan, Hariri, Mariam
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2022
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2022071

Cover

Loading…
Abstract The aim of this paper is to combine the innovative concept of single valued neutrosophic sets and ordered semirings. It studies ordered semirings by the properties of their single valued neutrosphic subsets. In this regard, we define single valued neutrosophic $ (m, n) $-ideals (SVN-$ (m, n) $-ideals) of ordered semirings. First, we illustrate our new definition by non-trivial examples. Second, we study these SVN-$ (m, n) $-ideals under different operations of SVNS. Finally, we find a relationship between the $ (m, n) $-ideals of ordered semirings and level sets by finding a necessary and sufficient condition for an SVNS of an ordered semiring $ R $ to be an SVN-$ (m, n) $-ideal of $ R $.
AbstractList The aim of this paper is to combine the innovative concept of single valued neutrosophic sets and ordered semirings. It studies ordered semirings by the properties of their single valued neutrosphic subsets. In this regard, we define single valued neutrosophic $ (m, n) $-ideals (SVN-$ (m, n) $-ideals) of ordered semirings. First, we illustrate our new definition by non-trivial examples. Second, we study these SVN-$ (m, n) $-ideals under different operations of SVNS. Finally, we find a relationship between the $ (m, n) $-ideals of ordered semirings and level sets by finding a necessary and sufficient condition for an SVNS of an ordered semiring $ R $ to be an SVN-$ (m, n) $-ideal of $ R $.
Author Hariri, Mariam
Al-Kaseasbeh, Saba
Davvaz, Bijan
Tahan, Madeline Al
Author_xml – sequence: 1
  givenname: Saba
  surname: Al-Kaseasbeh
  fullname: Al-Kaseasbeh, Saba
– sequence: 2
  givenname: Madeline Al
  surname: Tahan
  fullname: Tahan, Madeline Al
– sequence: 3
  givenname: Bijan
  surname: Davvaz
  fullname: Davvaz, Bijan
– sequence: 4
  givenname: Mariam
  surname: Hariri
  fullname: Hariri, Mariam
BookMark eNpNkEtrwzAQhEVJoWmaW3-ADjm0EKd6WvIxhD4CgR7anoUirRIH2wqyU-i_r_Og9LTLzO4HM7do0MQGELqnZMYLLp5q221njDBGFL1CQyYUz_JC68G__QaN23ZHCGGUCabEEM0_ymZTAf621QE8buDQpdjG_bZ0eIIf6iluHvEkKz3YqsUx4Jg8pP6yhbpM_W97h65D78H4Mkfo6-X5c_GWrd5fl4v5KnOcyy7TwYeQC6dcbnNCaU6BKk6lD2spVFCFBcs95P4kUSqcFjxQQZ2WuZZrPkLLM9dHuzP7VNY2_ZhoS3MSYtoYm7rSVWBcAAZKes36jFpC4QtOlAggLV975nvW9Mxyfdg2QfjjUWKObZpjm-bSJv8FVABoZg
Cites_doi 10.1007/s40314-019-0930-5
10.12988/ams.2017.64115
10.1142/S0219498822501018
10.1007/978-3-319-14762-8
10.1016/S0165-0114(86)80034-3
10.1007/978-94-015-9964-1
10.1016/0165-0114(90)90025-2
10.5281/zenodo.3750220
10.1016/S0019-9958(65)90241-X
10.1080/00927872.2019.1710178
10.1016/j.fiae.2014.06.008
10.1155/2014/416530
10.1090/S0002-9904-1934-06003-8
10.54216/IJNS.0100201
10.1007/978-94-015-9333-5
10.5281/zenodo.3719350
ContentType Journal Article
CorporateAuthor Department of Mathematics and Statistics, Zayed University, United Arab Emirates
Department of Mathematics, Yazd University, Yazd, Iran
Department of Mathematics, Tafila Technical University, Tafila, Jordan
Department of Mathematics, Lebanese International University, Lebanon
CorporateAuthor_xml – name: Department of Mathematics, Lebanese International University, Lebanon
– name: Department of Mathematics and Statistics, Zayed University, United Arab Emirates
– name: Department of Mathematics, Yazd University, Yazd, Iran
– name: Department of Mathematics, Tafila Technical University, Tafila, Jordan
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2022071
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 1223
ExternalDocumentID oai_doaj_org_article_cfe2e75d8227485e9d93074fe5a3bd2d
10_3934_math_2022071
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c335t-8fdff64c7c6a601161e17315dfb547f79aea3de6d15dfb114c843f141c85685b3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 00:57:17 EDT 2025
Tue Jul 01 03:56:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c335t-8fdff64c7c6a601161e17315dfb547f79aea3de6d15dfb114c843f141c85685b3
OpenAccessLink https://doaj.org/article/cfe2e75d8227485e9d93074fe5a3bd2d
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_cfe2e75d8227485e9d93074fe5a3bd2d
crossref_primary_10_3934_math_2022071
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2022
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2022071-19
key-10.3934/math.2022071-14
key-10.3934/math.2022071-13
key-10.3934/math.2022071-12
key-10.3934/math.2022071-23
key-10.3934/math.2022071-11
key-10.3934/math.2022071-22
key-10.3934/math.2022071-18
key-10.3934/math.2022071-17
key-10.3934/math.2022071-16
key-10.3934/math.2022071-15
key-10.3934/math.2022071-9
key-10.3934/math.2022071-10
key-10.3934/math.2022071-21
key-10.3934/math.2022071-8
key-10.3934/math.2022071-20
key-10.3934/math.2022071-5
key-10.3934/math.2022071-4
key-10.3934/math.2022071-7
key-10.3934/math.2022071-6
key-10.3934/math.2022071-1
key-10.3934/math.2022071-3
key-10.3934/math.2022071-2
References_xml – ident: key-10.3934/math.2022071-15
  doi: 10.1007/s40314-019-0930-5
– ident: key-10.3934/math.2022071-6
– ident: key-10.3934/math.2022071-1
  doi: 10.12988/ams.2017.64115
– ident: key-10.3934/math.2022071-7
– ident: key-10.3934/math.2022071-2
  doi: 10.1142/S0219498822501018
– ident: key-10.3934/math.2022071-12
  doi: 10.1007/978-3-319-14762-8
– ident: key-10.3934/math.2022071-8
  doi: 10.1016/S0165-0114(86)80034-3
– ident: key-10.3934/math.2022071-13
  doi: 10.1007/978-94-015-9964-1
– ident: key-10.3934/math.2022071-9
  doi: 10.1016/0165-0114(90)90025-2
– ident: key-10.3934/math.2022071-5
  doi: 10.5281/zenodo.3750220
– ident: key-10.3934/math.2022071-22
– ident: key-10.3934/math.2022071-23
  doi: 10.1016/S0019-9958(65)90241-X
– ident: key-10.3934/math.2022071-11
  doi: 10.1080/00927872.2019.1710178
– ident: key-10.3934/math.2022071-16
  doi: 10.1016/j.fiae.2014.06.008
– ident: key-10.3934/math.2022071-20
– ident: key-10.3934/math.2022071-18
– ident: key-10.3934/math.2022071-10
  doi: 10.1155/2014/416530
– ident: key-10.3934/math.2022071-21
  doi: 10.1090/S0002-9904-1934-06003-8
– ident: key-10.3934/math.2022071-3
  doi: 10.54216/IJNS.0100201
– ident: key-10.3934/math.2022071-17
– ident: key-10.3934/math.2022071-19
– ident: key-10.3934/math.2022071-14
  doi: 10.1007/978-94-015-9333-5
– ident: key-10.3934/math.2022071-4
  doi: 10.5281/zenodo.3719350
SSID ssj0002124274
Score 2.17627
Snippet The aim of this paper is to combine the innovative concept of single valued neutrosophic sets and ordered semirings. It studies ordered semirings by the...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 1211
SubjectTerms (m,n)-ideal
ordered semiring
semiring
single valued neutrosophic (m,n)-ideal
single valued neutrosophic set
Title Single valued neutrosophic $ (m, n) $-ideals of ordered semirings
URI https://doaj.org/article/cfe2e75d8227485e9d93074fe5a3bd2d
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv9qCg4NIm-wx4UbEUoV600FvY7M5CwUZp0v_vbBJLPXkRcgjLEJZvwnwzO8s3hFxFfQ-XWcu8GlomkJKZkUEyw3ng-CKDjR3dyasaT8XLTM42Rn3FO2GtPHAL3MAFSEFLj0SmhZGQ-Qx_SxFAWl741Mfoi5y3UUzFGIwBWaB9e9OdZ1wMMP-LvYc0HerkFwdtSPU3nDLaI7tdMkgf2k3sky0oD8jOZK2kWh2S-zfklg-gUZQbPC1hVS-b0QNzR28Wd-Utm3vM9Sr6GWgjo4lGFSzm8biuOiLT0fP705h1Ew-Y41zWzAQfghJOO2VVbJEkkGieSB8KKXTQmQXLPSjfLGEp44zgIRGJM1IZWfBj0is_SzghFNOwNOADHlJhtcg0WK0ymRaaG1foPrn-wSD_aoUtciwIIlZ5xCrvsOqTxwjQ2ibKUTcL6KS8c1L-l5NO_-MjZ2Q77qk9_zgnvXq5ggvMCOrisnH-N2ZKtDA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+valued+neutrosophic+%24+%28m%2C+n%29+%24-ideals+of+ordered+semirings&rft.jtitle=AIMS+mathematics&rft.au=Al-Kaseasbeh%2C+Saba&rft.au=Tahan%2C+Madeline+Al&rft.au=Davvaz%2C+Bijan&rft.au=Hariri%2C+Mariam&rft.date=2022-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=7&rft.issue=1&rft.spage=1211&rft.epage=1223&rft_id=info:doi/10.3934%2Fmath.2022071&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2022071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon