Hydraulic traits and photosynthesis are coordinated with trunk sapwood capacitance in tropical tree species

Abstract Water stored in trunk sapwood is vital for the canopy to maintain its physiological function under high transpiration demands. Little is known regarding the anatomical properties that contribute to the hydraulic capacitance of tree trunks and whether trunk capacitance is correlated with the...

Full description

Saved in:
Bibliographic Details
Published inTree physiology Vol. 43; no. 12; pp. 2109 - 2120
Main Authors Wei, Yang, Chen, Ya-Jun, Siddiq, Zafar, Zhang, Jiao-Lin, Zhang, Shu-Bin, Jansen, Steven, Cao, Kun-Fang
Format Journal Article
LanguageEnglish
Published Canada Oxford University Press 12.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Water stored in trunk sapwood is vital for the canopy to maintain its physiological function under high transpiration demands. Little is known regarding the anatomical properties that contribute to the hydraulic capacitance of tree trunks and whether trunk capacitance is correlated with the hydraulic and gas exchange traits of canopy branches. We examined sapwood capacitance, xylem anatomical characteristics of tree trunks, embolism resistance, the minimal xylem water potential of canopy branches, leaf photosynthesis and stomatal conductance in 22 species from a tropical seasonal rainforest and savanna. The results showed that the mean trunk sapwood capacitance did not differ between the two biomes. Capacitance was closely related to the fiber lumen fraction and fiber wall reinforcement and not to the axial and ray parenchyma fractions. Additionally, it was positively correlated with the theoretical hydraulic conductivity of a trunk and the specific hydraulic conductivity of branches, and showed a trade-off with branch embolism resistance. Species with a high trunk sapwood capacitance maintained less negative canopy water potentials in the dry season, but higher leaf photosynthetic rates and stomatal conductance in the wet season. This study provides a functional link among trunk sapwood capacitance, xylem anatomy, canopy hydraulics and photosynthesis in tropical trees.
AbstractList Abstract Water stored in trunk sapwood is vital for the canopy to maintain its physiological function under high transpiration demands. Little is known regarding the anatomical properties that contribute to the hydraulic capacitance of tree trunks and whether trunk capacitance is correlated with the hydraulic and gas exchange traits of canopy branches. We examined sapwood capacitance, xylem anatomical characteristics of tree trunks, embolism resistance, the minimal xylem water potential of canopy branches, leaf photosynthesis and stomatal conductance in 22 species from a tropical seasonal rainforest and savanna. The results showed that the mean trunk sapwood capacitance did not differ between the two biomes. Capacitance was closely related to the fiber lumen fraction and fiber wall reinforcement and not to the axial and ray parenchyma fractions. Additionally, it was positively correlated with the theoretical hydraulic conductivity of a trunk and the specific hydraulic conductivity of branches, and showed a trade-off with branch embolism resistance. Species with a high trunk sapwood capacitance maintained less negative canopy water potentials in the dry season, but higher leaf photosynthetic rates and stomatal conductance in the wet season. This study provides a functional link among trunk sapwood capacitance, xylem anatomy, canopy hydraulics and photosynthesis in tropical trees.
Water stored in trunk sapwood is vital for the canopy to maintain its physiological function under high transpiration demands. Little is known regarding the anatomical properties that contribute to the hydraulic capacitance of tree trunks and whether trunk capacitance is correlated with the hydraulic and gas exchange traits of canopy branches. We examined sapwood capacitance, xylem anatomical characteristics of tree trunks, embolism resistance, the minimal xylem water potential of canopy branches, leaf photosynthesis and stomatal conductance in 22 species from a tropical seasonal rainforest and savanna. The results showed that the mean trunk sapwood capacitance did not differ between the two biomes. Capacitance was closely related to the fiber lumen fraction and fiber wall reinforcement and not to the axial and ray parenchyma fractions. Additionally, it was positively correlated with the theoretical hydraulic conductivity of a trunk and the specific hydraulic conductivity of branches, and showed a trade-off with branch embolism resistance. Species with a high trunk sapwood capacitance maintained less negative canopy water potentials in the dry season, but higher leaf photosynthetic rates and stomatal conductance in the wet season. This study provides a functional link among trunk sapwood capacitance, xylem anatomy, canopy hydraulics and photosynthesis in tropical trees.
Water stored in trunk sapwood is vital for the canopy to maintain its physiological function under high transpiration demands. Little is known regarding the anatomical properties that contribute to the hydraulic capacitance of tree trunks and whether trunk capacitance is correlated with the hydraulic and gas exchange traits of canopy branches. We examined sapwood capacitance, xylem anatomical characteristics of tree trunks, embolism resistance, the minimal xylem water potential of canopy branches, leaf photosynthesis and stomatal conductance in 22 species from a tropical seasonal rainforest and savanna. The results showed that the mean trunk sapwood capacitance did not differ between the two biomes. Capacitance was closely related to the fiber lumen fraction and fiber wall reinforcement and not to the axial and ray parenchyma fractions. Additionally, it was positively correlated with the theoretical hydraulic conductivity of a trunk and the specific hydraulic conductivity of branches, and showed a trade-off with branch embolism resistance. Species with a high trunk sapwood capacitance maintained less negative canopy water potentials in the dry season, but higher leaf photosynthetic rates and stomatal conductance in the wet season. This study provides a functional link among trunk sapwood capacitance, xylem anatomy, canopy hydraulics and photosynthesis in tropical trees.Water stored in trunk sapwood is vital for the canopy to maintain its physiological function under high transpiration demands. Little is known regarding the anatomical properties that contribute to the hydraulic capacitance of tree trunks and whether trunk capacitance is correlated with the hydraulic and gas exchange traits of canopy branches. We examined sapwood capacitance, xylem anatomical characteristics of tree trunks, embolism resistance, the minimal xylem water potential of canopy branches, leaf photosynthesis and stomatal conductance in 22 species from a tropical seasonal rainforest and savanna. The results showed that the mean trunk sapwood capacitance did not differ between the two biomes. Capacitance was closely related to the fiber lumen fraction and fiber wall reinforcement and not to the axial and ray parenchyma fractions. Additionally, it was positively correlated with the theoretical hydraulic conductivity of a trunk and the specific hydraulic conductivity of branches, and showed a trade-off with branch embolism resistance. Species with a high trunk sapwood capacitance maintained less negative canopy water potentials in the dry season, but higher leaf photosynthetic rates and stomatal conductance in the wet season. This study provides a functional link among trunk sapwood capacitance, xylem anatomy, canopy hydraulics and photosynthesis in tropical trees.
Author Jansen, Steven
Cao, Kun-Fang
Zhang, Jiao-Lin
Wei, Yang
Zhang, Shu-Bin
Siddiq, Zafar
Chen, Ya-Jun
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0002-9568-5780
  surname: Wei
  fullname: Wei, Yang
  email: wellyang2015@163.com
– sequence: 2
  givenname: Ya-Jun
  orcidid: 0000-0001-5753-5565
  surname: Chen
  fullname: Chen, Ya-Jun
  email: chenyj@xtbg.org.cn
– sequence: 3
  givenname: Zafar
  surname: Siddiq
  fullname: Siddiq, Zafar
  email: zafareco@outlook.com
– sequence: 4
  givenname: Jiao-Lin
  surname: Zhang
  fullname: Zhang, Jiao-Lin
– sequence: 5
  givenname: Shu-Bin
  orcidid: 0000-0002-8874-9256
  surname: Zhang
  fullname: Zhang, Shu-Bin
  email: zhangshubin@xtbg.ac.cn
– sequence: 6
  givenname: Steven
  surname: Jansen
  fullname: Jansen, Steven
  email: steven.jansen@uni-ulm.de
– sequence: 7
  givenname: Kun-Fang
  orcidid: 0000-0002-2253-7189
  surname: Cao
  fullname: Cao, Kun-Fang
  email: kunfangcao@gxu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37672225$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rIzEMhk1padKPe0-LjwslW3tm7Jk5LqEfC4W9bM9GtWXidmJ7bQ8h_74TkkDpYfckIT2vkPRekFMfPBJyw9kPzvr6riTEuNrmuxLBcNaekDlvRbdoGtmffspn5CLnN8a46Lr-nMzqVrZVVYk5eX_amgTj4DQtCVzJFLyhcRVKyFtfVpjdVEpIdQjJOA8FDd24sprw0b_TDHETgqEaImhXwGukzk_NEJ2Gge42pDmidpivyJmFIeP1IV6Sl4f7P8unxfPvx1_Ln88LXdeiLGQjkVvLeqwYY7JibW9tDSCmirS90R1nprcAjDWiQ9HY18b2QguoEU3T1pfk-35uTOHviLmotcsahwE8hjGrqpNcNnUnqwn9dkDH1zUaFZNbQ9qq44MmQO4BnULOCa3aXVlc8Lt3DYoztXNCHZ1QBycmIfsiPM7-h-R2Lwlj_D_9Abd0onw
CitedBy_id crossref_primary_10_1007_s11104_025_07217_9
crossref_primary_10_1111_ecog_07620
crossref_primary_10_1002_ajb2_16290
crossref_primary_10_1093_treephys_tpae017
crossref_primary_10_3390_life14070834
Cites_doi 10.1111/j.1365-3040.1992.tb00990.x
10.1111/j.1469-8137.2010.03444.x
10.1046/j.1365-3040.2000.00647.x
10.1111/j.1469-8137.2005.01528.x
10.1093/treephys/tpaa106
10.1111/j.1469-8137.2009.03092.x
10.1093/treephys/27.2.181
10.1111/j.1461-0248.2009.01285.x
10.18637/jss.v025.i01
10.1046/j.1365-3040.2003.01039.x
10.1093/treephys/tpu087
10.1016/j.plaphy.2019.04.031
10.1104/pp.15.00223
10.1093/treephys/tpad058
10.1051/forest:2002060
10.1111/1365-2435.12518
10.1111/pce.12139
10.1111/nph.16942
10.1093/treephys/tpv103
10.1093/treephys/tpz064
10.1093/jxb/ert090
10.1007/BF02411394
10.1016/0168-1923(91)90005-B
10.1093/treephys/tpw020
10.1093/treephys/tpac113
10.20870/jph.2017.e002
10.1111/nph.15058
10.1093/treephys/25.4.457
10.1111/j.1469-8137.2008.02760.x
10.1111/j.1469-8137.2007.02061.x
10.1093/treephys/tpab099
10.1111/pce.12225
10.1126/science.1084507
10.1111/j.1365-3040.2012.02563.x
10.1093/treephys/tpz070
10.1111/nph.13737
10.1111/pce.13891
10.1111/ele.13856
10.1111/nph.16969
10.1111/pce.13687
10.1093/treephys/23.4.237
10.1111/j.1744-7429.2006.00146.x
10.1007/978-94-007-1242-3_13
10.1016/j.tree.2017.02.020
10.1104/pp.114.254581
10.1093/aob/mcg022
10.1146/annurev.pp.40.060189.000315
10.1104/pp.114.249706
10.1111/nph.17117
10.1007/s11104-007-9378-2
10.1093/treephys/tpaa138
10.1002/hyp.236
10.1038/nmeth.2019
10.1093/aob/mcr042
10.1093/aobpla/plt046
10.1186/1746-4811-9-11
10.1111/j.1365-2435.2009.01552.x
10.1046/j.1365-3040.1998.00273.x
10.1111/j.1365-3040.2006.01623.x
10.1071/FP03150
10.1016/B978-012088457-5/50017-4
10.1093/treephys/28.4.529
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2023
The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2023
– notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/treephys/tpad107
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
Botany
EISSN 1758-4469
EndPage 2120
ExternalDocumentID 37672225
10_1093_treephys_tpad107
10.1093/treephys/tpad107
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 31861133008
– fundername: Deutsche Forschungsgemeinschaft
  grantid: 410768178
GroupedDBID ---
.2P
.I3
0R~
123
1TH
4.4
48X
53G
5VS
5WD
70D
AAHBH
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
ABDBF
ABDFA
ABEJV
ABEUO
ABGNP
ABIME
ABIXL
ABJNI
ABMNT
ABNKS
ABPIB
ABPQP
ABPTD
ABQLI
ABSMQ
ABTAH
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ABZEO
ACFRR
ACGFS
ACUFI
ACUHS
ACUTJ
ACVCV
ACZBC
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AHXPO
AIJHB
AJDVS
AJEEA
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
APJGH
APWMN
AQDSO
ARIXL
ASAOO
ATDFG
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
C45
CDBKE
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
D~K
E3Z
EBD
EBS
EDH
EE~
EJD
ELUNK
EMOBN
ESX
F5P
F9B
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KBUDW
KOP
KSI
KSN
M49
MBTAY
N9A
NGC
NLBLG
NOMLY
NU-
NVLIB
O0~
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OVD
OWPYF
O~Y
PAFKI
PEELM
Q1.
Q5Y
RD5
ROX
ROZ
RSU
RUSNO
RW1
RXO
SJN
SV3
TCN
TEORI
TLC
TR2
TUS
W8F
WHG
X7H
Y6R
YAYTL
YKOAZ
YXANX
ZY4
~91
~KM
AAYXX
AGORE
AHGBF
AJBYB
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c335t-646e1ff09e200062079ff3aa509e6f9dc810d9faa00458e54fb4f95c5a3eed473
ISSN 1758-4469
IngestDate Fri Jul 11 15:50:54 EDT 2025
Mon Jul 21 06:05:36 EDT 2025
Tue Jul 01 03:58:53 EDT 2025
Thu Apr 24 22:57:39 EDT 2025
Wed Apr 02 07:03:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords hydraulic safety
fiber lumen
embolism resistance
fiber wall reinforcement
photosynthetic rate
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)
https://academic.oup.com/pages/standard-publication-reuse-rights
The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c335t-646e1ff09e200062079ff3aa509e6f9dc810d9faa00458e54fb4f95c5a3eed473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5753-5565
0000-0002-2253-7189
0000-0002-8874-9256
0000-0002-9568-5780
PMID 37672225
PQID 2861643862
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2861643862
pubmed_primary_37672225
crossref_citationtrail_10_1093_treephys_tpad107
crossref_primary_10_1093_treephys_tpad107
oup_primary_10_1093_treephys_tpad107
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-12
PublicationDateYYYYMMDD 2023-12-12
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-12
  day: 12
PublicationDecade 2020
PublicationPlace Canada
PublicationPlace_xml – name: Canada
PublicationTitle Tree physiology
PublicationTitleAlternate Tree Physiol
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Tyree (2023121211062321100_ref55) 2002; 59
Borchert (2023121211062321100_ref4) 2005; 25
Ozanne (2023121211062321100_ref37) 2003; 301
Scholz (2023121211062321100_ref47) 2011
Chen (2023121211062321100_ref12) 2021; 24
Pratt (2023121211062321100_ref42) 2007; 174
Pfautsch (2023121211062321100_ref38) 2015; 167
Ziemińska (2023121211062321100_ref64) 2020; 43
Meinzer (2023121211062321100_ref32) 2003; 26
Kobayashi (2023121211062321100_ref25) 2010; 15
Santiago (2023121211062321100_ref44) 2018; 218
Čermák (2023121211062321100_ref9) 2007; 27
Gartner (2023121211062321100_ref17) 2005
Jupa (2023121211062321100_ref24) 2016; 36
Tyree (2023121211062321100_ref54) 1990; 182
Ziemińska (2023121211062321100_ref63) 2013; 5
Bucci (2023121211062321100_ref6) 2023; 43
Blomberg (2023121211062321100_ref3) 2003; 57
Goldstein (2023121211062321100_ref18) 1998; 21
Holbrook (2023121211062321100_ref20) 1992; 15
Oliva Carrasco (2023121211062321100_ref36) 2014; 35
Zhang (2023121211062321100_ref59) 2019; 39
Hunt (2023121211062321100_ref21) 1991; 54
Poorter (2023121211062321100_ref41) 2010; 185
Ogle (2023121211062321100_ref35) 2009; 182
Pivovaroff (2023121211062321100_ref40) 2015; 30
Tyree (2023121211062321100_ref53) 1989; 40
Scholz (2023121211062321100_ref46) 2007; 30
Chave (2023121211062321100_ref10) 2009; 12
Gao (2023121211062321100_ref16) 2019; 39
Cao (2023121211062321100_ref8) 2006; 38
Liang (2023121211062321100_ref30) 2021; 229
Brodribb (2023121211062321100_ref5) 2000; 23
Levionnois (2023121211062321100_ref29) 2021; 229
McCulloh (2023121211062321100_ref31) 2014; 37
Schindelin (2023121211062321100_ref45) 2012; 9
Sterck (2023121211062321100_ref51) 2008; 28
Zhang (2023121211062321100_ref58) 2009; 23
Duursma (2023121211062321100_ref15) 2017; 4
Zhang (2023121211062321100_ref62) 2013; 36
Siddiq (2023121211062321100_ref48) 2019; 139
Song (2023121211062321100_ref49) 2023; 43
Wheeler (2023121211062321100_ref57) 2013; 36
Morris (2023121211062321100_ref33) 2016; 209
Zhang (2023121211062321100_ref60) 2016; 7
Sano (2023121211062321100_ref43) 2011; 107
Lê (2023121211062321100_ref28) 2008; 25
Burgess (2023121211062321100_ref7) 2007; 305
Sperry (2023121211062321100_ref50a) 1988; 11
Suuronen (2023121211062321100_ref52) 2013; 9
Berry (2023121211062321100_ref2) 2005; 168
Janssen (2023121211062321100_ref22) 2020; 43
Zhang (2023121211062321100_ref61) 2021; 42
Chen (2023121211062321100_ref11) 2016; 36
Torres-Ruiz (2023121211062321100_ref52a) 2015; 167
Jiang (2023121211062321100_ref23) 2021; 41
Nakamura (2023121211062321100_ref34) 2017; 32
Vesala (2023121211062321100_ref56) 2003; 91
De Guzman (2023121211062321100_ref14) 2021; 41
Hao (2023121211062321100_ref19) 2013; 64
Larter (2023121211062321100_ref27) 2015; 168
Steppe (2023121211062321100_ref50) 2004; 31
Aritsara (2023121211062321100_ref1) 2021; 229
Cruiziat (2023121211062321100_ref13) 2002; 59
Kraft (2023121211062321100_ref26) 2010; 188
Phillips (2023121211062321100_ref39) 2003; 23
References_xml – volume: 15
  start-page: 401
  year: 1992
  ident: 2023121211062321100_ref20
  article-title: Water balance in the arborescent palm, Sabal palmetto. II. Transpiration and stem water storage
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.1992.tb00990.x
– volume: 188
  start-page: 1124
  year: 2010
  ident: 2023121211062321100_ref26
  article-title: The relationship between wood density and mortality in a global tropical forest data set
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2010.03444.x
– volume: 23
  start-page: 1381
  year: 2000
  ident: 2023121211062321100_ref5
  article-title: Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.2000.00647.x
– volume: 168
  start-page: 25
  year: 2005
  ident: 2023121211062321100_ref2
  article-title: Plant-water relations and the fibre saturation point
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2005.01528.x
– volume: 41
  start-page: 24
  year: 2021
  ident: 2023121211062321100_ref14
  article-title: Hydraulic traits of Neotropical canopy liana and tree species across a broad range of wood density: implications for predicting drought mortality with models
  publication-title: Tree Physiol
  doi: 10.1093/treephys/tpaa106
– volume: 185
  start-page: 481
  year: 2010
  ident: 2023121211062321100_ref41
  article-title: The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2009.03092.x
– volume: 27
  start-page: 181
  year: 2007
  ident: 2023121211062321100_ref9
  article-title: Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees
  publication-title: Tree Physiol
  doi: 10.1093/treephys/27.2.181
– volume: 12
  start-page: 351
  year: 2009
  ident: 2023121211062321100_ref10
  article-title: Towards a worldwide wood economics spectrum
  publication-title: Ecol Lett
  doi: 10.1111/j.1461-0248.2009.01285.x
– volume: 25
  start-page: 1
  year: 2008
  ident: 2023121211062321100_ref28
  article-title: FactoMineR: a package for multivariate analysis
  publication-title: J Stat Softw
  doi: 10.18637/jss.v025.i01
– volume: 26
  start-page: 1147
  year: 2003
  ident: 2023121211062321100_ref32
  article-title: Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.2003.01039.x
– volume: 35
  start-page: 354
  year: 2014
  ident: 2023121211062321100_ref36
  article-title: Water storage dynamics in the main stem of subtropical tree species differing in wood density, growth rate and life history traits
  publication-title: Tree Physiol
  doi: 10.1093/treephys/tpu087
– volume: 139
  start-page: 724
  year: 2019
  ident: 2023121211062321100_ref48
  article-title: Canopy water status and photosynthesis of tropical trees are associated with trunk sapwood hydraulic properties
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2019.04.031
– volume: 59
  start-page: 475
  year: 2002
  ident: 2023121211062321100_ref55
  article-title: Xylem structure and the ascent of sap
  publication-title: Q Rev Biol
– volume: 168
  start-page: 804
  year: 2015
  ident: 2023121211062321100_ref27
  article-title: Extreme aridity pushes trees to their physical limits
  publication-title: Plant Physiol
  doi: 10.1104/pp.15.00223
– volume: 43
  start-page: 1319
  year: 2023
  ident: 2023121211062321100_ref49
  article-title: Can leaf drought tolerance predict species abundance and its changes in tropical-subtropical forests?
  publication-title: Tree Physiol
  doi: 10.1093/treephys/tpad058
– volume: 59
  start-page: 723
  year: 2002
  ident: 2023121211062321100_ref13
  article-title: Hydraulic architecture of trees: main concepts and results
  publication-title: Ann For Sci
  doi: 10.1051/forest:2002060
– volume: 30
  start-page: 517
  year: 2015
  ident: 2023121211062321100_ref40
  article-title: Multiple strategies for drought survival among woody plant species
  publication-title: Functi Ecol
  doi: 10.1111/1365-2435.12518
– volume: 11
  start-page: 35
  year: 1988
  ident: 2023121211062321100_ref50a
  article-title: A method for measuring hydraulic conductivity and embolism in xylem
  publication-title: Plant CellEnviron
– volume: 36
  start-page: 1938
  year: 2013
  ident: 2023121211062321100_ref57
  article-title: Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.12139
– volume: 229
  start-page: 1453
  year: 2021
  ident: 2023121211062321100_ref29
  article-title: Linking drought-induced xylem embolism resistance to wood anatomical traits in Neotropical trees
  publication-title: New Phytol
  doi: 10.1111/nph.16942
– volume: 36
  start-page: 736
  year: 2016
  ident: 2023121211062321100_ref11
  article-title: Time lags between crown and basal sap flows in tropical lianas and co-occurring trees
  publication-title: Tree Physiol
  doi: 10.1093/treephys/tpv103
– volume: 39
  start-page: 1783
  year: 2019
  ident: 2023121211062321100_ref16
  article-title: Vessel-length determination using silicone and air injection: Are there artifacts?
  publication-title: Tree Physiol
  doi: 10.1093/treephys/tpz064
– volume: 64
  start-page: 2321
  year: 2013
  ident: 2023121211062321100_ref19
  article-title: Investigating xylem embolism formation, refilling and water storage in tree trunks using frequency domain reflectometry
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ert090
– volume: 182
  start-page: 420
  year: 1990
  ident: 2023121211062321100_ref54
  article-title: Water-storage capacity of Thuja, Tsuga and Acer stems measured by dehydration isotherms
  publication-title: Planta
  doi: 10.1007/BF02411394
– volume: 54
  start-page: 169
  year: 1991
  ident: 2023121211062321100_ref21
  article-title: Extrapolating plant water flow resistances and capacitances to regional scales
  publication-title: Agric For Meteorol
  doi: 10.1016/0168-1923(91)90005-B
– volume: 36
  start-page: 756
  year: 2016
  ident: 2023121211062321100_ref24
  article-title: Linking xylem water storage with anatomical parameters in five temperate tree species
  publication-title: Tree Physiol
  doi: 10.1093/treephys/tpw020
– volume: 43
  start-page: 248
  year: 2023
  ident: 2023121211062321100_ref6
  article-title: Bark and sapwood water storage and the atypical pattern of recharge and discharge of water reservoirs indicate low vulnerability to drought in Araucaria araucana
  publication-title: Tree Physiol
  doi: 10.1093/treephys/tpac113
– volume: 4
  start-page: e002
  year: 2017
  ident: 2023121211062321100_ref15
  article-title: Fitplc - an R package to fit hydraulic vulnerability curves
  publication-title: J Plant Hydraul
  doi: 10.20870/jph.2017.e002
– volume: 57
  start-page: 717
  year: 2003
  ident: 2023121211062321100_ref3
  article-title: Testing for phylogenetic signal in comparative data: behavioral traits are more labile
  publication-title: Evolution
– volume: 218
  start-page: 1015
  year: 2018
  ident: 2023121211062321100_ref44
  article-title: Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species
  publication-title: New Phytol
  doi: 10.1111/nph.15058
– volume: 25
  start-page: 457
  year: 2005
  ident: 2023121211062321100_ref4
  article-title: Water storage capacitance and xylem tension in isolated branches of temperate and tropical trees
  publication-title: Tree Physiol
  doi: 10.1093/treephys/25.4.457
– volume: 182
  start-page: 541
  year: 2009
  ident: 2023121211062321100_ref35
  article-title: Hierarchical statistical modeling of xylem vulnerability to cavitation
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2008.02760.x
– volume: 174
  start-page: 787
  year: 2007
  ident: 2023121211062321100_ref42
  article-title: Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2007.02061.x
– volume: 42
  start-page: 145
  year: 2021
  ident: 2023121211062321100_ref61
  article-title: Higher water and nutrient use efficiencies in savanna than in rainforest lianas result in no difference in photosynthesis
  publication-title: Tree Physiol
  doi: 10.1093/treephys/tpab099
– volume: 37
  start-page: 1171
  year: 2014
  ident: 2023121211062321100_ref31
  article-title: The dynamic pipeline: hydraulic capacitance and xylem hydraulic safety in four tall conifer species
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.12225
– volume: 7
  start-page: 2075
  year: 2016
  ident: 2023121211062321100_ref60
  article-title: Divergent hydraulic safety strategies in three co-occurring Anacardiaceae tree species in a Chinese savanna
  publication-title: Front Plant Sci
– volume: 301
  start-page: 183
  year: 2003
  ident: 2023121211062321100_ref37
  article-title: Biodiversity meets the atmosphere: a global view of forest canopies
  publication-title: Science
  doi: 10.1126/science.1084507
– volume: 36
  start-page: 149
  year: 2013
  ident: 2023121211062321100_ref62
  article-title: Midday stomatal conductance is more related to stem rather than leaf water status in subtropical deciduous and evergreen broadleaf trees
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2012.02563.x
– volume: 39
  start-page: 1713
  year: 2019
  ident: 2023121211062321100_ref59
  article-title: Fully exposed canopy tree and liana branches in a tropical forest differ in mechanical traits but are similar in hydraulic traits
  publication-title: Tree Physiol
  doi: 10.1093/treephys/tpz070
– volume: 209
  start-page: 1553
  year: 2016
  ident: 2023121211062321100_ref33
  article-title: A global analysis of parenchyma tissue fractions in secondary xylem of seed plants
  publication-title: New Phytol
  doi: 10.1111/nph.13737
– volume: 43
  start-page: 3048
  year: 2020
  ident: 2023121211062321100_ref64
  article-title: Wood day capacitance is related to water content, wood density, and anatomy across 30 temperate tree species
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.13891
– volume: 24
  start-page: 2350
  year: 2021
  ident: 2023121211062321100_ref12
  article-title: Hydraulic prediction of drought-induced plant dieback and top-kill depends on leaf habit and growth form
  publication-title: Ecol Lett
  doi: 10.1111/ele.13856
– volume: 229
  start-page: 1467
  year: 2021
  ident: 2023121211062321100_ref1
  article-title: Increasing axial parenchyma fraction in the Malagasy Magnoliids facilitated the co-optimisation of hydraulic efficiency and safety
  publication-title: New Phytol
  doi: 10.1111/nph.16969
– volume: 43
  start-page: 965
  year: 2020
  ident: 2023121211062321100_ref22
  article-title: Wood allocation trade-offs between fiber wall, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.13687
– volume: 23
  start-page: 237
  year: 2003
  ident: 2023121211062321100_ref39
  article-title: Reliance on stored water increases with tree size in three species in the Pacific northwest
  publication-title: Tree Physiol
  doi: 10.1093/treephys/23.4.237
– volume: 38
  start-page: 306
  year: 2006
  ident: 2023121211062321100_ref8
  article-title: Tropical forests of Xishuangbanna, China
  publication-title: Biotropica
  doi: 10.1111/j.1744-7429.2006.00146.x
– start-page: 341
  volume-title: Size- and age-related changes in tree structure and function
  year: 2011
  ident: 2023121211062321100_ref47
  doi: 10.1007/978-94-007-1242-3_13
– volume: 32
  start-page: 438
  year: 2017
  ident: 2023121211062321100_ref34
  article-title: Forests and their canopies: achievements and horizons in canopy science
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2017.02.020
– volume: 167
  start-page: 963
  year: 2015
  ident: 2023121211062321100_ref38
  article-title: Phloem as capacitor: radial transfer of water into xylem of tree stems occurs via symplastic transport in ray parenchyma
  publication-title: Plant Physiol
  doi: 10.1104/pp.114.254581
– volume: 91
  start-page: 419
  year: 2003
  ident: 2023121211062321100_ref56
  article-title: Refilling of a hydraulically isolated embolized xylem vessel: model calculations
  publication-title: Ann Bot
  doi: 10.1093/aob/mcg022
– volume: 40
  start-page: 19
  year: 1989
  ident: 2023121211062321100_ref53
  article-title: Vulnerability of xylem to cavitation and embolism
  publication-title: Annu Rev Plant Physiol
  doi: 10.1146/annurev.pp.40.060189.000315
– volume: 167
  start-page: 40
  year: 2015
  ident: 2023121211062321100_ref52a
  article-title: Direct X-Ray Microtomography Observation Confirms the Induction of Embolism upon Xylem Cutting under Tension
  publication-title: Plant Physiol
  doi: 10.1104/pp.114.249706
– volume: 229
  start-page: 3053
  year: 2021
  ident: 2023121211062321100_ref30
  article-title: Wood density predicts mortality threshold for diverse trees
  publication-title: New Phytol
  doi: 10.1111/nph.17117
– volume: 305
  start-page: 5
  year: 2007
  ident: 2023121211062321100_ref7
  article-title: Using branch and basal trunk sap flow measurements to estimate whole-plant water capacitance: a caution
  publication-title: Plant Soil
  doi: 10.1007/s11104-007-9378-2
– volume: 41
  start-page: 403
  year: 2021
  ident: 2023121211062321100_ref23
  article-title: Trade-offs between xylem water and carbohydrate storage among 24 coexisting subtropical understory shrub species spanning a spectrum of isohydry
  publication-title: Tree Physiol
  doi: 10.1093/treephys/tpaa138
– volume: 15
  start-page: 1731
  year: 2010
  ident: 2023121211062321100_ref25
  article-title: Water flow and hydraulic characteristics of Japanese red pine and oak trees
  publication-title: Hydrol Process
  doi: 10.1002/hyp.236
– volume: 9
  start-page: 676
  year: 2012
  ident: 2023121211062321100_ref45
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2019
– volume: 107
  start-page: 953
  year: 2011
  ident: 2023121211062321100_ref43
  article-title: Anatomical features associated with water transport in imperforate tracheary elements of vessel-bearing angiosperms
  publication-title: Ann Bot
  doi: 10.1093/aob/mcr042
– volume: 5
  start-page: 1
  year: 2013
  ident: 2023121211062321100_ref63
  article-title: Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms
  publication-title: AoB Plants
  doi: 10.1093/aobpla/plt046
– volume: 9
  start-page: 11
  year: 2013
  ident: 2023121211062321100_ref52
  article-title: Visualizing water-filled versus embolized status of xylem conduits by desktop x-ray microtomography
  publication-title: Plant Methods
  doi: 10.1186/1746-4811-9-11
– volume: 23
  start-page: 658
  year: 2009
  ident: 2023121211062321100_ref58
  article-title: Stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies and plant growth rates across dipterocarp species
  publication-title: Funct Ecol
  doi: 10.1111/j.1365-2435.2009.01552.x
– volume: 21
  start-page: 397
  year: 1998
  ident: 2023121211062321100_ref18
  article-title: Stem water storage and diurnal patterns of water use in tropical forest canopy trees
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.1998.00273.x
– volume: 30
  start-page: 236
  year: 2007
  ident: 2023121211062321100_ref46
  article-title: Biophysical properties and functional significance of stem water storage tissues in neotropical savanna trees
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2006.01623.x
– volume: 31
  start-page: 83
  year: 2004
  ident: 2023121211062321100_ref50
  article-title: An experimental system for analysis of the dynamic sap-flow characteristics in young trees: results of a beech tree
  publication-title: Funct Plant Biol
  doi: 10.1071/FP03150
– start-page: 307
  volume-title: Vascular transport in plants
  year: 2005
  ident: 2023121211062321100_ref17
  doi: 10.1016/B978-012088457-5/50017-4
– volume: 28
  start-page: 529
  year: 2008
  ident: 2023121211062321100_ref51
  article-title: Persisting soil drought reduces leaf specific conductivity in scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens)
  publication-title: Tree Physiol
  doi: 10.1093/treephys/28.4.529
SSID ssj0015889
Score 2.4409876
Snippet Abstract Water stored in trunk sapwood is vital for the canopy to maintain its physiological function under high transpiration demands. Little is known...
Water stored in trunk sapwood is vital for the canopy to maintain its physiological function under high transpiration demands. Little is known regarding the...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2109
SubjectTerms Embolism
Photosynthesis - physiology
Plant Leaves - physiology
Trees - physiology
Water - physiology
Xylem - physiology
Title Hydraulic traits and photosynthesis are coordinated with trunk sapwood capacitance in tropical tree species
URI https://www.ncbi.nlm.nih.gov/pubmed/37672225
https://www.proquest.com/docview/2861643862
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FFiEuCMorvLRIvaDIxPauX8cGqKIIuNBK7cla27vCFNluYh_Sf8E_Zma9NjYE1HKxrJU9ynq-zM57CDnMQi5VGniW8pi0eKZsK5HCtXylUj_lPBG6ldKnz_7ylK_OvLPJ5Mcga6mpk7fp1c66kv_hKqwBX7FK9gac7YnCAtwDf-EKHIbrtXi83GZr0WCbapz0ULftlquvZV1utgVodthsRGd2lWBi5oWou1zzet0UF7ONqDDjZpbCgZnmtS4ewLTHdVlp1mHAeoalmF2i4bfufIN17RIZ--Slzgw4F-Yw1EkDrVQ7F9aq6WH4Jc-y_FKHRYQSfXZw77te5aK0PpqW4MYj4TLM7nAGTkrQSEILzMxWFModa0bytg2aOoS5IzlqR4MzGc5Xe6e8b3th4efAXeNtJTIzR3fcXPu3Q69PRWyD8CzuaMSGwi2y74LlAaJz_2jxfnHch6a8UM9V7DdkYt9AY97RmBsaI11nVD_5hxmj1ZmT--SesUPoUQuqB2QiiwNye1ECCrYH5A5ObMUxgA_JRQ8y2oKMAsjoGGQUQEYHIKMIMqpBRg3I6ABkNC9oBzKKu6EGZI_I6fGHk3dLy0zosFLGvNryuS8dpexI6oov1w4ipZgQoIVKX0VZGjp2Fikh0HIIpcdVwlXkpZ5goJvxgD0me0VZyKeEeo5giadCngUhV8xJAoEgcMMMbRIRTMm8-5ZxatrX47a_x3_j4JS86d-o2tYt_3j2ENhzjcded_yLQQxjbE0Usmw2sRv6Dij3oe9OyZOWsT01bJiEbpVnN_hBz8ndX3-tF2QPWCZfgvpbJ68MIH8CmwC7_w
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydraulic+traits+and+photosynthesis+are+coordinated+with+trunk+sapwood+capacitance+in+tropical+tree+species&rft.jtitle=Tree+physiology&rft.au=Wei%2C+Yang&rft.au=Chen%2C+Ya-Jun&rft.au=Siddiq%2C+Zafar&rft.au=Zhang%2C+Jiao-Lin&rft.date=2023-12-12&rft.issn=1758-4469&rft.eissn=1758-4469&rft.volume=43&rft.issue=12&rft.spage=2109&rft.epage=2120&rft_id=info:doi/10.1093%2Ftreephys%2Ftpad107&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_treephys_tpad107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-4469&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-4469&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-4469&client=summon