Rupturing cancer cells by the expansion of functionalized stimuli-responsive hydrogels
Using particles with different functionalities for treating cancer has many advantages over other methods (for example, better access to remote parts of the body); however, current chemical (for example, chemotherapy) and biological (for example, immunotherapy) methods still face many challenges. He...
Saved in:
Published in | NPG Asia materials Vol. 10; no. 2; p. e465 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.02.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Using particles with different functionalities for treating cancer has many advantages over other methods (for example, better access to remote parts of the body); however, current chemical (for example, chemotherapy) and biological (for example, immunotherapy) methods still face many challenges. Here, we describe a fundamentally different approach: using the physical force of an expanding stimuli-responsive hydrogel to rupture cancer cells attached on its surface. Specifically, we coated temperature-responsive hydrogels with a layer of cell-adherent arginine-glycine-aspartate (RGD) peptides. The approach involved first allowing cancer cells to attach onto the surface of the hydrogels, and then applying a change in temperature. As the hydrogel underwent a chemical transformation and expanded due to the stimulus, the cancer cells attached to it ruptured. The results from staining the cells with trypan blue, observing them using SEM, and analyzing them using the MTT assay showed that both breast and lung cancer cells died after the hydrogel expanded; hence, we showed that this physical force from the expanding hydrogel is strong enough to rupture the cancer cells. In addition, the force derived from the expanding hydrogel was determined separately to be larger than that needed to rupture typical cells. This physical approach is conceptually simple, technically easy to implement, and potentially generalizable for rupturing a wide range of cells.
Hydrogels: Bursting cancer's bubble
A hydrogel that uses physical force rather than drugs or radiation to kill breast and lung cancer cells has been developed. The approach by Siowling Soh at the National University of Singapore and colleagues exploits the temperature responsiveness of soft, watery polymers known as poly(N-isopropylacrylamides). The researchers coated the hydrogel with cell-adhering arginine-glycine-aspartate peptides, using a dopamine and lysine co-polymer to anchor the biomolecules. After seeding cancer cells onto the peptide-coated hydrogel, they dropped sample temperatures from 37°C to 22°C. The hydrogel expanded due to a phase transition, providing a force large enough to rupture the cancer cells attached to the surface — an easy-to-implement strategy effective for particles made of these coated hydrogels with sizes ranging from micrometers to millimeters. Measurements revealed the hydrogels can apply enough force to rupture a variety of cell types.
Using functionalized particles for treatment of cancer is advantageous because they can access remote parts of the body and is minimally invasive. However, current chemical and biological methods still face challenges. A novel approach that uses the physical force of stimuli-responsive hydrogels is introduced. Temperature-responsive hydrogels were coated with cell-adherent molecules. After attaching cancer cells on its surface and changing the temperature, the force of the expanding stimuli-responsive hydrogel ruptures the cells. Comparing to other chemical and biological methods, this physical approach may be conceptually simpler, technically easier to implement, and more general for different types of cancer cells. |
---|---|
AbstractList | Using particles with different functionalities for treating cancer has many advantages over other methods (for example, better access to remote parts of the body); however, current chemical (for example, chemotherapy) and biological (for example, immunotherapy) methods still face many challenges. Here, we describe a fundamentally different approach: using the physical force of an expanding stimuli-responsive hydrogel to rupture cancer cells attached on its surface. Specifically, we coated temperature-responsive hydrogels with a layer of cell-adherent arginine-glycine-aspartate (RGD) peptides. The approach involved first allowing cancer cells to attach onto the surface of the hydrogels, and then applying a change in temperature. As the hydrogel underwent a chemical transformation and expanded due to the stimulus, the cancer cells attached to it ruptured. The results from staining the cells with trypan blue, observing them using SEM, and analyzing them using the MTT assay showed that both breast and lung cancer cells died after the hydrogel expanded; hence, we showed that this physical force from the expanding hydrogel is strong enough to rupture the cancer cells. In addition, the force derived from the expanding hydrogel was determined separately to be larger than that needed to rupture typical cells. This physical approach is conceptually simple, technically easy to implement, and potentially generalizable for rupturing a wide range of cells.
Hydrogels: Bursting cancer's bubble
A hydrogel that uses physical force rather than drugs or radiation to kill breast and lung cancer cells has been developed. The approach by Siowling Soh at the National University of Singapore and colleagues exploits the temperature responsiveness of soft, watery polymers known as poly(N-isopropylacrylamides). The researchers coated the hydrogel with cell-adhering arginine-glycine-aspartate peptides, using a dopamine and lysine co-polymer to anchor the biomolecules. After seeding cancer cells onto the peptide-coated hydrogel, they dropped sample temperatures from 37°C to 22°C. The hydrogel expanded due to a phase transition, providing a force large enough to rupture the cancer cells attached to the surface — an easy-to-implement strategy effective for particles made of these coated hydrogels with sizes ranging from micrometers to millimeters. Measurements revealed the hydrogels can apply enough force to rupture a variety of cell types.
Using functionalized particles for treatment of cancer is advantageous because they can access remote parts of the body and is minimally invasive. However, current chemical and biological methods still face challenges. A novel approach that uses the physical force of stimuli-responsive hydrogels is introduced. Temperature-responsive hydrogels were coated with cell-adherent molecules. After attaching cancer cells on its surface and changing the temperature, the force of the expanding stimuli-responsive hydrogel ruptures the cells. Comparing to other chemical and biological methods, this physical approach may be conceptually simpler, technically easier to implement, and more general for different types of cancer cells. Using particles with different functionalities for treating cancer has many advantages over other methods (for example, better access to remote parts of the body); however, current chemical (for example, chemotherapy) and biological (for example, immunotherapy) methods still face many challenges. Here, we describe a fundamentally different approach: using the physical force of an expanding stimuli-responsive hydrogel to rupture cancer cells attached on its surface. Specifically, we coated temperature-responsive hydrogels with a layer of cell-adherent arginine-glycine-aspartate (RGD) peptides. The approach involved first allowing cancer cells to attach onto the surface of the hydrogels, and then applying a change in temperature. As the hydrogel underwent a chemical transformation and expanded due to the stimulus, the cancer cells attached to it ruptured. The results from staining the cells with trypan blue, observing them using SEM, and analyzing them using the MTT assay showed that both breast and lung cancer cells died after the hydrogel expanded; hence, we showed that this physical force from the expanding hydrogel is strong enough to rupture the cancer cells. In addition, the force derived from the expanding hydrogel was determined separately to be larger than that needed to rupture typical cells. This physical approach is conceptually simple, technically easy to implement, and potentially generalizable for rupturing a wide range of cells. |
Author | Lim, Sierin Fang, Yan Tan, Jiajun Soh, Siowling |
Author_xml | – sequence: 1 givenname: Yan surname: Fang fullname: Fang, Yan organization: Department of Chemical and Biomolecular Engineering, National University of Singapore – sequence: 2 givenname: Jiajun orcidid: 0000-0001-9710-3919 surname: Tan fullname: Tan, Jiajun organization: School of Chemical and Biomedical Engineering, Nanyang Technological University – sequence: 3 givenname: Sierin orcidid: 0000-0001-7455-6771 surname: Lim fullname: Lim, Sierin organization: School of Chemical and Biomedical Engineering, Nanyang Technological University – sequence: 4 givenname: Siowling surname: Soh fullname: Soh, Siowling email: chessl@nus.edu.sg organization: Department of Chemical and Biomolecular Engineering, National University of Singapore |
BookMark | eNptkEtLw0AUhQepYK1d-QcGXGrqvJJMllJ8QUEQdTvMTO60KUkmziRi_fWmVMSFq3sW3zlcvlM0aX0LCJ1TsqCEy2vdLBih-YJxdoSmVEqRCJLmk98sihM0j3FLCKFZJmQqpujteej6IVTtGlvdWgjYQl1HbHa43wCGz063sfIt9g67obX9mHVdfUGJY181Q10lAWLnR-gD8GZXBr-GOp6hY6frCPOfO0Ovd7cvy4dk9XT_uLxZJZbztE9krgsDKWeEl1q7gpROC2cLKi3RMhMAzDies9SykrCxY4x1tNQ0BeOy3PAZujjsdsG_DxB7tfVDGD-MihYFFzTLUzJSlwfKBh9jAKe6UDU67BQlau9O6Ubt3anR3UhfHejY7b1A-LP5D_4N7AZz3w |
CitedBy_id | crossref_primary_10_3390_gels8120775 crossref_primary_10_1016_j_ijbiomac_2024_131832 crossref_primary_10_1021_acsapm_1c01637 crossref_primary_10_1049_bsb2_12050 crossref_primary_10_1016_j_jconrel_2021_11_025 crossref_primary_10_3390_molecules24030603 crossref_primary_10_1007_s00289_021_03638_5 crossref_primary_10_1039_D1NJ02260A crossref_primary_10_1080_10717544_2022_2070299 crossref_primary_10_1002_adma_201804540 crossref_primary_10_1039_D1TB00980J crossref_primary_10_1002_adfm_202306554 crossref_primary_10_3389_fbioe_2021_630943 crossref_primary_10_1021_acsabm_1c00857 crossref_primary_10_1016_j_colsurfb_2020_111341 crossref_primary_10_1021_acsami_8b11408 crossref_primary_10_1039_D3TB02610H crossref_primary_10_3390_gels4020054 crossref_primary_10_1016_j_jconrel_2022_12_017 crossref_primary_10_1016_j_jddst_2019_03_020 crossref_primary_10_1016_j_jddst_2023_104924 crossref_primary_10_1002_anbr_202200124 crossref_primary_10_1002_adfm_202203323 crossref_primary_10_1021_acs_molpharmaceut_9b01020 crossref_primary_10_1007_s10965_022_03004_7 crossref_primary_10_1002_adfm_202202273 crossref_primary_10_1039_D3NJ05816F crossref_primary_10_1002_mabi_202100186 crossref_primary_10_1080_25740881_2024_2339281 |
Cites_doi | 10.1073/pnas.1010013108 10.1002/mabi.200600280 10.1021/bp034215z 10.3109/10717541003762854 10.1016/j.addr.2011.03.008 10.1039/C4TA05970K 10.1021/la304080c 10.1088/0964-1726/22/5/055010 10.1093/jnci/92.3.205 10.1021/bi0352670 10.1021/nl100996u 10.1021/mp3002733 10.1021/la901092x 10.1016/j.jbiomech.2011.01.010 10.1038/nmat2854 10.1586/17434440.1.1.115 10.1021/mp900278x 10.1017/CBO9780511810954 10.1016/0079-6700(92)90023-R 10.1021/bm070343q 10.1007/BF01030906 10.1016/j.memsci.2014.04.032 10.1039/B406727D 10.1096/fj.12-220160 10.1038/sj.neo.7900037 10.1021/jp0124903 10.1002/adma.200601817 10.1016/j.jcis.2005.01.089 10.1038/nrc1071 10.1039/C5CC03216D 10.1038/349400a0 10.1002/1521-3765(20010302)7:5<1095::AID-CHEM1095>3.0.CO;2-B 10.1016/S0169-409X(01)00203-4 10.1021/ja057254a 10.1002/adma.201203185 10.1007/s002320010040 10.1021/la500006e 10.1021/ja972467o 10.1002/pat.1660 10.1016/j.biomaterials.2007.02.006 10.1021/ja205524x 10.1021/jp810685g 10.1021/jp501325x 10.1016/j.ijpharm.2010.10.011 10.1016/j.jconrel.2009.08.011 10.1016/j.biomaterials.2010.06.025 10.1016/j.biomaterials.2006.05.009 10.1016/j.addr.2012.01.020 10.1039/b922647h 10.1002/9783527634057 10.1002/anie.201408375 10.1016/j.progpolymsci.2008.07.005 10.1038/nmat2614 10.1021/nn700060m |
ContentType | Journal Article |
Copyright | The Author(s) 2018 Copyright Nature Publishing Group Feb 2018 |
Copyright_xml | – notice: The Author(s) 2018 – notice: Copyright Nature Publishing Group Feb 2018 |
DBID | C6C AAYXX CITATION 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PIMPY PQEST PQQKQ PQUKI PRINS |
DOI | 10.1038/am.2017.232 |
DatabaseName | Springer Open Access CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) Materials Research Database ProQuest Materials Science Database Materials Science Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Materials Research Database Technology Collection Technology Research Database ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Open Access url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1884-4057 |
EndPage | e465 |
ExternalDocumentID | 10_1038_am_2017_232 |
GroupedDBID | 0R~ 4.4 5VS 8FE 8FG AAJSJ AAKKN ABEEZ ABJCF ACACY ACGFO ACGFS ACIWK ACMJI ACSMW ACULB ADBBV AENEX AFGXO AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS AMTXH ARCSS B.R BAPOH BCNDV BENPR BGLVJ C24 C6C CCPQU CZ9 D1I EBLON EBS EJD GROUPED_DOAJ HCIFZ HH5 HZ~ KB. KC. KQ8 LGEZI LOTEE NADUK NAO NXXTH OK1 PDBOC PIMPY PROAC RNT RNTTT SNYQT AAYXX CITATION 7SR 8FD ABUWG AZQEC DWQXO JG9 PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c335t-87a9be53203daaf90dfa4fc918c0a864ee2bf3725c2d02c33bbcf1da15ebf67b3 |
IEDL.DBID | 8FG |
ISSN | 1884-4049 |
IngestDate | Thu Oct 10 20:38:45 EDT 2024 Fri Aug 23 02:02:44 EDT 2024 Fri Oct 11 20:46:49 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c335t-87a9be53203daaf90dfa4fc918c0a864ee2bf3725c2d02c33bbcf1da15ebf67b3 |
ORCID | 0000-0001-9710-3919 0000-0001-7455-6771 |
OpenAccessLink | https://www.proquest.com/docview/1993416750?pq-origsite=%requestingapplication% |
PQID | 1993416750 |
PQPubID | 546296 |
ParticipantIDs | proquest_journals_1993416750 crossref_primary_10_1038_am_2017_232 springer_journals_10_1038_am_2017_232 |
PublicationCentury | 2000 |
PublicationDate | 2018-02-02 |
PublicationDateYYYYMMDD | 2018-02-02 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Tokyo |
PublicationTitle | NPG Asia materials |
PublicationTitleAbbrev | NPG Asia Mater |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | World Health Organization Cancer (2017) http://www.who.int/mediacentre/factsheets/fs297/en/. CortezCTomaskovic-CrookEJohnstonAPScottAMNiceECHeathJKCarusoFInfluence of size, surface, cell line, and kinetic properties on the specific binding of A33 antigen-targeted multilayered particles and capsules to colorectal cancer cellsACS Nano20071931021:CAS:528:DC%2BD2sXptVaqtrw%3D10.1021/nn700060m Boal, D. H. in Mechanics of the Cell (ed. Boal, D. H.) (Cambridge University, UK, 2002). Marchi-ArtznerVLorzBHellererUKantlehnerMKesslerHSackmannESelective adhesion of endothelial cells to artificial membranes with a synthetic RGD–lipopeptideChem-Eur. J.20017109511011:CAS:528:DC%2BD3MXhvVegu70%3D10.1002/1521-3765(20010302)7:5<1095::AID-CHEM1095>3.0.CO;2-B SuXZongYRichterRKnollWEnzyme immobilization on poly (ethylene-co-acrylic acid) films studied by quartz crystal microbalance with dissipation monitoringJ. Colloid Interface Sci.200528735421:CAS:528:DC%2BD2MXksVyqurw%3D10.1016/j.jcis.2005.01.089 KatsumotoYTanakaTSatoHOzakiYConformational change of poly (N-isopropylacrylamide) during the coil-globule transition investigated by attenuated total reflection/infrared spectroscopy and density functional theory calculationJ. Phys. Chem. A2002106342934351:CAS:528:DC%2BD3MXovF2nsrw%3D10.1021/jp0124903 ZhouRRenPFYangHCXuZKFabrication of antifouling membrane surface by poly (sulfobetaine methacrylate)/polydopamine co-depositionJ. Membr. Sci.201446618251:CAS:528:DC%2BC2cXpslCru78%3D10.1016/j.memsci.2014.04.032 DanhierFVromanBLecouturierNCrokartNPourcelleVFreichelsHJérômeCMarchand-BrynaertJFeronOPréatVTargeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with paclitaxelJ. Control. Release20091401661731:CAS:528:DC%2BD1MXhtlOks73P10.1016/j.jconrel.2009.08.011 QiuYParkKEnvironment-sensitive hydrogels for drug deliveryAdv. Drug Del. Rev.2001533213391:CAS:528:DC%2BD3MXovFyrtbg%3D10.1016/S0169-409X(01)00203-4 LarsenCCKligmanFKottke-MarchantKMarchantREThe effect of RGD fluorosurfactant polymer modification of ePTFE on endothelial cell adhesion, growth, and functionBiomaterials200627484648551:CAS:528:DC%2BD28XlvFaks7Y%3D10.1016/j.biomaterials.2006.05.009 KatoMMrksichMUsing model substrates to study the dependence of focal adhesion formation on the affinity of integrin-ligand complexesBiochemistry200443269927071:CAS:528:DC%2BD2cXht12hurk%3D10.1021/bi0352670 Alvarez-BarretoJFSikavitsasVIImproved mesenchymal stem cell seeding on RGD-modified poly(L-lactic acid) scaffolds using flow perfusionMacromol. Biosci.200775795881:CAS:528:DC%2BD2sXlslSlsb0%3D10.1002/mabi.200600280 ZhangLGuoRYangMJiangXLiuBThermo and pH dual-responsive nanoparticles for anti-cancer drug deliveryAdv. Mater.200719298829921:CAS:528:DC%2BD2sXht1eisrvE10.1002/adma.200601817 LiuYChangCPSunTDopamine-assisted deposition of dextran for nonfouling applicationsLangmuir2014303118312610.1021/la500006e BodinAAhrenstedtLFinkHBrumerHRisbergBGatenholmPModification of nanocellulose with a xyloglucan–RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineeringBiomacromolecules20078369737041:CAS:528:DC%2BD2sXhtlCqtLnF10.1021/bm070343q IlmainFTanakaTKokufutaEVolume transition in a gel driven by hydrogen bondingNature19913494004011:CAS:528:DyaK3MXhsVCnu7c%3D10.1038/349400a0 HuangWGibsonSJFacerPGuJPolakJMImproved section adhesion for immunocytochemistry using high molecular weight polymers of L-lysine as a slide coatingHistochem. Cell Biol.1983772752791:CAS:528:DyaL3sXhsFOgs7w%3D ZhangYThingholmBGoldieKNOgakiRStädlerBAssembly of poly (dopamine) films mixed with a nonionic polymerLangmuir20122817585175921:CAS:528:DC%2BC38XhslOlsLfF10.1021/la304080c SpizzirriUGIemmaFPuociFXueFGaoWCirilloGCurcioMParisiOIPicciNSynthesis of hydrophilic microspheres with LCST close to body temperature for controlled dual-sensitive drug releasePolym. Adv. Technol.201122170517121:CAS:528:DC%2BC3MXhsV2rtbfE10.1002/pat.1660 YangKZhangSZhangGSunXLeeSTLiuZGraphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapyNano Lett.201010331833231:CAS:528:DC%2BC3cXpslWjsbw%3D10.1021/nl100996u TherassePArbuckSGEisenhauerEAWandersJKaplanRSRubinsteinLVerweijJVan GlabbekeMvan OosteromATChristianMCGwytherSGNew guidelines to evaluate the response to treatment in solid tumorsJ. Natl. Cancer Inst.2000922052161:STN:280:DC%2BD3c7it1Gitg%3D%3D10.1093/jnci/92.3.205 De SouzaRZahediPAllenCJPiquette-MillerMPolymeric drug delivery systems for localized cancer chemotherapyDrug Deliv.2010173653751:CAS:528:DC%2BC3cXot1Wktrw%3D10.3109/10717541003762854 HuangXEl-SayedIHQianWEl-SayedMACancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorodsJ. Am. Chem. Soc.2006128211521201:CAS:528:DC%2BD28XntFCltQ%3D%3D10.1021/ja057254a KimDHWirtzDFocal adhesion size uniquely predicts cell migrationFASEB J.201327135113611:CAS:528:DC%2BC3sXmtFegtr8%3D10.1096/fj.12-220160 DaiQWalkeyCChanWCPolyethylene glycol backfilling mitigates the negative impact of the protein corona on nanoparticle cell targetingAngew. Chem. Int. Ed.201453509350961:CAS:528:DC%2BC2cXlsFyju7c%3D10.1002/anie.201408375 StuartMACHuckWTGenzerJMüllerMOberCStammMSukhorukovGBSzleiferITsukrukVVUrbanMWinnikFZauscherSLuzinovIMinkoSEmerging applications of stimuli-responsive polymer materialsNat. Mater.2010910111310.1038/nmat2614 MerkelTJJonesSWHerlihyKPKerseyFRShieldsARNapierMLuftJCWuHLZamboniWCWangAZBearJEDeSimoneJMUsing mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticlesProc. Natl Acad. Sci. USA20111085865911:CAS:528:DC%2BC3MXosFelsQ%3D%3D10.1073/pnas.1010013108 FleigeEQuadirMAHaagRStimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applicationsAdv. Drug Deliv. Rev.2012648668841:CAS:528:DC%2BC38Xjt1OqurY%3D10.1016/j.addr.2012.01.020 AcharyaAPDolgovaNVMooreNMXiaCQClare-SalzlerMJBeckerMLGallantNDKeselowskyBGThe modulation of dendritic cell integrin binding and activation by RGD-peptide density gradient substratesBiomaterials201031744474541:CAS:528:DC%2BC3cXpsV2qt78%3D10.1016/j.biomaterials.2010.06.025 SchildHGPoly (N-isopropylacrylamide): experiment, theory and applicationProg. Polym. Sci.1992171632491:CAS:528:DyaK38XltlWmuro%3D10.1016/0079-6700(92)90023-R MedeirosSSantosAFessiHElaissariAStimuli-responsive magnetic particles for biomedical applicationsInt. J. Pharm.20114031391611:CAS:528:DC%2BC3cXhsFCltbrN10.1016/j.ijpharm.2010.10.011 AhmedZGoodingEAPimenovKVWangLAsherSAUV resonance raman determination of molecular mechanism of poly (N-isopropylacrylamide) volume phase transitionJ. Phys. Chem. B2009113424842561:CAS:528:DC%2BD1MXis12juro%3D10.1021/jp810685g YangHCChenYFYeCJinYNLiHXuZKPolymer membrane with a mineral coating for enhanced curling resistance and surface wettabilityChem. Commun.20155112779127821:CAS:528:DC%2BC2MXhtFWqtbnF10.1039/C5CC03216D SarmadSYeniciGGürkanKKeçeliGGürdağGElectric field responsive chitosan-poly (NN-dimethyl acrylamide) semi-IPN gel films and their dielectric, thermal and swelling characterizationSmart Mater. Struct.20132205501010.1088/0964-1726/22/5/055010 De las Heras AlarcónCPennadamSAlexanderCStimuli responsive polymers for biomedical applicationsChem. Soc. Rev.20053427628510.1039/B406727D DolmansDEFukumuraDJainRKPhotodynamic therapy for cancerNat. Rev. Cancer200333803871:CAS:528:DC%2BD3sXjtlals74%3D10.1038/nrc1071 TanSCWYangTGongYLiaoKRupture of plasma membrane under tensionJ. Biomech.2011441361136610.1016/j.jbiomech.2011.01.010 WangZXLauCHZhangNQBaiYPShaoLMussel-inspired tailoring of membrane wettability for harsh water treatmentJ. Mater. Chem. A20153265026571:CAS:528:DC%2BC2cXhvF2rt7fO10.1039/C4TA05970K BeyerleAIrmlerMBeckersJKisselTStoegerTToxicity pathway focused gene expression profiling of PEI-based polymers for pulmonary applicationsMol. Pharm.201077277371:CAS:528:DC%2BC3cXmtVynsb4%3D10.1021/mp900278x FuülbrandtMErmilovaEAsadujjamanAHözelRBierFFvon KlitzingRSchönhalsADynamics of linear poly (N-isopropylacrylamide) in water around the phase transition investigated by dielectric relaxation spectroscopyJ. Phys. Chem. B20141183750375910.1021/jp501325x ZhangZAl-RubeaiMThomasCMechanical properties of hybridoma cells in batch cultureBiotechnol. Lett.199214111610.1007/BF01030906 NagahamaKHashizumeMYamamotoHOuchiTOhyaYHydrophobically modified biodegradable poly(ethylene glycol) copolymers that form temperature-responsive nanogelsLangmuir200925973497401:CAS:528:DC%2BD1MXmtlKjtLg%3D10.1021/la901092x DanhierFLe BretonAPréatVRGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosisMol. Pharm.20129296129731:CAS:528:DC%2BC38Xhtlaksr3O10.1021/mp3002733 GilliesRJSchornackPASecombTWRaghunandNCauses and effects of heterogeneous perfusion in tumorsNeoplasia199911972071:STN:280:DC%2BD3czpsVGhsA%3D%3D10.1038/sj.neo.7900037 HouSZhaoHZhaoLShenQWeiKSSuhDYNakaoAGarciaMSongMLeeTXiongBLuoSCTsengHRYuHHCapture and stimulated release of circulating tumor cells on polymer-grafted silicon nanostructuresAdv. Mater.201325154715511:CAS:528:DC%2BC38XhvVCrsLvJ10.1002/adma.201203185 TuguluSSilacciPStergiopulosNKlokHARGD-functionalized polymer brushes as substrates for the integrin specific adhesion of human umbilical vein endothelial cellsBiomaterials200728253625461:CAS:528:DC%2BD2sXis1CrsLs%3D10.1016/j.biomaterials.2007.02.006 KumarCSMohammadFMagnetic nanomaterials for hyperthermia-based therapy and controlled drug deliveryAdv. Drug Deliv. Rev.2011637898081:CAS:528:DC%2BC3MXovF2jtL0%3D10.1016/j.addr.2011.03.008 Kratz, F. in Drug Delivery in Oncology: from Basic Research to Cancer Therapy (eds Kratz, F., Senter, P. & Steinhagen, H.) (John Wiley & Sons, Hoboken, NJ, USA, 2011). BajpaiAShuklaSKBhanuSKankaneSResponsive polymers in controlled drug deliveryProg. Polym. Sci.200833108811181:CAS:528:DC%2BD1cXhtlyqtbvE10.1016/j.progpolymsci.2008.07.005 RobertsCChenCSMrksichMMartichonokVIngberDEWhitesidesGMUsing mixed self-assembled monolayers presenting RGD and (EG) 3OH groups to characterize long-term attachment of b Y Zhang (BFam2017232_CR29) 2012; 28 MAC Stuart (BFam2017232_CR48) 2010; 9 DE Dolmans (BFam2017232_CR7) 2003; 3 C De las Heras Alarcón (BFam2017232_CR47) 2005; 34 C Cortez (BFam2017232_CR51) 2007; 1 S Hou (BFam2017232_CR52) 2013; 25 F Danhier (BFam2017232_CR44) 2009; 140 TJ Merkel (BFam2017232_CR4) 2011; 108 SCW Tan (BFam2017232_CR45) 2011; 44 K Kandere-Grzybowska (BFam2017232_CR17) 2010; 6 Q Dai (BFam2017232_CR53) 2014; 53 K Nagahama (BFam2017232_CR56) 2009; 25 X Huang (BFam2017232_CR8) 2006; 128 UG Spizzirri (BFam2017232_CR54) 2011; 22 BFam2017232_CR42 X Su (BFam2017232_CR27) 2005; 287 CS Kumar (BFam2017232_CR12) 2011; 63 I Gözen (BFam2017232_CR46) 2010; 9 S Tugulu (BFam2017232_CR26) 2007; 28 C Roberts (BFam2017232_CR25) 1998; 120 CM Kolodziej (BFam2017232_CR20) 2012; 134 W Huang (BFam2017232_CR34) 1983; 77 AP Acharya (BFam2017232_CR18) 2010; 31 HC Yang (BFam2017232_CR32) 2015; 51 C Morris (BFam2017232_CR41) 2001; 179 BP Chan (BFam2017232_CR22) 2004; 20 Y Liu (BFam2017232_CR30) 2014; 30 F Ilmain (BFam2017232_CR35) 1991; 349 L Zhang (BFam2017232_CR50) 2007; 19 S Sarmad (BFam2017232_CR55) 2013; 22 CC Larsen (BFam2017232_CR21) 2006; 27 Z Ahmed (BFam2017232_CR39) 2009; 113 P Therasse (BFam2017232_CR5) 2000; 92 K Yang (BFam2017232_CR9) 2010; 10 DH Kim (BFam2017232_CR15) 2013; 27 F Danhier (BFam2017232_CR43) 2012; 9 A Beyerle (BFam2017232_CR33) 2010; 7 S Medeiros (BFam2017232_CR13) 2011; 403 M Fuülbrandt (BFam2017232_CR36) 2014; 118 E Fleige (BFam2017232_CR14) 2012; 64 A Bodin (BFam2017232_CR24) 2007; 8 V Marchi-Artzner (BFam2017232_CR23) 2001; 7 M Kato (BFam2017232_CR16) 2004; 43 HG Schild (BFam2017232_CR37) 1992; 17 RJ Gillies (BFam2017232_CR49) 1999; 1 R De Souza (BFam2017232_CR3) 2010; 17 BFam2017232_CR6 Y Qiu (BFam2017232_CR10) 2001; 53 SS Feng (BFam2017232_CR2) 2004; 1 BFam2017232_CR1 Z Zhang (BFam2017232_CR40) 1992; 14 A Bajpai (BFam2017232_CR11) 2008; 33 R Zhou (BFam2017232_CR31) 2014; 466 Y Katsumoto (BFam2017232_CR38) 2002; 106 JF Alvarez-Barreto (BFam2017232_CR19) 2007; 7 ZX Wang (BFam2017232_CR28) 2015; 3 |
References_xml | – volume: 108 start-page: 586 year: 2011 ident: BFam2017232_CR4 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1010013108 contributor: fullname: TJ Merkel – volume: 7 start-page: 579 year: 2007 ident: BFam2017232_CR19 publication-title: Macromol. Biosci. doi: 10.1002/mabi.200600280 contributor: fullname: JF Alvarez-Barreto – volume: 20 start-page: 566 year: 2004 ident: BFam2017232_CR22 publication-title: Biotechnol. Progr. doi: 10.1021/bp034215z contributor: fullname: BP Chan – volume: 17 start-page: 365 year: 2010 ident: BFam2017232_CR3 publication-title: Drug Deliv. doi: 10.3109/10717541003762854 contributor: fullname: R De Souza – volume: 63 start-page: 789 year: 2011 ident: BFam2017232_CR12 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2011.03.008 contributor: fullname: CS Kumar – volume: 3 start-page: 2650 year: 2015 ident: BFam2017232_CR28 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05970K contributor: fullname: ZX Wang – volume: 28 start-page: 17585 year: 2012 ident: BFam2017232_CR29 publication-title: Langmuir doi: 10.1021/la304080c contributor: fullname: Y Zhang – volume: 22 start-page: 055010 year: 2013 ident: BFam2017232_CR55 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/5/055010 contributor: fullname: S Sarmad – volume: 92 start-page: 205 year: 2000 ident: BFam2017232_CR5 publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/92.3.205 contributor: fullname: P Therasse – volume: 43 start-page: 2699 year: 2004 ident: BFam2017232_CR16 publication-title: Biochemistry doi: 10.1021/bi0352670 contributor: fullname: M Kato – volume: 10 start-page: 3318 year: 2010 ident: BFam2017232_CR9 publication-title: Nano Lett. doi: 10.1021/nl100996u contributor: fullname: K Yang – volume: 9 start-page: 2961 year: 2012 ident: BFam2017232_CR43 publication-title: Mol. Pharm. doi: 10.1021/mp3002733 contributor: fullname: F Danhier – volume: 25 start-page: 9734 year: 2009 ident: BFam2017232_CR56 publication-title: Langmuir doi: 10.1021/la901092x contributor: fullname: K Nagahama – volume: 77 start-page: 275 year: 1983 ident: BFam2017232_CR34 publication-title: Histochem. Cell Biol. contributor: fullname: W Huang – volume: 44 start-page: 1361 year: 2011 ident: BFam2017232_CR45 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.01.010 contributor: fullname: SCW Tan – volume: 9 start-page: 908 year: 2010 ident: BFam2017232_CR46 publication-title: Nat. Mater. doi: 10.1038/nmat2854 contributor: fullname: I Gözen – volume: 1 start-page: 115 year: 2004 ident: BFam2017232_CR2 publication-title: Expert Rev. Med. Devices doi: 10.1586/17434440.1.1.115 contributor: fullname: SS Feng – volume: 7 start-page: 727 year: 2010 ident: BFam2017232_CR33 publication-title: Mol. Pharm. doi: 10.1021/mp900278x contributor: fullname: A Beyerle – ident: BFam2017232_CR42 doi: 10.1017/CBO9780511810954 – volume: 17 start-page: 163 year: 1992 ident: BFam2017232_CR37 publication-title: Prog. Polym. Sci. doi: 10.1016/0079-6700(92)90023-R contributor: fullname: HG Schild – volume: 8 start-page: 3697 year: 2007 ident: BFam2017232_CR24 publication-title: Biomacromolecules doi: 10.1021/bm070343q contributor: fullname: A Bodin – volume: 14 start-page: 11 year: 1992 ident: BFam2017232_CR40 publication-title: Biotechnol. Lett. doi: 10.1007/BF01030906 contributor: fullname: Z Zhang – volume: 466 start-page: 18 year: 2014 ident: BFam2017232_CR31 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.04.032 contributor: fullname: R Zhou – volume: 34 start-page: 276 year: 2005 ident: BFam2017232_CR47 publication-title: Chem. Soc. Rev. doi: 10.1039/B406727D contributor: fullname: C De las Heras Alarcón – volume: 27 start-page: 1351 year: 2013 ident: BFam2017232_CR15 publication-title: FASEB J. doi: 10.1096/fj.12-220160 contributor: fullname: DH Kim – volume: 1 start-page: 197 year: 1999 ident: BFam2017232_CR49 publication-title: Neoplasia doi: 10.1038/sj.neo.7900037 contributor: fullname: RJ Gillies – volume: 106 start-page: 3429 year: 2002 ident: BFam2017232_CR38 publication-title: J. Phys. Chem. A doi: 10.1021/jp0124903 contributor: fullname: Y Katsumoto – volume: 19 start-page: 2988 year: 2007 ident: BFam2017232_CR50 publication-title: Adv. Mater. doi: 10.1002/adma.200601817 contributor: fullname: L Zhang – volume: 287 start-page: 35 year: 2005 ident: BFam2017232_CR27 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2005.01.089 contributor: fullname: X Su – volume: 3 start-page: 380 year: 2003 ident: BFam2017232_CR7 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1071 contributor: fullname: DE Dolmans – volume: 51 start-page: 12779 year: 2015 ident: BFam2017232_CR32 publication-title: Chem. Commun. doi: 10.1039/C5CC03216D contributor: fullname: HC Yang – volume: 349 start-page: 400 year: 1991 ident: BFam2017232_CR35 publication-title: Nature doi: 10.1038/349400a0 contributor: fullname: F Ilmain – volume: 7 start-page: 1095 year: 2001 ident: BFam2017232_CR23 publication-title: Chem-Eur. J. doi: 10.1002/1521-3765(20010302)7:5<1095::AID-CHEM1095>3.0.CO;2-B contributor: fullname: V Marchi-Artzner – volume: 53 start-page: 321 year: 2001 ident: BFam2017232_CR10 publication-title: Adv. Drug Del. Rev. doi: 10.1016/S0169-409X(01)00203-4 contributor: fullname: Y Qiu – volume: 128 start-page: 2115 year: 2006 ident: BFam2017232_CR8 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja057254a contributor: fullname: X Huang – volume: 25 start-page: 1547 year: 2013 ident: BFam2017232_CR52 publication-title: Adv. Mater. doi: 10.1002/adma.201203185 contributor: fullname: S Hou – volume: 179 start-page: 79 year: 2001 ident: BFam2017232_CR41 publication-title: J. Membrane Biol. doi: 10.1007/s002320010040 contributor: fullname: C Morris – ident: BFam2017232_CR1 – volume: 30 start-page: 3118 year: 2014 ident: BFam2017232_CR30 publication-title: Langmuir doi: 10.1021/la500006e contributor: fullname: Y Liu – volume: 120 start-page: 6548 year: 1998 ident: BFam2017232_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja972467o contributor: fullname: C Roberts – volume: 22 start-page: 1705 year: 2011 ident: BFam2017232_CR54 publication-title: Polym. Adv. Technol. doi: 10.1002/pat.1660 contributor: fullname: UG Spizzirri – volume: 28 start-page: 2536 year: 2007 ident: BFam2017232_CR26 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.02.006 contributor: fullname: S Tugulu – volume: 134 start-page: 247 year: 2012 ident: BFam2017232_CR20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja205524x contributor: fullname: CM Kolodziej – volume: 113 start-page: 4248 year: 2009 ident: BFam2017232_CR39 publication-title: J. Phys. Chem. B doi: 10.1021/jp810685g contributor: fullname: Z Ahmed – volume: 118 start-page: 3750 year: 2014 ident: BFam2017232_CR36 publication-title: J. Phys. Chem. B doi: 10.1021/jp501325x contributor: fullname: M Fuülbrandt – volume: 403 start-page: 139 year: 2011 ident: BFam2017232_CR13 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2010.10.011 contributor: fullname: S Medeiros – volume: 140 start-page: 166 year: 2009 ident: BFam2017232_CR44 publication-title: J. Control. Release doi: 10.1016/j.jconrel.2009.08.011 contributor: fullname: F Danhier – volume: 31 start-page: 7444 year: 2010 ident: BFam2017232_CR18 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.06.025 contributor: fullname: AP Acharya – volume: 27 start-page: 4846 year: 2006 ident: BFam2017232_CR21 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.05.009 contributor: fullname: CC Larsen – volume: 64 start-page: 866 year: 2012 ident: BFam2017232_CR14 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.01.020 contributor: fullname: E Fleige – volume: 6 start-page: 3257 year: 2010 ident: BFam2017232_CR17 publication-title: Soft Matter doi: 10.1039/b922647h contributor: fullname: K Kandere-Grzybowska – ident: BFam2017232_CR6 doi: 10.1002/9783527634057 – volume: 53 start-page: 5093 year: 2014 ident: BFam2017232_CR53 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201408375 contributor: fullname: Q Dai – volume: 33 start-page: 1088 year: 2008 ident: BFam2017232_CR11 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2008.07.005 contributor: fullname: A Bajpai – volume: 9 start-page: 101 year: 2010 ident: BFam2017232_CR48 publication-title: Nat. Mater. doi: 10.1038/nmat2614 contributor: fullname: MAC Stuart – volume: 1 start-page: 93 year: 2007 ident: BFam2017232_CR51 publication-title: ACS Nano doi: 10.1021/nn700060m contributor: fullname: C Cortez |
SSID | ssj0001664854 ssib050736229 |
Score | 2.342851 |
Snippet | Using particles with different functionalities for treating cancer has many advantages over other methods (for example, better access to remote parts of the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | e465 |
SubjectTerms | 140/146 639/301/923/1027 Biomaterials Cancer Chemistry and Materials Science Chemotherapy Energy Systems Glycine Hydrogels Materials Science Optical and Electronic Materials original-article Peptides Rupturing Stimuli Structural Materials Surface and Interface Science Thin Films |
SummonAdditionalLinks | – databaseName: SpringerLINK dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKWWBAPEWhIA9lIyWJncQZEaKqkGBAFHWL_ASESKs0RZRfz9lJKJSFLcrDw2ff3Zd7ItQDBgK8IUw9xQnxqAZJZ8KOBNSS0DTgoXCFtLd38XBEb8bRuIXOv10X-Wu_iUg6RV3VhbMLbsvGg6QPDGANrUe2D5oNzS57jQOxAWVcG3vnYYljytwYtIAxCj9KNK0L9FbW-22SljxzJTTqLM5gG23VVBFfVnu7g1o630WbPxoI7qHH-_m0dIWGWNrtK7B1xM-wWGAgdlh_gKxbdxieGGwtWOX4e_nUCoNo28wor6iTZN81fl6oYvIExnIfjQbXD1dDr56U4ElCohJUGk-FtjMeiOLcpL4ynBqZBkz6nMVU61AYkoSRDJUfwjdCSBMoHkRamDgR5AC180muDxEODSc60SlJDaWKCQEczY99LpmO4JbfQb0GrGxaNcTIXCCbsIy_ZRbTDDDtoG4DZFZLxSyzyYJAAIGkdNBZA-6Px3-XOfrne8doAy6ZS6cOu6hdFnN9AmyhFKfukHwB-ZC5nA priority: 102 providerName: Springer Nature |
Title | Rupturing cancer cells by the expansion of functionalized stimuli-responsive hydrogels |
URI | https://link.springer.com/article/10.1038/am.2017.232 https://www.proquest.com/docview/1993416750 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELWAXuCAWEVZKh_KMZDYTuKcEFSUCokKIYp6i7wCB9rSBVG-nrHriE3iEimbD2PPzPPMGw9CTUAggBtIEWlBacQMaDqXriWgUZQViSDSF9LedLNOj133034IuE0CrbKyid5Q66FyMfJTRzQD8AAO7mz0GrmuUS67GlpoLKNaQvLcUbp4-6paTwB1wDwH9-9jLlnGuG-MlnDOYOvEilCyF1N-KlxhepKfEEp-Oqkv5PkrWep9UHsDrQfwiM8Xs72JlsxgC619O1JwGz3czUZTX3qIlZvQMXah-QmWcwxQD5t30H4XIMNDi51PW4QCnz-MxqDsjisVjQNt9s3gp7keDx_Bfe6gXvvyvtWJQu-ESFGaTsHIiUIa1_WBaiFsEWsrmFVFwlUseMaMIdLSnKSK6JjAP1Iqm2iRpEbaLJd0F60MhgOzhzCxgprcFLSwjGkuJaC2OIuF4iaFR3EdNSthlaPFERmlT21TXoqX0sm0BJnW0WElyDLoyaT8mtU6Oq6E--3132H2_x_mAK3Cl9zzqskhWpmOZ-YIYMNUNvzaaKDaxWX39g7uWoS5a9Zq-I34Jxk6xFE |
link.rule.ids | 315,783,787,867,12778,21401,27937,27938,33386,33757,41132,41133,42201,42202,43613,43818,51589,52246,74370,74637 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgHIAD4ikGA3KAY6FN0i49IUBD4zUhBIhblSdwYBvbQMCvx-lS8ZK4NkoOdmx_dWx_ANuIQBA30DwykrGIW7R0oTwloNWM54mkqmykvehk7Rt-epfehYTbMJRVVj6xdNSmp32OfM8XmiF4wAC333-OPGuUf10NFBqTMOVHVYkaTB22OpdX1Y1CsIMOOgCAMuuSZVyU1GiJEBx_nngemvZiJvakb01PmruU0Z9h6gt7_nouLaPQ8TzMBfhIDsb6XoAJ212E2W9DBZfg9uqlPyqbD4n2Kh0Qn5wfEvVOEOwR-4b271NkpOeIj2rjZODjhzUEzd1XS0WDUDj7asnDuxn07jGALsPNcev6qB0F9oRIM5aO0M3JXFnP-8CMlC6PjZPc6TwROpYi49ZS5ViTppqamOIepbRLjExSq1zWVGwFat1e164CoU4y27Q5yx3nRiiFuC3OYqmFTfFTXIftSlhFfzwkoygft5ko5FPhZVqgTOvQqARZBEsZFl96rcNOJdxvy3-PWfv_mC2Ybl9fnBfnJ52zdZjBXaKssqYNqI0GL3YDQcRIbYab8gnVmsRs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gSAgOiKcYDMhhHMvaJG3TE-KxieeEECBuVZ7AgW3sgRi_HqdLNR4S11bJwY7tL_bnGKE6IBDADSQLtKA0YAYsnUs3EtAoyrJIEFk00l63k7N7dvEYP3r-08DTKkufWDhq3VUuR95wRDMADxDgGtbTIm5OW4e9t8BNkHKVVj9OYxbNpSyhcBGbO262b27L0wXAB5y1BwNFBiZJGC_GpEWcM7hIscw38IWUN4RrU4_SA0LJz5A1xaG_SqdFRGotoyUPJfHRRPcraMZ0VtHitwcG19DD7ag3LBoRsXLq7WOXqB9gOcYA_LD5AF_g0mW4a7GLcJPE4Mun0RhM3zGngr4n0b4b_DzW_e4TBNN1dN9q3p2cBX6SQqAojYfg8kQmjZsBQbUQNgu1FcyqLOIqFDxhxhBpaUpiRXRIYI2UykZaRLGRNkkl3UCVTrdjNhEmVlCTmoxmljHNpQQMFyahUNzE8CmsonoprLw3eTAjLwrdlOfiNXcyzUGmVVQrBZl7qxnkUx1X0X4p3G-__26z9f82e2geDkl-dd6-3EYLsIgXhGtSQ5Vhf2R2AE8M5a4_KF_l68ig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rupturing+cancer+cells+by+the+expansion+of+functionalized+stimuli-responsive+hydrogels&rft.jtitle=NPG+Asia+materials&rft.au=Fang%2C+Yan&rft.au=Tan%2C+Jiajun&rft.au=Lim%2C+Sierin&rft.au=Soh%2C+Siowling&rft.date=2018-02-02&rft.pub=Nature+Publishing+Group&rft.issn=1884-4049&rft.eissn=1884-4057&rft.volume=10&rft.issue=2&rft_id=info:doi/10.1038%2Fam.2017.232&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1884-4049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1884-4049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1884-4049&client=summon |