Evaluation of Monin–Obukhov and Bulk Richardson Parameterizations for Surface–Atmosphere Exchange

The Land–Atmosphere Feedback Experiment (LAFE) was a field campaign to investigate influences of different land surface types on the atmospheric boundary layer (ABL). The primary goals of LAFE were to better understand ABL development and structure and to improve turbulence parameterizations in nume...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied meteorology and climatology Vol. 59; no. 6; pp. 1091 - 1107
Main Authors Lee, Temple R., Buban, Michael
Format Journal Article
LanguageEnglish
Published Boston American Meteorological Society 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Land–Atmosphere Feedback Experiment (LAFE) was a field campaign to investigate influences of different land surface types on the atmospheric boundary layer (ABL). The primary goals of LAFE were to better understand ABL development and structure and to improve turbulence parameterizations in numerical weather prediction models. Three 10-m micrometeorological towers were installed over different land surface types (i.e., early growth soybean, native grassland, and mature soybean) along a 1.7-km southwest–northeast-oriented line. All towers measured standard meteorological variables in addition to heat, moisture, and momentum fluxes. In this study, we used these measurements to evaluate the validity of applying Monin–Obukhov similarity theory (MOST) to represent surface–atmosphere exchange over different land surface types. We investigated relationships between stability length ζ and the dimensionlesswind shear ϕm , temperature gradient ϕh , and moisture gradient ϕq as well as relationships between bulk Richardson number Ri b , friction coefficient Cu , heat-transfer coefficient Ct , and moisture-transfer coefficient Cr . We evaluated the new similarity functions developed using independent datasets obtained during the Verification of the Origins of Rotation in Tornadoes Experiment-Southeast (VORTEX-SE). We found that using the Rib functions rather than themore traditional ζ functions to compute wind, temperature, and moisture yielded better agreement with the VORTEX-SE observations. These findings underscore limitations in MOST and motivate the need to consider modifying the functional forms of the similarity equations that form the basis for surface-layer parameterizations in numerical weather prediction models.
AbstractList The Land–Atmosphere Feedback Experiment (LAFE) was a field campaign to investigate influences of different land surface types on the atmospheric boundary layer (ABL). The primary goals of LAFE were to better understand ABL development and structure and to improve turbulence parameterizations in numerical weather prediction models. Three 10-m micrometeorological towers were installed over different land surface types (i.e., early growth soybean, native grassland, and mature soybean) along a 1.7-km southwest–northeast-oriented line. All towers measured standard meteorological variables in addition to heat, moisture, and momentum fluxes. In this study, we used these measurements to evaluate the validity of applying Monin–Obukhov similarity theory (MOST) to represent surface–atmosphere exchange over different land surface types. We investigated relationships between stability length ζ and the dimensionless wind shear ϕm, temperature gradient ϕh, and moisture gradient ϕq as well as relationships between bulk Richardson number Rib, friction coefficient Cu, heat-transfer coefficient Ct, and moisture-transfer coefficient Cr. We evaluated the new similarity functions developed using independent datasets obtained during the Verification of the Origins of Rotation in Tornadoes Experiment-Southeast (VORTEX-SE). We found that using the Rib functions rather than the more traditional ζ functions to compute wind, temperature, and moisture yielded better agreement with the VORTEX-SE observations. These findings underscore limitations in MOST and motivate the need to consider modifying the functional forms of the similarity equations that form the basis for surface-layer parameterizations in numerical weather prediction models.
Abstract The Land–Atmosphere Feedback Experiment (LAFE) was a field campaign to investigate influences of different land surface types on the atmospheric boundary layer (ABL). The primary goals of LAFE were to better understand ABL development and structure and to improve turbulence parameterizations in numerical weather prediction models. Three 10-m micrometeorological towers were installed over different land surface types (i.e., early growth soybean, native grassland, and mature soybean) along a 1.7-km southwest–northeast-oriented line. All towers measured standard meteorological variables in addition to heat, moisture, and momentum fluxes. In this study, we used these measurements to evaluate the validity of applying Monin–Obukhov similarity theory (MOST) to represent surface–atmosphere exchange over different land surface types. We investigated relationships between stability length ζ and the dimensionless wind shear ϕ m , temperature gradient ϕ h , and moisture gradient ϕ q as well as relationships between bulk Richardson number Ri b , friction coefficient C u , heat-transfer coefficient C t , and moisture-transfer coefficient C r . We evaluated the new similarity functions developed using independent datasets obtained during the Verification of the Origins of Rotation in Tornadoes Experiment-Southeast (VORTEX-SE). We found that using the Ri b functions rather than the more traditional ζ functions to compute wind, temperature, and moisture yielded better agreement with the VORTEX-SE observations. These findings underscore limitations in MOST and motivate the need to consider modifying the functional forms of the similarity equations that form the basis for surface-layer parameterizations in numerical weather prediction models.
The Land–Atmosphere Feedback Experiment (LAFE) was a field campaign to investigate influences of different land surface types on the atmospheric boundary layer (ABL). The primary goals of LAFE were to better understand ABL development and structure and to improve turbulence parameterizations in numerical weather prediction models. Three 10-m micrometeorological towers were installed over different land surface types (i.e., early growth soybean, native grassland, and mature soybean) along a 1.7-km southwest–northeast-oriented line. All towers measured standard meteorological variables in addition to heat, moisture, and momentum fluxes. In this study, we used these measurements to evaluate the validity of applying Monin–Obukhov similarity theory (MOST) to represent surface–atmosphere exchange over different land surface types. We investigated relationships between stability length ζ and the dimensionlesswind shear ϕm , temperature gradient ϕh , and moisture gradient ϕq as well as relationships between bulk Richardson number Ri b , friction coefficient Cu , heat-transfer coefficient Ct , and moisture-transfer coefficient Cr . We evaluated the new similarity functions developed using independent datasets obtained during the Verification of the Origins of Rotation in Tornadoes Experiment-Southeast (VORTEX-SE). We found that using the Rib functions rather than themore traditional ζ functions to compute wind, temperature, and moisture yielded better agreement with the VORTEX-SE observations. These findings underscore limitations in MOST and motivate the need to consider modifying the functional forms of the similarity equations that form the basis for surface-layer parameterizations in numerical weather prediction models.
Author Lee, Temple R.
Buban, Michael
Author_xml – sequence: 1
  givenname: Temple R.
  surname: Lee
  fullname: Lee, Temple R.
– sequence: 2
  givenname: Michael
  surname: Buban
  fullname: Buban, Michael
BookMark eNo9kMlOwzAQhi1UJNrCnQuSJc4pXuP4WNqyqVURy9lyEpumS1zspAJOvANvyJOQUMRpRprvm9H8PdApXWkAOMVogLHgF3fD2SgaR1hGCHExwAegizlPooRR0vnvCTsCvRCWCDEmBO8CM9npda2rwpXQWThzZVF-f37N03q1cDuoyxxe1usVfCiyhfZ5aLB77fXGVMYXH79egNZ5-Fh7qzPTuMNq48J2YbyBk7fGKl_MMTi0eh3MyV_tg-erydPoJprOr29Hw2mUUcqriGHKhaA8F9hmuUwRTijJkKY8TrW2Ms8JktZyqyljKUpjzXRm2wHCljef9sH5fu_Wu9fahEotXe3L5qQiTJKYC8TihkJ7KvMuBG-s2vpio_27wki1Yao2TDVWWKo2TIUb5WyvLEPl_D9PYkm5JAn9AXEKdqc
CitedBy_id crossref_primary_10_3390_atmos14020251
crossref_primary_10_1063_5_0161905
crossref_primary_10_1007_s10546_022_00761_2
crossref_primary_10_1016_j_egyr_2022_06_046
crossref_primary_10_1029_2021JD035697
crossref_primary_10_1016_j_rse_2021_112602
crossref_primary_10_1175_MWR_D_21_0047_1
crossref_primary_10_5194_gi_12_25_2023
crossref_primary_10_1007_s10546_022_00719_4
crossref_primary_10_1029_2022JD037212
Cites_doi 10.1175/MWR-D-15-0242.1
10.1175/1520-0450(1997)036<0406:DOTMOS>2.0.CO;2
10.1007/BF02186086
10.1175/MWR-D-11-00189.1
10.1175/1520-0469(1995)052<2675:SAAOTD>2.0.CO;2
10.3390/s19010010
10.1002/qj.49709339808
10.1175/1520-0469(2002)059<2605:COCTOT>2.0.CO;2
10.1175/JAS3681.1
10.1007/s10546-017-0326-2
10.1175/MWR-D-19-0091.1
10.1007/BF00240838
10.1007/s10546-006-9048-6
10.1175/JAS-D-16-0186.1
10.1023/A:1000472717236
10.1175/WAF-D-18-0184.1
10.1007/BF00117978
10.1175/MWR-D-11-00056.1
10.1007/BF00128053
10.1007/BF00120937
10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2
10.5194/acp-16-11349-2016
10.1002/qj.49709339809
10.1002/qj.49709641012
10.1175/1520-0493(1972)100<0093:POTPBL>2.3.CO;2
10.1175/BAMS-D-17-0009.1
10.1175/BAMS-D-17-0165.1
10.1007/BF00718085
10.1029/2012JD018143
ContentType Journal Article
Copyright 2020 American Meteorological Society
Copyright American Meteorological Society Jun 2020
Copyright_xml – notice: 2020 American Meteorological Society
– notice: Copyright American Meteorological Society Jun 2020
DBID AAYXX
CITATION
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1175/JAMC-D-19-0057.1
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1558-8432
EndPage 1107
ExternalDocumentID 10_1175_JAMC_D_19_0057_1
26935928
GroupedDBID -~X
.4S
.DC
29J
4.4
5GY
7XC
88I
8AF
8FE
8FG
8FH
8G5
8R4
8R5
ABBHK
ABDBF
ABDNZ
ABUWG
ABXSQ
ACGFO
ACGOD
ACIWK
AENEX
AEUPB
AFKRA
AFRAH
AIFVT
AIRJO
ALMA_UNASSIGNED_HOLDINGS
ALQLQ
ARAPS
ARCSS
ATCPS
AZQEC
BCU
BEC
BENPR
BES
BGLVJ
BHPHI
BKOMP
BKSAR
BLC
BPHCQ
CCPQU
CS3
D1K
DU5
DWQXO
E.L
EAD
EAP
EAS
EBD
EBS
EDH
EDO
EMK
EPL
EQZMY
EST
ESX
F8P
FAC
FAS
FJW
FRP
GNUQQ
GUQSH
HCIFZ
H~9
I-F
IZHOT
JAAYA
JENOY
JKQEH
JLEZI
JLXEF
JPL
JST
K6-
LK5
M1Q
M2O
M2P
M2Q
M7R
MV1
OK1
P2P
P62
PATMY
PCBAR
PQQKQ
PROAC
PYCSY
Q2X
QF4
QM1
QN7
QO4
R05
RWA
RWE
RXW
S0X
SA0
SJFOW
SWMRO
TN5
TUS
U5U
UNMZH
~02
AAYXX
ADACV
AEKFB
CITATION
H13
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c335t-41357735d71fcd9b01832c0a356baaf9dd209ff5fa344b0b6a4acfaf9d01f5843
ISSN 1558-8424
IngestDate Mon Nov 11 05:01:03 EST 2024
Fri Aug 23 01:20:04 EDT 2024
Fri Feb 02 07:18:33 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c335t-41357735d71fcd9b01832c0a356baaf9dd209ff5fa344b0b6a4acfaf9d01f5843
OpenAccessLink https://journals.ametsoc.org/downloadpdf/journals/apme/59/6/jamcD190057.pdf
PQID 2492657046
PQPubID 29229
PageCount 17
ParticipantIDs proquest_journals_2492657046
crossref_primary_10_1175_JAMC_D_19_0057_1
jstor_primary_26935928
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationTitle Journal of applied meteorology and climatology
PublicationYear 2020
Publisher American Meteorological Society
Publisher_xml – name: American Meteorological Society
References Deardorff (2020062012274007900_bib6) 1972; 100
Zahn (2020062012274007900_bib40) 2016; 16
Markowski (2020062012274007900_bib22) 2019; 147
Jiménez (2020062012274007900_bib18) 2012; 140
Seidel (2020062012274007900_bib32) 2012; 117
Louis (2020062012274007900_bib21) 1979; 17
Lee (2020062012274007900_bib19) 2019; 19
Grachev (2020062012274007900_bib14) 1997; 36
Wulfmeyer (2020062012274007900_bib39) 2018; 99
Högström (2020062012274007900_bib17) 1996; 78
Mohammadi (2020062012274007900_bib26) 1993
Obukhov (2020062012274007900_bib28) 1971; 2
Coniglio (2020062012274007900_bib5) 2006; 63
Dyer (2020062012274007900_bib10) 1967; 93
Sauer (2020062012274007900_bib31) 2005
Dyer (2020062012274007900_bib12) 1970; 96
Monin (2020062012274007900_bib27) 1954; 24
Dumas (2020062012274007900_bib8) 2016
Paulson (2020062012274007900_bib30) 1970; 9
Grachev (2020062012274007900_bib16) 2018; 167
Swinbank (2020062012274007900_bib35) 1967; 93
Dyer (2020062012274007900_bib25) 1982; 22
Stull (2020062012274007900_bib34) 1988
Foken (2020062012274007900_bib13) 2006; 119
Buban (2020062012274007900_bib4) 2012; 140
Wicker (2020062012274007900_bib38) 1995; 52
Lee (2020062012274007900_bib20) 2019; 34
Andreas (2020062012274007900_bib1) 2002; 59
Maronga (2020062012274007900_bib23) 2017; 74
Baldocchi (2020062012274007900_bib2) 1997; 85
Benjamin (2020062012274007900_bib3) 2016; 144
Panofsky (2020062012274007900_bib29) 1977; 11
Wagner (2020062012274007900_bib37) 2019; 100
Dumas (2020062012274007900_bib9) 2017
Dyer (2020062012274007900_bib11) 1974; 7
References_xml – volume: 144
  start-page: 1669
  year: 2016
  ident: 2020062012274007900_bib3
  article-title: A North American hourly assimilation and model forecast cycle: The Rapid Refresh
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR-D-15-0242.1
  contributor:
    fullname: Benjamin
– volume: 36
  start-page: 406
  year: 1997
  ident: 2020062012274007900_bib14
  article-title: Dependence of the Monin–Obukhov stability parameter on the bulk Richardson number over the ocean
  publication-title: J. Appl. Meteor.
  doi: 10.1175/1520-0450(1997)036<0406:DOTMOS>2.0.CO;2
  contributor:
    fullname: Grachev
– volume: 11
  start-page: 355
  year: 1977
  ident: 2020062012274007900_bib29
  article-title: The characteristics of turbulent velocity components in the surface layer under convective conditions
  publication-title: Bound.-Layer Meteor.
  doi: 10.1007/BF02186086
  contributor:
    fullname: Panofsky
– volume: 140
  start-page: 3525
  year: 2012
  ident: 2020062012274007900_bib4
  article-title: Simulation of dryline misovortex dynamics and cumulus formation
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR-D-11-00189.1
  contributor:
    fullname: Buban
– volume: 52
  start-page: 2675
  year: 1995
  ident: 2020062012274007900_bib38
  article-title: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1995)052<2675:SAAOTD>2.0.CO;2
  contributor:
    fullname: Wicker
– volume: 19
  start-page: 10
  year: 2019
  ident: 2020062012274007900_bib19
  article-title: On the use of rotary-wing aircraft to sample near-surface thermodynamic fields: Results from recent field campaigns
  publication-title: Sensors
  doi: 10.3390/s19010010
  contributor:
    fullname: Lee
– volume: 93
  start-page: 494
  year: 1967
  ident: 2020062012274007900_bib35
  article-title: An experimental study in micro-meteorology
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.49709339808
  contributor:
    fullname: Swinbank
– volume: 59
  start-page: 2605
  year: 2002
  ident: 2020062012274007900_bib1
  article-title: Comments on “Critical test of the validity of Monin–Obukhov similarity during convective conditions.”
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(2002)059<2605:COCTOT>2.0.CO;2
  contributor:
    fullname: Andreas
– volume: 63
  start-page: 1231
  year: 2006
  ident: 2020062012274007900_bib5
  article-title: Effects of upper-level shear on the structure and maintenance of strong quasi-linear mesoscale convective systems
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS3681.1
  contributor:
    fullname: Coniglio
– volume: 167
  start-page: 181
  year: 2018
  ident: 2020062012274007900_bib16
  article-title: Air–sea/land interaction in the coastal zone
  publication-title: Bound.-Layer Meteor.
  doi: 10.1007/s10546-017-0326-2
  contributor:
    fullname: Grachev
– volume: 147
  start-page: 3811
  year: 2019
  ident: 2020062012274007900_bib22
  article-title: Observations of near-surface vertical wind profiles and vertical momentum fluxes from VORTEX-SE 2017: Comparisons to Monin–Obukhov similarity theory
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR-D-19-0091.1
  contributor:
    fullname: Markowski
– year: 2016
  ident: 2020062012274007900_bib8
  contributor:
    fullname: Dumas
– volume: 7
  start-page: 363
  year: 1974
  ident: 2020062012274007900_bib11
  article-title: A review of flux-profile relationships
  publication-title: Bound.-Layer Meteor.
  doi: 10.1007/BF00240838
  contributor:
    fullname: Dyer
– year: 1993
  ident: 2020062012274007900_bib26
  contributor:
    fullname: Mohammadi
– volume: 119
  start-page: 431
  year: 2006
  ident: 2020062012274007900_bib13
  article-title: 50 years of the Monin–Obukhov similarity theory
  publication-title: Bound.-Layer Meteor.
  doi: 10.1007/s10546-006-9048-6
  contributor:
    fullname: Foken
– year: 2005
  ident: 2020062012274007900_bib31
  contributor:
    fullname: Sauer
– volume: 74
  start-page: 989
  year: 2017
  ident: 2020062012274007900_bib23
  article-title: On the formulation and universality of Monin–Obukhov similarity functions for mean gradients and standard deviations in the unstable surface layer: Results from surface-layer-resolving large-eddy simulations
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS-D-16-0186.1
  contributor:
    fullname: Maronga
– volume: 85
  start-page: 273
  year: 1997
  ident: 2020062012274007900_bib2
  article-title: Flux footprints within and over forest canopies
  publication-title: Bound.-Layer Meteor.
  doi: 10.1023/A:1000472717236
  contributor:
    fullname: Baldocchi
– volume: 34
  start-page: 635
  year: 2019
  ident: 2020062012274007900_bib20
  article-title: Evaluation of the High-Resolution Rapid Refresh (HRRR) model using near-surface meteorological and flux observations from northern Alabama
  publication-title: Wea. Forecasting
  doi: 10.1175/WAF-D-18-0184.1
  contributor:
    fullname: Lee
– volume: 17
  start-page: 187
  year: 1979
  ident: 2020062012274007900_bib21
  article-title: A parametric model of vertical eddy fluxes in the atmosphere
  publication-title: Bound.-Layer Meteor.
  doi: 10.1007/BF00117978
  contributor:
    fullname: Louis
– volume: 140
  start-page: 898
  year: 2012
  ident: 2020062012274007900_bib18
  article-title: A revised scheme for the WRF surface layer formulation
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR-D-11-00056.1
  contributor:
    fullname: Jiménez
– volume: 22
  start-page: 3
  year: 1982
  ident: 2020062012274007900_bib25
  article-title: An alternative analysis of flux–gradient relationships at the 1976 ITCE
  publication-title: Bound.-Layer Meteor.
  doi: 10.1007/BF00128053
  contributor:
    fullname: Dyer
– volume: 78
  start-page: 215
  year: 1996
  ident: 2020062012274007900_bib17
  article-title: Review of some basic characteristics of the atmospheric surface layer
  publication-title: Bound.-Layer Meteor.
  doi: 10.1007/BF00120937
  contributor:
    fullname: Högström
– volume: 9
  start-page: 857
  year: 1970
  ident: 2020062012274007900_bib30
  article-title: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer
  publication-title: J. Appl. Meteor.
  doi: 10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2
  contributor:
    fullname: Paulson
– year: 1988
  ident: 2020062012274007900_bib34
  contributor:
    fullname: Stull
– volume: 16
  start-page: 11 349
  year: 2016
  ident: 2020062012274007900_bib40
  article-title: Scalar turbulent behavior in the roughness sublayer of an Amazonian forest
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-16-11349-2016
  contributor:
    fullname: Zahn
– year: 2017
  ident: 2020062012274007900_bib9
  contributor:
    fullname: Dumas
– volume: 93
  start-page: 501
  year: 1967
  ident: 2020062012274007900_bib10
  article-title: The turbulent transport of heat and water vapour in an unstable atmosphere
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.49709339809
  contributor:
    fullname: Dyer
– volume: 96
  start-page: 715
  year: 1970
  ident: 2020062012274007900_bib12
  article-title: Flux-gradient relationships in the constant flux layer
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.49709641012
  contributor:
    fullname: Dyer
– volume: 100
  start-page: 93
  year: 1972
  ident: 2020062012274007900_bib6
  article-title: Parameterization of the planetary boundary layer for use in general circulation models
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(1972)100<0093:POTPBL>2.3.CO;2
  contributor:
    fullname: Deardorff
– volume: 99
  start-page: 1639
  year: 2018
  ident: 2020062012274007900_bib39
  article-title: A new research approach for observing and characterizing land–atmosphere feedback
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/BAMS-D-17-0009.1
  contributor:
    fullname: Wulfmeyer
– volume: 100
  start-page: 137
  year: 2019
  ident: 2020062012274007900_bib37
  article-title: A new generation of ground-based mobile platforms for active and passive profiling of the boundary layer
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/BAMS-D-17-0165.1
  contributor:
    fullname: Wagner
– volume: 2
  start-page: 7
  year: 1971
  ident: 2020062012274007900_bib28
  article-title: Turbulence in an atmosphere with a nonuniform temperature
  publication-title: Bound.-Layer Meteor.
  doi: 10.1007/BF00718085
  contributor:
    fullname: Obukhov
– volume: 117
  start-page: D17106
  year: 2012
  ident: 2020062012274007900_bib32
  article-title: Climatology of the planetary boundary layer over the continental United States and Europe
  publication-title: J. Geophys. Res.
  doi: 10.1029/2012JD018143
  contributor:
    fullname: Seidel
– volume: 24
  start-page: 163
  year: 1954
  ident: 2020062012274007900_bib27
  article-title: Basic laws of turbulent mixing in the atmosphere near the ground
  publication-title: Tr. Geofiz. Inst., Akad. Nauk SSSR
  contributor:
    fullname: Monin
SSID ssj0044775
Score 2.4292831
Snippet The Land–Atmosphere Feedback Experiment (LAFE) was a field campaign to investigate influences of different land surface types on the atmospheric boundary layer...
Abstract The Land–Atmosphere Feedback Experiment (LAFE) was a field campaign to investigate influences of different land surface types on the atmospheric...
SourceID proquest
crossref
jstor
SourceType Aggregation Database
Publisher
StartPage 1091
SubjectTerms Atmosphere
Atmospheric boundary layer
Atmospheric models
Boundary layers
Climate models
Coefficient of friction
Evaluation
Fluxes
Grasslands
Heat exchange
Heat transfer coefficients
Meteorological satellites
Moisture
Moisture gradient
Momentum
Numerical weather forecasting
Prediction models
Richardson number
Similarity theory
Soybeans
Stability
Surface boundary layer
Surface stability
Temperature gradients
Tornadoes
Towers
Turbulence
Vortices
Weather forecasting
Wind
Wind shear
Title Evaluation of Monin–Obukhov and Bulk Richardson Parameterizations for Surface–Atmosphere Exchange
URI https://www.jstor.org/stable/26935928
https://www.proquest.com/docview/2492657046
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbS9sIF8aoIlMoHhITQhn3Y-zimeRBeIaKp1JtlO7ZatWSrdLcCDoj_wD_klzB2vLsJiRBwWUXexBvNfPF8Gc98RuipTDWnaSy8WKTCI0LFXhoT5ekgViHhlIT2mM7343h0Qt6c0tNW69tqd0khOvLr1r6S__EqjIFfTZfsP3i2nhQG4DX4F67gYbj-lY8HtVS3rWQxmdWqeCH6IMqLs_zGbg4clZcXVQu9OXFwwk1JllFpdk2YttjwuFxok1OvZugWn_JrozqgXgw-y6oLYRuV5Y7KmjnzRaPqJC_PgRCvJe5d4c9UGVXilWrFUvCNMn6XjAj9pmhqpf7f7jJVz7NQcxWoq-ssTb2ULNunO2p1LFpbnJ1c-PnGSmsETbeHgMSoZUDI6nl9z3RoASPtBE24q7b4R91jNukP2bvX47c7aC-EhQpWyL2jwXjysYrlhCRWqrn-uvVGN335-xPWiM2ytnUjvlvSMr2DbjsX4e4SOndRS83voXZjti_4Ge41TrqPVAMpnGtsIfXz-w8HJgxOxQZMuAET3gATBjBhByb4bAMjXMHoAToZDqa9kedO4vBkFNHCA6ZDkySisyTQcpYJ3wQC6fOIxoJznc1moZ9pTTWPCBG-iDnhUpsbfqCB4kb7aHeez9VDhDlQeJ4Qk4cIgaqnQolMaC1JEkaSStlGzyszsqul4Aqzf1QTyozJWZ8FGTMmZ0Eb7Vs7128MY9NoHqZtdFAZnrnf6zWz2pg08Un86M-3H6NbDbYP0G6xKNUToJ6FOEQ76fDVoUPJL1Eeifs
link.rule.ids 315,783,787,27936,27937,33385,33756
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+Monin%E2%80%93Obukhov+and+Bulk+Richardson+Parameterizations+for+Surface%E2%80%93Atmosphere+Exchange&rft.jtitle=Journal+of+applied+meteorology+and+climatology&rft.au=Lee%2C+Temple+R&rft.au=Buban%2C+Michael&rft.date=2020-06-01&rft.pub=American+Meteorological+Society&rft.issn=1558-8424&rft.eissn=1558-8432&rft.volume=59&rft.issue=6&rft.spage=1091&rft_id=info:doi/10.1175%2FJAMC-D-19-0057.1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-8424&client=summon