Rupturing cancer cells by the expansion of functionalized stimuli-responsive hydrogels

Using particles with different functionalities for treating cancer has many advantages over other methods (for example, better access to remote parts of the body); however, current chemical (for example, chemotherapy) and biological (for example, immunotherapy) methods still face many challenges. He...

Full description

Saved in:
Bibliographic Details
Published inNPG Asia materials Vol. 10; no. 2; p. e465
Main Authors Fang, Yan, Tan, Jiajun, Lim, Sierin, Soh, Siowling
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.02.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Using particles with different functionalities for treating cancer has many advantages over other methods (for example, better access to remote parts of the body); however, current chemical (for example, chemotherapy) and biological (for example, immunotherapy) methods still face many challenges. Here, we describe a fundamentally different approach: using the physical force of an expanding stimuli-responsive hydrogel to rupture cancer cells attached on its surface. Specifically, we coated temperature-responsive hydrogels with a layer of cell-adherent arginine-glycine-aspartate (RGD) peptides. The approach involved first allowing cancer cells to attach onto the surface of the hydrogels, and then applying a change in temperature. As the hydrogel underwent a chemical transformation and expanded due to the stimulus, the cancer cells attached to it ruptured. The results from staining the cells with trypan blue, observing them using SEM, and analyzing them using the MTT assay showed that both breast and lung cancer cells died after the hydrogel expanded; hence, we showed that this physical force from the expanding hydrogel is strong enough to rupture the cancer cells. In addition, the force derived from the expanding hydrogel was determined separately to be larger than that needed to rupture typical cells. This physical approach is conceptually simple, technically easy to implement, and potentially generalizable for rupturing a wide range of cells. Hydrogels: Bursting cancer's bubble A hydrogel that uses physical force rather than drugs or radiation to kill breast and lung cancer cells has been developed. The approach by Siowling Soh at the National University of Singapore and colleagues exploits the temperature responsiveness of soft, watery polymers known as poly(N-isopropylacrylamides). The researchers coated the hydrogel with cell-adhering arginine-glycine-aspartate peptides, using a dopamine and lysine co-polymer to anchor the biomolecules. After seeding cancer cells onto the peptide-coated hydrogel, they dropped sample temperatures from 37°C to 22°C. The hydrogel expanded due to a phase transition, providing a force large enough to rupture the cancer cells attached to the surface — an easy-to-implement strategy effective for particles made of these coated hydrogels with sizes ranging from micrometers to millimeters. Measurements revealed the hydrogels can apply enough force to rupture a variety of cell types. Using functionalized particles for treatment of cancer is advantageous because they can access remote parts of the body and is minimally invasive. However, current chemical and biological methods still face challenges. A novel approach that uses the physical force of stimuli-responsive hydrogels is introduced. Temperature-responsive hydrogels were coated with cell-adherent molecules. After attaching cancer cells on its surface and changing the temperature, the force of the expanding stimuli-responsive hydrogel ruptures the cells. Comparing to other chemical and biological methods, this physical approach may be conceptually simpler, technically easier to implement, and more general for different types of cancer cells.
AbstractList Using particles with different functionalities for treating cancer has many advantages over other methods (for example, better access to remote parts of the body); however, current chemical (for example, chemotherapy) and biological (for example, immunotherapy) methods still face many challenges. Here, we describe a fundamentally different approach: using the physical force of an expanding stimuli-responsive hydrogel to rupture cancer cells attached on its surface. Specifically, we coated temperature-responsive hydrogels with a layer of cell-adherent arginine-glycine-aspartate (RGD) peptides. The approach involved first allowing cancer cells to attach onto the surface of the hydrogels, and then applying a change in temperature. As the hydrogel underwent a chemical transformation and expanded due to the stimulus, the cancer cells attached to it ruptured. The results from staining the cells with trypan blue, observing them using SEM, and analyzing them using the MTT assay showed that both breast and lung cancer cells died after the hydrogel expanded; hence, we showed that this physical force from the expanding hydrogel is strong enough to rupture the cancer cells. In addition, the force derived from the expanding hydrogel was determined separately to be larger than that needed to rupture typical cells. This physical approach is conceptually simple, technically easy to implement, and potentially generalizable for rupturing a wide range of cells. Hydrogels: Bursting cancer's bubble A hydrogel that uses physical force rather than drugs or radiation to kill breast and lung cancer cells has been developed. The approach by Siowling Soh at the National University of Singapore and colleagues exploits the temperature responsiveness of soft, watery polymers known as poly(N-isopropylacrylamides). The researchers coated the hydrogel with cell-adhering arginine-glycine-aspartate peptides, using a dopamine and lysine co-polymer to anchor the biomolecules. After seeding cancer cells onto the peptide-coated hydrogel, they dropped sample temperatures from 37°C to 22°C. The hydrogel expanded due to a phase transition, providing a force large enough to rupture the cancer cells attached to the surface — an easy-to-implement strategy effective for particles made of these coated hydrogels with sizes ranging from micrometers to millimeters. Measurements revealed the hydrogels can apply enough force to rupture a variety of cell types. Using functionalized particles for treatment of cancer is advantageous because they can access remote parts of the body and is minimally invasive. However, current chemical and biological methods still face challenges. A novel approach that uses the physical force of stimuli-responsive hydrogels is introduced. Temperature-responsive hydrogels were coated with cell-adherent molecules. After attaching cancer cells on its surface and changing the temperature, the force of the expanding stimuli-responsive hydrogel ruptures the cells. Comparing to other chemical and biological methods, this physical approach may be conceptually simpler, technically easier to implement, and more general for different types of cancer cells.
Using particles with different functionalities for treating cancer has many advantages over other methods (for example, better access to remote parts of the body); however, current chemical (for example, chemotherapy) and biological (for example, immunotherapy) methods still face many challenges. Here, we describe a fundamentally different approach: using the physical force of an expanding stimuli-responsive hydrogel to rupture cancer cells attached on its surface. Specifically, we coated temperature-responsive hydrogels with a layer of cell-adherent arginine-glycine-aspartate (RGD) peptides. The approach involved first allowing cancer cells to attach onto the surface of the hydrogels, and then applying a change in temperature. As the hydrogel underwent a chemical transformation and expanded due to the stimulus, the cancer cells attached to it ruptured. The results from staining the cells with trypan blue, observing them using SEM, and analyzing them using the MTT assay showed that both breast and lung cancer cells died after the hydrogel expanded; hence, we showed that this physical force from the expanding hydrogel is strong enough to rupture the cancer cells. In addition, the force derived from the expanding hydrogel was determined separately to be larger than that needed to rupture typical cells. This physical approach is conceptually simple, technically easy to implement, and potentially generalizable for rupturing a wide range of cells.
Author Lim, Sierin
Fang, Yan
Tan, Jiajun
Soh, Siowling
Author_xml – sequence: 1
  givenname: Yan
  surname: Fang
  fullname: Fang, Yan
  organization: Department of Chemical and Biomolecular Engineering, National University of Singapore
– sequence: 2
  givenname: Jiajun
  orcidid: 0000-0001-9710-3919
  surname: Tan
  fullname: Tan, Jiajun
  organization: School of Chemical and Biomedical Engineering, Nanyang Technological University
– sequence: 3
  givenname: Sierin
  orcidid: 0000-0001-7455-6771
  surname: Lim
  fullname: Lim, Sierin
  organization: School of Chemical and Biomedical Engineering, Nanyang Technological University
– sequence: 4
  givenname: Siowling
  surname: Soh
  fullname: Soh, Siowling
  email: chessl@nus.edu.sg
  organization: Department of Chemical and Biomolecular Engineering, National University of Singapore
BookMark eNptkEtLw0AUhQepYK1d-QcGXGrqvJJMllJ8QUEQdTvMTO60KUkmziRi_fWmVMSFq3sW3zlcvlM0aX0LCJ1TsqCEy2vdLBih-YJxdoSmVEqRCJLmk98sihM0j3FLCKFZJmQqpujteej6IVTtGlvdWgjYQl1HbHa43wCGz063sfIt9g67obX9mHVdfUGJY181Q10lAWLnR-gD8GZXBr-GOp6hY6frCPOfO0Ovd7cvy4dk9XT_uLxZJZbztE9krgsDKWeEl1q7gpROC2cLKi3RMhMAzDies9SykrCxY4x1tNQ0BeOy3PAZujjsdsG_DxB7tfVDGD-MihYFFzTLUzJSlwfKBh9jAKe6UDU67BQlau9O6Ubt3anR3UhfHejY7b1A-LP5D_4N7AZz3w
CitedBy_id crossref_primary_10_3390_gels8120775
crossref_primary_10_1016_j_ijbiomac_2024_131832
crossref_primary_10_1021_acsapm_1c01637
crossref_primary_10_1049_bsb2_12050
crossref_primary_10_1016_j_jconrel_2021_11_025
crossref_primary_10_3390_molecules24030603
crossref_primary_10_1007_s00289_021_03638_5
crossref_primary_10_1039_D1NJ02260A
crossref_primary_10_1080_10717544_2022_2070299
crossref_primary_10_1002_adma_201804540
crossref_primary_10_1039_D1TB00980J
crossref_primary_10_1002_adfm_202306554
crossref_primary_10_3389_fbioe_2021_630943
crossref_primary_10_1021_acsabm_1c00857
crossref_primary_10_1016_j_colsurfb_2020_111341
crossref_primary_10_1021_acsami_8b11408
crossref_primary_10_1039_D3TB02610H
crossref_primary_10_3390_gels4020054
crossref_primary_10_1016_j_jconrel_2022_12_017
crossref_primary_10_1016_j_jddst_2019_03_020
crossref_primary_10_1016_j_jddst_2023_104924
crossref_primary_10_1002_anbr_202200124
crossref_primary_10_1002_adfm_202203323
crossref_primary_10_1021_acs_molpharmaceut_9b01020
crossref_primary_10_1007_s10965_022_03004_7
crossref_primary_10_1002_adfm_202202273
crossref_primary_10_1039_D3NJ05816F
crossref_primary_10_1002_mabi_202100186
crossref_primary_10_1080_25740881_2024_2339281
Cites_doi 10.1073/pnas.1010013108
10.1002/mabi.200600280
10.1021/bp034215z
10.3109/10717541003762854
10.1016/j.addr.2011.03.008
10.1039/C4TA05970K
10.1021/la304080c
10.1088/0964-1726/22/5/055010
10.1093/jnci/92.3.205
10.1021/bi0352670
10.1021/nl100996u
10.1021/mp3002733
10.1021/la901092x
10.1016/j.jbiomech.2011.01.010
10.1038/nmat2854
10.1586/17434440.1.1.115
10.1021/mp900278x
10.1017/CBO9780511810954
10.1016/0079-6700(92)90023-R
10.1021/bm070343q
10.1007/BF01030906
10.1016/j.memsci.2014.04.032
10.1039/B406727D
10.1096/fj.12-220160
10.1038/sj.neo.7900037
10.1021/jp0124903
10.1002/adma.200601817
10.1016/j.jcis.2005.01.089
10.1038/nrc1071
10.1039/C5CC03216D
10.1038/349400a0
10.1002/1521-3765(20010302)7:5<1095::AID-CHEM1095>3.0.CO;2-B
10.1016/S0169-409X(01)00203-4
10.1021/ja057254a
10.1002/adma.201203185
10.1007/s002320010040
10.1021/la500006e
10.1021/ja972467o
10.1002/pat.1660
10.1016/j.biomaterials.2007.02.006
10.1021/ja205524x
10.1021/jp810685g
10.1021/jp501325x
10.1016/j.ijpharm.2010.10.011
10.1016/j.jconrel.2009.08.011
10.1016/j.biomaterials.2010.06.025
10.1016/j.biomaterials.2006.05.009
10.1016/j.addr.2012.01.020
10.1039/b922647h
10.1002/9783527634057
10.1002/anie.201408375
10.1016/j.progpolymsci.2008.07.005
10.1038/nmat2614
10.1021/nn700060m
ContentType Journal Article
Copyright The Author(s) 2018
Copyright Nature Publishing Group Feb 2018
Copyright_xml – notice: The Author(s) 2018
– notice: Copyright Nature Publishing Group Feb 2018
DBID C6C
AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.1038/am.2017.232
DatabaseName Springer Open Access
CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Materials Research Database
ProQuest Materials Science Database
Materials Science Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Materials Research Database
Technology Collection
Technology Research Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Open Access
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1884-4057
EndPage e465
ExternalDocumentID 10_1038_am_2017_232
GroupedDBID 0R~
4.4
5VS
8FE
8FG
AAJSJ
AAKKN
ABEEZ
ABJCF
ACACY
ACGFO
ACGFS
ACIWK
ACMJI
ACSMW
ACULB
ADBBV
AENEX
AFGXO
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARCSS
B.R
BAPOH
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CZ9
D1I
EBLON
EBS
EJD
GROUPED_DOAJ
HCIFZ
HH5
HZ~
KB.
KC.
KQ8
LGEZI
LOTEE
NADUK
NAO
NXXTH
OK1
PDBOC
PIMPY
PROAC
RNT
RNTTT
SNYQT
AAYXX
CITATION
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c335t-87a9be53203daaf90dfa4fc918c0a864ee2bf3725c2d02c33bbcf1da15ebf67b3
IEDL.DBID 8FG
ISSN 1884-4049
IngestDate Thu Oct 10 20:38:45 EDT 2024
Fri Aug 23 02:02:44 EDT 2024
Fri Oct 11 20:46:49 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c335t-87a9be53203daaf90dfa4fc918c0a864ee2bf3725c2d02c33bbcf1da15ebf67b3
ORCID 0000-0001-9710-3919
0000-0001-7455-6771
OpenAccessLink https://www.proquest.com/docview/1993416750?pq-origsite=%requestingapplication%
PQID 1993416750
PQPubID 546296
ParticipantIDs proquest_journals_1993416750
crossref_primary_10_1038_am_2017_232
springer_journals_10_1038_am_2017_232
PublicationCentury 2000
PublicationDate 2018-02-02
PublicationDateYYYYMMDD 2018-02-02
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-02
  day: 02
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Tokyo
PublicationTitle NPG Asia materials
PublicationTitleAbbrev NPG Asia Mater
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References World Health Organization Cancer (2017) http://www.who.int/mediacentre/factsheets/fs297/en/.
CortezCTomaskovic-CrookEJohnstonAPScottAMNiceECHeathJKCarusoFInfluence of size, surface, cell line, and kinetic properties on the specific binding of A33 antigen-targeted multilayered particles and capsules to colorectal cancer cellsACS Nano20071931021:CAS:528:DC%2BD2sXptVaqtrw%3D10.1021/nn700060m
Boal, D. H. in Mechanics of the Cell (ed. Boal, D. H.) (Cambridge University, UK, 2002).
Marchi-ArtznerVLorzBHellererUKantlehnerMKesslerHSackmannESelective adhesion of endothelial cells to artificial membranes with a synthetic RGD–lipopeptideChem-Eur. J.20017109511011:CAS:528:DC%2BD3MXhvVegu70%3D10.1002/1521-3765(20010302)7:5<1095::AID-CHEM1095>3.0.CO;2-B
SuXZongYRichterRKnollWEnzyme immobilization on poly (ethylene-co-acrylic acid) films studied by quartz crystal microbalance with dissipation monitoringJ. Colloid Interface Sci.200528735421:CAS:528:DC%2BD2MXksVyqurw%3D10.1016/j.jcis.2005.01.089
KatsumotoYTanakaTSatoHOzakiYConformational change of poly (N-isopropylacrylamide) during the coil-globule transition investigated by attenuated total reflection/infrared spectroscopy and density functional theory calculationJ. Phys. Chem. A2002106342934351:CAS:528:DC%2BD3MXovF2nsrw%3D10.1021/jp0124903
ZhouRRenPFYangHCXuZKFabrication of antifouling membrane surface by poly (sulfobetaine methacrylate)/polydopamine co-depositionJ. Membr. Sci.201446618251:CAS:528:DC%2BC2cXpslCru78%3D10.1016/j.memsci.2014.04.032
DanhierFVromanBLecouturierNCrokartNPourcelleVFreichelsHJérômeCMarchand-BrynaertJFeronOPréatVTargeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with paclitaxelJ. Control. Release20091401661731:CAS:528:DC%2BD1MXhtlOks73P10.1016/j.jconrel.2009.08.011
QiuYParkKEnvironment-sensitive hydrogels for drug deliveryAdv. Drug Del. Rev.2001533213391:CAS:528:DC%2BD3MXovFyrtbg%3D10.1016/S0169-409X(01)00203-4
LarsenCCKligmanFKottke-MarchantKMarchantREThe effect of RGD fluorosurfactant polymer modification of ePTFE on endothelial cell adhesion, growth, and functionBiomaterials200627484648551:CAS:528:DC%2BD28XlvFaks7Y%3D10.1016/j.biomaterials.2006.05.009
KatoMMrksichMUsing model substrates to study the dependence of focal adhesion formation on the affinity of integrin-ligand complexesBiochemistry200443269927071:CAS:528:DC%2BD2cXht12hurk%3D10.1021/bi0352670
Alvarez-BarretoJFSikavitsasVIImproved mesenchymal stem cell seeding on RGD-modified poly(L-lactic acid) scaffolds using flow perfusionMacromol. Biosci.200775795881:CAS:528:DC%2BD2sXlslSlsb0%3D10.1002/mabi.200600280
ZhangLGuoRYangMJiangXLiuBThermo and pH dual-responsive nanoparticles for anti-cancer drug deliveryAdv. Mater.200719298829921:CAS:528:DC%2BD2sXht1eisrvE10.1002/adma.200601817
LiuYChangCPSunTDopamine-assisted deposition of dextran for nonfouling applicationsLangmuir2014303118312610.1021/la500006e
BodinAAhrenstedtLFinkHBrumerHRisbergBGatenholmPModification of nanocellulose with a xyloglucan–RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineeringBiomacromolecules20078369737041:CAS:528:DC%2BD2sXhtlCqtLnF10.1021/bm070343q
IlmainFTanakaTKokufutaEVolume transition in a gel driven by hydrogen bondingNature19913494004011:CAS:528:DyaK3MXhsVCnu7c%3D10.1038/349400a0
HuangWGibsonSJFacerPGuJPolakJMImproved section adhesion for immunocytochemistry using high molecular weight polymers of L-lysine as a slide coatingHistochem. Cell Biol.1983772752791:CAS:528:DyaL3sXhsFOgs7w%3D
ZhangYThingholmBGoldieKNOgakiRStädlerBAssembly of poly (dopamine) films mixed with a nonionic polymerLangmuir20122817585175921:CAS:528:DC%2BC38XhslOlsLfF10.1021/la304080c
SpizzirriUGIemmaFPuociFXueFGaoWCirilloGCurcioMParisiOIPicciNSynthesis of hydrophilic microspheres with LCST close to body temperature for controlled dual-sensitive drug releasePolym. Adv. Technol.201122170517121:CAS:528:DC%2BC3MXhsV2rtbfE10.1002/pat.1660
YangKZhangSZhangGSunXLeeSTLiuZGraphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapyNano Lett.201010331833231:CAS:528:DC%2BC3cXpslWjsbw%3D10.1021/nl100996u
TherassePArbuckSGEisenhauerEAWandersJKaplanRSRubinsteinLVerweijJVan GlabbekeMvan OosteromATChristianMCGwytherSGNew guidelines to evaluate the response to treatment in solid tumorsJ. Natl. Cancer Inst.2000922052161:STN:280:DC%2BD3c7it1Gitg%3D%3D10.1093/jnci/92.3.205
De SouzaRZahediPAllenCJPiquette-MillerMPolymeric drug delivery systems for localized cancer chemotherapyDrug Deliv.2010173653751:CAS:528:DC%2BC3cXot1Wktrw%3D10.3109/10717541003762854
HuangXEl-SayedIHQianWEl-SayedMACancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorodsJ. Am. Chem. Soc.2006128211521201:CAS:528:DC%2BD28XntFCltQ%3D%3D10.1021/ja057254a
KimDHWirtzDFocal adhesion size uniquely predicts cell migrationFASEB J.201327135113611:CAS:528:DC%2BC3sXmtFegtr8%3D10.1096/fj.12-220160
DaiQWalkeyCChanWCPolyethylene glycol backfilling mitigates the negative impact of the protein corona on nanoparticle cell targetingAngew. Chem. Int. Ed.201453509350961:CAS:528:DC%2BC2cXlsFyju7c%3D10.1002/anie.201408375
StuartMACHuckWTGenzerJMüllerMOberCStammMSukhorukovGBSzleiferITsukrukVVUrbanMWinnikFZauscherSLuzinovIMinkoSEmerging applications of stimuli-responsive polymer materialsNat. Mater.2010910111310.1038/nmat2614
MerkelTJJonesSWHerlihyKPKerseyFRShieldsARNapierMLuftJCWuHLZamboniWCWangAZBearJEDeSimoneJMUsing mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticlesProc. Natl Acad. Sci. USA20111085865911:CAS:528:DC%2BC3MXosFelsQ%3D%3D10.1073/pnas.1010013108
FleigeEQuadirMAHaagRStimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applicationsAdv. Drug Deliv. Rev.2012648668841:CAS:528:DC%2BC38Xjt1OqurY%3D10.1016/j.addr.2012.01.020
AcharyaAPDolgovaNVMooreNMXiaCQClare-SalzlerMJBeckerMLGallantNDKeselowskyBGThe modulation of dendritic cell integrin binding and activation by RGD-peptide density gradient substratesBiomaterials201031744474541:CAS:528:DC%2BC3cXpsV2qt78%3D10.1016/j.biomaterials.2010.06.025
SchildHGPoly (N-isopropylacrylamide): experiment, theory and applicationProg. Polym. Sci.1992171632491:CAS:528:DyaK38XltlWmuro%3D10.1016/0079-6700(92)90023-R
MedeirosSSantosAFessiHElaissariAStimuli-responsive magnetic particles for biomedical applicationsInt. J. Pharm.20114031391611:CAS:528:DC%2BC3cXhsFCltbrN10.1016/j.ijpharm.2010.10.011
AhmedZGoodingEAPimenovKVWangLAsherSAUV resonance raman determination of molecular mechanism of poly (N-isopropylacrylamide) volume phase transitionJ. Phys. Chem. B2009113424842561:CAS:528:DC%2BD1MXis12juro%3D10.1021/jp810685g
YangHCChenYFYeCJinYNLiHXuZKPolymer membrane with a mineral coating for enhanced curling resistance and surface wettabilityChem. Commun.20155112779127821:CAS:528:DC%2BC2MXhtFWqtbnF10.1039/C5CC03216D
SarmadSYeniciGGürkanKKeçeliGGürdağGElectric field responsive chitosan-poly (NN-dimethyl acrylamide) semi-IPN gel films and their dielectric, thermal and swelling characterizationSmart Mater. Struct.20132205501010.1088/0964-1726/22/5/055010
De las Heras AlarcónCPennadamSAlexanderCStimuli responsive polymers for biomedical applicationsChem. Soc. Rev.20053427628510.1039/B406727D
DolmansDEFukumuraDJainRKPhotodynamic therapy for cancerNat. Rev. Cancer200333803871:CAS:528:DC%2BD3sXjtlals74%3D10.1038/nrc1071
TanSCWYangTGongYLiaoKRupture of plasma membrane under tensionJ. Biomech.2011441361136610.1016/j.jbiomech.2011.01.010
WangZXLauCHZhangNQBaiYPShaoLMussel-inspired tailoring of membrane wettability for harsh water treatmentJ. Mater. Chem. A20153265026571:CAS:528:DC%2BC2cXhvF2rt7fO10.1039/C4TA05970K
BeyerleAIrmlerMBeckersJKisselTStoegerTToxicity pathway focused gene expression profiling of PEI-based polymers for pulmonary applicationsMol. Pharm.201077277371:CAS:528:DC%2BC3cXmtVynsb4%3D10.1021/mp900278x
FuülbrandtMErmilovaEAsadujjamanAHözelRBierFFvon KlitzingRSchönhalsADynamics of linear poly (N-isopropylacrylamide) in water around the phase transition investigated by dielectric relaxation spectroscopyJ. Phys. Chem. B20141183750375910.1021/jp501325x
ZhangZAl-RubeaiMThomasCMechanical properties of hybridoma cells in batch cultureBiotechnol. Lett.199214111610.1007/BF01030906
NagahamaKHashizumeMYamamotoHOuchiTOhyaYHydrophobically modified biodegradable poly(ethylene glycol) copolymers that form temperature-responsive nanogelsLangmuir200925973497401:CAS:528:DC%2BD1MXmtlKjtLg%3D10.1021/la901092x
DanhierFLe BretonAPréatVRGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosisMol. Pharm.20129296129731:CAS:528:DC%2BC38Xhtlaksr3O10.1021/mp3002733
GilliesRJSchornackPASecombTWRaghunandNCauses and effects of heterogeneous perfusion in tumorsNeoplasia199911972071:STN:280:DC%2BD3czpsVGhsA%3D%3D10.1038/sj.neo.7900037
HouSZhaoHZhaoLShenQWeiKSSuhDYNakaoAGarciaMSongMLeeTXiongBLuoSCTsengHRYuHHCapture and stimulated release of circulating tumor cells on polymer-grafted silicon nanostructuresAdv. Mater.201325154715511:CAS:528:DC%2BC38XhvVCrsLvJ10.1002/adma.201203185
TuguluSSilacciPStergiopulosNKlokHARGD-functionalized polymer brushes as substrates for the integrin specific adhesion of human umbilical vein endothelial cellsBiomaterials200728253625461:CAS:528:DC%2BD2sXis1CrsLs%3D10.1016/j.biomaterials.2007.02.006
KumarCSMohammadFMagnetic nanomaterials for hyperthermia-based therapy and controlled drug deliveryAdv. Drug Deliv. Rev.2011637898081:CAS:528:DC%2BC3MXovF2jtL0%3D10.1016/j.addr.2011.03.008
Kratz, F. in Drug Delivery in Oncology: from Basic Research to Cancer Therapy (eds Kratz, F., Senter, P. & Steinhagen, H.) (John Wiley & Sons, Hoboken, NJ, USA, 2011).
BajpaiAShuklaSKBhanuSKankaneSResponsive polymers in controlled drug deliveryProg. Polym. Sci.200833108811181:CAS:528:DC%2BD1cXhtlyqtbvE10.1016/j.progpolymsci.2008.07.005
RobertsCChenCSMrksichMMartichonokVIngberDEWhitesidesGMUsing mixed self-assembled monolayers presenting RGD and (EG) 3OH groups to characterize long-term attachment of b
Y Zhang (BFam2017232_CR29) 2012; 28
MAC Stuart (BFam2017232_CR48) 2010; 9
DE Dolmans (BFam2017232_CR7) 2003; 3
C De las Heras Alarcón (BFam2017232_CR47) 2005; 34
C Cortez (BFam2017232_CR51) 2007; 1
S Hou (BFam2017232_CR52) 2013; 25
F Danhier (BFam2017232_CR44) 2009; 140
TJ Merkel (BFam2017232_CR4) 2011; 108
SCW Tan (BFam2017232_CR45) 2011; 44
K Kandere-Grzybowska (BFam2017232_CR17) 2010; 6
Q Dai (BFam2017232_CR53) 2014; 53
K Nagahama (BFam2017232_CR56) 2009; 25
X Huang (BFam2017232_CR8) 2006; 128
UG Spizzirri (BFam2017232_CR54) 2011; 22
BFam2017232_CR42
X Su (BFam2017232_CR27) 2005; 287
CS Kumar (BFam2017232_CR12) 2011; 63
I Gözen (BFam2017232_CR46) 2010; 9
S Tugulu (BFam2017232_CR26) 2007; 28
C Roberts (BFam2017232_CR25) 1998; 120
CM Kolodziej (BFam2017232_CR20) 2012; 134
W Huang (BFam2017232_CR34) 1983; 77
AP Acharya (BFam2017232_CR18) 2010; 31
HC Yang (BFam2017232_CR32) 2015; 51
C Morris (BFam2017232_CR41) 2001; 179
BP Chan (BFam2017232_CR22) 2004; 20
Y Liu (BFam2017232_CR30) 2014; 30
F Ilmain (BFam2017232_CR35) 1991; 349
L Zhang (BFam2017232_CR50) 2007; 19
S Sarmad (BFam2017232_CR55) 2013; 22
CC Larsen (BFam2017232_CR21) 2006; 27
Z Ahmed (BFam2017232_CR39) 2009; 113
P Therasse (BFam2017232_CR5) 2000; 92
K Yang (BFam2017232_CR9) 2010; 10
DH Kim (BFam2017232_CR15) 2013; 27
F Danhier (BFam2017232_CR43) 2012; 9
A Beyerle (BFam2017232_CR33) 2010; 7
S Medeiros (BFam2017232_CR13) 2011; 403
M Fuülbrandt (BFam2017232_CR36) 2014; 118
E Fleige (BFam2017232_CR14) 2012; 64
A Bodin (BFam2017232_CR24) 2007; 8
V Marchi-Artzner (BFam2017232_CR23) 2001; 7
M Kato (BFam2017232_CR16) 2004; 43
HG Schild (BFam2017232_CR37) 1992; 17
RJ Gillies (BFam2017232_CR49) 1999; 1
R De Souza (BFam2017232_CR3) 2010; 17
BFam2017232_CR6
Y Qiu (BFam2017232_CR10) 2001; 53
SS Feng (BFam2017232_CR2) 2004; 1
BFam2017232_CR1
Z Zhang (BFam2017232_CR40) 1992; 14
A Bajpai (BFam2017232_CR11) 2008; 33
R Zhou (BFam2017232_CR31) 2014; 466
Y Katsumoto (BFam2017232_CR38) 2002; 106
JF Alvarez-Barreto (BFam2017232_CR19) 2007; 7
ZX Wang (BFam2017232_CR28) 2015; 3
References_xml – volume: 108
  start-page: 586
  year: 2011
  ident: BFam2017232_CR4
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1010013108
  contributor:
    fullname: TJ Merkel
– volume: 7
  start-page: 579
  year: 2007
  ident: BFam2017232_CR19
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.200600280
  contributor:
    fullname: JF Alvarez-Barreto
– volume: 20
  start-page: 566
  year: 2004
  ident: BFam2017232_CR22
  publication-title: Biotechnol. Progr.
  doi: 10.1021/bp034215z
  contributor:
    fullname: BP Chan
– volume: 17
  start-page: 365
  year: 2010
  ident: BFam2017232_CR3
  publication-title: Drug Deliv.
  doi: 10.3109/10717541003762854
  contributor:
    fullname: R De Souza
– volume: 63
  start-page: 789
  year: 2011
  ident: BFam2017232_CR12
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2011.03.008
  contributor:
    fullname: CS Kumar
– volume: 3
  start-page: 2650
  year: 2015
  ident: BFam2017232_CR28
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05970K
  contributor:
    fullname: ZX Wang
– volume: 28
  start-page: 17585
  year: 2012
  ident: BFam2017232_CR29
  publication-title: Langmuir
  doi: 10.1021/la304080c
  contributor:
    fullname: Y Zhang
– volume: 22
  start-page: 055010
  year: 2013
  ident: BFam2017232_CR55
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/5/055010
  contributor:
    fullname: S Sarmad
– volume: 92
  start-page: 205
  year: 2000
  ident: BFam2017232_CR5
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/92.3.205
  contributor:
    fullname: P Therasse
– volume: 43
  start-page: 2699
  year: 2004
  ident: BFam2017232_CR16
  publication-title: Biochemistry
  doi: 10.1021/bi0352670
  contributor:
    fullname: M Kato
– volume: 10
  start-page: 3318
  year: 2010
  ident: BFam2017232_CR9
  publication-title: Nano Lett.
  doi: 10.1021/nl100996u
  contributor:
    fullname: K Yang
– volume: 9
  start-page: 2961
  year: 2012
  ident: BFam2017232_CR43
  publication-title: Mol. Pharm.
  doi: 10.1021/mp3002733
  contributor:
    fullname: F Danhier
– volume: 25
  start-page: 9734
  year: 2009
  ident: BFam2017232_CR56
  publication-title: Langmuir
  doi: 10.1021/la901092x
  contributor:
    fullname: K Nagahama
– volume: 77
  start-page: 275
  year: 1983
  ident: BFam2017232_CR34
  publication-title: Histochem. Cell Biol.
  contributor:
    fullname: W Huang
– volume: 44
  start-page: 1361
  year: 2011
  ident: BFam2017232_CR45
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.01.010
  contributor:
    fullname: SCW Tan
– volume: 9
  start-page: 908
  year: 2010
  ident: BFam2017232_CR46
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2854
  contributor:
    fullname: I Gözen
– volume: 1
  start-page: 115
  year: 2004
  ident: BFam2017232_CR2
  publication-title: Expert Rev. Med. Devices
  doi: 10.1586/17434440.1.1.115
  contributor:
    fullname: SS Feng
– volume: 7
  start-page: 727
  year: 2010
  ident: BFam2017232_CR33
  publication-title: Mol. Pharm.
  doi: 10.1021/mp900278x
  contributor:
    fullname: A Beyerle
– ident: BFam2017232_CR42
  doi: 10.1017/CBO9780511810954
– volume: 17
  start-page: 163
  year: 1992
  ident: BFam2017232_CR37
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/0079-6700(92)90023-R
  contributor:
    fullname: HG Schild
– volume: 8
  start-page: 3697
  year: 2007
  ident: BFam2017232_CR24
  publication-title: Biomacromolecules
  doi: 10.1021/bm070343q
  contributor:
    fullname: A Bodin
– volume: 14
  start-page: 11
  year: 1992
  ident: BFam2017232_CR40
  publication-title: Biotechnol. Lett.
  doi: 10.1007/BF01030906
  contributor:
    fullname: Z Zhang
– volume: 466
  start-page: 18
  year: 2014
  ident: BFam2017232_CR31
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.04.032
  contributor:
    fullname: R Zhou
– volume: 34
  start-page: 276
  year: 2005
  ident: BFam2017232_CR47
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B406727D
  contributor:
    fullname: C De las Heras Alarcón
– volume: 27
  start-page: 1351
  year: 2013
  ident: BFam2017232_CR15
  publication-title: FASEB J.
  doi: 10.1096/fj.12-220160
  contributor:
    fullname: DH Kim
– volume: 1
  start-page: 197
  year: 1999
  ident: BFam2017232_CR49
  publication-title: Neoplasia
  doi: 10.1038/sj.neo.7900037
  contributor:
    fullname: RJ Gillies
– volume: 106
  start-page: 3429
  year: 2002
  ident: BFam2017232_CR38
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0124903
  contributor:
    fullname: Y Katsumoto
– volume: 19
  start-page: 2988
  year: 2007
  ident: BFam2017232_CR50
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200601817
  contributor:
    fullname: L Zhang
– volume: 287
  start-page: 35
  year: 2005
  ident: BFam2017232_CR27
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2005.01.089
  contributor:
    fullname: X Su
– volume: 3
  start-page: 380
  year: 2003
  ident: BFam2017232_CR7
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1071
  contributor:
    fullname: DE Dolmans
– volume: 51
  start-page: 12779
  year: 2015
  ident: BFam2017232_CR32
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC03216D
  contributor:
    fullname: HC Yang
– volume: 349
  start-page: 400
  year: 1991
  ident: BFam2017232_CR35
  publication-title: Nature
  doi: 10.1038/349400a0
  contributor:
    fullname: F Ilmain
– volume: 7
  start-page: 1095
  year: 2001
  ident: BFam2017232_CR23
  publication-title: Chem-Eur. J.
  doi: 10.1002/1521-3765(20010302)7:5<1095::AID-CHEM1095>3.0.CO;2-B
  contributor:
    fullname: V Marchi-Artzner
– volume: 53
  start-page: 321
  year: 2001
  ident: BFam2017232_CR10
  publication-title: Adv. Drug Del. Rev.
  doi: 10.1016/S0169-409X(01)00203-4
  contributor:
    fullname: Y Qiu
– volume: 128
  start-page: 2115
  year: 2006
  ident: BFam2017232_CR8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja057254a
  contributor:
    fullname: X Huang
– volume: 25
  start-page: 1547
  year: 2013
  ident: BFam2017232_CR52
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201203185
  contributor:
    fullname: S Hou
– volume: 179
  start-page: 79
  year: 2001
  ident: BFam2017232_CR41
  publication-title: J. Membrane Biol.
  doi: 10.1007/s002320010040
  contributor:
    fullname: C Morris
– ident: BFam2017232_CR1
– volume: 30
  start-page: 3118
  year: 2014
  ident: BFam2017232_CR30
  publication-title: Langmuir
  doi: 10.1021/la500006e
  contributor:
    fullname: Y Liu
– volume: 120
  start-page: 6548
  year: 1998
  ident: BFam2017232_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja972467o
  contributor:
    fullname: C Roberts
– volume: 22
  start-page: 1705
  year: 2011
  ident: BFam2017232_CR54
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.1660
  contributor:
    fullname: UG Spizzirri
– volume: 28
  start-page: 2536
  year: 2007
  ident: BFam2017232_CR26
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.02.006
  contributor:
    fullname: S Tugulu
– volume: 134
  start-page: 247
  year: 2012
  ident: BFam2017232_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja205524x
  contributor:
    fullname: CM Kolodziej
– volume: 113
  start-page: 4248
  year: 2009
  ident: BFam2017232_CR39
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp810685g
  contributor:
    fullname: Z Ahmed
– volume: 118
  start-page: 3750
  year: 2014
  ident: BFam2017232_CR36
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp501325x
  contributor:
    fullname: M Fuülbrandt
– volume: 403
  start-page: 139
  year: 2011
  ident: BFam2017232_CR13
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2010.10.011
  contributor:
    fullname: S Medeiros
– volume: 140
  start-page: 166
  year: 2009
  ident: BFam2017232_CR44
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2009.08.011
  contributor:
    fullname: F Danhier
– volume: 31
  start-page: 7444
  year: 2010
  ident: BFam2017232_CR18
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.06.025
  contributor:
    fullname: AP Acharya
– volume: 27
  start-page: 4846
  year: 2006
  ident: BFam2017232_CR21
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.05.009
  contributor:
    fullname: CC Larsen
– volume: 64
  start-page: 866
  year: 2012
  ident: BFam2017232_CR14
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2012.01.020
  contributor:
    fullname: E Fleige
– volume: 6
  start-page: 3257
  year: 2010
  ident: BFam2017232_CR17
  publication-title: Soft Matter
  doi: 10.1039/b922647h
  contributor:
    fullname: K Kandere-Grzybowska
– ident: BFam2017232_CR6
  doi: 10.1002/9783527634057
– volume: 53
  start-page: 5093
  year: 2014
  ident: BFam2017232_CR53
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201408375
  contributor:
    fullname: Q Dai
– volume: 33
  start-page: 1088
  year: 2008
  ident: BFam2017232_CR11
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2008.07.005
  contributor:
    fullname: A Bajpai
– volume: 9
  start-page: 101
  year: 2010
  ident: BFam2017232_CR48
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2614
  contributor:
    fullname: MAC Stuart
– volume: 1
  start-page: 93
  year: 2007
  ident: BFam2017232_CR51
  publication-title: ACS Nano
  doi: 10.1021/nn700060m
  contributor:
    fullname: C Cortez
SSID ssj0001664854
ssib050736229
Score 2.342851
Snippet Using particles with different functionalities for treating cancer has many advantages over other methods (for example, better access to remote parts of the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage e465
SubjectTerms 140/146
639/301/923/1027
Biomaterials
Cancer
Chemistry and Materials Science
Chemotherapy
Energy Systems
Glycine
Hydrogels
Materials Science
Optical and Electronic Materials
original-article
Peptides
Rupturing
Stimuli
Structural Materials
Surface and Interface Science
Thin Films
SummonAdditionalLinks – databaseName: SpringerLINK
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKWWBAPEWhIA9lIyWJncQZEaKqkGBAFHWL_ASESKs0RZRfz9lJKJSFLcrDw2ff3Zd7ItQDBgK8IUw9xQnxqAZJZ8KOBNSS0DTgoXCFtLd38XBEb8bRuIXOv10X-Wu_iUg6RV3VhbMLbsvGg6QPDGANrUe2D5oNzS57jQOxAWVcG3vnYYljytwYtIAxCj9KNK0L9FbW-22SljxzJTTqLM5gG23VVBFfVnu7g1o630WbPxoI7qHH-_m0dIWGWNrtK7B1xM-wWGAgdlh_gKxbdxieGGwtWOX4e_nUCoNo28wor6iTZN81fl6oYvIExnIfjQbXD1dDr56U4ElCohJUGk-FtjMeiOLcpL4ynBqZBkz6nMVU61AYkoSRDJUfwjdCSBMoHkRamDgR5AC180muDxEODSc60SlJDaWKCQEczY99LpmO4JbfQb0GrGxaNcTIXCCbsIy_ZRbTDDDtoG4DZFZLxSyzyYJAAIGkdNBZA-6Px3-XOfrne8doAy6ZS6cOu6hdFnN9AmyhFKfukHwB-ZC5nA
  priority: 102
  providerName: Springer Nature
Title Rupturing cancer cells by the expansion of functionalized stimuli-responsive hydrogels
URI https://link.springer.com/article/10.1038/am.2017.232
https://www.proquest.com/docview/1993416750
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELWAXuCAWEVZKh_KMZDYTuKcEFSUCokKIYp6i7wCB9rSBVG-nrHriE3iEimbD2PPzPPMGw9CTUAggBtIEWlBacQMaDqXriWgUZQViSDSF9LedLNOj133034IuE0CrbKyid5Q66FyMfJTRzQD8AAO7mz0GrmuUS67GlpoLKNaQvLcUbp4-6paTwB1wDwH9-9jLlnGuG-MlnDOYOvEilCyF1N-KlxhepKfEEp-Oqkv5PkrWep9UHsDrQfwiM8Xs72JlsxgC619O1JwGz3czUZTX3qIlZvQMXah-QmWcwxQD5t30H4XIMNDi51PW4QCnz-MxqDsjisVjQNt9s3gp7keDx_Bfe6gXvvyvtWJQu-ESFGaTsHIiUIa1_WBaiFsEWsrmFVFwlUseMaMIdLSnKSK6JjAP1Iqm2iRpEbaLJd0F60MhgOzhzCxgprcFLSwjGkuJaC2OIuF4iaFR3EdNSthlaPFERmlT21TXoqX0sm0BJnW0WElyDLoyaT8mtU6Oq6E--3132H2_x_mAK3Cl9zzqskhWpmOZ-YIYMNUNvzaaKDaxWX39g7uWoS5a9Zq-I34Jxk6xFE
link.rule.ids 315,783,787,867,12778,21401,27937,27938,33386,33757,41132,41133,42201,42202,43613,43818,51589,52246,74370,74637
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgHIAD4ikGA3KAY6FN0i49IUBD4zUhBIhblSdwYBvbQMCvx-lS8ZK4NkoOdmx_dWx_ANuIQBA30DwykrGIW7R0oTwloNWM54mkqmykvehk7Rt-epfehYTbMJRVVj6xdNSmp32OfM8XmiF4wAC333-OPGuUf10NFBqTMOVHVYkaTB22OpdX1Y1CsIMOOgCAMuuSZVyU1GiJEBx_nngemvZiJvakb01PmruU0Z9h6gt7_nouLaPQ8TzMBfhIDsb6XoAJ212E2W9DBZfg9uqlPyqbD4n2Kh0Qn5wfEvVOEOwR-4b271NkpOeIj2rjZODjhzUEzd1XS0WDUDj7asnDuxn07jGALsPNcev6qB0F9oRIM5aO0M3JXFnP-8CMlC6PjZPc6TwROpYi49ZS5ViTppqamOIepbRLjExSq1zWVGwFat1e164CoU4y27Q5yx3nRiiFuC3OYqmFTfFTXIftSlhFfzwkoygft5ko5FPhZVqgTOvQqARZBEsZFl96rcNOJdxvy3-PWfv_mC2Ybl9fnBfnJ52zdZjBXaKssqYNqI0GL3YDQcRIbYab8gnVmsRs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gSAgOiKcYDMhhHMvaJG3TE-KxieeEECBuVZ7AgW3sgRi_HqdLNR4S11bJwY7tL_bnGKE6IBDADSQLtKA0YAYsnUs3EtAoyrJIEFk00l63k7N7dvEYP3r-08DTKkufWDhq3VUuR95wRDMADxDgGtbTIm5OW4e9t8BNkHKVVj9OYxbNpSyhcBGbO262b27L0wXAB5y1BwNFBiZJGC_GpEWcM7hIscw38IWUN4RrU4_SA0LJz5A1xaG_SqdFRGotoyUPJfHRRPcraMZ0VtHitwcG19DD7ag3LBoRsXLq7WOXqB9gOcYA_LD5AF_g0mW4a7GLcJPE4Mun0RhM3zGngr4n0b4b_DzW_e4TBNN1dN9q3p2cBX6SQqAojYfg8kQmjZsBQbUQNgu1FcyqLOIqFDxhxhBpaUpiRXRIYI2UykZaRLGRNkkl3UCVTrdjNhEmVlCTmoxmljHNpQQMFyahUNzE8CmsonoprLw3eTAjLwrdlOfiNXcyzUGmVVQrBZl7qxnkUx1X0X4p3G-__26z9f82e2geDkl-dd6-3EYLsIgXhGtSQ5Vhf2R2AE8M5a4_KF_l68ig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rupturing+cancer+cells+by+the+expansion+of+functionalized+stimuli-responsive+hydrogels&rft.jtitle=NPG+Asia+materials&rft.au=Fang%2C+Yan&rft.au=Tan%2C+Jiajun&rft.au=Lim%2C+Sierin&rft.au=Soh%2C+Siowling&rft.date=2018-02-02&rft.pub=Nature+Publishing+Group&rft.issn=1884-4049&rft.eissn=1884-4057&rft.volume=10&rft.issue=2&rft_id=info:doi/10.1038%2Fam.2017.232&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1884-4049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1884-4049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1884-4049&client=summon