Evaluation of Monin–Obukhov and Bulk Richardson Parameterizations for Surface–Atmosphere Exchange
The Land–Atmosphere Feedback Experiment (LAFE) was a field campaign to investigate influences of different land surface types on the atmospheric boundary layer (ABL). The primary goals of LAFE were to better understand ABL development and structure and to improve turbulence parameterizations in nume...
Saved in:
Published in | Journal of applied meteorology and climatology Vol. 59; no. 6; pp. 1091 - 1107 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Boston
American Meteorological Society
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Land–Atmosphere Feedback Experiment (LAFE) was a field campaign to investigate influences of different land surface types on the atmospheric boundary layer (ABL). The primary goals of LAFE were to better understand ABL development and structure and to improve turbulence parameterizations in numerical weather prediction models. Three 10-m micrometeorological towers were installed over different land surface types (i.e., early growth soybean, native grassland, and mature soybean) along a 1.7-km southwest–northeast-oriented line. All towers measured standard meteorological variables in addition to heat, moisture, and momentum fluxes. In this study, we used these measurements to evaluate the validity of applying Monin–Obukhov similarity theory (MOST) to represent surface–atmosphere exchange over different land surface types. We investigated relationships between stability length ζ and the dimensionlesswind shear ϕm
, temperature gradient ϕh
, and moisture gradient ϕq
as well as relationships between bulk Richardson number Ri
b
, friction coefficient Cu
, heat-transfer coefficient Ct
, and moisture-transfer coefficient Cr
. We evaluated the new similarity functions developed using independent datasets obtained during the Verification of the Origins of Rotation in Tornadoes Experiment-Southeast (VORTEX-SE). We found that using the Rib functions rather than themore traditional ζ functions to compute wind, temperature, and moisture yielded better agreement with the VORTEX-SE observations. These findings underscore limitations in MOST and motivate the need to consider modifying the functional forms of the similarity equations that form the basis for surface-layer parameterizations in numerical weather prediction models. |
---|---|
AbstractList | The Land–Atmosphere Feedback Experiment (LAFE) was a field campaign to investigate influences of different land surface types on the atmospheric boundary layer (ABL). The primary goals of LAFE were to better understand ABL development and structure and to improve turbulence parameterizations in numerical weather prediction models. Three 10-m micrometeorological towers were installed over different land surface types (i.e., early growth soybean, native grassland, and mature soybean) along a 1.7-km southwest–northeast-oriented line. All towers measured standard meteorological variables in addition to heat, moisture, and momentum fluxes. In this study, we used these measurements to evaluate the validity of applying Monin–Obukhov similarity theory (MOST) to represent surface–atmosphere exchange over different land surface types. We investigated relationships between stability length ζ and the dimensionless wind shear ϕm, temperature gradient ϕh, and moisture gradient ϕq as well as relationships between bulk Richardson number Rib, friction coefficient Cu, heat-transfer coefficient Ct, and moisture-transfer coefficient Cr. We evaluated the new similarity functions developed using independent datasets obtained during the Verification of the Origins of Rotation in Tornadoes Experiment-Southeast (VORTEX-SE). We found that using the Rib functions rather than the more traditional ζ functions to compute wind, temperature, and moisture yielded better agreement with the VORTEX-SE observations. These findings underscore limitations in MOST and motivate the need to consider modifying the functional forms of the similarity equations that form the basis for surface-layer parameterizations in numerical weather prediction models. Abstract The Land–Atmosphere Feedback Experiment (LAFE) was a field campaign to investigate influences of different land surface types on the atmospheric boundary layer (ABL). The primary goals of LAFE were to better understand ABL development and structure and to improve turbulence parameterizations in numerical weather prediction models. Three 10-m micrometeorological towers were installed over different land surface types (i.e., early growth soybean, native grassland, and mature soybean) along a 1.7-km southwest–northeast-oriented line. All towers measured standard meteorological variables in addition to heat, moisture, and momentum fluxes. In this study, we used these measurements to evaluate the validity of applying Monin–Obukhov similarity theory (MOST) to represent surface–atmosphere exchange over different land surface types. We investigated relationships between stability length ζ and the dimensionless wind shear ϕ m , temperature gradient ϕ h , and moisture gradient ϕ q as well as relationships between bulk Richardson number Ri b , friction coefficient C u , heat-transfer coefficient C t , and moisture-transfer coefficient C r . We evaluated the new similarity functions developed using independent datasets obtained during the Verification of the Origins of Rotation in Tornadoes Experiment-Southeast (VORTEX-SE). We found that using the Ri b functions rather than the more traditional ζ functions to compute wind, temperature, and moisture yielded better agreement with the VORTEX-SE observations. These findings underscore limitations in MOST and motivate the need to consider modifying the functional forms of the similarity equations that form the basis for surface-layer parameterizations in numerical weather prediction models. The Land–Atmosphere Feedback Experiment (LAFE) was a field campaign to investigate influences of different land surface types on the atmospheric boundary layer (ABL). The primary goals of LAFE were to better understand ABL development and structure and to improve turbulence parameterizations in numerical weather prediction models. Three 10-m micrometeorological towers were installed over different land surface types (i.e., early growth soybean, native grassland, and mature soybean) along a 1.7-km southwest–northeast-oriented line. All towers measured standard meteorological variables in addition to heat, moisture, and momentum fluxes. In this study, we used these measurements to evaluate the validity of applying Monin–Obukhov similarity theory (MOST) to represent surface–atmosphere exchange over different land surface types. We investigated relationships between stability length ζ and the dimensionlesswind shear ϕm , temperature gradient ϕh , and moisture gradient ϕq as well as relationships between bulk Richardson number Ri b , friction coefficient Cu , heat-transfer coefficient Ct , and moisture-transfer coefficient Cr . We evaluated the new similarity functions developed using independent datasets obtained during the Verification of the Origins of Rotation in Tornadoes Experiment-Southeast (VORTEX-SE). We found that using the Rib functions rather than themore traditional ζ functions to compute wind, temperature, and moisture yielded better agreement with the VORTEX-SE observations. These findings underscore limitations in MOST and motivate the need to consider modifying the functional forms of the similarity equations that form the basis for surface-layer parameterizations in numerical weather prediction models. |
Author | Lee, Temple R. Buban, Michael |
Author_xml | – sequence: 1 givenname: Temple R. surname: Lee fullname: Lee, Temple R. – sequence: 2 givenname: Michael surname: Buban fullname: Buban, Michael |
BookMark | eNo9kMlOwzAQhi1UJNrCnQuSJc4pXuP4WNqyqVURy9lyEpumS1zspAJOvANvyJOQUMRpRprvm9H8PdApXWkAOMVogLHgF3fD2SgaR1hGCHExwAegizlPooRR0vnvCTsCvRCWCDEmBO8CM9npda2rwpXQWThzZVF-f37N03q1cDuoyxxe1usVfCiyhfZ5aLB77fXGVMYXH79egNZ5-Fh7qzPTuMNq48J2YbyBk7fGKl_MMTi0eh3MyV_tg-erydPoJprOr29Hw2mUUcqriGHKhaA8F9hmuUwRTijJkKY8TrW2Ms8JktZyqyljKUpjzXRm2wHCljef9sH5fu_Wu9fahEotXe3L5qQiTJKYC8TihkJ7KvMuBG-s2vpio_27wki1Yao2TDVWWKo2TIUb5WyvLEPl_D9PYkm5JAn9AXEKdqc |
CitedBy_id | crossref_primary_10_3390_atmos14020251 crossref_primary_10_1063_5_0161905 crossref_primary_10_1007_s10546_022_00761_2 crossref_primary_10_1016_j_egyr_2022_06_046 crossref_primary_10_1029_2021JD035697 crossref_primary_10_1016_j_rse_2021_112602 crossref_primary_10_1175_MWR_D_21_0047_1 crossref_primary_10_5194_gi_12_25_2023 crossref_primary_10_1007_s10546_022_00719_4 crossref_primary_10_1029_2022JD037212 |
Cites_doi | 10.1175/MWR-D-15-0242.1 10.1175/1520-0450(1997)036<0406:DOTMOS>2.0.CO;2 10.1007/BF02186086 10.1175/MWR-D-11-00189.1 10.1175/1520-0469(1995)052<2675:SAAOTD>2.0.CO;2 10.3390/s19010010 10.1002/qj.49709339808 10.1175/1520-0469(2002)059<2605:COCTOT>2.0.CO;2 10.1175/JAS3681.1 10.1007/s10546-017-0326-2 10.1175/MWR-D-19-0091.1 10.1007/BF00240838 10.1007/s10546-006-9048-6 10.1175/JAS-D-16-0186.1 10.1023/A:1000472717236 10.1175/WAF-D-18-0184.1 10.1007/BF00117978 10.1175/MWR-D-11-00056.1 10.1007/BF00128053 10.1007/BF00120937 10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2 10.5194/acp-16-11349-2016 10.1002/qj.49709339809 10.1002/qj.49709641012 10.1175/1520-0493(1972)100<0093:POTPBL>2.3.CO;2 10.1175/BAMS-D-17-0009.1 10.1175/BAMS-D-17-0165.1 10.1007/BF00718085 10.1029/2012JD018143 |
ContentType | Journal Article |
Copyright | 2020 American Meteorological Society Copyright American Meteorological Society Jun 2020 |
Copyright_xml | – notice: 2020 American Meteorological Society – notice: Copyright American Meteorological Society Jun 2020 |
DBID | AAYXX CITATION 7TG 7UA 8FD C1K F1W FR3 H8D H96 KL. KR7 L.G L7M |
DOI | 10.1175/JAMC-D-19-0057.1 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1558-8432 |
EndPage | 1107 |
ExternalDocumentID | 10_1175_JAMC_D_19_0057_1 26935928 |
GroupedDBID | -~X .4S .DC 29J 4.4 5GY 7XC 88I 8AF 8FE 8FG 8FH 8G5 8R4 8R5 ABBHK ABDBF ABDNZ ABUWG ABXSQ ACGFO ACGOD ACIWK AENEX AEUPB AFKRA AFRAH AIFVT AIRJO ALMA_UNASSIGNED_HOLDINGS ALQLQ ARAPS ARCSS ATCPS AZQEC BCU BEC BENPR BES BGLVJ BHPHI BKOMP BKSAR BLC BPHCQ CCPQU CS3 D1K DU5 DWQXO E.L EAD EAP EAS EBD EBS EDH EDO EMK EPL EQZMY EST ESX F8P FAC FAS FJW FRP GNUQQ GUQSH HCIFZ H~9 I-F IZHOT JAAYA JENOY JKQEH JLEZI JLXEF JPL JST K6- LK5 M1Q M2O M2P M2Q M7R MV1 OK1 P2P P62 PATMY PCBAR PQQKQ PROAC PYCSY Q2X QF4 QM1 QN7 QO4 R05 RWA RWE RXW S0X SA0 SJFOW SWMRO TN5 TUS U5U UNMZH ~02 AAYXX ADACV AEKFB CITATION H13 7TG 7UA 8FD C1K F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-c335t-41357735d71fcd9b01832c0a356baaf9dd209ff5fa344b0b6a4acfaf9d01f5843 |
ISSN | 1558-8424 |
IngestDate | Mon Nov 11 05:01:03 EST 2024 Fri Aug 23 01:20:04 EDT 2024 Fri Feb 02 07:18:33 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c335t-41357735d71fcd9b01832c0a356baaf9dd209ff5fa344b0b6a4acfaf9d01f5843 |
OpenAccessLink | https://journals.ametsoc.org/downloadpdf/journals/apme/59/6/jamcD190057.pdf |
PQID | 2492657046 |
PQPubID | 29229 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2492657046 crossref_primary_10_1175_JAMC_D_19_0057_1 jstor_primary_26935928 |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston |
PublicationTitle | Journal of applied meteorology and climatology |
PublicationYear | 2020 |
Publisher | American Meteorological Society |
Publisher_xml | – name: American Meteorological Society |
References | Deardorff (2020062012274007900_bib6) 1972; 100 Zahn (2020062012274007900_bib40) 2016; 16 Markowski (2020062012274007900_bib22) 2019; 147 Jiménez (2020062012274007900_bib18) 2012; 140 Seidel (2020062012274007900_bib32) 2012; 117 Louis (2020062012274007900_bib21) 1979; 17 Lee (2020062012274007900_bib19) 2019; 19 Grachev (2020062012274007900_bib14) 1997; 36 Wulfmeyer (2020062012274007900_bib39) 2018; 99 Högström (2020062012274007900_bib17) 1996; 78 Mohammadi (2020062012274007900_bib26) 1993 Obukhov (2020062012274007900_bib28) 1971; 2 Coniglio (2020062012274007900_bib5) 2006; 63 Dyer (2020062012274007900_bib10) 1967; 93 Sauer (2020062012274007900_bib31) 2005 Dyer (2020062012274007900_bib12) 1970; 96 Monin (2020062012274007900_bib27) 1954; 24 Dumas (2020062012274007900_bib8) 2016 Paulson (2020062012274007900_bib30) 1970; 9 Grachev (2020062012274007900_bib16) 2018; 167 Swinbank (2020062012274007900_bib35) 1967; 93 Dyer (2020062012274007900_bib25) 1982; 22 Stull (2020062012274007900_bib34) 1988 Foken (2020062012274007900_bib13) 2006; 119 Buban (2020062012274007900_bib4) 2012; 140 Wicker (2020062012274007900_bib38) 1995; 52 Lee (2020062012274007900_bib20) 2019; 34 Andreas (2020062012274007900_bib1) 2002; 59 Maronga (2020062012274007900_bib23) 2017; 74 Baldocchi (2020062012274007900_bib2) 1997; 85 Benjamin (2020062012274007900_bib3) 2016; 144 Panofsky (2020062012274007900_bib29) 1977; 11 Wagner (2020062012274007900_bib37) 2019; 100 Dumas (2020062012274007900_bib9) 2017 Dyer (2020062012274007900_bib11) 1974; 7 |
References_xml | – volume: 144 start-page: 1669 year: 2016 ident: 2020062012274007900_bib3 article-title: A North American hourly assimilation and model forecast cycle: The Rapid Refresh publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-15-0242.1 contributor: fullname: Benjamin – volume: 36 start-page: 406 year: 1997 ident: 2020062012274007900_bib14 article-title: Dependence of the Monin–Obukhov stability parameter on the bulk Richardson number over the ocean publication-title: J. Appl. Meteor. doi: 10.1175/1520-0450(1997)036<0406:DOTMOS>2.0.CO;2 contributor: fullname: Grachev – volume: 11 start-page: 355 year: 1977 ident: 2020062012274007900_bib29 article-title: The characteristics of turbulent velocity components in the surface layer under convective conditions publication-title: Bound.-Layer Meteor. doi: 10.1007/BF02186086 contributor: fullname: Panofsky – volume: 140 start-page: 3525 year: 2012 ident: 2020062012274007900_bib4 article-title: Simulation of dryline misovortex dynamics and cumulus formation publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-11-00189.1 contributor: fullname: Buban – volume: 52 start-page: 2675 year: 1995 ident: 2020062012274007900_bib38 article-title: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1995)052<2675:SAAOTD>2.0.CO;2 contributor: fullname: Wicker – volume: 19 start-page: 10 year: 2019 ident: 2020062012274007900_bib19 article-title: On the use of rotary-wing aircraft to sample near-surface thermodynamic fields: Results from recent field campaigns publication-title: Sensors doi: 10.3390/s19010010 contributor: fullname: Lee – volume: 93 start-page: 494 year: 1967 ident: 2020062012274007900_bib35 article-title: An experimental study in micro-meteorology publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.49709339808 contributor: fullname: Swinbank – volume: 59 start-page: 2605 year: 2002 ident: 2020062012274007900_bib1 article-title: Comments on “Critical test of the validity of Monin–Obukhov similarity during convective conditions.” publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(2002)059<2605:COCTOT>2.0.CO;2 contributor: fullname: Andreas – volume: 63 start-page: 1231 year: 2006 ident: 2020062012274007900_bib5 article-title: Effects of upper-level shear on the structure and maintenance of strong quasi-linear mesoscale convective systems publication-title: J. Atmos. Sci. doi: 10.1175/JAS3681.1 contributor: fullname: Coniglio – volume: 167 start-page: 181 year: 2018 ident: 2020062012274007900_bib16 article-title: Air–sea/land interaction in the coastal zone publication-title: Bound.-Layer Meteor. doi: 10.1007/s10546-017-0326-2 contributor: fullname: Grachev – volume: 147 start-page: 3811 year: 2019 ident: 2020062012274007900_bib22 article-title: Observations of near-surface vertical wind profiles and vertical momentum fluxes from VORTEX-SE 2017: Comparisons to Monin–Obukhov similarity theory publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-19-0091.1 contributor: fullname: Markowski – year: 2016 ident: 2020062012274007900_bib8 contributor: fullname: Dumas – volume: 7 start-page: 363 year: 1974 ident: 2020062012274007900_bib11 article-title: A review of flux-profile relationships publication-title: Bound.-Layer Meteor. doi: 10.1007/BF00240838 contributor: fullname: Dyer – year: 1993 ident: 2020062012274007900_bib26 contributor: fullname: Mohammadi – volume: 119 start-page: 431 year: 2006 ident: 2020062012274007900_bib13 article-title: 50 years of the Monin–Obukhov similarity theory publication-title: Bound.-Layer Meteor. doi: 10.1007/s10546-006-9048-6 contributor: fullname: Foken – year: 2005 ident: 2020062012274007900_bib31 contributor: fullname: Sauer – volume: 74 start-page: 989 year: 2017 ident: 2020062012274007900_bib23 article-title: On the formulation and universality of Monin–Obukhov similarity functions for mean gradients and standard deviations in the unstable surface layer: Results from surface-layer-resolving large-eddy simulations publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-16-0186.1 contributor: fullname: Maronga – volume: 85 start-page: 273 year: 1997 ident: 2020062012274007900_bib2 article-title: Flux footprints within and over forest canopies publication-title: Bound.-Layer Meteor. doi: 10.1023/A:1000472717236 contributor: fullname: Baldocchi – volume: 34 start-page: 635 year: 2019 ident: 2020062012274007900_bib20 article-title: Evaluation of the High-Resolution Rapid Refresh (HRRR) model using near-surface meteorological and flux observations from northern Alabama publication-title: Wea. Forecasting doi: 10.1175/WAF-D-18-0184.1 contributor: fullname: Lee – volume: 17 start-page: 187 year: 1979 ident: 2020062012274007900_bib21 article-title: A parametric model of vertical eddy fluxes in the atmosphere publication-title: Bound.-Layer Meteor. doi: 10.1007/BF00117978 contributor: fullname: Louis – volume: 140 start-page: 898 year: 2012 ident: 2020062012274007900_bib18 article-title: A revised scheme for the WRF surface layer formulation publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-11-00056.1 contributor: fullname: Jiménez – volume: 22 start-page: 3 year: 1982 ident: 2020062012274007900_bib25 article-title: An alternative analysis of flux–gradient relationships at the 1976 ITCE publication-title: Bound.-Layer Meteor. doi: 10.1007/BF00128053 contributor: fullname: Dyer – volume: 78 start-page: 215 year: 1996 ident: 2020062012274007900_bib17 article-title: Review of some basic characteristics of the atmospheric surface layer publication-title: Bound.-Layer Meteor. doi: 10.1007/BF00120937 contributor: fullname: Högström – volume: 9 start-page: 857 year: 1970 ident: 2020062012274007900_bib30 article-title: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer publication-title: J. Appl. Meteor. doi: 10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2 contributor: fullname: Paulson – year: 1988 ident: 2020062012274007900_bib34 contributor: fullname: Stull – volume: 16 start-page: 11 349 year: 2016 ident: 2020062012274007900_bib40 article-title: Scalar turbulent behavior in the roughness sublayer of an Amazonian forest publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-16-11349-2016 contributor: fullname: Zahn – year: 2017 ident: 2020062012274007900_bib9 contributor: fullname: Dumas – volume: 93 start-page: 501 year: 1967 ident: 2020062012274007900_bib10 article-title: The turbulent transport of heat and water vapour in an unstable atmosphere publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.49709339809 contributor: fullname: Dyer – volume: 96 start-page: 715 year: 1970 ident: 2020062012274007900_bib12 article-title: Flux-gradient relationships in the constant flux layer publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.49709641012 contributor: fullname: Dyer – volume: 100 start-page: 93 year: 1972 ident: 2020062012274007900_bib6 article-title: Parameterization of the planetary boundary layer for use in general circulation models publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(1972)100<0093:POTPBL>2.3.CO;2 contributor: fullname: Deardorff – volume: 99 start-page: 1639 year: 2018 ident: 2020062012274007900_bib39 article-title: A new research approach for observing and characterizing land–atmosphere feedback publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-17-0009.1 contributor: fullname: Wulfmeyer – volume: 100 start-page: 137 year: 2019 ident: 2020062012274007900_bib37 article-title: A new generation of ground-based mobile platforms for active and passive profiling of the boundary layer publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-17-0165.1 contributor: fullname: Wagner – volume: 2 start-page: 7 year: 1971 ident: 2020062012274007900_bib28 article-title: Turbulence in an atmosphere with a nonuniform temperature publication-title: Bound.-Layer Meteor. doi: 10.1007/BF00718085 contributor: fullname: Obukhov – volume: 117 start-page: D17106 year: 2012 ident: 2020062012274007900_bib32 article-title: Climatology of the planetary boundary layer over the continental United States and Europe publication-title: J. Geophys. Res. doi: 10.1029/2012JD018143 contributor: fullname: Seidel – volume: 24 start-page: 163 year: 1954 ident: 2020062012274007900_bib27 article-title: Basic laws of turbulent mixing in the atmosphere near the ground publication-title: Tr. Geofiz. Inst., Akad. Nauk SSSR contributor: fullname: Monin |
SSID | ssj0044775 |
Score | 2.4292831 |
Snippet | The Land–Atmosphere Feedback Experiment (LAFE) was a field campaign to investigate influences of different land surface types on the atmospheric boundary layer... Abstract The Land–Atmosphere Feedback Experiment (LAFE) was a field campaign to investigate influences of different land surface types on the atmospheric... |
SourceID | proquest crossref jstor |
SourceType | Aggregation Database Publisher |
StartPage | 1091 |
SubjectTerms | Atmosphere Atmospheric boundary layer Atmospheric models Boundary layers Climate models Coefficient of friction Evaluation Fluxes Grasslands Heat exchange Heat transfer coefficients Meteorological satellites Moisture Moisture gradient Momentum Numerical weather forecasting Prediction models Richardson number Similarity theory Soybeans Stability Surface boundary layer Surface stability Temperature gradients Tornadoes Towers Turbulence Vortices Weather forecasting Wind Wind shear |
Title | Evaluation of Monin–Obukhov and Bulk Richardson Parameterizations for Surface–Atmosphere Exchange |
URI | https://www.jstor.org/stable/26935928 https://www.proquest.com/docview/2492657046 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbS9sIF8aoIlMoHhITQhn3Y-zimeRBeIaKp1JtlO7ZatWSrdLcCDoj_wD_klzB2vLsJiRBwWUXexBvNfPF8Gc98RuipTDWnaSy8WKTCI0LFXhoT5ekgViHhlIT2mM7343h0Qt6c0tNW69tqd0khOvLr1r6S__EqjIFfTZfsP3i2nhQG4DX4F67gYbj-lY8HtVS3rWQxmdWqeCH6IMqLs_zGbg4clZcXVQu9OXFwwk1JllFpdk2YttjwuFxok1OvZugWn_JrozqgXgw-y6oLYRuV5Y7KmjnzRaPqJC_PgRCvJe5d4c9UGVXilWrFUvCNMn6XjAj9pmhqpf7f7jJVz7NQcxWoq-ssTb2ULNunO2p1LFpbnJ1c-PnGSmsETbeHgMSoZUDI6nl9z3RoASPtBE24q7b4R91jNukP2bvX47c7aC-EhQpWyL2jwXjysYrlhCRWqrn-uvVGN335-xPWiM2ytnUjvlvSMr2DbjsX4e4SOndRS83voXZjti_4Ge41TrqPVAMpnGtsIfXz-w8HJgxOxQZMuAET3gATBjBhByb4bAMjXMHoAToZDqa9kedO4vBkFNHCA6ZDkySisyTQcpYJ3wQC6fOIxoJznc1moZ9pTTWPCBG-iDnhUpsbfqCB4kb7aHeez9VDhDlQeJ4Qk4cIgaqnQolMaC1JEkaSStlGzyszsqul4Aqzf1QTyozJWZ8FGTMmZ0Eb7Vs7128MY9NoHqZtdFAZnrnf6zWz2pg08Un86M-3H6NbDbYP0G6xKNUToJ6FOEQ76fDVoUPJL1Eeifs |
link.rule.ids | 315,783,787,27936,27937,33385,33756 |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+Monin%E2%80%93Obukhov+and+Bulk+Richardson+Parameterizations+for+Surface%E2%80%93Atmosphere+Exchange&rft.jtitle=Journal+of+applied+meteorology+and+climatology&rft.au=Lee%2C+Temple+R&rft.au=Buban%2C+Michael&rft.date=2020-06-01&rft.pub=American+Meteorological+Society&rft.issn=1558-8424&rft.eissn=1558-8432&rft.volume=59&rft.issue=6&rft.spage=1091&rft_id=info:doi/10.1175%2FJAMC-D-19-0057.1&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-8424&client=summon |