Hydraulic traits and photosynthesis are coordinated with trunk sapwood capacitance in tropical tree species
Abstract Water stored in trunk sapwood is vital for the canopy to maintain its physiological function under high transpiration demands. Little is known regarding the anatomical properties that contribute to the hydraulic capacitance of tree trunks and whether trunk capacitance is correlated with the...
Saved in:
Published in | Tree physiology Vol. 43; no. 12; pp. 2109 - 2120 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Canada
Oxford University Press
12.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Water stored in trunk sapwood is vital for the canopy to maintain its physiological function under high transpiration demands. Little is known regarding the anatomical properties that contribute to the hydraulic capacitance of tree trunks and whether trunk capacitance is correlated with the hydraulic and gas exchange traits of canopy branches. We examined sapwood capacitance, xylem anatomical characteristics of tree trunks, embolism resistance, the minimal xylem water potential of canopy branches, leaf photosynthesis and stomatal conductance in 22 species from a tropical seasonal rainforest and savanna. The results showed that the mean trunk sapwood capacitance did not differ between the two biomes. Capacitance was closely related to the fiber lumen fraction and fiber wall reinforcement and not to the axial and ray parenchyma fractions. Additionally, it was positively correlated with the theoretical hydraulic conductivity of a trunk and the specific hydraulic conductivity of branches, and showed a trade-off with branch embolism resistance. Species with a high trunk sapwood capacitance maintained less negative canopy water potentials in the dry season, but higher leaf photosynthetic rates and stomatal conductance in the wet season. This study provides a functional link among trunk sapwood capacitance, xylem anatomy, canopy hydraulics and photosynthesis in tropical trees. |
---|---|
AbstractList | Abstract
Water stored in trunk sapwood is vital for the canopy to maintain its physiological function under high transpiration demands. Little is known regarding the anatomical properties that contribute to the hydraulic capacitance of tree trunks and whether trunk capacitance is correlated with the hydraulic and gas exchange traits of canopy branches. We examined sapwood capacitance, xylem anatomical characteristics of tree trunks, embolism resistance, the minimal xylem water potential of canopy branches, leaf photosynthesis and stomatal conductance in 22 species from a tropical seasonal rainforest and savanna. The results showed that the mean trunk sapwood capacitance did not differ between the two biomes. Capacitance was closely related to the fiber lumen fraction and fiber wall reinforcement and not to the axial and ray parenchyma fractions. Additionally, it was positively correlated with the theoretical hydraulic conductivity of a trunk and the specific hydraulic conductivity of branches, and showed a trade-off with branch embolism resistance. Species with a high trunk sapwood capacitance maintained less negative canopy water potentials in the dry season, but higher leaf photosynthetic rates and stomatal conductance in the wet season. This study provides a functional link among trunk sapwood capacitance, xylem anatomy, canopy hydraulics and photosynthesis in tropical trees. Water stored in trunk sapwood is vital for the canopy to maintain its physiological function under high transpiration demands. Little is known regarding the anatomical properties that contribute to the hydraulic capacitance of tree trunks and whether trunk capacitance is correlated with the hydraulic and gas exchange traits of canopy branches. We examined sapwood capacitance, xylem anatomical characteristics of tree trunks, embolism resistance, the minimal xylem water potential of canopy branches, leaf photosynthesis and stomatal conductance in 22 species from a tropical seasonal rainforest and savanna. The results showed that the mean trunk sapwood capacitance did not differ between the two biomes. Capacitance was closely related to the fiber lumen fraction and fiber wall reinforcement and not to the axial and ray parenchyma fractions. Additionally, it was positively correlated with the theoretical hydraulic conductivity of a trunk and the specific hydraulic conductivity of branches, and showed a trade-off with branch embolism resistance. Species with a high trunk sapwood capacitance maintained less negative canopy water potentials in the dry season, but higher leaf photosynthetic rates and stomatal conductance in the wet season. This study provides a functional link among trunk sapwood capacitance, xylem anatomy, canopy hydraulics and photosynthesis in tropical trees. Water stored in trunk sapwood is vital for the canopy to maintain its physiological function under high transpiration demands. Little is known regarding the anatomical properties that contribute to the hydraulic capacitance of tree trunks and whether trunk capacitance is correlated with the hydraulic and gas exchange traits of canopy branches. We examined sapwood capacitance, xylem anatomical characteristics of tree trunks, embolism resistance, the minimal xylem water potential of canopy branches, leaf photosynthesis and stomatal conductance in 22 species from a tropical seasonal rainforest and savanna. The results showed that the mean trunk sapwood capacitance did not differ between the two biomes. Capacitance was closely related to the fiber lumen fraction and fiber wall reinforcement and not to the axial and ray parenchyma fractions. Additionally, it was positively correlated with the theoretical hydraulic conductivity of a trunk and the specific hydraulic conductivity of branches, and showed a trade-off with branch embolism resistance. Species with a high trunk sapwood capacitance maintained less negative canopy water potentials in the dry season, but higher leaf photosynthetic rates and stomatal conductance in the wet season. This study provides a functional link among trunk sapwood capacitance, xylem anatomy, canopy hydraulics and photosynthesis in tropical trees.Water stored in trunk sapwood is vital for the canopy to maintain its physiological function under high transpiration demands. Little is known regarding the anatomical properties that contribute to the hydraulic capacitance of tree trunks and whether trunk capacitance is correlated with the hydraulic and gas exchange traits of canopy branches. We examined sapwood capacitance, xylem anatomical characteristics of tree trunks, embolism resistance, the minimal xylem water potential of canopy branches, leaf photosynthesis and stomatal conductance in 22 species from a tropical seasonal rainforest and savanna. The results showed that the mean trunk sapwood capacitance did not differ between the two biomes. Capacitance was closely related to the fiber lumen fraction and fiber wall reinforcement and not to the axial and ray parenchyma fractions. Additionally, it was positively correlated with the theoretical hydraulic conductivity of a trunk and the specific hydraulic conductivity of branches, and showed a trade-off with branch embolism resistance. Species with a high trunk sapwood capacitance maintained less negative canopy water potentials in the dry season, but higher leaf photosynthetic rates and stomatal conductance in the wet season. This study provides a functional link among trunk sapwood capacitance, xylem anatomy, canopy hydraulics and photosynthesis in tropical trees. |
Author | Jansen, Steven Cao, Kun-Fang Zhang, Jiao-Lin Wei, Yang Zhang, Shu-Bin Siddiq, Zafar Chen, Ya-Jun |
Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0002-9568-5780 surname: Wei fullname: Wei, Yang email: wellyang2015@163.com – sequence: 2 givenname: Ya-Jun orcidid: 0000-0001-5753-5565 surname: Chen fullname: Chen, Ya-Jun email: chenyj@xtbg.org.cn – sequence: 3 givenname: Zafar surname: Siddiq fullname: Siddiq, Zafar email: zafareco@outlook.com – sequence: 4 givenname: Jiao-Lin surname: Zhang fullname: Zhang, Jiao-Lin – sequence: 5 givenname: Shu-Bin orcidid: 0000-0002-8874-9256 surname: Zhang fullname: Zhang, Shu-Bin email: zhangshubin@xtbg.ac.cn – sequence: 6 givenname: Steven surname: Jansen fullname: Jansen, Steven email: steven.jansen@uni-ulm.de – sequence: 7 givenname: Kun-Fang orcidid: 0000-0002-2253-7189 surname: Cao fullname: Cao, Kun-Fang email: kunfangcao@gxu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37672225$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rIzEMhk1padKPe0-LjwslW3tm7Jk5LqEfC4W9bM9GtWXidmJ7bQ8h_74TkkDpYfckIT2vkPRekFMfPBJyw9kPzvr6riTEuNrmuxLBcNaekDlvRbdoGtmffspn5CLnN8a46Lr-nMzqVrZVVYk5eX_amgTj4DQtCVzJFLyhcRVKyFtfVpjdVEpIdQjJOA8FDd24sprw0b_TDHETgqEaImhXwGukzk_NEJ2Gge42pDmidpivyJmFIeP1IV6Sl4f7P8unxfPvx1_Ln88LXdeiLGQjkVvLeqwYY7JibW9tDSCmirS90R1nprcAjDWiQ9HY18b2QguoEU3T1pfk-35uTOHviLmotcsahwE8hjGrqpNcNnUnqwn9dkDH1zUaFZNbQ9qq44MmQO4BnULOCa3aXVlc8Lt3DYoztXNCHZ1QBycmIfsiPM7-h-R2Lwlj_D_9Abd0onw |
CitedBy_id | crossref_primary_10_1007_s11104_025_07217_9 crossref_primary_10_1111_ecog_07620 crossref_primary_10_1002_ajb2_16290 crossref_primary_10_1093_treephys_tpae017 crossref_primary_10_3390_life14070834 |
Cites_doi | 10.1111/j.1365-3040.1992.tb00990.x 10.1111/j.1469-8137.2010.03444.x 10.1046/j.1365-3040.2000.00647.x 10.1111/j.1469-8137.2005.01528.x 10.1093/treephys/tpaa106 10.1111/j.1469-8137.2009.03092.x 10.1093/treephys/27.2.181 10.1111/j.1461-0248.2009.01285.x 10.18637/jss.v025.i01 10.1046/j.1365-3040.2003.01039.x 10.1093/treephys/tpu087 10.1016/j.plaphy.2019.04.031 10.1104/pp.15.00223 10.1093/treephys/tpad058 10.1051/forest:2002060 10.1111/1365-2435.12518 10.1111/pce.12139 10.1111/nph.16942 10.1093/treephys/tpv103 10.1093/treephys/tpz064 10.1093/jxb/ert090 10.1007/BF02411394 10.1016/0168-1923(91)90005-B 10.1093/treephys/tpw020 10.1093/treephys/tpac113 10.20870/jph.2017.e002 10.1111/nph.15058 10.1093/treephys/25.4.457 10.1111/j.1469-8137.2008.02760.x 10.1111/j.1469-8137.2007.02061.x 10.1093/treephys/tpab099 10.1111/pce.12225 10.1126/science.1084507 10.1111/j.1365-3040.2012.02563.x 10.1093/treephys/tpz070 10.1111/nph.13737 10.1111/pce.13891 10.1111/ele.13856 10.1111/nph.16969 10.1111/pce.13687 10.1093/treephys/23.4.237 10.1111/j.1744-7429.2006.00146.x 10.1007/978-94-007-1242-3_13 10.1016/j.tree.2017.02.020 10.1104/pp.114.254581 10.1093/aob/mcg022 10.1146/annurev.pp.40.060189.000315 10.1104/pp.114.249706 10.1111/nph.17117 10.1007/s11104-007-9378-2 10.1093/treephys/tpaa138 10.1002/hyp.236 10.1038/nmeth.2019 10.1093/aob/mcr042 10.1093/aobpla/plt046 10.1186/1746-4811-9-11 10.1111/j.1365-2435.2009.01552.x 10.1046/j.1365-3040.1998.00273.x 10.1111/j.1365-3040.2006.01623.x 10.1071/FP03150 10.1016/B978-012088457-5/50017-4 10.1093/treephys/28.4.529 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2023 The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2023 – notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1093/treephys/tpad107 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Forestry Botany |
EISSN | 1758-4469 |
EndPage | 2120 |
ExternalDocumentID | 37672225 10_1093_treephys_tpad107 10.1093/treephys/tpad107 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 31861133008 – fundername: Deutsche Forschungsgemeinschaft grantid: 410768178 |
GroupedDBID | --- .2P .I3 0R~ 123 1TH 4.4 48X 53G 5VS 5WD 70D AAHBH AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT ABDBF ABDFA ABEJV ABEUO ABGNP ABIME ABIXL ABJNI ABMNT ABNKS ABPIB ABPQP ABPTD ABQLI ABSMQ ABTAH ABVGC ABWST ABXVV ABXZS ABZBJ ABZEO ACFRR ACGFS ACUFI ACUHS ACUTJ ACVCV ACZBC ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFYAG AGINJ AGKEF AGKRT AGMDO AGQXC AGSYK AHXPO AIJHB AJDVS AJEEA AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APJGH APWMN AQDSO ARIXL ASAOO ATDFG ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC C45 CDBKE CXTWN CZ4 DAKXR DFGAJ DIK DILTD D~K E3Z EBD EBS EDH EE~ EJD ELUNK EMOBN ESX F5P F9B FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KBUDW KOP KSI KSN M49 MBTAY N9A NGC NLBLG NOMLY NU- NVLIB O0~ O9- OAWHX OBOKY ODMLO OJQWA OJZSN OVD OWPYF O~Y PAFKI PEELM Q1. Q5Y RD5 ROX ROZ RSU RUSNO RW1 RXO SJN SV3 TCN TEORI TLC TR2 TUS W8F WHG X7H Y6R YAYTL YKOAZ YXANX ZY4 ~91 ~KM AAYXX AGORE AHGBF AJBYB CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c335t-646e1ff09e200062079ff3aa509e6f9dc810d9faa00458e54fb4f95c5a3eed473 |
ISSN | 1758-4469 |
IngestDate | Fri Jul 11 15:50:54 EDT 2025 Mon Jul 21 06:05:36 EDT 2025 Tue Jul 01 03:58:53 EDT 2025 Thu Apr 24 22:57:39 EDT 2025 Wed Apr 02 07:03:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | hydraulic safety fiber lumen embolism resistance fiber wall reinforcement photosynthetic rate |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights) https://academic.oup.com/pages/standard-publication-reuse-rights The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c335t-646e1ff09e200062079ff3aa509e6f9dc810d9faa00458e54fb4f95c5a3eed473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5753-5565 0000-0002-2253-7189 0000-0002-8874-9256 0000-0002-9568-5780 |
PMID | 37672225 |
PQID | 2861643862 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2861643862 pubmed_primary_37672225 crossref_citationtrail_10_1093_treephys_tpad107 crossref_primary_10_1093_treephys_tpad107 oup_primary_10_1093_treephys_tpad107 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-12 |
PublicationDateYYYYMMDD | 2023-12-12 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Canada |
PublicationPlace_xml | – name: Canada |
PublicationTitle | Tree physiology |
PublicationTitleAlternate | Tree Physiol |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Tyree (2023121211062321100_ref55) 2002; 59 Borchert (2023121211062321100_ref4) 2005; 25 Ozanne (2023121211062321100_ref37) 2003; 301 Scholz (2023121211062321100_ref47) 2011 Chen (2023121211062321100_ref12) 2021; 24 Pratt (2023121211062321100_ref42) 2007; 174 Pfautsch (2023121211062321100_ref38) 2015; 167 Ziemińska (2023121211062321100_ref64) 2020; 43 Meinzer (2023121211062321100_ref32) 2003; 26 Kobayashi (2023121211062321100_ref25) 2010; 15 Santiago (2023121211062321100_ref44) 2018; 218 Čermák (2023121211062321100_ref9) 2007; 27 Gartner (2023121211062321100_ref17) 2005 Jupa (2023121211062321100_ref24) 2016; 36 Tyree (2023121211062321100_ref54) 1990; 182 Ziemińska (2023121211062321100_ref63) 2013; 5 Bucci (2023121211062321100_ref6) 2023; 43 Blomberg (2023121211062321100_ref3) 2003; 57 Goldstein (2023121211062321100_ref18) 1998; 21 Holbrook (2023121211062321100_ref20) 1992; 15 Oliva Carrasco (2023121211062321100_ref36) 2014; 35 Zhang (2023121211062321100_ref59) 2019; 39 Hunt (2023121211062321100_ref21) 1991; 54 Poorter (2023121211062321100_ref41) 2010; 185 Ogle (2023121211062321100_ref35) 2009; 182 Pivovaroff (2023121211062321100_ref40) 2015; 30 Tyree (2023121211062321100_ref53) 1989; 40 Scholz (2023121211062321100_ref46) 2007; 30 Chave (2023121211062321100_ref10) 2009; 12 Gao (2023121211062321100_ref16) 2019; 39 Cao (2023121211062321100_ref8) 2006; 38 Liang (2023121211062321100_ref30) 2021; 229 Brodribb (2023121211062321100_ref5) 2000; 23 Levionnois (2023121211062321100_ref29) 2021; 229 McCulloh (2023121211062321100_ref31) 2014; 37 Schindelin (2023121211062321100_ref45) 2012; 9 Sterck (2023121211062321100_ref51) 2008; 28 Zhang (2023121211062321100_ref58) 2009; 23 Duursma (2023121211062321100_ref15) 2017; 4 Zhang (2023121211062321100_ref62) 2013; 36 Siddiq (2023121211062321100_ref48) 2019; 139 Song (2023121211062321100_ref49) 2023; 43 Wheeler (2023121211062321100_ref57) 2013; 36 Morris (2023121211062321100_ref33) 2016; 209 Zhang (2023121211062321100_ref60) 2016; 7 Sano (2023121211062321100_ref43) 2011; 107 Lê (2023121211062321100_ref28) 2008; 25 Burgess (2023121211062321100_ref7) 2007; 305 Sperry (2023121211062321100_ref50a) 1988; 11 Suuronen (2023121211062321100_ref52) 2013; 9 Berry (2023121211062321100_ref2) 2005; 168 Janssen (2023121211062321100_ref22) 2020; 43 Zhang (2023121211062321100_ref61) 2021; 42 Chen (2023121211062321100_ref11) 2016; 36 Torres-Ruiz (2023121211062321100_ref52a) 2015; 167 Jiang (2023121211062321100_ref23) 2021; 41 Nakamura (2023121211062321100_ref34) 2017; 32 Vesala (2023121211062321100_ref56) 2003; 91 De Guzman (2023121211062321100_ref14) 2021; 41 Hao (2023121211062321100_ref19) 2013; 64 Larter (2023121211062321100_ref27) 2015; 168 Steppe (2023121211062321100_ref50) 2004; 31 Aritsara (2023121211062321100_ref1) 2021; 229 Cruiziat (2023121211062321100_ref13) 2002; 59 Kraft (2023121211062321100_ref26) 2010; 188 Phillips (2023121211062321100_ref39) 2003; 23 |
References_xml | – volume: 15 start-page: 401 year: 1992 ident: 2023121211062321100_ref20 article-title: Water balance in the arborescent palm, Sabal palmetto. II. Transpiration and stem water storage publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.1992.tb00990.x – volume: 188 start-page: 1124 year: 2010 ident: 2023121211062321100_ref26 article-title: The relationship between wood density and mortality in a global tropical forest data set publication-title: New Phytol doi: 10.1111/j.1469-8137.2010.03444.x – volume: 23 start-page: 1381 year: 2000 ident: 2023121211062321100_ref5 article-title: Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.2000.00647.x – volume: 168 start-page: 25 year: 2005 ident: 2023121211062321100_ref2 article-title: Plant-water relations and the fibre saturation point publication-title: New Phytol doi: 10.1111/j.1469-8137.2005.01528.x – volume: 41 start-page: 24 year: 2021 ident: 2023121211062321100_ref14 article-title: Hydraulic traits of Neotropical canopy liana and tree species across a broad range of wood density: implications for predicting drought mortality with models publication-title: Tree Physiol doi: 10.1093/treephys/tpaa106 – volume: 185 start-page: 481 year: 2010 ident: 2023121211062321100_ref41 article-title: The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species publication-title: New Phytol doi: 10.1111/j.1469-8137.2009.03092.x – volume: 27 start-page: 181 year: 2007 ident: 2023121211062321100_ref9 article-title: Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees publication-title: Tree Physiol doi: 10.1093/treephys/27.2.181 – volume: 12 start-page: 351 year: 2009 ident: 2023121211062321100_ref10 article-title: Towards a worldwide wood economics spectrum publication-title: Ecol Lett doi: 10.1111/j.1461-0248.2009.01285.x – volume: 25 start-page: 1 year: 2008 ident: 2023121211062321100_ref28 article-title: FactoMineR: a package for multivariate analysis publication-title: J Stat Softw doi: 10.18637/jss.v025.i01 – volume: 26 start-page: 1147 year: 2003 ident: 2023121211062321100_ref32 article-title: Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.2003.01039.x – volume: 35 start-page: 354 year: 2014 ident: 2023121211062321100_ref36 article-title: Water storage dynamics in the main stem of subtropical tree species differing in wood density, growth rate and life history traits publication-title: Tree Physiol doi: 10.1093/treephys/tpu087 – volume: 139 start-page: 724 year: 2019 ident: 2023121211062321100_ref48 article-title: Canopy water status and photosynthesis of tropical trees are associated with trunk sapwood hydraulic properties publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2019.04.031 – volume: 59 start-page: 475 year: 2002 ident: 2023121211062321100_ref55 article-title: Xylem structure and the ascent of sap publication-title: Q Rev Biol – volume: 168 start-page: 804 year: 2015 ident: 2023121211062321100_ref27 article-title: Extreme aridity pushes trees to their physical limits publication-title: Plant Physiol doi: 10.1104/pp.15.00223 – volume: 43 start-page: 1319 year: 2023 ident: 2023121211062321100_ref49 article-title: Can leaf drought tolerance predict species abundance and its changes in tropical-subtropical forests? publication-title: Tree Physiol doi: 10.1093/treephys/tpad058 – volume: 59 start-page: 723 year: 2002 ident: 2023121211062321100_ref13 article-title: Hydraulic architecture of trees: main concepts and results publication-title: Ann For Sci doi: 10.1051/forest:2002060 – volume: 30 start-page: 517 year: 2015 ident: 2023121211062321100_ref40 article-title: Multiple strategies for drought survival among woody plant species publication-title: Functi Ecol doi: 10.1111/1365-2435.12518 – volume: 11 start-page: 35 year: 1988 ident: 2023121211062321100_ref50a article-title: A method for measuring hydraulic conductivity and embolism in xylem publication-title: Plant CellEnviron – volume: 36 start-page: 1938 year: 2013 ident: 2023121211062321100_ref57 article-title: Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism publication-title: Plant Cell Environ doi: 10.1111/pce.12139 – volume: 229 start-page: 1453 year: 2021 ident: 2023121211062321100_ref29 article-title: Linking drought-induced xylem embolism resistance to wood anatomical traits in Neotropical trees publication-title: New Phytol doi: 10.1111/nph.16942 – volume: 36 start-page: 736 year: 2016 ident: 2023121211062321100_ref11 article-title: Time lags between crown and basal sap flows in tropical lianas and co-occurring trees publication-title: Tree Physiol doi: 10.1093/treephys/tpv103 – volume: 39 start-page: 1783 year: 2019 ident: 2023121211062321100_ref16 article-title: Vessel-length determination using silicone and air injection: Are there artifacts? publication-title: Tree Physiol doi: 10.1093/treephys/tpz064 – volume: 64 start-page: 2321 year: 2013 ident: 2023121211062321100_ref19 article-title: Investigating xylem embolism formation, refilling and water storage in tree trunks using frequency domain reflectometry publication-title: J Exp Bot doi: 10.1093/jxb/ert090 – volume: 182 start-page: 420 year: 1990 ident: 2023121211062321100_ref54 article-title: Water-storage capacity of Thuja, Tsuga and Acer stems measured by dehydration isotherms publication-title: Planta doi: 10.1007/BF02411394 – volume: 54 start-page: 169 year: 1991 ident: 2023121211062321100_ref21 article-title: Extrapolating plant water flow resistances and capacitances to regional scales publication-title: Agric For Meteorol doi: 10.1016/0168-1923(91)90005-B – volume: 36 start-page: 756 year: 2016 ident: 2023121211062321100_ref24 article-title: Linking xylem water storage with anatomical parameters in five temperate tree species publication-title: Tree Physiol doi: 10.1093/treephys/tpw020 – volume: 43 start-page: 248 year: 2023 ident: 2023121211062321100_ref6 article-title: Bark and sapwood water storage and the atypical pattern of recharge and discharge of water reservoirs indicate low vulnerability to drought in Araucaria araucana publication-title: Tree Physiol doi: 10.1093/treephys/tpac113 – volume: 4 start-page: e002 year: 2017 ident: 2023121211062321100_ref15 article-title: Fitplc - an R package to fit hydraulic vulnerability curves publication-title: J Plant Hydraul doi: 10.20870/jph.2017.e002 – volume: 57 start-page: 717 year: 2003 ident: 2023121211062321100_ref3 article-title: Testing for phylogenetic signal in comparative data: behavioral traits are more labile publication-title: Evolution – volume: 218 start-page: 1015 year: 2018 ident: 2023121211062321100_ref44 article-title: Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species publication-title: New Phytol doi: 10.1111/nph.15058 – volume: 25 start-page: 457 year: 2005 ident: 2023121211062321100_ref4 article-title: Water storage capacitance and xylem tension in isolated branches of temperate and tropical trees publication-title: Tree Physiol doi: 10.1093/treephys/25.4.457 – volume: 182 start-page: 541 year: 2009 ident: 2023121211062321100_ref35 article-title: Hierarchical statistical modeling of xylem vulnerability to cavitation publication-title: New Phytol doi: 10.1111/j.1469-8137.2008.02760.x – volume: 174 start-page: 787 year: 2007 ident: 2023121211062321100_ref42 article-title: Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral publication-title: New Phytol doi: 10.1111/j.1469-8137.2007.02061.x – volume: 42 start-page: 145 year: 2021 ident: 2023121211062321100_ref61 article-title: Higher water and nutrient use efficiencies in savanna than in rainforest lianas result in no difference in photosynthesis publication-title: Tree Physiol doi: 10.1093/treephys/tpab099 – volume: 37 start-page: 1171 year: 2014 ident: 2023121211062321100_ref31 article-title: The dynamic pipeline: hydraulic capacitance and xylem hydraulic safety in four tall conifer species publication-title: Plant Cell Environ doi: 10.1111/pce.12225 – volume: 7 start-page: 2075 year: 2016 ident: 2023121211062321100_ref60 article-title: Divergent hydraulic safety strategies in three co-occurring Anacardiaceae tree species in a Chinese savanna publication-title: Front Plant Sci – volume: 301 start-page: 183 year: 2003 ident: 2023121211062321100_ref37 article-title: Biodiversity meets the atmosphere: a global view of forest canopies publication-title: Science doi: 10.1126/science.1084507 – volume: 36 start-page: 149 year: 2013 ident: 2023121211062321100_ref62 article-title: Midday stomatal conductance is more related to stem rather than leaf water status in subtropical deciduous and evergreen broadleaf trees publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2012.02563.x – volume: 39 start-page: 1713 year: 2019 ident: 2023121211062321100_ref59 article-title: Fully exposed canopy tree and liana branches in a tropical forest differ in mechanical traits but are similar in hydraulic traits publication-title: Tree Physiol doi: 10.1093/treephys/tpz070 – volume: 209 start-page: 1553 year: 2016 ident: 2023121211062321100_ref33 article-title: A global analysis of parenchyma tissue fractions in secondary xylem of seed plants publication-title: New Phytol doi: 10.1111/nph.13737 – volume: 43 start-page: 3048 year: 2020 ident: 2023121211062321100_ref64 article-title: Wood day capacitance is related to water content, wood density, and anatomy across 30 temperate tree species publication-title: Plant Cell Environ doi: 10.1111/pce.13891 – volume: 24 start-page: 2350 year: 2021 ident: 2023121211062321100_ref12 article-title: Hydraulic prediction of drought-induced plant dieback and top-kill depends on leaf habit and growth form publication-title: Ecol Lett doi: 10.1111/ele.13856 – volume: 229 start-page: 1467 year: 2021 ident: 2023121211062321100_ref1 article-title: Increasing axial parenchyma fraction in the Malagasy Magnoliids facilitated the co-optimisation of hydraulic efficiency and safety publication-title: New Phytol doi: 10.1111/nph.16969 – volume: 43 start-page: 965 year: 2020 ident: 2023121211062321100_ref22 article-title: Wood allocation trade-offs between fiber wall, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees publication-title: Plant Cell Environ doi: 10.1111/pce.13687 – volume: 23 start-page: 237 year: 2003 ident: 2023121211062321100_ref39 article-title: Reliance on stored water increases with tree size in three species in the Pacific northwest publication-title: Tree Physiol doi: 10.1093/treephys/23.4.237 – volume: 38 start-page: 306 year: 2006 ident: 2023121211062321100_ref8 article-title: Tropical forests of Xishuangbanna, China publication-title: Biotropica doi: 10.1111/j.1744-7429.2006.00146.x – start-page: 341 volume-title: Size- and age-related changes in tree structure and function year: 2011 ident: 2023121211062321100_ref47 doi: 10.1007/978-94-007-1242-3_13 – volume: 32 start-page: 438 year: 2017 ident: 2023121211062321100_ref34 article-title: Forests and their canopies: achievements and horizons in canopy science publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2017.02.020 – volume: 167 start-page: 963 year: 2015 ident: 2023121211062321100_ref38 article-title: Phloem as capacitor: radial transfer of water into xylem of tree stems occurs via symplastic transport in ray parenchyma publication-title: Plant Physiol doi: 10.1104/pp.114.254581 – volume: 91 start-page: 419 year: 2003 ident: 2023121211062321100_ref56 article-title: Refilling of a hydraulically isolated embolized xylem vessel: model calculations publication-title: Ann Bot doi: 10.1093/aob/mcg022 – volume: 40 start-page: 19 year: 1989 ident: 2023121211062321100_ref53 article-title: Vulnerability of xylem to cavitation and embolism publication-title: Annu Rev Plant Physiol doi: 10.1146/annurev.pp.40.060189.000315 – volume: 167 start-page: 40 year: 2015 ident: 2023121211062321100_ref52a article-title: Direct X-Ray Microtomography Observation Confirms the Induction of Embolism upon Xylem Cutting under Tension publication-title: Plant Physiol doi: 10.1104/pp.114.249706 – volume: 229 start-page: 3053 year: 2021 ident: 2023121211062321100_ref30 article-title: Wood density predicts mortality threshold for diverse trees publication-title: New Phytol doi: 10.1111/nph.17117 – volume: 305 start-page: 5 year: 2007 ident: 2023121211062321100_ref7 article-title: Using branch and basal trunk sap flow measurements to estimate whole-plant water capacitance: a caution publication-title: Plant Soil doi: 10.1007/s11104-007-9378-2 – volume: 41 start-page: 403 year: 2021 ident: 2023121211062321100_ref23 article-title: Trade-offs between xylem water and carbohydrate storage among 24 coexisting subtropical understory shrub species spanning a spectrum of isohydry publication-title: Tree Physiol doi: 10.1093/treephys/tpaa138 – volume: 15 start-page: 1731 year: 2010 ident: 2023121211062321100_ref25 article-title: Water flow and hydraulic characteristics of Japanese red pine and oak trees publication-title: Hydrol Process doi: 10.1002/hyp.236 – volume: 9 start-page: 676 year: 2012 ident: 2023121211062321100_ref45 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat Methods doi: 10.1038/nmeth.2019 – volume: 107 start-page: 953 year: 2011 ident: 2023121211062321100_ref43 article-title: Anatomical features associated with water transport in imperforate tracheary elements of vessel-bearing angiosperms publication-title: Ann Bot doi: 10.1093/aob/mcr042 – volume: 5 start-page: 1 year: 2013 ident: 2023121211062321100_ref63 article-title: Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms publication-title: AoB Plants doi: 10.1093/aobpla/plt046 – volume: 9 start-page: 11 year: 2013 ident: 2023121211062321100_ref52 article-title: Visualizing water-filled versus embolized status of xylem conduits by desktop x-ray microtomography publication-title: Plant Methods doi: 10.1186/1746-4811-9-11 – volume: 23 start-page: 658 year: 2009 ident: 2023121211062321100_ref58 article-title: Stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies and plant growth rates across dipterocarp species publication-title: Funct Ecol doi: 10.1111/j.1365-2435.2009.01552.x – volume: 21 start-page: 397 year: 1998 ident: 2023121211062321100_ref18 article-title: Stem water storage and diurnal patterns of water use in tropical forest canopy trees publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.1998.00273.x – volume: 30 start-page: 236 year: 2007 ident: 2023121211062321100_ref46 article-title: Biophysical properties and functional significance of stem water storage tissues in neotropical savanna trees publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2006.01623.x – volume: 31 start-page: 83 year: 2004 ident: 2023121211062321100_ref50 article-title: An experimental system for analysis of the dynamic sap-flow characteristics in young trees: results of a beech tree publication-title: Funct Plant Biol doi: 10.1071/FP03150 – start-page: 307 volume-title: Vascular transport in plants year: 2005 ident: 2023121211062321100_ref17 doi: 10.1016/B978-012088457-5/50017-4 – volume: 28 start-page: 529 year: 2008 ident: 2023121211062321100_ref51 article-title: Persisting soil drought reduces leaf specific conductivity in scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens) publication-title: Tree Physiol doi: 10.1093/treephys/28.4.529 |
SSID | ssj0015889 |
Score | 2.4409876 |
Snippet | Abstract
Water stored in trunk sapwood is vital for the canopy to maintain its physiological function under high transpiration demands. Little is known... Water stored in trunk sapwood is vital for the canopy to maintain its physiological function under high transpiration demands. Little is known regarding the... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2109 |
SubjectTerms | Embolism Photosynthesis - physiology Plant Leaves - physiology Trees - physiology Water - physiology Xylem - physiology |
Title | Hydraulic traits and photosynthesis are coordinated with trunk sapwood capacitance in tropical tree species |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37672225 https://www.proquest.com/docview/2861643862 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FFiEuCMorvLRIvaDIxPauX8cGqKIIuNBK7cla27vCFNluYh_Sf8E_Zma9NjYE1HKxrJU9ynq-zM57CDnMQi5VGniW8pi0eKZsK5HCtXylUj_lPBG6ldKnz_7ylK_OvLPJ5Mcga6mpk7fp1c66kv_hKqwBX7FK9gac7YnCAtwDf-EKHIbrtXi83GZr0WCbapz0ULftlquvZV1utgVodthsRGd2lWBi5oWou1zzet0UF7ONqDDjZpbCgZnmtS4ewLTHdVlp1mHAeoalmF2i4bfufIN17RIZ--Slzgw4F-Yw1EkDrVQ7F9aq6WH4Jc-y_FKHRYQSfXZw77te5aK0PpqW4MYj4TLM7nAGTkrQSEILzMxWFModa0bytg2aOoS5IzlqR4MzGc5Xe6e8b3th4efAXeNtJTIzR3fcXPu3Q69PRWyD8CzuaMSGwi2y74LlAaJz_2jxfnHch6a8UM9V7DdkYt9AY97RmBsaI11nVD_5hxmj1ZmT--SesUPoUQuqB2QiiwNye1ECCrYH5A5ObMUxgA_JRQ8y2oKMAsjoGGQUQEYHIKMIMqpBRg3I6ABkNC9oBzKKu6EGZI_I6fGHk3dLy0zosFLGvNryuS8dpexI6oov1w4ipZgQoIVKX0VZGjp2Fikh0HIIpcdVwlXkpZ5goJvxgD0me0VZyKeEeo5giadCngUhV8xJAoEgcMMMbRIRTMm8-5ZxatrX47a_x3_j4JS86d-o2tYt_3j2ENhzjcded_yLQQxjbE0Usmw2sRv6Dij3oe9OyZOWsT01bJiEbpVnN_hBz8ndX3-tF2QPWCZfgvpbJ68MIH8CmwC7_w |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydraulic+traits+and+photosynthesis+are+coordinated+with+trunk+sapwood+capacitance+in+tropical+tree+species&rft.jtitle=Tree+physiology&rft.au=Wei%2C+Yang&rft.au=Chen%2C+Ya-Jun&rft.au=Siddiq%2C+Zafar&rft.au=Zhang%2C+Jiao-Lin&rft.date=2023-12-12&rft.issn=1758-4469&rft.eissn=1758-4469&rft.volume=43&rft.issue=12&rft.spage=2109&rft.epage=2120&rft_id=info:doi/10.1093%2Ftreephys%2Ftpad107&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_treephys_tpad107 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-4469&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-4469&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-4469&client=summon |