DNA nanomachines reveal an adaptive energy mode in confinement-induced amoeboid migration powered by polarized mitochondrial distribution

Energy metabolism is highly interdependent with adaptive cell migration in vivo. Mechanical confinement is a critical physical cue that induces switchable migration modes of the mesenchymal-to-amoeboid transition (MAT). However, the energy states in distinct migration modes, especially amoeboid-like...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 121; no. 14; p. e2317492121
Main Authors Liu, Yixin, Wang, Ya-Jun, Du, Yang, Liu, Wei, Huang, Xuedong, Fan, Zihui, Lu, Jiayin, Yi, Runqiu, Xiang, Xiao-Wei, Xia, Xinwei, Gu, Hongzhou, Liu, Yan-Jun, Liu, Baohong
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 02.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Energy metabolism is highly interdependent with adaptive cell migration in vivo. Mechanical confinement is a critical physical cue that induces switchable migration modes of the mesenchymal-to-amoeboid transition (MAT). However, the energy states in distinct migration modes, especially amoeboid-like stable bleb (A2) movement, remain unclear. In this report, we developed multivalent DNA framework-based nanomachines to explore strategical mitochondrial trafficking and differential ATP levels during cell migration in mechanically heterogeneous microenvironments. Through single-particle tracking and metabolomic analysis, we revealed that fast A2-moving cells driven by biomimetic confinement recruited back-end positioning of mitochondria for powering highly polarized cytoskeletal networks, preferentially adopting an energy-saving mode compared with a mesenchymal mode of cell migration. We present a versatile DNA nanotool for cellular energy exploration and highlight that adaptive energy strategies coordinately support switchable migration modes for facilitating efficient metastatic escape, offering a unique perspective for therapeutic interventions in cancer metastasis.
AbstractList Energy metabolism is highly interdependent with adaptive cell migration in vivo. Mechanical confinement is a critical physical cue that induces switchable migration modes of the mesenchymal-to-amoeboid transition (MAT). However, the energy states in distinct migration modes, especially amoeboid-like stable bleb (A2) movement, remain unclear. In this report, we developed multivalent DNA framework-based nanomachines to explore strategical mitochondrial trafficking and differential ATP levels during cell migration in mechanically heterogeneous microenvironments. Through single-particle tracking and metabolomic analysis, we revealed that fast A2-moving cells driven by biomimetic confinement recruited back-end positioning of mitochondria for powering highly polarized cytoskeletal networks, preferentially adopting an energy-saving mode compared with a mesenchymal mode of cell migration. We present a versatile DNA nanotool for cellular energy exploration and highlight that adaptive energy strategies coordinately support switchable migration modes for facilitating efficient metastatic escape, offering a unique perspective for therapeutic interventions in cancer metastasis.
Cancer cells deploy different migration modes to invade tissues in vivo. How energy supply and migration modes jointly coordinate to drive metastatic escape when facing mechanical challenges remains largely unknown. Herein, we design DNA nanomachines to precisely study mitochondrial distribution and ATP expression of individual migrating cells during distinct migration modes. Our results reveal that confinement-induced amoeboid-like movement recruits back-end mitochondrial positioning for powering polarized cytoskeletal networks, preferentially adopting an energy-saving mode compared with mesenchymal cell migration. Our work presents a smart DNA nanotool for bioenergetic research and highlights the key features of mechanoresponsive energy adaptations of cell migration in cancer metastasis. Energy metabolism is highly interdependent with adaptive cell migration in vivo. Mechanical confinement is a critical physical cue that induces switchable migration modes of the mesenchymal-to-amoeboid transition (MAT). However, the energy states in distinct migration modes, especially amoeboid-like stable bleb (A2) movement, remain unclear. In this report, we developed multivalent DNA framework-based nanomachines to explore strategical mitochondrial trafficking and differential ATP levels during cell migration in mechanically heterogeneous microenvironments. Through single-particle tracking and metabolomic analysis, we revealed that fast A2-moving cells driven by biomimetic confinement recruited back-end positioning of mitochondria for powering highly polarized cytoskeletal networks, preferentially adopting an energy-saving mode compared with a mesenchymal mode of cell migration. We present a versatile DNA nanotool for cellular energy exploration and highlight that adaptive energy strategies coordinately support switchable migration modes for facilitating efficient metastatic escape, offering a unique perspective for therapeutic interventions in cancer metastasis.
Energy metabolism is highly interdependent with adaptive cell migration in vivo. Mechanical confinement is a critical physical cue that induces switchable migration modes of the mesenchymal-to-amoeboid transition (MAT). However, the energy states in distinct migration modes, especially amoeboid-like stable bleb (A2) movement, remain unclear. In this report, we developed multivalent DNA framework-based nanomachines to explore strategical mitochondrial trafficking and differential ATP levels during cell migration in mechanically heterogeneous microenvironments. Through single-particle tracking and metabolomic analysis, we revealed that fast A2-moving cells driven by biomimetic confinement recruited back-end positioning of mitochondria for powering highly polarized cytoskeletal networks, preferentially adopting an energy-saving mode compared with a mesenchymal mode of cell migration. We present a versatile DNA nanotool for cellular energy exploration and highlight that adaptive energy strategies coordinately support switchable migration modes for facilitating efficient metastatic escape, offering a unique perspective for therapeutic interventions in cancer metastasis.Energy metabolism is highly interdependent with adaptive cell migration in vivo. Mechanical confinement is a critical physical cue that induces switchable migration modes of the mesenchymal-to-amoeboid transition (MAT). However, the energy states in distinct migration modes, especially amoeboid-like stable bleb (A2) movement, remain unclear. In this report, we developed multivalent DNA framework-based nanomachines to explore strategical mitochondrial trafficking and differential ATP levels during cell migration in mechanically heterogeneous microenvironments. Through single-particle tracking and metabolomic analysis, we revealed that fast A2-moving cells driven by biomimetic confinement recruited back-end positioning of mitochondria for powering highly polarized cytoskeletal networks, preferentially adopting an energy-saving mode compared with a mesenchymal mode of cell migration. We present a versatile DNA nanotool for cellular energy exploration and highlight that adaptive energy strategies coordinately support switchable migration modes for facilitating efficient metastatic escape, offering a unique perspective for therapeutic interventions in cancer metastasis.
Author Liu, Wei
Liu, Yan-Jun
Xia, Xinwei
Liu, Yixin
Du, Yang
Gu, Hongzhou
Wang, Ya-Jun
Yi, Runqiu
Fan, Zihui
Lu, Jiayin
Liu, Baohong
Xiang, Xiao-Wei
Huang, Xuedong
Author_xml – sequence: 1
  givenname: Yixin
  surname: Liu
  fullname: Liu, Yixin
  organization: Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
– sequence: 2
  givenname: Ya-Jun
  surname: Wang
  fullname: Wang, Ya-Jun
  organization: Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
– sequence: 3
  givenname: Yang
  surname: Du
  fullname: Du, Yang
  organization: Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
– sequence: 4
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  organization: Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
– sequence: 5
  givenname: Xuedong
  surname: Huang
  fullname: Huang, Xuedong
  organization: Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
– sequence: 6
  givenname: Zihui
  surname: Fan
  fullname: Fan, Zihui
  organization: Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
– sequence: 7
  givenname: Jiayin
  surname: Lu
  fullname: Lu, Jiayin
  organization: Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
– sequence: 8
  givenname: Runqiu
  surname: Yi
  fullname: Yi, Runqiu
  organization: Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
– sequence: 9
  givenname: Xiao-Wei
  orcidid: 0000-0003-4234-8438
  surname: Xiang
  fullname: Xiang, Xiao-Wei
  organization: Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
– sequence: 10
  givenname: Xinwei
  surname: Xia
  fullname: Xia, Xinwei
  organization: Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
– sequence: 11
  givenname: Hongzhou
  surname: Gu
  fullname: Gu, Hongzhou
  organization: Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
– sequence: 12
  givenname: Yan-Jun
  orcidid: 0000-0001-6535-8431
  surname: Liu
  fullname: Liu, Yan-Jun
  organization: Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
– sequence: 13
  givenname: Baohong
  surname: Liu
  fullname: Liu, Baohong
  organization: Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38547056$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtv1DAUhS1URKeFNTtkiQ2btH7EibNCVXlKFWxgbd3YNzOuEnuwk0HDP-Bf46ilPBaWLZ3Px_f4nJGTEAMS8pyzC85aebkPkC-E5G3dCS74I7LhrONVU3fshGwYE22la1GfkrOcbxljndLsCTmVWtUtU82G_Hzz6YoGCHECu_MBM014QBgpBAoO9rM_IMWAaXukU3RIfaA2hqGgE4a58sEtFh2FKWIfvaOT3yaYfQx0H79jKlJ_LMcRkv-BqzxHu4vBJV8ecT7PyffLyj8ljwcYMz6738_J13dvv1x_qG4-v_94fXVTWSnVXDUanO1ByWHQtR36GnjTaV630FglOlDCCcFqqZRuhxq11hYc1-iU0x3XIM_J6zvf_dJP6GxJkWA0--QnSEcTwZt_leB3ZhsPpvxsp5XWxeHVvUOK3xbMs5l8tjiOEDAu2UgmhGrLWtGX_6G3cUmh5CuU1GVu3rWFuryjbIo5JxwepuHMrD2btWfzp-dy48XfIR7438XKXykmqdQ
Cites_doi 10.1038/ncomms14772
10.1073/pnas.2210735120
10.1091/mbc.e17-03-0134
10.1101/2022.08.09.503223
10.1073/pnas.2003236117
10.1021/nn2005574
10.1016/j.tcb.2020.06.004
10.1074/jbc.M806974200
10.3389/fmolb.2022.925755
10.1242/dev.191767
10.1016/j.bpj.2013.03.025
10.1038/ncomms15257
10.1126/science.1163595
10.1038/s41580-019-0172-9
10.1002/adma.202107820
10.1016/j.cell.2021.08.035
10.1002/anie.201403236
10.1042/EBC20190026
10.1016/j.cmet.2021.04.002
10.1038/s42255-019-0159-z
10.1016/j.devcel.2020.02.013
10.1016/j.cell.2015.01.007
10.1016/j.bbcan.2017.01.002
10.1038/s41580-021-00366-6
10.1038/s41467-023-38292-0
10.1126/science.aba2894
10.1038/s41467-019-12155-z
10.1016/j.cub.2021.11.040
10.1093/nar/gkad1045
10.1016/j.ceb.2022.102150
10.1016/j.cell.2015.01.008
10.1038/s41586-020-1998-1
10.1073/pnas.1809964116
10.1172/JCI93172
10.1091/mbc.E17-01-0041
10.1021/jacs.3c08000
10.1091/mbc.e16-10-0741
10.1038/s41598-018-35381-9
10.1158/0008-5472.CAN-18-0595
10.1126/science.aba2644
10.1101/827998
10.1242/jcs.248385
10.1038/nmeth.1444
10.1016/j.cell.2011.09.024
10.1038/s41563-022-01312-3
10.1016/j.tcb.2021.10.004
10.1038/bjc.2017.201
10.1091/mbc.e16-05-0286
10.1016/j.tcb.2011.11.002
ContentType Journal Article
Copyright Copyright National Academy of Sciences Apr 2, 2024
Copyright © 2024 the Author(s). Published by PNAS. 2024
Copyright_xml – notice: Copyright National Academy of Sciences Apr 2, 2024
– notice: Copyright © 2024 the Author(s). Published by PNAS. 2024
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2317492121
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

Virology and AIDS Abstracts
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 10_1073_pnas_2317492121
38547056
Genre Journal Article
GrantInformation_xml – fundername: MOST | National Natural Science Foundation of China (NSFC)
  grantid: 21934001
– fundername: MOST | National Natural Science Foundation of China (NSFC)
  grantid: 22274026
– fundername: China Postdoctoral Science Foundation (China Postdoctoral Foundation Project)
  grantid: 2022M720762
– fundername: Human Frontier Science Program (HFSP)
  grantid: RGY0079/2020
– fundername: MOST | National Natural Science Foundation of China (NSFC)
  grantid: 22204022
– fundername: ;
  grantid: 22274026
– fundername: ;
  grantid: RGY0079/2020
– fundername: ;
  grantid: 22204022
– fundername: ;
  grantid: 2022M720762
– fundername: ;
  grantid: 21934001
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CGR
CS3
CUY
CVF
D0L
DIK
DU5
E3Z
EBS
ECM
EIF
F5P
FRP
GX1
HH5
HYE
JLS
JSG
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c335t-68adcba53ff84cfb4a1698147a6c529a52d220435587f4e888cad18ed5d8918a3
IEDL.DBID RPM
ISSN 0027-8424
1091-6490
IngestDate Mon Sep 30 11:48:23 EDT 2024
Sun Sep 29 17:02:21 EDT 2024
Thu Oct 10 18:04:04 EDT 2024
Fri Aug 23 03:32:52 EDT 2024
Wed Oct 23 09:53:25 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords DNA nanomachines
distinct migration modes
mechanical confinement
an energy-saving mode
Language English
License This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c335t-68adcba53ff84cfb4a1698147a6c529a52d220435587f4e888cad18ed5d8918a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by David Weitz, Harvard University, Cambridge, MA; received October 10, 2023; accepted February 19, 2024
ORCID 0000-0003-4234-8438
0000-0001-6535-8431
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10998588/
PMID 38547056
PQID 3038814197
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10998588
proquest_miscellaneous_3022572258
proquest_journals_3038814197
crossref_primary_10_1073_pnas_2317492121
pubmed_primary_38547056
PublicationCentury 2000
PublicationDate 2024-04-02
PublicationDateYYYYMMDD 2024-04-02
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2024
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_32_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_28_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_24_2
  doi: 10.1038/ncomms14772
– ident: e_1_3_4_3_2
  doi: 10.1073/pnas.2210735120
– ident: e_1_3_4_30_2
  doi: 10.1091/mbc.e17-03-0134
– ident: e_1_3_4_7_2
  doi: 10.1101/2022.08.09.503223
– ident: e_1_3_4_15_2
  doi: 10.1073/pnas.2003236117
– ident: e_1_3_4_20_2
  doi: 10.1021/nn2005574
– ident: e_1_3_4_32_2
  doi: 10.1016/j.tcb.2020.06.004
– ident: e_1_3_4_47_2
  doi: 10.1074/jbc.M806974200
– ident: e_1_3_4_45_2
  doi: 10.3389/fmolb.2022.925755
– ident: e_1_3_4_33_2
  doi: 10.1242/dev.191767
– ident: e_1_3_4_41_2
  doi: 10.1016/j.bpj.2013.03.025
– ident: e_1_3_4_25_2
  doi: 10.1038/ncomms15257
– ident: e_1_3_4_44_2
  doi: 10.1126/science.1163595
– ident: e_1_3_4_29_2
  doi: 10.1038/s41580-019-0172-9
– ident: e_1_3_4_19_2
  doi: 10.1002/adma.202107820
– ident: e_1_3_4_5_2
  doi: 10.1016/j.cell.2021.08.035
– ident: e_1_3_4_22_2
  doi: 10.1002/anie.201403236
– ident: e_1_3_4_27_2
  doi: 10.1042/EBC20190026
– ident: e_1_3_4_34_2
  doi: 10.1016/j.cmet.2021.04.002
– ident: e_1_3_4_35_2
  doi: 10.1038/s42255-019-0159-z
– ident: e_1_3_4_46_2
  doi: 10.1016/j.devcel.2020.02.013
– ident: e_1_3_4_4_2
  doi: 10.1016/j.cell.2015.01.007
– ident: e_1_3_4_14_2
  doi: 10.1016/j.bbcan.2017.01.002
– ident: e_1_3_4_2_2
  doi: 10.1038/s41580-021-00366-6
– ident: e_1_3_4_40_2
  doi: 10.1038/s41467-023-38292-0
– ident: e_1_3_4_8_2
  doi: 10.1126/science.aba2894
– ident: e_1_3_4_37_2
  doi: 10.1038/s41467-019-12155-z
– ident: e_1_3_4_39_2
  doi: 10.1016/j.cub.2021.11.040
– ident: e_1_3_4_50_2
  doi: 10.1093/nar/gkad1045
– ident: e_1_3_4_28_2
  doi: 10.1016/j.ceb.2022.102150
– ident: e_1_3_4_31_2
  doi: 10.1016/j.cell.2015.01.008
– ident: e_1_3_4_10_2
  doi: 10.1038/s41586-020-1998-1
– ident: e_1_3_4_36_2
  doi: 10.1073/pnas.1809964116
– ident: e_1_3_4_17_2
  doi: 10.1172/JCI93172
– ident: e_1_3_4_11_2
  doi: 10.1091/mbc.E17-01-0041
– ident: e_1_3_4_21_2
  doi: 10.1021/jacs.3c08000
– ident: e_1_3_4_16_2
  doi: 10.1091/mbc.e16-10-0741
– ident: e_1_3_4_38_2
  doi: 10.1038/s41598-018-35381-9
– ident: e_1_3_4_18_2
  doi: 10.1158/0008-5472.CAN-18-0595
– ident: e_1_3_4_9_2
  doi: 10.1126/science.aba2644
– ident: e_1_3_4_49_2
  doi: 10.1101/827998
– ident: e_1_3_4_48_2
  doi: 10.1242/jcs.248385
– ident: e_1_3_4_23_2
  doi: 10.1038/nmeth.1444
– ident: e_1_3_4_1_2
  doi: 10.1016/j.cell.2011.09.024
– ident: e_1_3_4_6_2
  doi: 10.1038/s41563-022-01312-3
– ident: e_1_3_4_26_2
  doi: 10.1016/j.tcb.2021.10.004
– ident: e_1_3_4_42_2
  doi: 10.1038/bjc.2017.201
– ident: e_1_3_4_13_2
  doi: 10.1091/mbc.e16-05-0286
– ident: e_1_3_4_43_2
  doi: 10.1016/j.tcb.2011.11.002
– ident: e_1_3_4_12_2
  doi: 10.1038/s41467-019-12155-z
– ident: e_1_3_4_51_2
SSID ssj0009580
Score 2.5016668
Snippet Energy metabolism is highly interdependent with adaptive cell migration in vivo. Mechanical confinement is a critical physical cue that induces switchable...
Cancer cells deploy different migration modes to invade tissues in vivo. How energy supply and migration modes jointly coordinate to drive metastatic escape...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage e2317492121
SubjectTerms Amoeba
ATP
Biological Sciences
Biomimetics
Cell Line, Tumor
Cell migration
Cell Movement
Confinement
Cytoskeleton
Deoxyribonucleic acid
DNA
Energy
Energy conservation
Energy distribution
Energy metabolism
Metabolism
Metabolomics
Metastases
Microenvironments
Mitochondria
Modes
Particle tracking
Physical Phenomena
Therapeutic applications
Title DNA nanomachines reveal an adaptive energy mode in confinement-induced amoeboid migration powered by polarized mitochondrial distribution
URI https://www.ncbi.nlm.nih.gov/pubmed/38547056
https://www.proquest.com/docview/3038814197
https://www.proquest.com/docview/3022572258/abstract/
https://pubmed.ncbi.nlm.nih.gov/PMC10998588
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4Bp16qAn2khcqVeqCH7JLYju0jokWoEqiHInGLHNtpIzVOxC6H9h_wr5nJYwvtjUOkSGMrUb7xeCae-Qbgo6yE9c5nKWqLTIXyOrXFsU1dgQbZGGUcp0Lhi8vi_Ep8vZbXW1DMtTBD0r6rmkX81S5i83PIrexbt5zzxJbfLk7pNEdLDN22YVtxPsfoG6pdPRae5Gh_RS5mQh_Fl320qwV6NEoYNNnUJYZrKdQxta9-uC3952v-mzL5YA86ewHPJ-eRnYwvuQtbIe7B7rQ8V-xo4pD-tA93ny9PWLSxa4dkSRQSVRPOtZFZb3syciwMdX-MmuGwJjKMjGscSr8LU4zUEXPPbNuhQWo8a5sfo66wnvqqoaj6jbcYFzd_AonXHRrS6EmfmSc23qmR1ku4Ovvy_fQ8nboupI5zuU4LjeBVVvK61sLViGVWGJ0JZQsnc2Nl7nMqqJVSq1oEjKCd9ZkOXnptMm35K9iJXQxvgNV1hg4N-pQO3ZxKVBrDTV9V0vAQlA8igaP5o5f9SK5RDofiipcEVfkXqgQOZlDKaZWtSk5UNpnIjErgw0aM64MOPWwM3S2NQYul8NIJvB4x3DxrBj8B_QjdzQDi3n4sQZUcOLhnFXz79Knv4FmOHtKQBpQfwM765jYcooezrt4PCn0PE6j-ew
link.rule.ids 230,315,733,786,790,891,27955,27956,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoALUF4NFDASh3JItont2DlWhWqB7opDK3qLHNuBiMaJ2OyB_gP-NeM8lrac4BAp0thKIn8znolnvgF4wwumjDZxiGjhIRNGhio9UKFO0SBnmcg09YXCi2U6P2Mfz_n5FqRTLUyftK-LKnIXdeSqb31uZVvr2ZQnNvu8OPKnOZJj6HYLbqPCJnyK0jdku3IoPUnQArOETZQ-gs5ap1YR-jSCZWi0fZ8YKjkTB76B9dWN6S9v82bS5JVd6Pg-fJnef0g--R6tuyLSlzeoHf_9Ax_AvdExJYeDfAe2rHsIO6Pqr8j-yE_99hH8erc8JE65pu4TMVHoaaBwrnJEGdV6A0psX1NIfKMdUjmCUXeJQ_2vyLByBvFkiKobNHaVIXX1dcAhaX3PNhQVP_EWY-7q0npx16CRdsbrCjGe6Xds0vUYzo7fnx7Nw7GjQ6gp5V2YSgRGoTgtS8l0iTiJ00zGTKhU8yRTPDGJL9blXIqSWYzOtTKxtIYbmcVS0Sew7Rpnd4GUZYzOEvqrGl2oghUSQ1lTFDyj1gpjWQD703Lm7UDckfcH7oLmHgT5HxAEsDctdz5q8CqnniYnZnEmAni9EaPu-QMV5Wyz9mPQGgq8ZABPB3RsnjXBKgB5DTebAZ7X-7oE0dDze0-r_-z_p76CO_PTxUl-8mH56TncTdAT69ONkj3Y7n6s7Qv0pLriZa82vwGUoSDB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRAXoDwDBYzEoRyy28R27ByrllV5dNUDlSpxiPxKiSBOxGYP9B_wrxnnsbTl1kOkSDNWZPmb8Uw8_gbgHddMWWOTGNHCYyasjFW2p2KToUPOc5EbGi4KHy-zo1P26YyfjVWVq7Gs0htdzfzPeuar731tZVub-VQnNj85PginOZJj6tbacn4b7qDRpmLK1DeEu3K4fpKiF2Ypm2h9BJ23Xq1mGNcIlqPjDr1iqORM7IUm1pc3p_8izuuFk5d2osUD-DbNYShA-TFbd3pmLq7RO95skg_h_higkv1BZxtuOf8ItkcXsCK7I0_1-8fw53C5T7zyTd0XZKIw0EHhWOWJsqoNjpS4_m4hCQ13SOUJZt8lqoZfknHlLeLKElU36PQqS-rqfMAjaUPvNhTp3_iKuXd14YK4a9BZextshtjA-Ds263oCp4sPXw-O4rGzQ2wo5V2cSQSIVpyWpWSmRLwkWS4TJlRmeJornto0XNrlXIqSOczSjbKJdJZbmSdS0aew5RvvngMpywSDJoxbDYZSmmmJKa3VmufUOWEdi2B3WtKiHQg8iv7gXdAiAKH4B4QIdqYlL0ZLXhU00OUkLMlFBG83YrTBcLCivGvWQQe9osBHRvBsQMjmWxO0IpBXsLNRCPzeVyWIiJ7ne0LAi5sPfQN3Tw4XxZePy88v4V6KAVlfdZTuwFb3a-1eYUDV6de95fwFgeMjQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+nanomachines+reveal+an+adaptive+energy+mode+in+confinement-induced+amoeboid+migration+powered+by+polarized+mitochondrial+distribution&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Liu%2C+Yixin&rft.au=Wang%2C+Ya-Jun&rft.au=Du%2C+Yang&rft.au=Liu%2C+Wei&rft.date=2024-04-02&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=121&rft.issue=14&rft.spage=1&rft_id=info:doi/10.1073%2Fpnas.2317492121&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon