Insightful understanding of three-phase interface behaviors in 1T-2H MoS2/CFP electrode for hydrogen evolution improvement

Hydrogen evolution reaction (HER) catalytic electrodes under actual working conditions show interesting mass transfer behaviors at solid (electrode)/liquid (electrolyte)/gas (hydrogen) three-phase interfaces. These behaviors are essential for forming a continuous and effective physical contact regio...

Full description

Saved in:
Bibliographic Details
Published inChinese chemical letters Vol. 33; no. 8; pp. 3745 - 3751
Main Authors Cao, Jiamu, Zhou, Jing, Li, Mingxue, Chen, Junyu, Zhang, Yufeng, Liu, Xiaowei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2022
MEMS Center,Harbin Institute of Technology,Harbin 150001,China
School of Astronautics,Harbin Institute of Technology,Harbin 150001,China
Key Laboratory of Micro-systems and Micro-structures Manufacturing.Ministry of Education,Harbin 150001,China%School of Astronautics,Harbin Institute of Technology,Harbin 150001,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogen evolution reaction (HER) catalytic electrodes under actual working conditions show interesting mass transfer behaviors at solid (electrode)/liquid (electrolyte)/gas (hydrogen) three-phase interfaces. These behaviors are essential for forming a continuous and effective physical contact region between the electrolyte and the electrode and require further detailed understanding. Here, a case study on 1T-2H phase molybdenum disulfide (MoS2)/carbon fiber paper (CFP) catalytic electrodes is performed. Rapid gas-liquid mass transfer at the interface for enhancing the working area stability and capillarity for increasing the electrode working area is found. The real scenario, wherein the energy utilization efficiency of the as-prepared non-noble metal catalytic electrode exceeds that of the noble metal catalytic electrode, is disclosed. Specifically, a fluid dynamics model is developed to investigate the behavior mechanism of hydrogen bubbles from generation to desorption on the catalytic electrode surface with different hydrophilic and hydrophobic properties. These new insights and theoretical evidence on the non-negligible three-phase interface behaviors will identify opportunities and motivate future research in high-efficiency, stability, and low-cost HER catalytic electrode development. [Display omitted]
AbstractList Hydrogen evolution reaction (HER) catalytic electrodes under actual working conditions show interesting mass transfer behaviors at solid (electrode)/liquid (electrolyte)/gas (hydrogen) three-phase interfaces. These behaviors are essential for forming a continuous and effective physical contact region between the electrolyte and the electrode and require further detailed understanding. Here, a case study on 1T-2H phase molybdenum disulfide (MoS2)/carbon fiber paper (CFP) catalytic electrodes is performed. Rapid gas-liquid mass transfer at the interface for enhancing the working area stability and capillarity for increasing the electrode working area is found. The real scenario, wherein the energy utilization efficiency of the as-prepared non-noble metal catalytic electrode exceeds that of the noble metal catalytic electrode, is disclosed. Specifically, a fluid dynamics model is developed to investigate the behavior mechanism of hydrogen bubbles from generation to desorption on the catalytic electrode surface with different hydrophilic and hydrophobic properties. These new insights and theoretical evidence on the non-negligible three-phase interface behaviors will identify opportunities and motivate future research in high-efficiency, stability, and low-cost HER catalytic electrode development. [Display omitted]
Hydrogen evolution reaction(HER)catalytic electrodes under actual working conditions show interest-ing mass transfer behaviors at solid(electrode)/liquid(electrolyte)/gas(hydrogen)three-phase interfaces.These behaviors are essential for forming a continuous and effective physical contact region between the electrolyte and the electrode and require further detailed understanding.Here,a case study on 1T-2H phase molybdenum disulfide(MoS2)/carbon fiber paper(CFP)catalytic electrodes is performed.Rapid gas-liquid mass transfer at the interface for enhancing the working area stability and capillarity for in-creasing the electrode working area is found.The real scenario,wherein the energy utilization efficiency of the as-prepared non-noble metal catalytic electrode exceeds that of the noble metal catalytic electrode,is disclosed.Specifically,a fluid dynamics model is developed to investigate the behavior mechanism of hydrogen bubbles from generation to desorption on the catalytic electrode surface with different hy-drophilic and hydrophobic properties.These new insights and theoretical evidence on the non-negligible three-phase interface behaviors will identify opportunities and motivate future research in high-efficiency,stability,and low-cost HER catalytic electrode development.
Author Liu, Xiaowei
Zhang, Yufeng
Li, Mingxue
Zhou, Jing
Chen, Junyu
Cao, Jiamu
AuthorAffiliation School of Astronautics,Harbin Institute of Technology,Harbin 150001,China;MEMS Center,Harbin Institute of Technology,Harbin 150001,China;Key Laboratory of Micro-systems and Micro-structures Manufacturing.Ministry of Education,Harbin 150001,China%School of Astronautics,Harbin Institute of Technology,Harbin 150001,China
AuthorAffiliation_xml – name: School of Astronautics,Harbin Institute of Technology,Harbin 150001,China;MEMS Center,Harbin Institute of Technology,Harbin 150001,China;Key Laboratory of Micro-systems and Micro-structures Manufacturing.Ministry of Education,Harbin 150001,China%School of Astronautics,Harbin Institute of Technology,Harbin 150001,China
Author_xml – sequence: 1
  givenname: Jiamu
  orcidid: 0000-0002-4631-3382
  surname: Cao
  fullname: Cao, Jiamu
  email: caojiamu@hit.edu.cn
  organization: School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
– sequence: 2
  givenname: Jing
  surname: Zhou
  fullname: Zhou, Jing
  organization: School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
– sequence: 3
  givenname: Mingxue
  surname: Li
  fullname: Li, Mingxue
  organization: School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
– sequence: 4
  givenname: Junyu
  surname: Chen
  fullname: Chen, Junyu
  organization: School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
– sequence: 5
  givenname: Yufeng
  surname: Zhang
  fullname: Zhang, Yufeng
  organization: School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
– sequence: 6
  givenname: Xiaowei
  surname: Liu
  fullname: Liu, Xiaowei
  organization: School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
BookMark eNqFkEtvEzEQgC1UJPr6Bb34xmm3Hu_DzoEDiiitVARSy9lyvONdh40d2U5K--vrNJw4wGlGo_nm8Z2REx88EnIFrAYG_fW6NmbGXHPGoQaoGRPvyClIIatu0bcnJWcMKtmC-EDOUlozxqVs-lPycueTG6dsdzPd-QFjytoPzo80WJqniFhtJ52QOp8xWm2QrnDSexdiKjUKjxW_pd_CA79e3vygOKPJMQxIbYh0eh5iGNFT3Id5l13w1G22Mexxgz5fkPdWzwkv_8Rz8vPmy-Pytrr__vVu-fm-Mk3T5UqiEJZrHFqAle6wE_0Cuw4Ot3AtdQut0VYY2zZtJ7gYULRs1fWSW9Nbxppz8vE490l7q_2o1mEXfdmoXsbp969VkcaZLOZKZ3PsNDGkFNGqbXQbHZ8VMHUQrdbqTbQ6iFYAqogu1OIvyrisD9_mqN38H_bTkcUiYO8wqmQceoODi8WkGoL7J_8KD3Wekg
CitedBy_id crossref_primary_10_3390_electronics13234800
crossref_primary_10_1016_j_jcis_2023_05_065
crossref_primary_10_1016_j_jallcom_2023_173092
crossref_primary_10_1016_j_cclet_2023_108351
crossref_primary_10_1016_j_energy_2023_127276
crossref_primary_10_1016_j_cclet_2023_108265
crossref_primary_10_1016_j_cclet_2022_107941
crossref_primary_10_3390_ma15175889
crossref_primary_10_1016_j_cclet_2023_108226
crossref_primary_10_1016_j_cclet_2023_108459
crossref_primary_10_1016_j_mtnano_2024_100455
crossref_primary_10_1007_s12598_023_02362_5
crossref_primary_10_1007_s11164_023_05052_0
crossref_primary_10_1109_JSEN_2022_3188309
crossref_primary_10_1016_j_chemphys_2023_111908
crossref_primary_10_1002_smtd_202301602
crossref_primary_10_3389_fmats_2022_1005221
crossref_primary_10_3389_fchem_2024_1434996
crossref_primary_10_3390_met13071162
Cites_doi 10.1021/ja501497n
10.1021/jacs.9b12113
10.1021/ja4081056
10.1039/C6CP00036C
10.1039/C4CC05698A
10.1021/ja0504690
10.1039/C5CS00151J
10.1016/j.cclet.2020.11.013
10.1021/nl501106v
10.1016/j.nanoen.2014.04.019
10.1039/C6TA09409K
10.1039/D0CC05656A
10.1039/C8NR02532K
10.1021/acs.nanolett.5b04260
10.1021/nn501434a
10.1016/j.ijhydene.2010.01.128
10.1126/science.1141483
10.1021/acsami.7b16407
10.1038/nnano.2014.64
10.1007/s40820-019-0279-8
10.1039/C4CC04709E
10.1002/adma.201304759
10.1038/s41467-021-25381-1
10.1039/c0cs00168f
10.1016/j.cej.2021.128857
10.1002/adfm.201600566
10.1002/anie.201602237
10.1039/C9NJ03850G
10.1016/j.cclet.2020.08.005
10.1038/s41467-020-17904-z
10.1038/nchem.1589
10.1002/aenm.201601735
10.1016/j.nanoen.2014.05.009
10.1038/nnano.2015.40
10.1021/nn200493r
10.1016/j.cclet.2021.03.063
10.1002/adfm.201807976
10.1016/j.surfcoat.2010.03.030
10.1021/acs.nanolett.5b04361
10.1021/acsnano.8b00942
10.1002/smll.201501822
10.1039/tf9615701603
10.1038/nature08969
10.1021/acsnano.7b06364
10.1103/PhysRevB.44.3955
10.1021/acsami.9b12252
10.1126/science.1103197
10.1002/anie.201402646
ContentType Journal Article
Copyright 2021
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2021
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/j.cclet.2021.11.007
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1878-5964
EndPage 3751
ExternalDocumentID zghxkb202208021
10_1016_j_cclet_2021_11_007
S1001841721009396
GroupedDBID --K
--M
.~1
0R~
188
1B1
1~.
1~5
29B
2B.
2C.
2WC
4.4
457
4G.
5GY
5VR
5VS
6J9
7-5
71M
8P~
8RM
92E
92I
92Q
93N
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C1A
CCEZO
CDRFL
CHBEP
CS3
CW9
DU5
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
F5P
FA0
FDB
FEDTE
FIRID
FLBIZ
FNPLU
FYGXN
GBLVA
GX1
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
S..
SDF
SDG
SDH
SES
SPC
SPCBC
SSK
SSZ
T5K
TCJ
TGP
UNMZH
UZ4
~G-
-SB
-S~
5XA
5XC
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CAJEB
CITATION
Q--
SSH
U1G
U5L
4A8
PSX
ID FETCH-LOGICAL-c335t-8e77f2aed411ba5e5769e551face2a8a414caf7cf4345727de740b5682fc6f003
IEDL.DBID .~1
ISSN 1001-8417
IngestDate Thu May 29 04:08:25 EDT 2025
Tue Jul 01 03:19:03 EDT 2025
Thu Apr 24 23:03:29 EDT 2025
Fri Feb 23 02:38:58 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Hydrogen evolution reaction
Catalytic electrode
Fluid dynamics
Three-phase interface behavior
1T-2H MoS2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c335t-8e77f2aed411ba5e5769e551face2a8a414caf7cf4345727de740b5682fc6f003
ORCID 0000-0002-4631-3382
PageCount 7
ParticipantIDs wanfang_journals_zghxkb202208021
crossref_primary_10_1016_j_cclet_2021_11_007
crossref_citationtrail_10_1016_j_cclet_2021_11_007
elsevier_sciencedirect_doi_10_1016_j_cclet_2021_11_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese chemical letters
PublicationTitle_FL Chinese Chemical Letters
PublicationYear 2022
Publisher Elsevier B.V
MEMS Center,Harbin Institute of Technology,Harbin 150001,China
School of Astronautics,Harbin Institute of Technology,Harbin 150001,China
Key Laboratory of Micro-systems and Micro-structures Manufacturing.Ministry of Education,Harbin 150001,China%School of Astronautics,Harbin Institute of Technology,Harbin 150001,China
Publisher_xml – name: Elsevier B.V
– name: Key Laboratory of Micro-systems and Micro-structures Manufacturing.Ministry of Education,Harbin 150001,China%School of Astronautics,Harbin Institute of Technology,Harbin 150001,China
– name: School of Astronautics,Harbin Institute of Technology,Harbin 150001,China
– name: MEMS Center,Harbin Institute of Technology,Harbin 150001,China
References Wang, Liu, Liu (bib0009) 2020; 56
Pattengale, Huang, Yan (bib0022) 2020; 11
Luo, Li, Cai (bib0010) 2018; 12
Zhu, Zhu, Murali (bib0030) 2011; 5
Guo, Wang, Zhang (bib0048) 2016; 18
Gaur, Sahoo, Ahmadi (bib0050) 2014; 14
Ledendecker, Schlott, Antonietti (bib0045) 2017; 7
Huang, Lei, Huang (bib0051) 2010; 204
Liu, Feng, Liu (bib0004) 2021; 81
Turner (bib0007) 2004; 305
McEnaney, Crompton, Callejas (bib0015) 2014; 50
Sandoval, Yang, Frindt, Irwin (bib0036) 1991; 44
Li, Wang, Zeng (bib0005) 2021; 32
Han, Yang, Zhang (bib0052) 2019; 11
Macchione, Mendoza-Cruz, Bazán-Diaz (bib0046) 2020; 44
Kong, Wang, Lu, Cui (bib0012) 2014; 136
Liu, Li, He (bib0033) 2015; 11
Hojamberdiev, Zhu, Lu (bib0008) 2019; 30
Boppella, Tan, Yang, Moon (bib0006) 2019; 29
Wang, Zhang, Si (bib0011) 2020; 142
Popczun, Read, Roske (bib0024) 2014; 53
Acerce, Voiry, Chhowalla (bib0034) 2015; 10
Cao, Veith, Neuefeind (bib0014) 2013; 135
Lu, Zhu, Yu (bib0023) 2014; 26
Wang, Xu, Sun (bib0031) 2014; 8
Zheng, Jiao, Li (bib0016) 2014; 8
Cao, Zhou, Zhang (bib0029) 2018; 10
Karunadasa, Chang, Long (bib0001) 2010; 464
Gao, Wang, Liu (bib0018) 2018; 10
Chen, He, Wang (bib0019) 2021; 32
Wei, Wang, Zhang (bib0002) 2021; 32
Lin, Dumcencon, Huang, Suenaga (bib0040) 2014; 9
Pan, Li, Yang (bib0013) 2014; 50
Jaramillo, Jorgensen, Bonde (bib0017) 2007; 317
Zhang, Tsai, Chapman (bib0038) 2015; 16
Zhang, Wang, Pohl (bib0028) 2016; 55
Ding, Hu, Dai (bib0035) 2019; 13
Liu (bib0049) 2002; 89
Xie, Wang, Zhao (bib0053) 2021; 12
Chhowalla, Shin, Eda (bib0039) 2013; 5
Wang, Chao, Liu (bib0032) 2014; 7
Thomas (bib0044) 1961; 57
Voiry, Mohite, Chhowalla (bib0041) 2015; 44
Hinnemann, Moses, Bonde (bib0020) 2005; 127
Lei, Zhou, Feng (bib0003) 2019; 11
Chen, Gu, Liu (bib0043) 2018; 12
Chen, Su, Xie (bib0021) 2021; 404
Liu, Li, Shao (bib0026) 2011; 40
Sivanantham, Ganesan, Shanmugam (bib0027) 2016; 26
Cheng, Sun, Hu (bib0037) 2016; 16
Wang, Wang, Guo (bib0025) 2010; 35
Fu, Wang, Zhao (bib0047) 2021; 414
Wang, Zhang, Bao (bib0042) 2017; 5
Lu (10.1016/j.cclet.2021.11.007_bib0023) 2014; 26
Cheng (10.1016/j.cclet.2021.11.007_bib0037) 2016; 16
Voiry (10.1016/j.cclet.2021.11.007_bib0041) 2015; 44
Huang (10.1016/j.cclet.2021.11.007_bib0051) 2010; 204
Chhowalla (10.1016/j.cclet.2021.11.007_bib0039) 2013; 5
Han (10.1016/j.cclet.2021.11.007_bib0052) 2019; 11
Sandoval (10.1016/j.cclet.2021.11.007_bib0036) 1991; 44
Fu (10.1016/j.cclet.2021.11.007_bib0047) 2021; 414
Chen (10.1016/j.cclet.2021.11.007_bib0019) 2021; 32
Xie (10.1016/j.cclet.2021.11.007_bib0053) 2021; 12
Wang (10.1016/j.cclet.2021.11.007_bib0025) 2010; 35
Wei (10.1016/j.cclet.2021.11.007_bib0002) 2021; 32
Wang (10.1016/j.cclet.2021.11.007_bib0011) 2020; 142
Li (10.1016/j.cclet.2021.11.007_bib0005) 2021; 32
Gaur (10.1016/j.cclet.2021.11.007_bib0050) 2014; 14
Pan (10.1016/j.cclet.2021.11.007_bib0013) 2014; 50
Macchione (10.1016/j.cclet.2021.11.007_bib0046) 2020; 44
Hinnemann (10.1016/j.cclet.2021.11.007_bib0020) 2005; 127
Wang (10.1016/j.cclet.2021.11.007_bib0032) 2014; 7
Chen (10.1016/j.cclet.2021.11.007_bib0043) 2018; 12
Kong (10.1016/j.cclet.2021.11.007_bib0012) 2014; 136
Turner (10.1016/j.cclet.2021.11.007_bib0007) 2004; 305
Liu (10.1016/j.cclet.2021.11.007_bib0004) 2021; 81
Acerce (10.1016/j.cclet.2021.11.007_bib0034) 2015; 10
Lin (10.1016/j.cclet.2021.11.007_bib0040) 2014; 9
Liu (10.1016/j.cclet.2021.11.007_bib0049) 2002; 89
Zheng (10.1016/j.cclet.2021.11.007_bib0016) 2014; 8
Popczun (10.1016/j.cclet.2021.11.007_bib0024) 2014; 53
Chen (10.1016/j.cclet.2021.11.007_bib0021) 2021; 404
Wang (10.1016/j.cclet.2021.11.007_bib0031) 2014; 8
Sivanantham (10.1016/j.cclet.2021.11.007_bib0027) 2016; 26
Wang (10.1016/j.cclet.2021.11.007_bib0009) 2020; 56
Liu (10.1016/j.cclet.2021.11.007_bib0026) 2011; 40
Ding (10.1016/j.cclet.2021.11.007_bib0035) 2019; 13
Pattengale (10.1016/j.cclet.2021.11.007_bib0022) 2020; 11
Lei (10.1016/j.cclet.2021.11.007_bib0003) 2019; 11
Boppella (10.1016/j.cclet.2021.11.007_bib0006) 2019; 29
Cao (10.1016/j.cclet.2021.11.007_bib0014) 2013; 135
Wang (10.1016/j.cclet.2021.11.007_bib0042) 2017; 5
Jaramillo (10.1016/j.cclet.2021.11.007_bib0017) 2007; 317
Hojamberdiev (10.1016/j.cclet.2021.11.007_bib0008) 2019; 30
Luo (10.1016/j.cclet.2021.11.007_bib0010) 2018; 12
Guo (10.1016/j.cclet.2021.11.007_bib0048) 2016; 18
Gao (10.1016/j.cclet.2021.11.007_bib0018) 2018; 10
Zhang (10.1016/j.cclet.2021.11.007_bib0038) 2015; 16
Cao (10.1016/j.cclet.2021.11.007_bib0029) 2018; 10
Liu (10.1016/j.cclet.2021.11.007_bib0033) 2015; 11
Thomas (10.1016/j.cclet.2021.11.007_bib0044) 1961; 57
McEnaney (10.1016/j.cclet.2021.11.007_bib0015) 2014; 50
Zhang (10.1016/j.cclet.2021.11.007_bib0028) 2016; 55
Karunadasa (10.1016/j.cclet.2021.11.007_bib0001) 2010; 464
Zhu (10.1016/j.cclet.2021.11.007_bib0030) 2011; 5
Ledendecker (10.1016/j.cclet.2021.11.007_bib0045) 2017; 7
References_xml – volume: 10
  start-page: 1752
  year: 2018
  end-page: 1760
  ident: bib0029
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 45
  year: 2019
  ident: bib0003
  publication-title: Nano-Micro Lett.
– volume: 204
  start-page: 3954
  year: 2010
  end-page: 3961
  ident: bib0051
  publication-title: Surf. Coat. Technol.
– volume: 317
  start-page: 100
  year: 2007
  end-page: 102
  ident: bib0017
  publication-title: Science
– volume: 464
  start-page: 1329
  year: 2010
  end-page: 1333
  ident: bib0001
  publication-title: Nature
– volume: 12
  start-page: 5070
  year: 2021
  ident: bib0053
  publication-title: Nat. Commun.
– volume: 32
  start-page: 53
  year: 2021
  end-page: 56
  ident: bib0019
  publication-title: Chin. Chem. Lett.
– volume: 8
  start-page: 183
  year: 2014
  end-page: 195
  ident: bib0031
  publication-title: Nano Energy
– volume: 50
  start-page: 11026
  year: 2014
  end-page: 11028
  ident: bib0015
  publication-title: Chem. Commun.
– volume: 40
  start-page: 2236
  year: 2011
  end-page: 2253
  ident: bib0026
  publication-title: Chem. Soc. Rev.
– volume: 26
  start-page: 4661
  year: 2016
  end-page: 4672
  ident: bib0027
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 2681
  year: 2017
  end-page: 2688
  ident: bib0042
  publication-title: J. Mater. Chem. A
– volume: 89
  year: 2002
  ident: bib0049
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 3333
  year: 2011
  end-page: 3338
  ident: bib0030
  publication-title: ACS Nano
– volume: 11
  start-page: 5556
  year: 2015
  end-page: 5564
  ident: bib0033
  publication-title: Small
– volume: 44
  start-page: 2702
  year: 2015
  end-page: 2712
  ident: bib0041
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 4565
  year: 2018
  end-page: 4573
  ident: bib0010
  publication-title: ACS Nano
– volume: 50
  start-page: 13135
  year: 2014
  end-page: 13137
  ident: bib0013
  publication-title: Chem. Commun.
– volume: 11
  start-page: 4114
  year: 2020
  ident: bib0022
  publication-title: Nat. Commun.
– volume: 55
  start-page: 6702
  year: 2016
  end-page: 6707
  ident: bib0028
  publication-title: Angew. Chem.
– volume: 7
  year: 2017
  ident: bib0045
  publication-title: Adv. Energy Mater.
– volume: 16
  start-page: 629
  year: 2015
  end-page: 636
  ident: bib0038
  publication-title: Nano Lett.
– volume: 32
  start-page: 1191
  year: 2021
  end-page: 1196
  ident: bib0002
  publication-title: Chin. Chem. Lett.
– volume: 13
  start-page: 1694
  year: 2019
  end-page: 1702
  ident: bib0035
  publication-title: ACS Nano
– volume: 56
  start-page: 14019
  year: 2020
  end-page: 14022
  ident: bib0009
  publication-title: Chem. Commun.
– volume: 7
  start-page: 151
  year: 2014
  end-page: 160
  ident: bib0032
  publication-title: Nano Energy
– volume: 404
  year: 2021
  ident: bib0021
  publication-title: Chem. Eng. J.
– volume: 81
  year: 2021
  ident: bib0004
  publication-title: Nano Energy
– volume: 127
  start-page: 5308
  year: 2005
  end-page: 5309
  ident: bib0020
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 2610
  year: 2019
  end-page: 2621
  ident: bib0008
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 16
  start-page: 572
  year: 2016
  end-page: 576
  ident: bib0037
  publication-title: Nano Lett.
– volume: 44
  start-page: 1190
  year: 2020
  end-page: 1193
  ident: bib0046
  publication-title: New J. Chem.
– volume: 14
  start-page: 4314
  year: 2014
  end-page: 4321
  ident: bib0050
  publication-title: Nano Lett.
– volume: 8
  start-page: 5290
  year: 2014
  end-page: 5296
  ident: bib0016
  publication-title: ACS Nano
– volume: 11
  start-page: 35479
  year: 2019
  end-page: 35487
  ident: bib0052
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  start-page: 14449
  year: 2016
  end-page: 14453
  ident: bib0048
  publication-title: Phys. Chem. Chem. Phys.
– volume: 10
  start-page: 313
  year: 2015
  end-page: 318
  ident: bib0034
  publication-title: Nat. Nanotechnol.
– volume: 142
  start-page: 4298
  year: 2020
  end-page: 4308
  ident: bib0011
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 3955
  year: 1991
  end-page: 3962
  ident: bib0036
  publication-title: Phys. Rev. B
– volume: 29
  year: 2019
  ident: bib0006
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 10288
  year: 2018
  end-page: 10295
  ident: bib0018
  publication-title: Nanoscale
– volume: 9
  start-page: 391
  year: 2014
  end-page: 396
  ident: bib0040
  publication-title: Nat. Nanotechnol.
– volume: 53
  start-page: 5427
  year: 2014
  end-page: 5430
  ident: bib0024
  publication-title: Angew. Chem. Int. Ed.
– volume: 57
  start-page: 1603
  year: 1961
  end-page: 1611
  ident: bib0044
  publication-title: Trans. Faraday Soc.
– volume: 305
  start-page: 972
  year: 2004
  end-page: 974
  ident: bib0007
  publication-title: Science
– volume: 136
  start-page: 4897
  year: 2014
  end-page: 4900
  ident: bib0012
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 19186
  year: 2013
  end-page: 19192
  ident: bib0014
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 263
  year: 2013
  end-page: 275
  ident: bib0039
  publication-title: Nat. Chem.
– volume: 26
  start-page: 2683
  year: 2014
  end-page: 2687
  ident: bib0023
  publication-title: Adv. Mater.
– volume: 12
  start-page: 308
  year: 2018
  end-page: 316
  ident: bib0043
  publication-title: ACS Nano
– volume: 414
  year: 2021
  ident: bib0047
  publication-title: Chem. Eng. J.
– volume: 32
  start-page: 3355
  year: 2021
  end-page: 3358
  ident: bib0005
  publication-title: Chin. Chem. Lett.
– volume: 35
  start-page: 3198
  year: 2010
  end-page: 3205
  ident: bib0025
  publication-title: Int. J. Hydrog. Energy
– volume: 136
  start-page: 4897
  year: 2014
  ident: 10.1016/j.cclet.2021.11.007_bib0012
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja501497n
– volume: 142
  start-page: 4298
  year: 2020
  ident: 10.1016/j.cclet.2021.11.007_bib0011
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b12113
– volume: 135
  start-page: 19186
  year: 2013
  ident: 10.1016/j.cclet.2021.11.007_bib0014
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4081056
– volume: 18
  start-page: 14449
  year: 2016
  ident: 10.1016/j.cclet.2021.11.007_bib0048
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP00036C
– volume: 50
  start-page: 13135
  year: 2014
  ident: 10.1016/j.cclet.2021.11.007_bib0013
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC05698A
– volume: 127
  start-page: 5308
  year: 2005
  ident: 10.1016/j.cclet.2021.11.007_bib0020
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0504690
– volume: 44
  start-page: 2702
  year: 2015
  ident: 10.1016/j.cclet.2021.11.007_bib0041
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00151J
– volume: 32
  start-page: 53
  year: 2021
  ident: 10.1016/j.cclet.2021.11.007_bib0019
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2020.11.013
– volume: 14
  start-page: 4314
  year: 2014
  ident: 10.1016/j.cclet.2021.11.007_bib0050
  publication-title: Nano Lett.
  doi: 10.1021/nl501106v
– volume: 7
  start-page: 151
  year: 2014
  ident: 10.1016/j.cclet.2021.11.007_bib0032
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.04.019
– volume: 5
  start-page: 2681
  year: 2017
  ident: 10.1016/j.cclet.2021.11.007_bib0042
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09409K
– volume: 30
  start-page: 2610
  year: 2019
  ident: 10.1016/j.cclet.2021.11.007_bib0008
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 56
  start-page: 14019
  year: 2020
  ident: 10.1016/j.cclet.2021.11.007_bib0009
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC05656A
– volume: 81
  year: 2021
  ident: 10.1016/j.cclet.2021.11.007_bib0004
  publication-title: Nano Energy
– volume: 10
  start-page: 10288
  year: 2018
  ident: 10.1016/j.cclet.2021.11.007_bib0018
  publication-title: Nanoscale
  doi: 10.1039/C8NR02532K
– volume: 404
  year: 2021
  ident: 10.1016/j.cclet.2021.11.007_bib0021
  publication-title: Chem. Eng. J.
– volume: 16
  start-page: 572
  year: 2016
  ident: 10.1016/j.cclet.2021.11.007_bib0037
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04260
– volume: 8
  start-page: 5290
  year: 2014
  ident: 10.1016/j.cclet.2021.11.007_bib0016
  publication-title: ACS Nano
  doi: 10.1021/nn501434a
– volume: 35
  start-page: 3198
  year: 2010
  ident: 10.1016/j.cclet.2021.11.007_bib0025
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2010.01.128
– volume: 317
  start-page: 100
  year: 2007
  ident: 10.1016/j.cclet.2021.11.007_bib0017
  publication-title: Science
  doi: 10.1126/science.1141483
– volume: 10
  start-page: 1752
  year: 2018
  ident: 10.1016/j.cclet.2021.11.007_bib0029
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16407
– volume: 13
  start-page: 1694
  year: 2019
  ident: 10.1016/j.cclet.2021.11.007_bib0035
  publication-title: ACS Nano
– volume: 9
  start-page: 391
  year: 2014
  ident: 10.1016/j.cclet.2021.11.007_bib0040
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.64
– volume: 11
  start-page: 45
  year: 2019
  ident: 10.1016/j.cclet.2021.11.007_bib0003
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0279-8
– volume: 50
  start-page: 11026
  year: 2014
  ident: 10.1016/j.cclet.2021.11.007_bib0015
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC04709E
– volume: 26
  start-page: 2683
  year: 2014
  ident: 10.1016/j.cclet.2021.11.007_bib0023
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304759
– volume: 12
  start-page: 5070
  year: 2021
  ident: 10.1016/j.cclet.2021.11.007_bib0053
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25381-1
– volume: 40
  start-page: 2236
  year: 2011
  ident: 10.1016/j.cclet.2021.11.007_bib0026
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00168f
– volume: 414
  year: 2021
  ident: 10.1016/j.cclet.2021.11.007_bib0047
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128857
– volume: 26
  start-page: 4661
  year: 2016
  ident: 10.1016/j.cclet.2021.11.007_bib0027
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600566
– volume: 55
  start-page: 6702
  year: 2016
  ident: 10.1016/j.cclet.2021.11.007_bib0028
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201602237
– volume: 44
  start-page: 1190
  year: 2020
  ident: 10.1016/j.cclet.2021.11.007_bib0046
  publication-title: New J. Chem.
  doi: 10.1039/C9NJ03850G
– volume: 32
  start-page: 1191
  year: 2021
  ident: 10.1016/j.cclet.2021.11.007_bib0002
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2020.08.005
– volume: 11
  start-page: 4114
  year: 2020
  ident: 10.1016/j.cclet.2021.11.007_bib0022
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17904-z
– volume: 5
  start-page: 263
  year: 2013
  ident: 10.1016/j.cclet.2021.11.007_bib0039
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1589
– volume: 89
  year: 2002
  ident: 10.1016/j.cclet.2021.11.007_bib0049
  publication-title: Phys. Rev. Lett.
– volume: 7
  year: 2017
  ident: 10.1016/j.cclet.2021.11.007_bib0045
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601735
– volume: 8
  start-page: 183
  year: 2014
  ident: 10.1016/j.cclet.2021.11.007_bib0031
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.05.009
– volume: 10
  start-page: 313
  year: 2015
  ident: 10.1016/j.cclet.2021.11.007_bib0034
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.40
– volume: 5
  start-page: 3333
  year: 2011
  ident: 10.1016/j.cclet.2021.11.007_bib0030
  publication-title: ACS Nano
  doi: 10.1021/nn200493r
– volume: 32
  start-page: 3355
  year: 2021
  ident: 10.1016/j.cclet.2021.11.007_bib0005
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2021.03.063
– volume: 29
  year: 2019
  ident: 10.1016/j.cclet.2021.11.007_bib0006
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201807976
– volume: 204
  start-page: 3954
  year: 2010
  ident: 10.1016/j.cclet.2021.11.007_bib0051
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2010.03.030
– volume: 16
  start-page: 629
  year: 2015
  ident: 10.1016/j.cclet.2021.11.007_bib0038
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04361
– volume: 12
  start-page: 4565
  year: 2018
  ident: 10.1016/j.cclet.2021.11.007_bib0010
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00942
– volume: 11
  start-page: 5556
  year: 2015
  ident: 10.1016/j.cclet.2021.11.007_bib0033
  publication-title: Small
  doi: 10.1002/smll.201501822
– volume: 57
  start-page: 1603
  year: 1961
  ident: 10.1016/j.cclet.2021.11.007_bib0044
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9615701603
– volume: 464
  start-page: 1329
  year: 2010
  ident: 10.1016/j.cclet.2021.11.007_bib0001
  publication-title: Nature
  doi: 10.1038/nature08969
– volume: 12
  start-page: 308
  year: 2018
  ident: 10.1016/j.cclet.2021.11.007_bib0043
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06364
– volume: 44
  start-page: 3955
  year: 1991
  ident: 10.1016/j.cclet.2021.11.007_bib0036
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.44.3955
– volume: 11
  start-page: 35479
  year: 2019
  ident: 10.1016/j.cclet.2021.11.007_bib0052
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b12252
– volume: 305
  start-page: 972
  year: 2004
  ident: 10.1016/j.cclet.2021.11.007_bib0007
  publication-title: Science
  doi: 10.1126/science.1103197
– volume: 53
  start-page: 5427
  year: 2014
  ident: 10.1016/j.cclet.2021.11.007_bib0024
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201402646
SSID ssj0028836
Score 2.3781793
Snippet Hydrogen evolution reaction (HER) catalytic electrodes under actual working conditions show interesting mass transfer behaviors at solid (electrode)/liquid...
Hydrogen evolution reaction(HER)catalytic electrodes under actual working conditions show interest-ing mass transfer behaviors at...
SourceID wanfang
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3745
SubjectTerms 1T-2H MoS2
Catalytic electrode
Fluid dynamics
Hydrogen evolution reaction
Three-phase interface behavior
Title Insightful understanding of three-phase interface behaviors in 1T-2H MoS2/CFP electrode for hydrogen evolution improvement
URI https://dx.doi.org/10.1016/j.cclet.2021.11.007
https://d.wanfangdata.com.cn/periodical/zghxkb202208021
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iiF7EJ9YXOXg0tptmN9tjKUpVFEEFbyHJJrZatqUPXwd_uzPbrFSQHryGJLtkJvMI33xDyLHMwO07EzNkWmFg_WKmU6lZGklTy4xBn4poi5uk_SAuH-PHBdIqa2EQVhls_9SmF9Y6jFTDaVYH3W71DtmDUoEpDKblDaTdFkKilp9-_cA8sJluUWGE0CGcXTIPFRgvC5shoJJHp0jliT1l__ZOy2869zp_mvE95-tkLQSNtDn9rw2y4PJNstIqe7Vtkc-LfIRZtp_06GS2XIX2PR2DuBwbdMBfUWSHGHptHS3r80cwRqN7xtv0un_H4Rbc0tAbJ3MUQlra-ciGfdAz6l6DntJu8RRRvCxuk4fzs_tWm4WuCszW6_GYpU5Kz7XLRBQZHTtIOBoO4ib8NtepFpGw2kvrRV3EEN1kToqaiZOUe5t4MAI7ZDHv526XULCWiY5FZjy2sOYNLZ2ryQavWW5TH0UVwsvTVDZQjmPni54qsWXPqhCBQhFAMqJABBVy8rNoMGXcmD89KcWkfimOAp8wfyENQlXh2o7U51Pn_cVwrD5OYebef_feJ6u4yRQoeEAWx8OJO4TgZWyOCu08IkvNi6v2zTegJe6K
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7RVAguqAWqAqX1gd5qknW8682hB0SLkvJQJYLEzdi7NklBmygPUjj0T_EHmdl4EZUqDpW4rmzLO-N5WZ_nA9hROYZ9Z2NOnVY4er-Ym1QZnkbKNnJrKaYS2uIkaZ_JH-fx-QLcV29hCFYZfP_cp5feOnypB2nWh_1-_ZS6B6WSShgqy1tJQFYeutsZ1m3jr51vqOTPQhx87-63eaAW4FmzGU946pTywrhcRpE1scOsu-UwefCGCLJSIyOZGa8yL5syxhCfOyUbNk5S4bPEoyXguq_gtUR3QbQJu38ecSXE3ls-aSKsEm2vanVUgsoy3D0hOEW0S71DicT23-FwcWYKb4rLJ8Hu4A2shCyV7c0F8RYWXLEKS_sVOdwa3HWKMZX1fnrNpk_fx7CBZxM8H44PexggGbWjGNH_sqohwBi_sajLRZsdD04Fmt1PFsh4cscwh2a923w0wIPN3E0wDNYv7z7Kq8x1OHsRWb-DWjEo3Htg6J4TE8vceuLMFi2jnGuolmhkIkt9FG2AqKSps9DjnKg2rnUFZvulSxVoUgFWPxpVsAFfHicN5y0-nh-eVGrSf51UjUHo-YksKFUHPzHWd5e931dW0HPnFEdu_u_an2Cp3T0-0kedk8MtWKYF5yjFD1CbjKZuGzOnif1YnlQGFy9tGg-T8yrF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insightful+understanding+of+three-phase+interface+behaviors+in+1T-2H+MoS2%2FCFP+electrode+for+hydrogen+evolution+improvement&rft.jtitle=%E4%B8%AD%E5%9B%BD%E5%8C%96%E5%AD%A6%E5%BF%AB%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Jiamu+Cao&rft.au=Jing+Zhou&rft.au=Mingxue+Li&rft.au=Junyu+Chen&rft.date=2022-08-01&rft.pub=MEMS+Center%2CHarbin+Institute+of+Technology%2CHarbin+150001%2CChina&rft.issn=1001-8417&rft.volume=33&rft.issue=8&rft.spage=3745&rft.epage=3751&rft_id=info:doi/10.1016%2Fj.cclet.2021.11.007&rft.externalDocID=zghxkb202208021
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghxkb%2Fzghxkb.jpg