Bi2S3 nanorods encapsulated in iodine-doped graphene frameworks with enhanced potassium storage properties
Bismuth sulfide (Bi2S3) is a promising anode material for high-performance potassium ion batteries due to its high theoretical capacity. However, the poor conductivity and substantial volume expansion hinder its practical application. We proposed an iodine-doped graphene encapsulated Bi2S3 nanorods...
Saved in:
Published in | Chinese chemical letters Vol. 33; no. 6; pp. 3212 - 3216 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2022
Beijing Advanced Innovation Center for Soft Matter Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China State Key Laboratory of Organic-Inorganic Composites,Beijing Key Laboratory of Electrochemical Process and Technology for Materials,College of Materials Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China%State Key Laboratory of Organic-Inorganic Composites,Beijing Key Laboratory of Electrochemical Process and Technology for Materials,College of Materials Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bismuth sulfide (Bi2S3) is a promising anode material for high-performance potassium ion batteries due to its high theoretical capacity. However, the poor conductivity and substantial volume expansion hinder its practical application. We proposed an iodine-doped graphene encapsulated Bi2S3 nanorods composite (Bi2S3/IG) as an efficient anode for PIBs. The uniform-sized Bi2S3 nanorods evenly in-situ encapsulated in iodine-doped graphene framework, facilitating the electron transportation and structural stability. The potassium storage performance was evaluated in three electrolytes, with the best option of 5 mol/L KFSI in DME. The reversible capacity of representative Bi2S3/IG reached 453.5 mAh/g at 50 mA/g. Meanwhile, it could deliver an initial reversible capacity of 413.6 mAh/g at 100 mA/g, which maintained 256.9 mAh/g after 200 cycles. The proposed strategy contributes to improving potassium storage performance of metal sulfide anodes.
Bi2S3 nanorods were in-situ encapsulated in iodine-doped graphene to construct a robust anode material for potassium ion batteries with competitive capacity, rate capability and cycling stability.
[Display omitted] |
---|---|
AbstractList | Bismuth sulfide (Bi2S3) is a promising anode material for high-performance potassium ion batteries due to its high theoretical capacity. However, the poor conductivity and substantial volume expansion hinder its practical application. We proposed an iodine-doped graphene encapsulated Bi2S3 nanorods composite (Bi2S3/IG) as an efficient anode for PIBs. The uniform-sized Bi2S3 nanorods evenly in-situ encapsulated in iodine-doped graphene framework, facilitating the electron transportation and structural stability. The potassium storage performance was evaluated in three electrolytes, with the best option of 5 mol/L KFSI in DME. The reversible capacity of representative Bi2S3/IG reached 453.5 mAh/g at 50 mA/g. Meanwhile, it could deliver an initial reversible capacity of 413.6 mAh/g at 100 mA/g, which maintained 256.9 mAh/g after 200 cycles. The proposed strategy contributes to improving potassium storage performance of metal sulfide anodes.
Bi2S3 nanorods were in-situ encapsulated in iodine-doped graphene to construct a robust anode material for potassium ion batteries with competitive capacity, rate capability and cycling stability.
[Display omitted] Bismuth sulfide(Bi2S3)is a promising anode material for high-performance potassium ion batteries due to its high theoretical capacity.However,the poor conductivity and substantial volume expansion hinder its practical application.We proposed an iodine-doped graphene encapsulated Bi2S3 nanorods composite(Bi2S3/IG)as an efficient anode for PIBs.The uniform-sized Bi2S3 nanorods evenly in-situ encapsulated in iodine-doped graphene framework,facilitating the electron transportation and structural stability.The potassium storage performance was evaluated in three electrolytes,with the best option of 5 mol/L KFSI in DME.The reversible capacity of representative Bi2S3/IG reached 453.5 mAh/g at 50 mA/g.Meanwhile,it could deliver an initial reversible capacity of 413.6 mAh/g at 100 mA/g,which maintained 256.9 mAh/g after 200 cycles.The proposed strategy contributes to improving potassium storage performance of metal sulfide anodes. |
Author | Xu, Bin Soomro, Razium A. Zhang, Peng Hou, Wenhui Wei, Yi |
AuthorAffiliation | State Key Laboratory of Organic-Inorganic Composites,Beijing Key Laboratory of Electrochemical Process and Technology for Materials,College of Materials Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China%State Key Laboratory of Organic-Inorganic Composites,Beijing Key Laboratory of Electrochemical Process and Technology for Materials,College of Materials Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China;Beijing Advanced Innovation Center for Soft Matter Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China |
AuthorAffiliation_xml | – name: State Key Laboratory of Organic-Inorganic Composites,Beijing Key Laboratory of Electrochemical Process and Technology for Materials,College of Materials Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China%State Key Laboratory of Organic-Inorganic Composites,Beijing Key Laboratory of Electrochemical Process and Technology for Materials,College of Materials Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China;Beijing Advanced Innovation Center for Soft Matter Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China |
Author_xml | – sequence: 1 givenname: Yi surname: Wei fullname: Wei, Yi organization: State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China – sequence: 2 givenname: Wenhui surname: Hou fullname: Hou, Wenhui organization: State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China – sequence: 3 givenname: Peng surname: Zhang fullname: Zhang, Peng organization: State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China – sequence: 4 givenname: Razium A. surname: Soomro fullname: Soomro, Razium A. organization: State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China – sequence: 5 givenname: Bin orcidid: 0000-0001-5177-8929 surname: Xu fullname: Xu, Bin email: xubin@mail.buct.edu.cn organization: State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China |
BookMark | eNqFkL1OHDEUhS0EErDkCdJMRzWDf-aPggJQEiIhpQjU1h37etezu_bI9mYhTx9PlooCqut7dD7b-s7JsfMOCfnKaMUoa6_GSqkNpopTznJSUdEckTPWd33ZXLf1cT5Tysq-Zt0pOY9xpJT3vWjPyHhn-W9ROHA-eB0LdAqmuNtAQl1YV1ivrcNS-ynvywDTCh0WJsAW9z6sY7G3aZWpFTiVG5NPEKPdbYuYfIAlFlPIaEgW4wU5MbCJ-OVtLsjz929P9w_l468fP-9vH0slRJPyh2uDrWkZbWqKXANwA61WvdIK1SB4V1PacOB06AbDEXWDjTF9K3oGYmjEglwe7t2DM-CWcvS74PKL8u9y9bIesiROW9rNTXFoquBjDGjkFOwWwqtkVM5i5Sj_i5Wz2DnMYjN1_Y5SNkGy3qUAdvMJe3NgMQv4YzHIqCzO6mxAlaT29kP-H8Lcmjg |
CitedBy_id | crossref_primary_10_1088_2053_1583_ac9c14 crossref_primary_10_1002_idm2_12135 crossref_primary_10_1016_j_jpowsour_2022_231917 crossref_primary_10_1039_D3TA05558B crossref_primary_10_1021_acsanm_2c05420 crossref_primary_10_1016_j_jcis_2024_01_201 crossref_primary_10_1007_s12598_023_02525_4 crossref_primary_10_1016_j_snb_2023_134192 crossref_primary_10_1016_j_jallcom_2023_172618 crossref_primary_10_1007_s42864_022_00177_y crossref_primary_10_1007_s12598_024_02764_z crossref_primary_10_1016_j_cej_2022_138891 crossref_primary_10_1039_D3CS00601H crossref_primary_10_1021_acs_inorgchem_4c03361 crossref_primary_10_1016_j_jallcom_2024_177405 crossref_primary_10_1016_j_mtcomm_2023_107587 crossref_primary_10_1016_j_cclet_2024_109749 crossref_primary_10_1021_acsanm_3c00437 crossref_primary_10_20517_energymater_2024_45 crossref_primary_10_1016_j_est_2024_114360 crossref_primary_10_1002_adfm_202404197 crossref_primary_10_1002_smll_202300046 |
Cites_doi | 10.1016/j.nanoen.2019.104038 10.1016/j.matlet.2019.01.108 10.1039/C6NR09613A 10.1016/j.electacta.2019.03.184 10.1039/D0NR06457B 10.1016/j.ensm.2019.01.022 10.1039/D0TA03555F 10.1021/acsnano.0c01681 10.1038/s41467-019-08506-5 10.1016/j.nanoen.2018.09.044 10.1016/j.ensm.2020.04.016 10.1039/D1EE00193K 10.1002/ente.201901040 10.1039/D0TA12129K 10.1021/acsenergylett.0c01634 10.1021/acsnano.0c04203 10.1039/D0EE02917C 10.1021/jacs.5b06809 10.1016/j.cej.2018.09.131 10.1021/acsnano.7b04442 10.1016/j.electacta.2021.138339 10.1002/anie.201904258 10.1021/acsnano.0c07733 10.1039/D0SE00469C 10.1016/j.jpowsour.2016.01.092 10.1039/C7NR06921A 10.1039/C2CC16192C 10.1002/asia.202000030 10.1007/s12274-021-3560-3 10.1007/s12274-016-1419-9 10.1039/C8DT04158J 10.1016/j.nanoen.2020.105294 10.1007/s11426-021-1057-3 10.1021/acsami.0c18285 |
ContentType | Journal Article |
Copyright | 2021 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2021 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1016/j.cclet.2021.10.035 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1878-5964 |
EndPage | 3216 |
ExternalDocumentID | zghxkb202206075 10_1016_j_cclet_2021_10_035 S1001841721008755 |
GroupedDBID | --K --M .~1 0R~ 188 1B1 1~. 1~5 29B 2B. 2C. 2WC 4.4 457 4G. 5GY 5VR 5VS 6J9 7-5 71M 8P~ 8RM 92E 92I 92Q 93N AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFUIB AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C1A CCEZO CDRFL CHBEP CS3 CW9 DU5 EBS EFJIC EFLBG EJD EO9 EP2 EP3 F5P FA0 FDB FEDTE FIRID FLBIZ FNPLU FYGXN GBLVA GX1 HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ S.. SDF SDG SDH SES SPC SPCBC SSK SSZ T5K TCJ TGP UNMZH UZ4 ~G- -SB -S~ 5XA 5XC AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CAJEB CITATION Q-- SSH U1G U5L 4A8 PSX |
ID | FETCH-LOGICAL-c335t-594fe6f610540e2daa2fa6dc8cdcecb32740052a20b7bf2eed5e5ff86381a3b53 |
IEDL.DBID | .~1 |
ISSN | 1001-8417 |
IngestDate | Thu May 29 04:08:25 EDT 2025 Thu Apr 24 23:13:02 EDT 2025 Tue Jul 01 03:19:03 EDT 2025 Fri Feb 23 02:40:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Iodine-doped graphene Potassium-ion battery Bi2S3 Nanorods Anode materials |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c335t-594fe6f610540e2daa2fa6dc8cdcecb32740052a20b7bf2eed5e5ff86381a3b53 |
ORCID | 0000-0001-5177-8929 |
PageCount | 5 |
ParticipantIDs | wanfang_journals_zghxkb202206075 crossref_primary_10_1016_j_cclet_2021_10_035 crossref_citationtrail_10_1016_j_cclet_2021_10_035 elsevier_sciencedirect_doi_10_1016_j_cclet_2021_10_035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese chemical letters |
PublicationTitle_FL | Chinese Chemical Letters |
PublicationYear | 2022 |
Publisher | Elsevier B.V Beijing Advanced Innovation Center for Soft Matter Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China State Key Laboratory of Organic-Inorganic Composites,Beijing Key Laboratory of Electrochemical Process and Technology for Materials,College of Materials Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China%State Key Laboratory of Organic-Inorganic Composites,Beijing Key Laboratory of Electrochemical Process and Technology for Materials,College of Materials Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China |
Publisher_xml | – name: Elsevier B.V – name: State Key Laboratory of Organic-Inorganic Composites,Beijing Key Laboratory of Electrochemical Process and Technology for Materials,College of Materials Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China%State Key Laboratory of Organic-Inorganic Composites,Beijing Key Laboratory of Electrochemical Process and Technology for Materials,College of Materials Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China – name: Beijing Advanced Innovation Center for Soft Matter Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China |
References | Pan, Tong, Su, Qin, Tang (bib0015) 2021 J.ian, Hwang, Li (bib0007) 2017; 27 Yang, Zhang, Li (bib0038) 2018; 53 Zhang, Lou, Shuai (bib0011) 2019; 242 Zhao, Zhu, Ong (bib0023) 2018; 8 Choi, Park, Kang (bib0020) 2021; 408 Ghosh, Qi, Wang, Martha, Pol (bib0017) 2021; 383 Shen, Song, Zhu (bib0040) 2020; 78 Wang, Lu, Tong (bib0036) 2021; 14 Xiao, Yang, Zhang, Pan, Wang (bib0039) 2017; 11 Jian, Luo, Ji (bib0005) 2015; 137 Chen, Yin, Zhang (bib0019) 2018; 14 Zhang, Cao, Zhou (bib0044) 2020; 5 Min, Xiao, Fang (bib0045) 2021; 14 Sultana, Rahman, Mateti (bib0013) 2017; 9 Zhang, Fan, Wang (bib0035) 2017; 9 Chen, Tuan (bib0048) 2020; 14 Geng, Zhou, Jia (bib0016) 2021; 14 Ren, Zhao, McCulloch, Wu (bib0018) 2017; 10 Jia, Zhang, Yu, Lu (bib0025) 2020; 8 Wu, Chen, Xing (bib0009) 2019; 9 Xu, Sun, He (bib0021) 2021; 64 Chai, Yang, Yin (bib0032) 2019; 48 Zhang, Soomro, Guan, Sun, Xu (bib0004) 2020; 29 Zhang, Wang, Yin (bib0029) 2018; 356 Liu, Li, Zheng (bib0034) 2020; 12 Sun, Zhu, Anasori (bib0003) 2019; 29 Lakshmi, Mikhaylov, Medvedev (bib0028) 2020; 8 Fan, Chen, Ma (bib0042) 2018; 14 Zhou, Cao, Zhang (bib0043) 2021; 33 Peng, Zhang, Yang (bib0030) 2020; 14 Chen, Chua, Lee (bib0014) 2020; 4 Fan, Ma, Zhang, Jia, Lu (bib0047) 2019; 58 Zhang, Yin, Wang, Bayhan, Alshareef (bib0002) 2021; 83 Cao, Liu, Zhang (bib0006) 2021; 31 Yao, Nie, Yang (bib0037) 2012; 48 Liu, Huang, Shao (bib0001) 2019; 31 Yao, Zhang, Shi (bib0022) 2019; 307 Li, Wang, Gong (bib0031) 2020; 14 Xu, Zhang, Li (bib0010) 2020; 15 Hong, Zhang, Yang (bib0008) 2019; 65 Li, Bi, Zhang (bib0012) 2021; 9 Sun, Rui, Zhang (bib0033) 2016; 309 Zhao, Hu, Jiao (bib0024) 2019; 22 Wang, Wang, Lu (bib0046) 2020; 10 Nithya, Thiyagaraj (bib0026) 2020; 4 Wang, Shen, Liu (bib0027) 2020; 12 Li, Zhang, Lin (bib0041) 2019; 10 Zhao (10.1016/j.cclet.2021.10.035_bib0024) 2019; 22 Ren (10.1016/j.cclet.2021.10.035_bib0018) 2017; 10 Xiao (10.1016/j.cclet.2021.10.035_bib0039) 2017; 11 Sun (10.1016/j.cclet.2021.10.035_bib0003) 2019; 29 Li (10.1016/j.cclet.2021.10.035_bib0041) 2019; 10 Chen (10.1016/j.cclet.2021.10.035_bib0019) 2018; 14 Chen (10.1016/j.cclet.2021.10.035_bib0048) 2020; 14 Sultana (10.1016/j.cclet.2021.10.035_bib0013) 2017; 9 Li (10.1016/j.cclet.2021.10.035_bib0031) 2020; 14 Fan (10.1016/j.cclet.2021.10.035_bib0042) 2018; 14 Wu (10.1016/j.cclet.2021.10.035_bib0009) 2019; 9 Zhang (10.1016/j.cclet.2021.10.035_bib0011) 2019; 242 Wang (10.1016/j.cclet.2021.10.035_bib0036) 2021; 14 Geng (10.1016/j.cclet.2021.10.035_bib0016) 2021; 14 Zhang (10.1016/j.cclet.2021.10.035_bib0035) 2017; 9 Ghosh (10.1016/j.cclet.2021.10.035_bib0017) 2021; 383 Yao (10.1016/j.cclet.2021.10.035_bib0037) 2012; 48 Yang (10.1016/j.cclet.2021.10.035_bib0038) 2018; 53 Xu (10.1016/j.cclet.2021.10.035_bib0010) 2020; 15 Cao (10.1016/j.cclet.2021.10.035_bib0006) 2021; 31 Zhang (10.1016/j.cclet.2021.10.035_bib0004) 2020; 29 Yao (10.1016/j.cclet.2021.10.035_bib0022) 2019; 307 Fan (10.1016/j.cclet.2021.10.035_bib0047) 2019; 58 Jian (10.1016/j.cclet.2021.10.035_bib0005) 2015; 137 Lakshmi (10.1016/j.cclet.2021.10.035_bib0028) 2020; 8 Shen (10.1016/j.cclet.2021.10.035_bib0040) 2020; 78 Liu (10.1016/j.cclet.2021.10.035_bib0001) 2019; 31 Zhang (10.1016/j.cclet.2021.10.035_bib0002) 2021; 83 Xu (10.1016/j.cclet.2021.10.035_bib0021) 2021; 64 Zhang (10.1016/j.cclet.2021.10.035_bib0029) 2018; 356 Chai (10.1016/j.cclet.2021.10.035_bib0032) 2019; 48 Wang (10.1016/j.cclet.2021.10.035_bib0046) 2020; 10 Sun (10.1016/j.cclet.2021.10.035_bib0033) 2016; 309 Liu (10.1016/j.cclet.2021.10.035_bib0034) 2020; 12 Pan (10.1016/j.cclet.2021.10.035_bib0015) 2021 Jia (10.1016/j.cclet.2021.10.035_bib0025) 2020; 8 J.ian (10.1016/j.cclet.2021.10.035_bib0007) 2017; 27 Hong (10.1016/j.cclet.2021.10.035_bib0008) 2019; 65 Peng (10.1016/j.cclet.2021.10.035_bib0030) 2020; 14 Wang (10.1016/j.cclet.2021.10.035_bib0027) 2020; 12 Chen (10.1016/j.cclet.2021.10.035_bib0014) 2020; 4 Zhao (10.1016/j.cclet.2021.10.035_bib0023) 2018; 8 Choi (10.1016/j.cclet.2021.10.035_bib0020) 2021; 408 Li (10.1016/j.cclet.2021.10.035_bib0012) 2021; 9 Nithya (10.1016/j.cclet.2021.10.035_bib0026) 2020; 4 Zhou (10.1016/j.cclet.2021.10.035_bib0043) 2021; 33 Zhang (10.1016/j.cclet.2021.10.035_bib0044) 2020; 5 Min (10.1016/j.cclet.2021.10.035_bib0045) 2021; 14 |
References_xml | – year: 2021 ident: bib0015 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 57907 year: 2020 end-page: 57915 ident: bib0027 publication-title: ACS Appl. Mater. Interfaces – volume: 31 start-page: 1329 year: 2019 end-page: 1340 ident: bib0001 publication-title: Prog. Chem. – volume: 9 start-page: 8221 year: 2021 end-page: 8247 ident: bib0012 publication-title: J. Mater. Chem. A – volume: 4 year: 2020 ident: bib0014 publication-title: Small Methods – volume: 27 year: 2017 ident: bib0007 publication-title: Adv. Funct. Mater. – volume: 137 start-page: 11566 year: 2015 end-page: 11569 ident: bib0005 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2021 ident: bib0006 publication-title: Adv. Funct. Mater. – volume: 29 start-page: 163 year: 2020 end-page: 171 ident: bib0004 publication-title: Energy Storage Mater. – volume: 8 year: 2018 ident: bib0023 publication-title: Adv. Energy Mater. – volume: 14 start-page: 2186 year: 2021 end-page: 2243 ident: bib0045 publication-title: Energy Environ. Sci. – volume: 5 start-page: 3124 year: 2020 end-page: 3131 ident: bib0044 publication-title: ACS Energy Lett. – volume: 10 year: 2020 ident: bib0046 publication-title: Adv. Energy Mater. – volume: 48 start-page: 1906 year: 2019 end-page: 1914 ident: bib0032 publication-title: Dalton Trans. – volume: 48 start-page: 1027 year: 2012 end-page: 1029 ident: bib0037 publication-title: Chem. Commun. – volume: 83 year: 2021 ident: bib0002 publication-title: Nano Energy – volume: 14 start-page: 3545 year: 2021 end-page: 3551 ident: bib0036 publication-title: Nano Res. – volume: 14 start-page: 11648 year: 2020 end-page: 11661 ident: bib0048 publication-title: ACS Nano – volume: 14 year: 2018 ident: bib0042 publication-title: Small – volume: 9 year: 2019 ident: bib0009 publication-title: Adv. Energy Mater. – volume: 11 start-page: 8488 year: 2017 end-page: 8498 ident: bib0039 publication-title: ACS Nano – volume: 9 start-page: 3646 year: 2017 end-page: 3654 ident: bib0013 publication-title: Nanoscale – volume: 78 year: 2020 ident: bib0040 publication-title: Nano Energy – volume: 33 year: 2021 ident: bib0043 publication-title: Adv. Mater. – volume: 58 start-page: 10500 year: 2019 end-page: 10505 ident: bib0047 publication-title: Angew. Chem. Int. Ed. – volume: 383 year: 2021 ident: bib0017 publication-title: Electrochim. Acta – volume: 4 start-page: 3574 year: 2020 end-page: 3587 ident: bib0026 publication-title: Sustain. Energy Fuels – volume: 356 start-page: 1042 year: 2018 end-page: 1051 ident: bib0029 publication-title: Chem. Eng. J. – volume: 29 year: 2019 ident: bib0003 publication-title: Adv. Funct. Mater. – volume: 65 year: 2019 ident: bib0008 publication-title: Nano Energy – volume: 10 start-page: 1313 year: 2017 end-page: 1321 ident: bib0018 publication-title: Nano Res. – volume: 22 start-page: 228 year: 2019 end-page: 234 ident: bib0024 publication-title: Energy Storage Mater. – volume: 309 start-page: 135 year: 2016 end-page: 140 ident: bib0033 publication-title: J. Power Sources – volume: 10 start-page: 725 year: 2019 ident: bib0041 publication-title: Nat. Commun. – volume: 242 start-page: 5 year: 2019 end-page: 8 ident: bib0011 publication-title: Mater. Lett. – volume: 14 start-page: 6024 year: 2020 end-page: 6033 ident: bib0030 publication-title: ACS Nano – volume: 14 start-page: 16046 year: 2020 end-page: 16056 ident: bib0031 publication-title: ACS Nano – volume: 408 year: 2021 ident: bib0020 publication-title: Chem. Eng. J. – volume: 64 start-page: 1401 year: 2021 end-page: 1409 ident: bib0021 publication-title: Sci. China Chem. – volume: 9 start-page: 17694 year: 2017 end-page: 17698 ident: bib0035 publication-title: Nanoscale – volume: 15 start-page: 1648 year: 2020 end-page: 1659 ident: bib0010 publication-title: Chem. Asian J. – volume: 12 start-page: 24394 year: 2020 end-page: 24402 ident: bib0034 publication-title: Nanoscale – volume: 307 start-page: 118 year: 2019 end-page: 128 ident: bib0022 publication-title: Electrochim. Acta – volume: 14 start-page: 3184 year: 2021 end-page: 3193 ident: bib0016 publication-title: Energy Environ. Sci. – volume: 8 start-page: 11424 year: 2020 end-page: 11434 ident: bib0028 publication-title: J. Mater. Chem. A – volume: 14 year: 2018 ident: bib0019 publication-title: Small – volume: 8 year: 2020 ident: bib0025 publication-title: Energy Technol. – volume: 53 start-page: 916 year: 2018 end-page: 925 ident: bib0038 publication-title: Nano Energy – volume: 408 year: 2021 ident: 10.1016/j.cclet.2021.10.035_bib0020 publication-title: Chem. Eng. J. – volume: 65 year: 2019 ident: 10.1016/j.cclet.2021.10.035_bib0008 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104038 – volume: 242 start-page: 5 year: 2019 ident: 10.1016/j.cclet.2021.10.035_bib0011 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2019.01.108 – volume: 9 start-page: 3646 year: 2017 ident: 10.1016/j.cclet.2021.10.035_bib0013 publication-title: Nanoscale doi: 10.1039/C6NR09613A – volume: 307 start-page: 118 year: 2019 ident: 10.1016/j.cclet.2021.10.035_bib0022 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.03.184 – volume: 12 start-page: 24394 year: 2020 ident: 10.1016/j.cclet.2021.10.035_bib0034 publication-title: Nanoscale doi: 10.1039/D0NR06457B – volume: 22 start-page: 228 year: 2019 ident: 10.1016/j.cclet.2021.10.035_bib0024 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.01.022 – volume: 10 year: 2020 ident: 10.1016/j.cclet.2021.10.035_bib0046 publication-title: Adv. Energy Mater. – volume: 8 start-page: 11424 year: 2020 ident: 10.1016/j.cclet.2021.10.035_bib0028 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA03555F – volume: 31 year: 2021 ident: 10.1016/j.cclet.2021.10.035_bib0006 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 6024 year: 2020 ident: 10.1016/j.cclet.2021.10.035_bib0030 publication-title: ACS Nano doi: 10.1021/acsnano.0c01681 – volume: 10 start-page: 725 year: 2019 ident: 10.1016/j.cclet.2021.10.035_bib0041 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08506-5 – volume: 33 year: 2021 ident: 10.1016/j.cclet.2021.10.035_bib0043 publication-title: Adv. Mater. – volume: 53 start-page: 916 year: 2018 ident: 10.1016/j.cclet.2021.10.035_bib0038 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.09.044 – volume: 83 year: 2021 ident: 10.1016/j.cclet.2021.10.035_bib0002 publication-title: Nano Energy – volume: 29 start-page: 163 year: 2020 ident: 10.1016/j.cclet.2021.10.035_bib0004 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.04.016 – volume: 14 start-page: 3184 year: 2021 ident: 10.1016/j.cclet.2021.10.035_bib0016 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE00193K – volume: 8 year: 2020 ident: 10.1016/j.cclet.2021.10.035_bib0025 publication-title: Energy Technol. doi: 10.1002/ente.201901040 – volume: 9 start-page: 8221 year: 2021 ident: 10.1016/j.cclet.2021.10.035_bib0012 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA12129K – volume: 5 start-page: 3124 year: 2020 ident: 10.1016/j.cclet.2021.10.035_bib0044 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c01634 – volume: 14 start-page: 11648 year: 2020 ident: 10.1016/j.cclet.2021.10.035_bib0048 publication-title: ACS Nano doi: 10.1021/acsnano.0c04203 – volume: 14 start-page: 2186 year: 2021 ident: 10.1016/j.cclet.2021.10.035_bib0045 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02917C – volume: 137 start-page: 11566 year: 2015 ident: 10.1016/j.cclet.2021.10.035_bib0005 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06809 – volume: 29 year: 2019 ident: 10.1016/j.cclet.2021.10.035_bib0003 publication-title: Adv. Funct. Mater. – volume: 356 start-page: 1042 year: 2018 ident: 10.1016/j.cclet.2021.10.035_bib0029 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.131 – volume: 14 year: 2018 ident: 10.1016/j.cclet.2021.10.035_bib0042 publication-title: Small – volume: 11 start-page: 8488 year: 2017 ident: 10.1016/j.cclet.2021.10.035_bib0039 publication-title: ACS Nano doi: 10.1021/acsnano.7b04442 – volume: 383 year: 2021 ident: 10.1016/j.cclet.2021.10.035_bib0017 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.138339 – volume: 58 start-page: 10500 year: 2019 ident: 10.1016/j.cclet.2021.10.035_bib0047 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201904258 – volume: 4 year: 2020 ident: 10.1016/j.cclet.2021.10.035_bib0014 publication-title: Small Methods – volume: 14 start-page: 16046 year: 2020 ident: 10.1016/j.cclet.2021.10.035_bib0031 publication-title: ACS Nano doi: 10.1021/acsnano.0c07733 – volume: 4 start-page: 3574 year: 2020 ident: 10.1016/j.cclet.2021.10.035_bib0026 publication-title: Sustain. Energy Fuels doi: 10.1039/D0SE00469C – volume: 309 start-page: 135 year: 2016 ident: 10.1016/j.cclet.2021.10.035_bib0033 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.01.092 – volume: 9 start-page: 17694 year: 2017 ident: 10.1016/j.cclet.2021.10.035_bib0035 publication-title: Nanoscale doi: 10.1039/C7NR06921A – volume: 48 start-page: 1027 year: 2012 ident: 10.1016/j.cclet.2021.10.035_bib0037 publication-title: Chem. Commun. doi: 10.1039/C2CC16192C – volume: 27 year: 2017 ident: 10.1016/j.cclet.2021.10.035_bib0007 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 1648 year: 2020 ident: 10.1016/j.cclet.2021.10.035_bib0010 publication-title: Chem. Asian J. doi: 10.1002/asia.202000030 – volume: 14 start-page: 3545 year: 2021 ident: 10.1016/j.cclet.2021.10.035_bib0036 publication-title: Nano Res. doi: 10.1007/s12274-021-3560-3 – volume: 14 year: 2018 ident: 10.1016/j.cclet.2021.10.035_bib0019 publication-title: Small – volume: 8 year: 2018 ident: 10.1016/j.cclet.2021.10.035_bib0023 publication-title: Adv. Energy Mater. – year: 2021 ident: 10.1016/j.cclet.2021.10.035_bib0015 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 1313 year: 2017 ident: 10.1016/j.cclet.2021.10.035_bib0018 publication-title: Nano Res. doi: 10.1007/s12274-016-1419-9 – volume: 48 start-page: 1906 year: 2019 ident: 10.1016/j.cclet.2021.10.035_bib0032 publication-title: Dalton Trans. doi: 10.1039/C8DT04158J – volume: 9 year: 2019 ident: 10.1016/j.cclet.2021.10.035_bib0009 publication-title: Adv. Energy Mater. – volume: 78 year: 2020 ident: 10.1016/j.cclet.2021.10.035_bib0040 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105294 – volume: 64 start-page: 1401 year: 2021 ident: 10.1016/j.cclet.2021.10.035_bib0021 publication-title: Sci. China Chem. doi: 10.1007/s11426-021-1057-3 – volume: 31 start-page: 1329 year: 2019 ident: 10.1016/j.cclet.2021.10.035_bib0001 publication-title: Prog. Chem. – volume: 12 start-page: 57907 year: 2020 ident: 10.1016/j.cclet.2021.10.035_bib0027 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c18285 |
SSID | ssj0028836 |
Score | 2.3983264 |
Snippet | Bismuth sulfide (Bi2S3) is a promising anode material for high-performance potassium ion batteries due to its high theoretical capacity. However, the poor... Bismuth sulfide(Bi2S3)is a promising anode material for high-performance potassium ion batteries due to its high theoretical capacity.However,the poor... |
SourceID | wanfang crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3212 |
SubjectTerms | Anode materials Bi2S3 Iodine-doped graphene Nanorods Potassium-ion battery |
Title | Bi2S3 nanorods encapsulated in iodine-doped graphene frameworks with enhanced potassium storage properties |
URI | https://dx.doi.org/10.1016/j.cclet.2021.10.035 https://d.wanfangdata.com.cn/periodical/zghxkb202206075 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqIgQL4imelQdG0oed51gqqgKiS6nEFtmODSmQRH0IxMBv585NKpAQA2Msn5Wc7e_Oznd3hJxzrkLBWeAYX_hwQPHajtA8cqRuKw2AmAgfg5Pvhv5g7N48eA810qtiYZBWWWL_EtMtWpctrVKbrSJNWyPMHhS6eISxadkx0Nx1A1zlzc8VzQOL6doII6QOYe8q85DleCkYDAmVrNNEipet-fardVp_E5kR2eM329PfJlul00i7y_faITWd7ZKNXlWrbY9MLlM24jQTWQ6AOKPwGQKOvy_gSCY0zWiag4nSTpIX8GxzVAPEUVMRs2YUr2NB6snyAWiRz8GnThevFLmTgDi0wDv7KSZf3Sfj_tV9b-CUVRQcxbk3d7zINdo34CaBc6ZB-YIZ4ScqVInSSsI8uXg3LFhbBtIwsJme9owJYWN2BJcePyD1LM_0IaGJiUw7kJIxjb_jTCR0IMPQRDIB4DDJEWGV9mJVphjHShcvccUlm8RW5TGqHBtB5UfkYiVULDNs_N3dr6Yl_rFQYrABfwvSchLjcpvO4o_Hp_dnyTDa2Aff6fi_Y5-QTRxkSSE7JfX5dKHPwFmZy4ZdjQ2y1r2-HQy_AKS76-I |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELYqEIIF8RTl6QE2QovzaDIwQKFqKbAAEpuxHRtSIIloEY-BP8Uf5M5NKpAQAxJjrNg6nZ3v7uLv7gjZdF0VCpc1HBOIAAIUv-4I7UaO1HWlARBjEWBy8ulZ0L70jq_8qwr5KHNhkFZZYP8Q0y1aFyO1Qpu1PElq51g9KPQwhLFl2UtmZVe_PkPc1t_rHMImbzHWOrpotp2itYCjXNcfOH7kGR0Y8B3AY9EgkWBGBLEKVay0kiC8hz9MBavLhjQMDImvfWNCOK27wpXYKgJwf9wDuMC2CTvvI14Jdu-1KU3IVULxylJHllSmQHpkcLLdHeSU2SZzP5rDiWeRGpHefDF2rRkyXXipdH-oiFlS0ekcmWyWzeHmSe8gYecuTUWaAQL3KehNQLx9D55rTJOUJhnYRO3EWQ7Ptig2YCo1JROsT_H_L8y6tQQEmmcDcOKTpweKZE2AOJrjJcEjVntdIJf_ottFMpZmqV4iNDaRqTekZEzj_Z-JhG7IMDSRjAGpTFwlrNQeV0VNc2ytcc9L8lqPW5VzVDkOgsqrZHs0KR-W9Pj99aDcFv7tZHIwOr9PpMUm8gIX-vzt5vblTjJMbw7AWVv-69obZLJ9cXrCTzpn3RUyhQsOKQ2rZGzw-KTXwFMayHV7Mim5_u9P4RNLHikT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bi2S3+nanorods+encapsulated+in+iodine-doped+graphene+frameworks+with+enhanced+potassium+storage+properties&rft.jtitle=%E4%B8%AD%E5%9B%BD%E5%8C%96%E5%AD%A6%E5%BF%AB%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Yi+Wei&rft.au=Wenhui+Hou&rft.au=Peng+Zhang&rft.au=Razium+A.Soomro&rft.date=2022-06-01&rft.pub=Beijing+Advanced+Innovation+Center+for+Soft+Matter+Science+and+Engineering%2CBeijing+University+of+Chemical+Technology%2CBeijing+100029%2CChina&rft.issn=1001-8417&rft.volume=33&rft.issue=6&rft.spage=3212&rft.epage=3216&rft_id=info:doi/10.1016%2Fj.cclet.2021.10.035&rft.externalDocID=zghxkb202206075 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghxkb%2Fzghxkb.jpg |