Insightful understanding of three-phase interface behaviors in 1T-2H MoS2/CFP electrode for hydrogen evolution improvement
Hydrogen evolution reaction (HER) catalytic electrodes under actual working conditions show interesting mass transfer behaviors at solid (electrode)/liquid (electrolyte)/gas (hydrogen) three-phase interfaces. These behaviors are essential for forming a continuous and effective physical contact regio...
Saved in:
Published in | Chinese chemical letters Vol. 33; no. 8; pp. 3745 - 3751 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2022
MEMS Center,Harbin Institute of Technology,Harbin 150001,China School of Astronautics,Harbin Institute of Technology,Harbin 150001,China Key Laboratory of Micro-systems and Micro-structures Manufacturing.Ministry of Education,Harbin 150001,China%School of Astronautics,Harbin Institute of Technology,Harbin 150001,China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogen evolution reaction (HER) catalytic electrodes under actual working conditions show interesting mass transfer behaviors at solid (electrode)/liquid (electrolyte)/gas (hydrogen) three-phase interfaces. These behaviors are essential for forming a continuous and effective physical contact region between the electrolyte and the electrode and require further detailed understanding. Here, a case study on 1T-2H phase molybdenum disulfide (MoS2)/carbon fiber paper (CFP) catalytic electrodes is performed. Rapid gas-liquid mass transfer at the interface for enhancing the working area stability and capillarity for increasing the electrode working area is found. The real scenario, wherein the energy utilization efficiency of the as-prepared non-noble metal catalytic electrode exceeds that of the noble metal catalytic electrode, is disclosed. Specifically, a fluid dynamics model is developed to investigate the behavior mechanism of hydrogen bubbles from generation to desorption on the catalytic electrode surface with different hydrophilic and hydrophobic properties. These new insights and theoretical evidence on the non-negligible three-phase interface behaviors will identify opportunities and motivate future research in high-efficiency, stability, and low-cost HER catalytic electrode development.
[Display omitted] |
---|---|
AbstractList | Hydrogen evolution reaction (HER) catalytic electrodes under actual working conditions show interesting mass transfer behaviors at solid (electrode)/liquid (electrolyte)/gas (hydrogen) three-phase interfaces. These behaviors are essential for forming a continuous and effective physical contact region between the electrolyte and the electrode and require further detailed understanding. Here, a case study on 1T-2H phase molybdenum disulfide (MoS2)/carbon fiber paper (CFP) catalytic electrodes is performed. Rapid gas-liquid mass transfer at the interface for enhancing the working area stability and capillarity for increasing the electrode working area is found. The real scenario, wherein the energy utilization efficiency of the as-prepared non-noble metal catalytic electrode exceeds that of the noble metal catalytic electrode, is disclosed. Specifically, a fluid dynamics model is developed to investigate the behavior mechanism of hydrogen bubbles from generation to desorption on the catalytic electrode surface with different hydrophilic and hydrophobic properties. These new insights and theoretical evidence on the non-negligible three-phase interface behaviors will identify opportunities and motivate future research in high-efficiency, stability, and low-cost HER catalytic electrode development.
[Display omitted] Hydrogen evolution reaction(HER)catalytic electrodes under actual working conditions show interest-ing mass transfer behaviors at solid(electrode)/liquid(electrolyte)/gas(hydrogen)three-phase interfaces.These behaviors are essential for forming a continuous and effective physical contact region between the electrolyte and the electrode and require further detailed understanding.Here,a case study on 1T-2H phase molybdenum disulfide(MoS2)/carbon fiber paper(CFP)catalytic electrodes is performed.Rapid gas-liquid mass transfer at the interface for enhancing the working area stability and capillarity for in-creasing the electrode working area is found.The real scenario,wherein the energy utilization efficiency of the as-prepared non-noble metal catalytic electrode exceeds that of the noble metal catalytic electrode,is disclosed.Specifically,a fluid dynamics model is developed to investigate the behavior mechanism of hydrogen bubbles from generation to desorption on the catalytic electrode surface with different hy-drophilic and hydrophobic properties.These new insights and theoretical evidence on the non-negligible three-phase interface behaviors will identify opportunities and motivate future research in high-efficiency,stability,and low-cost HER catalytic electrode development. |
Author | Liu, Xiaowei Zhang, Yufeng Li, Mingxue Zhou, Jing Chen, Junyu Cao, Jiamu |
AuthorAffiliation | School of Astronautics,Harbin Institute of Technology,Harbin 150001,China;MEMS Center,Harbin Institute of Technology,Harbin 150001,China;Key Laboratory of Micro-systems and Micro-structures Manufacturing.Ministry of Education,Harbin 150001,China%School of Astronautics,Harbin Institute of Technology,Harbin 150001,China |
AuthorAffiliation_xml | – name: School of Astronautics,Harbin Institute of Technology,Harbin 150001,China;MEMS Center,Harbin Institute of Technology,Harbin 150001,China;Key Laboratory of Micro-systems and Micro-structures Manufacturing.Ministry of Education,Harbin 150001,China%School of Astronautics,Harbin Institute of Technology,Harbin 150001,China |
Author_xml | – sequence: 1 givenname: Jiamu orcidid: 0000-0002-4631-3382 surname: Cao fullname: Cao, Jiamu email: caojiamu@hit.edu.cn organization: School of Astronautics, Harbin Institute of Technology, Harbin 150001, China – sequence: 2 givenname: Jing surname: Zhou fullname: Zhou, Jing organization: School of Astronautics, Harbin Institute of Technology, Harbin 150001, China – sequence: 3 givenname: Mingxue surname: Li fullname: Li, Mingxue organization: School of Astronautics, Harbin Institute of Technology, Harbin 150001, China – sequence: 4 givenname: Junyu surname: Chen fullname: Chen, Junyu organization: School of Astronautics, Harbin Institute of Technology, Harbin 150001, China – sequence: 5 givenname: Yufeng surname: Zhang fullname: Zhang, Yufeng organization: School of Astronautics, Harbin Institute of Technology, Harbin 150001, China – sequence: 6 givenname: Xiaowei surname: Liu fullname: Liu, Xiaowei organization: School of Astronautics, Harbin Institute of Technology, Harbin 150001, China |
BookMark | eNqFkEtvEzEQgC1UJPr6Bb34xmm3Hu_DzoEDiiitVARSy9lyvONdh40d2U5K--vrNJw4wGlGo_nm8Z2REx88EnIFrAYG_fW6NmbGXHPGoQaoGRPvyClIIatu0bcnJWcMKtmC-EDOUlozxqVs-lPycueTG6dsdzPd-QFjytoPzo80WJqniFhtJ52QOp8xWm2QrnDSexdiKjUKjxW_pd_CA79e3vygOKPJMQxIbYh0eh5iGNFT3Id5l13w1G22Mexxgz5fkPdWzwkv_8Rz8vPmy-Pytrr__vVu-fm-Mk3T5UqiEJZrHFqAle6wE_0Cuw4Ot3AtdQut0VYY2zZtJ7gYULRs1fWSW9Nbxppz8vE490l7q_2o1mEXfdmoXsbp969VkcaZLOZKZ3PsNDGkFNGqbXQbHZ8VMHUQrdbqTbQ6iFYAqogu1OIvyrisD9_mqN38H_bTkcUiYO8wqmQceoODi8WkGoL7J_8KD3Wekg |
CitedBy_id | crossref_primary_10_3390_electronics13234800 crossref_primary_10_1016_j_jcis_2023_05_065 crossref_primary_10_1016_j_jallcom_2023_173092 crossref_primary_10_1016_j_cclet_2023_108351 crossref_primary_10_1016_j_energy_2023_127276 crossref_primary_10_1016_j_cclet_2023_108265 crossref_primary_10_1016_j_cclet_2022_107941 crossref_primary_10_3390_ma15175889 crossref_primary_10_1016_j_cclet_2023_108226 crossref_primary_10_1016_j_cclet_2023_108459 crossref_primary_10_1016_j_mtnano_2024_100455 crossref_primary_10_1007_s12598_023_02362_5 crossref_primary_10_1007_s11164_023_05052_0 crossref_primary_10_1109_JSEN_2022_3188309 crossref_primary_10_1016_j_chemphys_2023_111908 crossref_primary_10_1002_smtd_202301602 crossref_primary_10_3389_fmats_2022_1005221 crossref_primary_10_3389_fchem_2024_1434996 crossref_primary_10_3390_met13071162 |
Cites_doi | 10.1021/ja501497n 10.1021/jacs.9b12113 10.1021/ja4081056 10.1039/C6CP00036C 10.1039/C4CC05698A 10.1021/ja0504690 10.1039/C5CS00151J 10.1016/j.cclet.2020.11.013 10.1021/nl501106v 10.1016/j.nanoen.2014.04.019 10.1039/C6TA09409K 10.1039/D0CC05656A 10.1039/C8NR02532K 10.1021/acs.nanolett.5b04260 10.1021/nn501434a 10.1016/j.ijhydene.2010.01.128 10.1126/science.1141483 10.1021/acsami.7b16407 10.1038/nnano.2014.64 10.1007/s40820-019-0279-8 10.1039/C4CC04709E 10.1002/adma.201304759 10.1038/s41467-021-25381-1 10.1039/c0cs00168f 10.1016/j.cej.2021.128857 10.1002/adfm.201600566 10.1002/anie.201602237 10.1039/C9NJ03850G 10.1016/j.cclet.2020.08.005 10.1038/s41467-020-17904-z 10.1038/nchem.1589 10.1002/aenm.201601735 10.1016/j.nanoen.2014.05.009 10.1038/nnano.2015.40 10.1021/nn200493r 10.1016/j.cclet.2021.03.063 10.1002/adfm.201807976 10.1016/j.surfcoat.2010.03.030 10.1021/acs.nanolett.5b04361 10.1021/acsnano.8b00942 10.1002/smll.201501822 10.1039/tf9615701603 10.1038/nature08969 10.1021/acsnano.7b06364 10.1103/PhysRevB.44.3955 10.1021/acsami.9b12252 10.1126/science.1103197 10.1002/anie.201402646 |
ContentType | Journal Article |
Copyright | 2021 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2021 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1016/j.cclet.2021.11.007 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1878-5964 |
EndPage | 3751 |
ExternalDocumentID | zghxkb202208021 10_1016_j_cclet_2021_11_007 S1001841721009396 |
GroupedDBID | --K --M .~1 0R~ 188 1B1 1~. 1~5 29B 2B. 2C. 2WC 4.4 457 4G. 5GY 5VR 5VS 6J9 7-5 71M 8P~ 8RM 92E 92I 92Q 93N AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFUIB AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C1A CCEZO CDRFL CHBEP CS3 CW9 DU5 EBS EFJIC EFLBG EJD EO9 EP2 EP3 F5P FA0 FDB FEDTE FIRID FLBIZ FNPLU FYGXN GBLVA GX1 HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ S.. SDF SDG SDH SES SPC SPCBC SSK SSZ T5K TCJ TGP UNMZH UZ4 ~G- -SB -S~ 5XA 5XC AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CAJEB CITATION Q-- SSH U1G U5L 4A8 PSX |
ID | FETCH-LOGICAL-c335t-8e77f2aed411ba5e5769e551face2a8a414caf7cf4345727de740b5682fc6f003 |
IEDL.DBID | .~1 |
ISSN | 1001-8417 |
IngestDate | Thu May 29 04:08:25 EDT 2025 Tue Jul 01 03:19:03 EDT 2025 Thu Apr 24 23:03:29 EDT 2025 Fri Feb 23 02:38:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Hydrogen evolution reaction Catalytic electrode Fluid dynamics Three-phase interface behavior 1T-2H MoS2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c335t-8e77f2aed411ba5e5769e551face2a8a414caf7cf4345727de740b5682fc6f003 |
ORCID | 0000-0002-4631-3382 |
PageCount | 7 |
ParticipantIDs | wanfang_journals_zghxkb202208021 crossref_primary_10_1016_j_cclet_2021_11_007 crossref_citationtrail_10_1016_j_cclet_2021_11_007 elsevier_sciencedirect_doi_10_1016_j_cclet_2021_11_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese chemical letters |
PublicationTitle_FL | Chinese Chemical Letters |
PublicationYear | 2022 |
Publisher | Elsevier B.V MEMS Center,Harbin Institute of Technology,Harbin 150001,China School of Astronautics,Harbin Institute of Technology,Harbin 150001,China Key Laboratory of Micro-systems and Micro-structures Manufacturing.Ministry of Education,Harbin 150001,China%School of Astronautics,Harbin Institute of Technology,Harbin 150001,China |
Publisher_xml | – name: Elsevier B.V – name: Key Laboratory of Micro-systems and Micro-structures Manufacturing.Ministry of Education,Harbin 150001,China%School of Astronautics,Harbin Institute of Technology,Harbin 150001,China – name: School of Astronautics,Harbin Institute of Technology,Harbin 150001,China – name: MEMS Center,Harbin Institute of Technology,Harbin 150001,China |
References | Wang, Liu, Liu (bib0009) 2020; 56 Pattengale, Huang, Yan (bib0022) 2020; 11 Luo, Li, Cai (bib0010) 2018; 12 Zhu, Zhu, Murali (bib0030) 2011; 5 Guo, Wang, Zhang (bib0048) 2016; 18 Gaur, Sahoo, Ahmadi (bib0050) 2014; 14 Ledendecker, Schlott, Antonietti (bib0045) 2017; 7 Huang, Lei, Huang (bib0051) 2010; 204 Liu, Feng, Liu (bib0004) 2021; 81 Turner (bib0007) 2004; 305 McEnaney, Crompton, Callejas (bib0015) 2014; 50 Sandoval, Yang, Frindt, Irwin (bib0036) 1991; 44 Li, Wang, Zeng (bib0005) 2021; 32 Han, Yang, Zhang (bib0052) 2019; 11 Macchione, Mendoza-Cruz, Bazán-Diaz (bib0046) 2020; 44 Kong, Wang, Lu, Cui (bib0012) 2014; 136 Liu, Li, He (bib0033) 2015; 11 Hojamberdiev, Zhu, Lu (bib0008) 2019; 30 Boppella, Tan, Yang, Moon (bib0006) 2019; 29 Wang, Zhang, Si (bib0011) 2020; 142 Popczun, Read, Roske (bib0024) 2014; 53 Acerce, Voiry, Chhowalla (bib0034) 2015; 10 Cao, Veith, Neuefeind (bib0014) 2013; 135 Lu, Zhu, Yu (bib0023) 2014; 26 Wang, Xu, Sun (bib0031) 2014; 8 Zheng, Jiao, Li (bib0016) 2014; 8 Cao, Zhou, Zhang (bib0029) 2018; 10 Karunadasa, Chang, Long (bib0001) 2010; 464 Gao, Wang, Liu (bib0018) 2018; 10 Chen, He, Wang (bib0019) 2021; 32 Wei, Wang, Zhang (bib0002) 2021; 32 Lin, Dumcencon, Huang, Suenaga (bib0040) 2014; 9 Pan, Li, Yang (bib0013) 2014; 50 Jaramillo, Jorgensen, Bonde (bib0017) 2007; 317 Zhang, Tsai, Chapman (bib0038) 2015; 16 Zhang, Wang, Pohl (bib0028) 2016; 55 Ding, Hu, Dai (bib0035) 2019; 13 Liu (bib0049) 2002; 89 Xie, Wang, Zhao (bib0053) 2021; 12 Chhowalla, Shin, Eda (bib0039) 2013; 5 Wang, Chao, Liu (bib0032) 2014; 7 Thomas (bib0044) 1961; 57 Voiry, Mohite, Chhowalla (bib0041) 2015; 44 Hinnemann, Moses, Bonde (bib0020) 2005; 127 Lei, Zhou, Feng (bib0003) 2019; 11 Chen, Gu, Liu (bib0043) 2018; 12 Chen, Su, Xie (bib0021) 2021; 404 Liu, Li, Shao (bib0026) 2011; 40 Sivanantham, Ganesan, Shanmugam (bib0027) 2016; 26 Cheng, Sun, Hu (bib0037) 2016; 16 Wang, Wang, Guo (bib0025) 2010; 35 Fu, Wang, Zhao (bib0047) 2021; 414 Wang, Zhang, Bao (bib0042) 2017; 5 Lu (10.1016/j.cclet.2021.11.007_bib0023) 2014; 26 Cheng (10.1016/j.cclet.2021.11.007_bib0037) 2016; 16 Voiry (10.1016/j.cclet.2021.11.007_bib0041) 2015; 44 Huang (10.1016/j.cclet.2021.11.007_bib0051) 2010; 204 Chhowalla (10.1016/j.cclet.2021.11.007_bib0039) 2013; 5 Han (10.1016/j.cclet.2021.11.007_bib0052) 2019; 11 Sandoval (10.1016/j.cclet.2021.11.007_bib0036) 1991; 44 Fu (10.1016/j.cclet.2021.11.007_bib0047) 2021; 414 Chen (10.1016/j.cclet.2021.11.007_bib0019) 2021; 32 Xie (10.1016/j.cclet.2021.11.007_bib0053) 2021; 12 Wang (10.1016/j.cclet.2021.11.007_bib0025) 2010; 35 Wei (10.1016/j.cclet.2021.11.007_bib0002) 2021; 32 Wang (10.1016/j.cclet.2021.11.007_bib0011) 2020; 142 Li (10.1016/j.cclet.2021.11.007_bib0005) 2021; 32 Gaur (10.1016/j.cclet.2021.11.007_bib0050) 2014; 14 Pan (10.1016/j.cclet.2021.11.007_bib0013) 2014; 50 Macchione (10.1016/j.cclet.2021.11.007_bib0046) 2020; 44 Hinnemann (10.1016/j.cclet.2021.11.007_bib0020) 2005; 127 Wang (10.1016/j.cclet.2021.11.007_bib0032) 2014; 7 Chen (10.1016/j.cclet.2021.11.007_bib0043) 2018; 12 Kong (10.1016/j.cclet.2021.11.007_bib0012) 2014; 136 Turner (10.1016/j.cclet.2021.11.007_bib0007) 2004; 305 Liu (10.1016/j.cclet.2021.11.007_bib0004) 2021; 81 Acerce (10.1016/j.cclet.2021.11.007_bib0034) 2015; 10 Lin (10.1016/j.cclet.2021.11.007_bib0040) 2014; 9 Liu (10.1016/j.cclet.2021.11.007_bib0049) 2002; 89 Zheng (10.1016/j.cclet.2021.11.007_bib0016) 2014; 8 Popczun (10.1016/j.cclet.2021.11.007_bib0024) 2014; 53 Chen (10.1016/j.cclet.2021.11.007_bib0021) 2021; 404 Wang (10.1016/j.cclet.2021.11.007_bib0031) 2014; 8 Sivanantham (10.1016/j.cclet.2021.11.007_bib0027) 2016; 26 Wang (10.1016/j.cclet.2021.11.007_bib0009) 2020; 56 Liu (10.1016/j.cclet.2021.11.007_bib0026) 2011; 40 Ding (10.1016/j.cclet.2021.11.007_bib0035) 2019; 13 Pattengale (10.1016/j.cclet.2021.11.007_bib0022) 2020; 11 Lei (10.1016/j.cclet.2021.11.007_bib0003) 2019; 11 Boppella (10.1016/j.cclet.2021.11.007_bib0006) 2019; 29 Cao (10.1016/j.cclet.2021.11.007_bib0014) 2013; 135 Wang (10.1016/j.cclet.2021.11.007_bib0042) 2017; 5 Jaramillo (10.1016/j.cclet.2021.11.007_bib0017) 2007; 317 Hojamberdiev (10.1016/j.cclet.2021.11.007_bib0008) 2019; 30 Luo (10.1016/j.cclet.2021.11.007_bib0010) 2018; 12 Guo (10.1016/j.cclet.2021.11.007_bib0048) 2016; 18 Gao (10.1016/j.cclet.2021.11.007_bib0018) 2018; 10 Zhang (10.1016/j.cclet.2021.11.007_bib0038) 2015; 16 Cao (10.1016/j.cclet.2021.11.007_bib0029) 2018; 10 Liu (10.1016/j.cclet.2021.11.007_bib0033) 2015; 11 Thomas (10.1016/j.cclet.2021.11.007_bib0044) 1961; 57 McEnaney (10.1016/j.cclet.2021.11.007_bib0015) 2014; 50 Zhang (10.1016/j.cclet.2021.11.007_bib0028) 2016; 55 Karunadasa (10.1016/j.cclet.2021.11.007_bib0001) 2010; 464 Zhu (10.1016/j.cclet.2021.11.007_bib0030) 2011; 5 Ledendecker (10.1016/j.cclet.2021.11.007_bib0045) 2017; 7 |
References_xml | – volume: 10 start-page: 1752 year: 2018 end-page: 1760 ident: bib0029 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 45 year: 2019 ident: bib0003 publication-title: Nano-Micro Lett. – volume: 204 start-page: 3954 year: 2010 end-page: 3961 ident: bib0051 publication-title: Surf. Coat. Technol. – volume: 317 start-page: 100 year: 2007 end-page: 102 ident: bib0017 publication-title: Science – volume: 464 start-page: 1329 year: 2010 end-page: 1333 ident: bib0001 publication-title: Nature – volume: 12 start-page: 5070 year: 2021 ident: bib0053 publication-title: Nat. Commun. – volume: 32 start-page: 53 year: 2021 end-page: 56 ident: bib0019 publication-title: Chin. Chem. Lett. – volume: 8 start-page: 183 year: 2014 end-page: 195 ident: bib0031 publication-title: Nano Energy – volume: 50 start-page: 11026 year: 2014 end-page: 11028 ident: bib0015 publication-title: Chem. Commun. – volume: 40 start-page: 2236 year: 2011 end-page: 2253 ident: bib0026 publication-title: Chem. Soc. Rev. – volume: 26 start-page: 4661 year: 2016 end-page: 4672 ident: bib0027 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 2681 year: 2017 end-page: 2688 ident: bib0042 publication-title: J. Mater. Chem. A – volume: 89 year: 2002 ident: bib0049 publication-title: Phys. Rev. Lett. – volume: 5 start-page: 3333 year: 2011 end-page: 3338 ident: bib0030 publication-title: ACS Nano – volume: 11 start-page: 5556 year: 2015 end-page: 5564 ident: bib0033 publication-title: Small – volume: 44 start-page: 2702 year: 2015 end-page: 2712 ident: bib0041 publication-title: Chem. Soc. Rev. – volume: 12 start-page: 4565 year: 2018 end-page: 4573 ident: bib0010 publication-title: ACS Nano – volume: 50 start-page: 13135 year: 2014 end-page: 13137 ident: bib0013 publication-title: Chem. Commun. – volume: 11 start-page: 4114 year: 2020 ident: bib0022 publication-title: Nat. Commun. – volume: 55 start-page: 6702 year: 2016 end-page: 6707 ident: bib0028 publication-title: Angew. Chem. – volume: 7 year: 2017 ident: bib0045 publication-title: Adv. Energy Mater. – volume: 16 start-page: 629 year: 2015 end-page: 636 ident: bib0038 publication-title: Nano Lett. – volume: 32 start-page: 1191 year: 2021 end-page: 1196 ident: bib0002 publication-title: Chin. Chem. Lett. – volume: 13 start-page: 1694 year: 2019 end-page: 1702 ident: bib0035 publication-title: ACS Nano – volume: 56 start-page: 14019 year: 2020 end-page: 14022 ident: bib0009 publication-title: Chem. Commun. – volume: 7 start-page: 151 year: 2014 end-page: 160 ident: bib0032 publication-title: Nano Energy – volume: 404 year: 2021 ident: bib0021 publication-title: Chem. Eng. J. – volume: 81 year: 2021 ident: bib0004 publication-title: Nano Energy – volume: 127 start-page: 5308 year: 2005 end-page: 5309 ident: bib0020 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 2610 year: 2019 end-page: 2621 ident: bib0008 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 16 start-page: 572 year: 2016 end-page: 576 ident: bib0037 publication-title: Nano Lett. – volume: 44 start-page: 1190 year: 2020 end-page: 1193 ident: bib0046 publication-title: New J. Chem. – volume: 14 start-page: 4314 year: 2014 end-page: 4321 ident: bib0050 publication-title: Nano Lett. – volume: 8 start-page: 5290 year: 2014 end-page: 5296 ident: bib0016 publication-title: ACS Nano – volume: 11 start-page: 35479 year: 2019 end-page: 35487 ident: bib0052 publication-title: ACS Appl. Mater. Interfaces – volume: 18 start-page: 14449 year: 2016 end-page: 14453 ident: bib0048 publication-title: Phys. Chem. Chem. Phys. – volume: 10 start-page: 313 year: 2015 end-page: 318 ident: bib0034 publication-title: Nat. Nanotechnol. – volume: 142 start-page: 4298 year: 2020 end-page: 4308 ident: bib0011 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 3955 year: 1991 end-page: 3962 ident: bib0036 publication-title: Phys. Rev. B – volume: 29 year: 2019 ident: bib0006 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 10288 year: 2018 end-page: 10295 ident: bib0018 publication-title: Nanoscale – volume: 9 start-page: 391 year: 2014 end-page: 396 ident: bib0040 publication-title: Nat. Nanotechnol. – volume: 53 start-page: 5427 year: 2014 end-page: 5430 ident: bib0024 publication-title: Angew. Chem. Int. Ed. – volume: 57 start-page: 1603 year: 1961 end-page: 1611 ident: bib0044 publication-title: Trans. Faraday Soc. – volume: 305 start-page: 972 year: 2004 end-page: 974 ident: bib0007 publication-title: Science – volume: 136 start-page: 4897 year: 2014 end-page: 4900 ident: bib0012 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 19186 year: 2013 end-page: 19192 ident: bib0014 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 263 year: 2013 end-page: 275 ident: bib0039 publication-title: Nat. Chem. – volume: 26 start-page: 2683 year: 2014 end-page: 2687 ident: bib0023 publication-title: Adv. Mater. – volume: 12 start-page: 308 year: 2018 end-page: 316 ident: bib0043 publication-title: ACS Nano – volume: 414 year: 2021 ident: bib0047 publication-title: Chem. Eng. J. – volume: 32 start-page: 3355 year: 2021 end-page: 3358 ident: bib0005 publication-title: Chin. Chem. Lett. – volume: 35 start-page: 3198 year: 2010 end-page: 3205 ident: bib0025 publication-title: Int. J. Hydrog. Energy – volume: 136 start-page: 4897 year: 2014 ident: 10.1016/j.cclet.2021.11.007_bib0012 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja501497n – volume: 142 start-page: 4298 year: 2020 ident: 10.1016/j.cclet.2021.11.007_bib0011 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b12113 – volume: 135 start-page: 19186 year: 2013 ident: 10.1016/j.cclet.2021.11.007_bib0014 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4081056 – volume: 18 start-page: 14449 year: 2016 ident: 10.1016/j.cclet.2021.11.007_bib0048 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP00036C – volume: 50 start-page: 13135 year: 2014 ident: 10.1016/j.cclet.2021.11.007_bib0013 publication-title: Chem. Commun. doi: 10.1039/C4CC05698A – volume: 127 start-page: 5308 year: 2005 ident: 10.1016/j.cclet.2021.11.007_bib0020 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0504690 – volume: 44 start-page: 2702 year: 2015 ident: 10.1016/j.cclet.2021.11.007_bib0041 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00151J – volume: 32 start-page: 53 year: 2021 ident: 10.1016/j.cclet.2021.11.007_bib0019 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2020.11.013 – volume: 14 start-page: 4314 year: 2014 ident: 10.1016/j.cclet.2021.11.007_bib0050 publication-title: Nano Lett. doi: 10.1021/nl501106v – volume: 7 start-page: 151 year: 2014 ident: 10.1016/j.cclet.2021.11.007_bib0032 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.04.019 – volume: 5 start-page: 2681 year: 2017 ident: 10.1016/j.cclet.2021.11.007_bib0042 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09409K – volume: 30 start-page: 2610 year: 2019 ident: 10.1016/j.cclet.2021.11.007_bib0008 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 56 start-page: 14019 year: 2020 ident: 10.1016/j.cclet.2021.11.007_bib0009 publication-title: Chem. Commun. doi: 10.1039/D0CC05656A – volume: 81 year: 2021 ident: 10.1016/j.cclet.2021.11.007_bib0004 publication-title: Nano Energy – volume: 10 start-page: 10288 year: 2018 ident: 10.1016/j.cclet.2021.11.007_bib0018 publication-title: Nanoscale doi: 10.1039/C8NR02532K – volume: 404 year: 2021 ident: 10.1016/j.cclet.2021.11.007_bib0021 publication-title: Chem. Eng. J. – volume: 16 start-page: 572 year: 2016 ident: 10.1016/j.cclet.2021.11.007_bib0037 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04260 – volume: 8 start-page: 5290 year: 2014 ident: 10.1016/j.cclet.2021.11.007_bib0016 publication-title: ACS Nano doi: 10.1021/nn501434a – volume: 35 start-page: 3198 year: 2010 ident: 10.1016/j.cclet.2021.11.007_bib0025 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2010.01.128 – volume: 317 start-page: 100 year: 2007 ident: 10.1016/j.cclet.2021.11.007_bib0017 publication-title: Science doi: 10.1126/science.1141483 – volume: 10 start-page: 1752 year: 2018 ident: 10.1016/j.cclet.2021.11.007_bib0029 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b16407 – volume: 13 start-page: 1694 year: 2019 ident: 10.1016/j.cclet.2021.11.007_bib0035 publication-title: ACS Nano – volume: 9 start-page: 391 year: 2014 ident: 10.1016/j.cclet.2021.11.007_bib0040 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.64 – volume: 11 start-page: 45 year: 2019 ident: 10.1016/j.cclet.2021.11.007_bib0003 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0279-8 – volume: 50 start-page: 11026 year: 2014 ident: 10.1016/j.cclet.2021.11.007_bib0015 publication-title: Chem. Commun. doi: 10.1039/C4CC04709E – volume: 26 start-page: 2683 year: 2014 ident: 10.1016/j.cclet.2021.11.007_bib0023 publication-title: Adv. Mater. doi: 10.1002/adma.201304759 – volume: 12 start-page: 5070 year: 2021 ident: 10.1016/j.cclet.2021.11.007_bib0053 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25381-1 – volume: 40 start-page: 2236 year: 2011 ident: 10.1016/j.cclet.2021.11.007_bib0026 publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00168f – volume: 414 year: 2021 ident: 10.1016/j.cclet.2021.11.007_bib0047 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128857 – volume: 26 start-page: 4661 year: 2016 ident: 10.1016/j.cclet.2021.11.007_bib0027 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600566 – volume: 55 start-page: 6702 year: 2016 ident: 10.1016/j.cclet.2021.11.007_bib0028 publication-title: Angew. Chem. doi: 10.1002/anie.201602237 – volume: 44 start-page: 1190 year: 2020 ident: 10.1016/j.cclet.2021.11.007_bib0046 publication-title: New J. Chem. doi: 10.1039/C9NJ03850G – volume: 32 start-page: 1191 year: 2021 ident: 10.1016/j.cclet.2021.11.007_bib0002 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2020.08.005 – volume: 11 start-page: 4114 year: 2020 ident: 10.1016/j.cclet.2021.11.007_bib0022 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17904-z – volume: 5 start-page: 263 year: 2013 ident: 10.1016/j.cclet.2021.11.007_bib0039 publication-title: Nat. Chem. doi: 10.1038/nchem.1589 – volume: 89 year: 2002 ident: 10.1016/j.cclet.2021.11.007_bib0049 publication-title: Phys. Rev. Lett. – volume: 7 year: 2017 ident: 10.1016/j.cclet.2021.11.007_bib0045 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601735 – volume: 8 start-page: 183 year: 2014 ident: 10.1016/j.cclet.2021.11.007_bib0031 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.05.009 – volume: 10 start-page: 313 year: 2015 ident: 10.1016/j.cclet.2021.11.007_bib0034 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.40 – volume: 5 start-page: 3333 year: 2011 ident: 10.1016/j.cclet.2021.11.007_bib0030 publication-title: ACS Nano doi: 10.1021/nn200493r – volume: 32 start-page: 3355 year: 2021 ident: 10.1016/j.cclet.2021.11.007_bib0005 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.03.063 – volume: 29 year: 2019 ident: 10.1016/j.cclet.2021.11.007_bib0006 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201807976 – volume: 204 start-page: 3954 year: 2010 ident: 10.1016/j.cclet.2021.11.007_bib0051 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2010.03.030 – volume: 16 start-page: 629 year: 2015 ident: 10.1016/j.cclet.2021.11.007_bib0038 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04361 – volume: 12 start-page: 4565 year: 2018 ident: 10.1016/j.cclet.2021.11.007_bib0010 publication-title: ACS Nano doi: 10.1021/acsnano.8b00942 – volume: 11 start-page: 5556 year: 2015 ident: 10.1016/j.cclet.2021.11.007_bib0033 publication-title: Small doi: 10.1002/smll.201501822 – volume: 57 start-page: 1603 year: 1961 ident: 10.1016/j.cclet.2021.11.007_bib0044 publication-title: Trans. Faraday Soc. doi: 10.1039/tf9615701603 – volume: 464 start-page: 1329 year: 2010 ident: 10.1016/j.cclet.2021.11.007_bib0001 publication-title: Nature doi: 10.1038/nature08969 – volume: 12 start-page: 308 year: 2018 ident: 10.1016/j.cclet.2021.11.007_bib0043 publication-title: ACS Nano doi: 10.1021/acsnano.7b06364 – volume: 44 start-page: 3955 year: 1991 ident: 10.1016/j.cclet.2021.11.007_bib0036 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.44.3955 – volume: 11 start-page: 35479 year: 2019 ident: 10.1016/j.cclet.2021.11.007_bib0052 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b12252 – volume: 305 start-page: 972 year: 2004 ident: 10.1016/j.cclet.2021.11.007_bib0007 publication-title: Science doi: 10.1126/science.1103197 – volume: 53 start-page: 5427 year: 2014 ident: 10.1016/j.cclet.2021.11.007_bib0024 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201402646 |
SSID | ssj0028836 |
Score | 2.3781793 |
Snippet | Hydrogen evolution reaction (HER) catalytic electrodes under actual working conditions show interesting mass transfer behaviors at solid (electrode)/liquid... Hydrogen evolution reaction(HER)catalytic electrodes under actual working conditions show interest-ing mass transfer behaviors at... |
SourceID | wanfang crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3745 |
SubjectTerms | 1T-2H MoS2 Catalytic electrode Fluid dynamics Hydrogen evolution reaction Three-phase interface behavior |
Title | Insightful understanding of three-phase interface behaviors in 1T-2H MoS2/CFP electrode for hydrogen evolution improvement |
URI | https://dx.doi.org/10.1016/j.cclet.2021.11.007 https://d.wanfangdata.com.cn/periodical/zghxkb202208021 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iiF7EJ9YXOXg0tptmN9tjKUpVFEEFbyHJJrZatqUPXwd_uzPbrFSQHryGJLtkJvMI33xDyLHMwO07EzNkWmFg_WKmU6lZGklTy4xBn4poi5uk_SAuH-PHBdIqa2EQVhls_9SmF9Y6jFTDaVYH3W71DtmDUoEpDKblDaTdFkKilp9-_cA8sJluUWGE0CGcXTIPFRgvC5shoJJHp0jliT1l__ZOy2869zp_mvE95-tkLQSNtDn9rw2y4PJNstIqe7Vtkc-LfIRZtp_06GS2XIX2PR2DuBwbdMBfUWSHGHptHS3r80cwRqN7xtv0un_H4Rbc0tAbJ3MUQlra-ciGfdAz6l6DntJu8RRRvCxuk4fzs_tWm4WuCszW6_GYpU5Kz7XLRBQZHTtIOBoO4ib8NtepFpGw2kvrRV3EEN1kToqaiZOUe5t4MAI7ZDHv526XULCWiY5FZjy2sOYNLZ2ryQavWW5TH0UVwsvTVDZQjmPni54qsWXPqhCBQhFAMqJABBVy8rNoMGXcmD89KcWkfimOAp8wfyENQlXh2o7U51Pn_cVwrD5OYebef_feJ6u4yRQoeEAWx8OJO4TgZWyOCu08IkvNi6v2zTegJe6K |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7RVAguqAWqAqX1gd5qknW8682hB0SLkvJQJYLEzdi7NklBmygPUjj0T_EHmdl4EZUqDpW4rmzLO-N5WZ_nA9hROYZ9Z2NOnVY4er-Ym1QZnkbKNnJrKaYS2uIkaZ_JH-fx-QLcV29hCFYZfP_cp5feOnypB2nWh_1-_ZS6B6WSShgqy1tJQFYeutsZ1m3jr51vqOTPQhx87-63eaAW4FmzGU946pTywrhcRpE1scOsu-UwefCGCLJSIyOZGa8yL5syxhCfOyUbNk5S4bPEoyXguq_gtUR3QbQJu38ecSXE3ls-aSKsEm2vanVUgsoy3D0hOEW0S71DicT23-FwcWYKb4rLJ8Hu4A2shCyV7c0F8RYWXLEKS_sVOdwa3HWKMZX1fnrNpk_fx7CBZxM8H44PexggGbWjGNH_sqohwBi_sajLRZsdD04Fmt1PFsh4cscwh2a923w0wIPN3E0wDNYv7z7Kq8x1OHsRWb-DWjEo3Htg6J4TE8vceuLMFi2jnGuolmhkIkt9FG2AqKSps9DjnKg2rnUFZvulSxVoUgFWPxpVsAFfHicN5y0-nh-eVGrSf51UjUHo-YksKFUHPzHWd5e931dW0HPnFEdu_u_an2Cp3T0-0kedk8MtWKYF5yjFD1CbjKZuGzOnif1YnlQGFy9tGg-T8yrF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insightful+understanding+of+three-phase+interface+behaviors+in+1T-2H+MoS2%2FCFP+electrode+for+hydrogen+evolution+improvement&rft.jtitle=%E4%B8%AD%E5%9B%BD%E5%8C%96%E5%AD%A6%E5%BF%AB%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Jiamu+Cao&rft.au=Jing+Zhou&rft.au=Mingxue+Li&rft.au=Junyu+Chen&rft.date=2022-08-01&rft.pub=MEMS+Center%2CHarbin+Institute+of+Technology%2CHarbin+150001%2CChina&rft.issn=1001-8417&rft.volume=33&rft.issue=8&rft.spage=3745&rft.epage=3751&rft_id=info:doi/10.1016%2Fj.cclet.2021.11.007&rft.externalDocID=zghxkb202208021 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghxkb%2Fzghxkb.jpg |