Se-decorated SnO2/rGO composite spheres and their sodium storage performances

A unique pomegranate-like SnO2/rGO/Se spheres were fabricated using a simple one-pot spray pyrolysis method to promote fast ion-transportation and alleviate the cycling volume variation of SnO2 when used as an anode material for sodium-ion batteries. [Display omitted] SnO2 is considered a promising...

Full description

Saved in:
Bibliographic Details
Published inChinese chemical letters Vol. 32; no. 1; pp. 282 - 285
Main Authors Zhang, Peng, Cao, Bin, Soomro, Razium A., Sun, Ning, Xu, Bin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2021
State Key Laboratory of Organic-Inorganic Composites,Beijing Key Laboratory of Electrochemical Process and Technology for Materials,Beijing University of Chemical Technology,Beijing 100029,China%State Key Laboratory of Organic-Inorganic Composites,Beijing Key Laboratory of Electrochemical Process and Technology for Materials,Beijing University of Chemical Technology,Beijing 100029,China
Beijing Advanced Innovation Centre for Soft Matter Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A unique pomegranate-like SnO2/rGO/Se spheres were fabricated using a simple one-pot spray pyrolysis method to promote fast ion-transportation and alleviate the cycling volume variation of SnO2 when used as an anode material for sodium-ion batteries. [Display omitted] SnO2 is considered a promising anode material for sodium-ion batteries due to its high theoretical capacity and low cost. However, the poor electrical conductivity and dramatic volume variation during charge/discharge cycling is a major limitation in its practical applicability. Here we propose a simple one-pot spray pyrolysis process to construct unique pomegranate-like SnO2/rGO/Se spheres. The ideal structural configuration of these architectures was effective in alleviating the large volume variation of SnO2, besides facilitating rapid electron transfer, allowing the devised anode to exhibit superior sodium storage performances in terms of capacity (506.7 mAh/g at 30 mA/g), cycle performance (397 mAh/g after 100 cycles at 50 mA/g) and rate capability (188.9 mAh/g at an ultrahigh current density of 10 A/g). The experimental evidence confirms the practical workability of p-SnO2/rGO/Se spheres in SIBs.
AbstractList A unique pomegranate-like SnO2/rGO/Se spheres were fabricated using a simple one-pot spray pyrolysis method to promote fast ion-transportation and alleviate the cycling volume variation of SnO2 when used as an anode material for sodium-ion batteries. [Display omitted] SnO2 is considered a promising anode material for sodium-ion batteries due to its high theoretical capacity and low cost. However, the poor electrical conductivity and dramatic volume variation during charge/discharge cycling is a major limitation in its practical applicability. Here we propose a simple one-pot spray pyrolysis process to construct unique pomegranate-like SnO2/rGO/Se spheres. The ideal structural configuration of these architectures was effective in alleviating the large volume variation of SnO2, besides facilitating rapid electron transfer, allowing the devised anode to exhibit superior sodium storage performances in terms of capacity (506.7 mAh/g at 30 mA/g), cycle performance (397 mAh/g after 100 cycles at 50 mA/g) and rate capability (188.9 mAh/g at an ultrahigh current density of 10 A/g). The experimental evidence confirms the practical workability of p-SnO2/rGO/Se spheres in SIBs.
SnO2 is considered a promising anode material for sodium-ion batteries due to its high theoretical capacity and low cost. However, the poor electrical conductivity and dramatic volume variation during charge/discharge cycling is a major limitation in its practical applicability. Here we propose a simple one-pot spray pyrolysis process to construct unique pomegranate-like SnO2/rGO/Se spheres. The ideal structural configuration of these architectures was effective in alleviating the large volume variation of SnO2, besides facilitating rapid electron transfer, allowing the devised anode to exhibit superior sodium storage performances in terms of capacity (506.7 mAh/g at 30 mA/g), cycle performance (397 mAh/g after 100 cycles at 50 mA/g) and rate capability (188.9 mAh/g at an ultrahigh current density of 10 A/g). The experimental evidence confirms the practical workability of p-SnO2/rGO/Se spheres in SIBs.
Author Sun, Ning
Xu, Bin
Soomro, Razium A.
Zhang, Peng
Cao, Bin
AuthorAffiliation State Key Laboratory of Organic-Inorganic Composites,Beijing Key Laboratory of Electrochemical Process and Technology for Materials,Beijing University of Chemical Technology,Beijing 100029,China%State Key Laboratory of Organic-Inorganic Composites,Beijing Key Laboratory of Electrochemical Process and Technology for Materials,Beijing University of Chemical Technology,Beijing 100029,China;Beijing Advanced Innovation Centre for Soft Matter Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China
AuthorAffiliation_xml – name: State Key Laboratory of Organic-Inorganic Composites,Beijing Key Laboratory of Electrochemical Process and Technology for Materials,Beijing University of Chemical Technology,Beijing 100029,China%State Key Laboratory of Organic-Inorganic Composites,Beijing Key Laboratory of Electrochemical Process and Technology for Materials,Beijing University of Chemical Technology,Beijing 100029,China;Beijing Advanced Innovation Centre for Soft Matter Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China
Author_xml – sequence: 1
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
  organization: State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
– sequence: 2
  givenname: Bin
  surname: Cao
  fullname: Cao, Bin
  organization: State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
– sequence: 3
  givenname: Razium A.
  surname: Soomro
  fullname: Soomro, Razium A.
  organization: State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
– sequence: 4
  givenname: Ning
  surname: Sun
  fullname: Sun, Ning
  organization: State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
– sequence: 5
  givenname: Bin
  surname: Xu
  fullname: Xu, Bin
  email: xubin@mail.buct.edu.cn
  organization: State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
BookMark eNqFkLtOAzEQRS0EEuHxBTTbUW1ir_dZUKCIlxSUIlBbs_Y4cUjsyHZ4fT0OoaKAakZX98xI54QcWmeRkAtGh4yyerQcSrnCOCxosUuGlNYHZMDaps2rri4P004py9uSNcfkJIQlpUXb8npAHmeYK5TOQ0SVzey0GPm7aSbdeuOCiZiFzQI9hgysyuICjc-CU2a7zkJM0ByzDXrt_BqsxHBGjjSsAp7_zFPyfHvzNL7PJ9O7h_H1JJecVzEvWQFaUQa0q7DreQk9NKxTVamqvm5Adz2jLTCtG6QVFGVNec-57HTfV8BKfkou93ffwGqwc7F0W2_TR_E5X7y_9MlD8kIrlprdvim9C8GjFtJEiMbZ6MGsBKNiZ1AsxbdBsTO4C5PBxPJf7MabNfiPf6irPYVJwKtBL4I0mOwo41FGoZz5k_8Cpe-Nyg
CitedBy_id crossref_primary_10_1016_j_apsusc_2024_160606
crossref_primary_10_1007_s12598_021_01923_w
crossref_primary_10_1016_j_carbon_2024_119676
crossref_primary_10_1007_s12598_024_02730_9
crossref_primary_10_1016_j_jcis_2024_01_201
crossref_primary_10_1016_j_cclet_2023_108552
crossref_primary_10_1016_j_est_2024_112787
crossref_primary_10_1016_j_cej_2022_138891
crossref_primary_10_1016_j_cclet_2022_108004
crossref_primary_10_1016_j_jallcom_2023_169980
crossref_primary_10_1016_j_jallcom_2023_173126
crossref_primary_10_1007_s11837_025_07182_9
crossref_primary_10_1016_j_vacuum_2024_113522
crossref_primary_10_1016_j_cclet_2024_110589
crossref_primary_10_1016_j_jelechem_2022_117066
crossref_primary_10_1016_j_carbon_2025_120033
crossref_primary_10_1016_j_cej_2022_138019
crossref_primary_10_1088_1361_6463_acc33f
crossref_primary_10_3740_MRSK_2022_32_2_57
crossref_primary_10_1007_s12598_021_01886_y
crossref_primary_10_1016_j_mtchem_2023_101524
Cites_doi 10.1007/s40820-019-0296-7
10.1039/C6TA05029H
10.1021/acsanm.8b00045
10.1016/j.ensm.2018.05.010
10.1021/nl402633n
10.1007/s40820-017-0172-2
10.1016/j.coelec.2020.02.003
10.1039/C4RA10967H
10.1039/c1ee01598b
10.1021/acs.nanolett.5b03667
10.1002/cssc.201901497
10.1016/j.ensm.2020.04.016
10.1039/C7TA01936J
10.1002/anie.201802672
10.1039/C8TA07662F
10.1039/C6CS00776G
10.1007/s40820-020-0381-y
10.1002/anie.201510978
10.1016/j.jcis.2017.08.034
10.1016/j.cclet.2020.02.050
10.1039/C7TA01634D
10.1021/acsami.9b08378
10.1126/science.1212741
10.1007/s40820-020-00426-0
10.1039/C8QM00177D
10.1039/C5TA01963J
10.1016/j.cclet.2014.09.023
ContentType Journal Article
Copyright 2021
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2021
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/j.cclet.2020.10.006
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1878-5964
EndPage 285
ExternalDocumentID zghxkb202101051
10_1016_j_cclet_2020_10_006
S1001841720305817
GrantInformation_xml – fundername: This work was financially supported by the Beijing Municipal Science and Technology Commission
  funderid: (No. Z181100004718007)
GroupedDBID --K
--M
.~1
0R~
188
1B1
1~.
1~5
29B
2B.
2C.
2WC
4.4
457
4G.
5GY
5VR
5VS
6J9
7-5
71M
8P~
8RM
92E
92I
92Q
93N
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C1A
CCEZO
CDRFL
CHBEP
CS3
CW9
DU5
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
F5P
FA0
FDB
FEDTE
FIRID
FLBIZ
FNPLU
FYGXN
GBLVA
GX1
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
S..
SDF
SDG
SDH
SES
SPC
SPCBC
SSK
SSZ
T5K
TCJ
TGP
UNMZH
UZ4
~G-
-SB
-S~
5XA
5XC
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CAJEB
CITATION
Q--
SSH
U1G
U5L
4A8
PSX
ID FETCH-LOGICAL-c335t-412afd01a095e9b34aba719d54d5b67af9b108a1ff7e05a24603b33c9fbb5a143
IEDL.DBID .~1
ISSN 1001-8417
IngestDate Thu May 29 04:08:24 EDT 2025
Tue Jul 01 03:18:58 EDT 2025
Thu Apr 24 23:03:29 EDT 2025
Fri Feb 23 02:45:24 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Pomegranate-like structure
SnO2
Spray pyrolysis
rGO nanosheets
Sodium-ion batteries
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c335t-412afd01a095e9b34aba719d54d5b67af9b108a1ff7e05a24603b33c9fbb5a143
PageCount 4
ParticipantIDs wanfang_journals_zghxkb202101051
crossref_citationtrail_10_1016_j_cclet_2020_10_006
crossref_primary_10_1016_j_cclet_2020_10_006
elsevier_sciencedirect_doi_10_1016_j_cclet_2020_10_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle Chinese chemical letters
PublicationTitle_FL Chinese Chemical Letters
PublicationYear 2021
Publisher Elsevier B.V
State Key Laboratory of Organic-Inorganic Composites,Beijing Key Laboratory of Electrochemical Process and Technology for Materials,Beijing University of Chemical Technology,Beijing 100029,China%State Key Laboratory of Organic-Inorganic Composites,Beijing Key Laboratory of Electrochemical Process and Technology for Materials,Beijing University of Chemical Technology,Beijing 100029,China
Beijing Advanced Innovation Centre for Soft Matter Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China
Publisher_xml – name: Elsevier B.V
– name: Beijing Advanced Innovation Centre for Soft Matter Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China
– name: State Key Laboratory of Organic-Inorganic Composites,Beijing Key Laboratory of Electrochemical Process and Technology for Materials,Beijing University of Chemical Technology,Beijing 100029,China%State Key Laboratory of Organic-Inorganic Composites,Beijing Key Laboratory of Electrochemical Process and Technology for Materials,Beijing University of Chemical Technology,Beijing 100029,China
References Kebede (bib0050) 2020; 21
Zheng, Liu, Chen, Zeng, Wei (bib0100) 2016; 4
Ding, Chen, Xu (bib0160) 2020; 12
Liang, Yuan, Li (bib0055) 2018; 10
Zhang, Zhu, Guan (bib0015) 2020; 13
Sun, Guan, Liu (bib0025) 2019; 9
Sun, Zhu, Anasori (bib0040) 2019; 29
Xu, Zhu, Gong (bib0125) 2020; 31
Zeng, Zeng, Jiang (bib0150) 2015; 5
Ma, Li, Mi (bib0130) 2018; 57
Liu, Zhang, Zhu (bib0085) 2019; 11
Jahel, Ghimbeu, Darwiche (bib0070) 2015; 3
Wang, Wang, Yao (bib0135) 2019; 11
Dunn, Kamath, Tarascon (bib0005) 2011; 334
Deng, Luo, Chou, Liu, Dou (bib0035) 2018; 8
Liu, Zhang, Sun (bib0105) 2018; 30
Luo, Wan, Ozdemir (bib0030) 2015; 15
Qin, Zhao, Shi (bib0080) 2017; 5
Wei, Song, Guo (bib0090) 2015; 26
Li, Yang, Xu (bib0095) 2018; 2
Guo, Zhang, Song (bib0165) 2018; 14
Hwang, Myung, Sun (bib0060) 2017; 46
Fan, Li, Yan (bib0140) 2016; 6
Chen, Song, Mi (bib0075) 2017; 5
Jin, Cui, Wang, Li (bib0115) 2017; 508
Dong, Chen, Xia (bib0110) 2018; 6
Wang, Li, Chen, Liu, Guo (bib0145) 2014; 4
Gu, Kushima, Shao (bib0045) 2013; 13
Zhang, Soomro, Guan, Sun, Xu (bib0120) 2020; 29
Xie, Kretschmer, Anasori (bib0155) 2018; 1
Sun, Guan, Zhu (bib0010) 2020; 12
Etacheri, Marom, Elazari, Salitra, Aurbach (bib0020) 2011; 4
Zheng, Zhou, Zhang (bib0065) 2016; 55
Sun (10.1016/j.cclet.2020.10.006_bib0025) 2019; 9
Zeng (10.1016/j.cclet.2020.10.006_bib0150) 2015; 5
Gu (10.1016/j.cclet.2020.10.006_bib0045) 2013; 13
Xie (10.1016/j.cclet.2020.10.006_bib0155) 2018; 1
Sun (10.1016/j.cclet.2020.10.006_bib0040) 2019; 29
Luo (10.1016/j.cclet.2020.10.006_bib0030) 2015; 15
Wei (10.1016/j.cclet.2020.10.006_bib0090) 2015; 26
Li (10.1016/j.cclet.2020.10.006_bib0095) 2018; 2
Chen (10.1016/j.cclet.2020.10.006_bib0075) 2017; 5
Deng (10.1016/j.cclet.2020.10.006_bib0035) 2018; 8
Liu (10.1016/j.cclet.2020.10.006_bib0105) 2018; 30
Zheng (10.1016/j.cclet.2020.10.006_bib0100) 2016; 4
Ma (10.1016/j.cclet.2020.10.006_bib0130) 2018; 57
Qin (10.1016/j.cclet.2020.10.006_bib0080) 2017; 5
Zhang (10.1016/j.cclet.2020.10.006_bib0120) 2020; 29
Wang (10.1016/j.cclet.2020.10.006_bib0135) 2019; 11
Dunn (10.1016/j.cclet.2020.10.006_bib0005) 2011; 334
Sun (10.1016/j.cclet.2020.10.006_bib0010) 2020; 12
Zhang (10.1016/j.cclet.2020.10.006_bib0015) 2020; 13
Guo (10.1016/j.cclet.2020.10.006_bib0165) 2018; 14
Zheng (10.1016/j.cclet.2020.10.006_bib0065) 2016; 55
Ding (10.1016/j.cclet.2020.10.006_bib0160) 2020; 12
Etacheri (10.1016/j.cclet.2020.10.006_bib0020) 2011; 4
Liu (10.1016/j.cclet.2020.10.006_bib0085) 2019; 11
Xu (10.1016/j.cclet.2020.10.006_bib0125) 2020; 31
Jahel (10.1016/j.cclet.2020.10.006_bib0070) 2015; 3
Liang (10.1016/j.cclet.2020.10.006_bib0055) 2018; 10
Jin (10.1016/j.cclet.2020.10.006_bib0115) 2017; 508
Wang (10.1016/j.cclet.2020.10.006_bib0145) 2014; 4
Fan (10.1016/j.cclet.2020.10.006_bib0140) 2016; 6
Kebede (10.1016/j.cclet.2020.10.006_bib0050) 2020; 21
Hwang (10.1016/j.cclet.2020.10.006_bib0060) 2017; 46
Dong (10.1016/j.cclet.2020.10.006_bib0110) 2018; 6
References_xml – volume: 5
  start-page: 10946
  year: 2017
  end-page: 10956
  ident: bib0080
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 13646
  year: 2016
  end-page: 13651
  ident: bib0100
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 22790
  year: 2018
  end-page: 22797
  ident: bib0110
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 5203
  year: 2013
  end-page: 5211
  ident: bib0045
  publication-title: Nano Lett.
– volume: 21
  start-page: 182
  year: 2020
  end-page: 187
  ident: bib0050
  publication-title: Curr. Opin. Electrochem.
– volume: 15
  start-page: 7671
  year: 2015
  end-page: 7677
  ident: bib0030
  publication-title: Nano Lett.
– volume: 8
  year: 2018
  ident: bib0035
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 163
  year: 2020
  end-page: 171
  ident: bib0120
  publication-title: Energy Storage Mater.
– volume: 3
  start-page: 11960
  year: 2015
  end-page: 11969
  ident: bib0070
  publication-title: J. Mater. Chem. A
– volume: 57
  start-page: 8901
  year: 2018
  end-page: 8905
  ident: bib0130
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 1574
  year: 2018
  end-page: 1582
  ident: bib0095
  publication-title: Mater. Chem. Front.
– volume: 14
  start-page: 306
  year: 2018
  end-page: 313
  ident: bib0165
  publication-title: Energy Storage Mater.
– volume: 9
  year: 2019
  ident: bib0025
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 89
  year: 2020
  ident: bib0010
  publication-title: Nano-Micro Lett.
– volume: 11
  start-page: 65
  year: 2019
  ident: bib0085
  publication-title: Nano-Micro Lett.
– volume: 4
  start-page: 3243
  year: 2011
  end-page: 3262
  ident: bib0020
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 21
  year: 2018
  ident: bib0055
  publication-title: Nano-Micro Lett.
– volume: 5
  start-page: 10027
  year: 2017
  end-page: 10038
  ident: bib0075
  publication-title: J. Mater. Chem. A
– volume: 46
  start-page: 3529
  year: 2017
  end-page: 3614
  ident: bib0060
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 24198
  year: 2019
  end-page: 24204
  ident: bib0135
  publication-title: ACS Appl. Mater. Interfaces
– volume: 334
  start-page: 928
  year: 2011
  end-page: 935
  ident: bib0005
  publication-title: Science
– volume: 508
  start-page: 435
  year: 2017
  end-page: 442
  ident: bib0115
  publication-title: J. Colloid Interface Sci.
– volume: 1
  start-page: 505
  year: 2018
  end-page: 511
  ident: bib0155
  publication-title: ACS Appl. Nano Mater.
– volume: 6
  year: 2016
  ident: bib0140
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2018
  ident: bib0105
  publication-title: Adv. Mater.
– volume: 31
  start-page: 1039
  year: 2020
  end-page: 1043
  ident: bib0125
  publication-title: Chin. Chem. Lett.
– volume: 29
  year: 2019
  ident: bib0040
  publication-title: Adv. Funct. Mater.
– volume: 5
  year: 2015
  ident: bib0150
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 1621
  year: 2020
  end-page: 1628
  ident: bib0015
  publication-title: ChemSusChem
– volume: 26
  start-page: 124
  year: 2015
  end-page: 128
  ident: bib0090
  publication-title: Chin. Chem. Lett.
– volume: 12
  start-page: 54
  year: 2020
  ident: bib0160
  publication-title: Nano-Micro Lett.
– volume: 4
  start-page: 61673
  year: 2014
  end-page: 61678
  ident: bib0145
  publication-title: RSC Adv.
– volume: 55
  start-page: 3408
  year: 2016
  end-page: 3413
  ident: bib0065
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 65
  year: 2019
  ident: 10.1016/j.cclet.2020.10.006_bib0085
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0296-7
– volume: 4
  start-page: 13646
  year: 2016
  ident: 10.1016/j.cclet.2020.10.006_bib0100
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA05029H
– volume: 1
  start-page: 505
  year: 2018
  ident: 10.1016/j.cclet.2020.10.006_bib0155
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b00045
– volume: 14
  start-page: 306
  year: 2018
  ident: 10.1016/j.cclet.2020.10.006_bib0165
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.05.010
– volume: 13
  start-page: 5203
  year: 2013
  ident: 10.1016/j.cclet.2020.10.006_bib0045
  publication-title: Nano Lett.
  doi: 10.1021/nl402633n
– volume: 10
  start-page: 21
  year: 2018
  ident: 10.1016/j.cclet.2020.10.006_bib0055
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-017-0172-2
– volume: 21
  start-page: 182
  year: 2020
  ident: 10.1016/j.cclet.2020.10.006_bib0050
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2020.02.003
– volume: 4
  start-page: 61673
  year: 2014
  ident: 10.1016/j.cclet.2020.10.006_bib0145
  publication-title: RSC Adv.
  doi: 10.1039/C4RA10967H
– volume: 4
  start-page: 3243
  year: 2011
  ident: 10.1016/j.cclet.2020.10.006_bib0020
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01598b
– volume: 15
  start-page: 7671
  year: 2015
  ident: 10.1016/j.cclet.2020.10.006_bib0030
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03667
– volume: 13
  start-page: 1621
  year: 2020
  ident: 10.1016/j.cclet.2020.10.006_bib0015
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201901497
– volume: 29
  start-page: 163
  year: 2020
  ident: 10.1016/j.cclet.2020.10.006_bib0120
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.04.016
– volume: 5
  start-page: 10946
  year: 2017
  ident: 10.1016/j.cclet.2020.10.006_bib0080
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01936J
– volume: 57
  start-page: 8901
  year: 2018
  ident: 10.1016/j.cclet.2020.10.006_bib0130
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201802672
– volume: 6
  start-page: 22790
  year: 2018
  ident: 10.1016/j.cclet.2020.10.006_bib0110
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA07662F
– volume: 6
  year: 2016
  ident: 10.1016/j.cclet.2020.10.006_bib0140
  publication-title: Adv. Energy Mater.
– volume: 8
  year: 2018
  ident: 10.1016/j.cclet.2020.10.006_bib0035
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2019
  ident: 10.1016/j.cclet.2020.10.006_bib0040
  publication-title: Adv. Funct. Mater.
– volume: 46
  start-page: 3529
  year: 2017
  ident: 10.1016/j.cclet.2020.10.006_bib0060
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00776G
– volume: 12
  start-page: 54
  year: 2020
  ident: 10.1016/j.cclet.2020.10.006_bib0160
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-0381-y
– volume: 55
  start-page: 3408
  year: 2016
  ident: 10.1016/j.cclet.2020.10.006_bib0065
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201510978
– volume: 508
  start-page: 435
  year: 2017
  ident: 10.1016/j.cclet.2020.10.006_bib0115
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.08.034
– volume: 31
  start-page: 1039
  year: 2020
  ident: 10.1016/j.cclet.2020.10.006_bib0125
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2020.02.050
– volume: 5
  start-page: 10027
  year: 2017
  ident: 10.1016/j.cclet.2020.10.006_bib0075
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01634D
– volume: 5
  year: 2015
  ident: 10.1016/j.cclet.2020.10.006_bib0150
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 24198
  year: 2019
  ident: 10.1016/j.cclet.2020.10.006_bib0135
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b08378
– volume: 334
  start-page: 928
  year: 2011
  ident: 10.1016/j.cclet.2020.10.006_bib0005
  publication-title: Science
  doi: 10.1126/science.1212741
– volume: 12
  start-page: 89
  year: 2020
  ident: 10.1016/j.cclet.2020.10.006_bib0010
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-00426-0
– volume: 30
  year: 2018
  ident: 10.1016/j.cclet.2020.10.006_bib0105
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1574
  year: 2018
  ident: 10.1016/j.cclet.2020.10.006_bib0095
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C8QM00177D
– volume: 3
  start-page: 11960
  year: 2015
  ident: 10.1016/j.cclet.2020.10.006_bib0070
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA01963J
– volume: 26
  start-page: 124
  year: 2015
  ident: 10.1016/j.cclet.2020.10.006_bib0090
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2014.09.023
– volume: 9
  year: 2019
  ident: 10.1016/j.cclet.2020.10.006_bib0025
  publication-title: Adv. Energy Mater.
SSID ssj0028836
Score 2.3405018
Snippet A unique pomegranate-like SnO2/rGO/Se spheres were fabricated using a simple one-pot spray pyrolysis method to promote fast ion-transportation and alleviate...
SnO2 is considered a promising anode material for sodium-ion batteries due to its high theoretical capacity and low cost. However, the poor electrical...
SourceID wanfang
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 282
SubjectTerms Pomegranate-like structure
rGO nanosheets
SnO2
Sodium-ion batteries
Spray pyrolysis
Title Se-decorated SnO2/rGO composite spheres and their sodium storage performances
URI https://dx.doi.org/10.1016/j.cclet.2020.10.006
https://d.wanfangdata.com.cn/periodical/zghxkb202101051
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQCMGCeIrykgdGQv1MnRFVQAEBQ0Fii3yJDeURKlIEYuC340sTHgMMrCf7FJ0v58_2d3eEbIOQYZUTGXHpWKSA6cjGJo60A-29AGM83kOensW9S3V8pa8mSLfJhUFaZR37xzG9ita1pF1bsz0cDNp9rB5kFMd3RKYNx4xypTro5bvvnzQPbKZbZRghdQhHN5WHKo5XFpQhoVKgBClev-1O0y-28La4_rb3HMyTuRo00r3xdy2QCVcskplu06ttiZz2XZTjQTIgx5z2i3PRfjo8p8gXR1KWoyVWD3AltUVOq7cBWj7mg-cHiuTIEFLo8CuBoFwmlwf7F91eVDdKiDIp9ShSXFifM24DXnIJSGXBdniSa5VriDvWJ8CZsdz7jmPaChUzCVJmiQfQNiCmFTJZPBZuldBEgQjOBQG3sKDGQC5MxkAZaV04RcctIhoDpVldRRybWdynDV3sNq2smqJVURis2iI7n5OG4yIafw-PG8unP3whDWH-74m0Xqe0_hPL9O365vUOBB5tA5Tka__VvU5mUcn49mWDTI6ent1mwCMj2KocbotM7R2d9M4-AMF93og
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELaACtELojwE5VEfemSJnxvvsYqA0BI4BCRulmfXTlPaJWKDQBz47fVsdikc4NCrZY-ssT3-xv5mhpCvIGRc5UwmXHqWKGA6calJE-1BhyDAmIDvkIOztH-pvl_pqznSa2NhkFbZ2P6ZTa-tddPSabTZmYzHnSFmDzKK4z8i04Z358kHFY8vljE4eHrmeWA13TrECLlD2L1NPVSTvPIoDRmVAluQ4_XW9bR478rgytGLy-dohSw3qJF-m03sE5nz5SpZ6rXF2tbIYOiTAj3JCB0LOizPRef2-JwiYRxZWZ5WmD7AV9SVBa0_B2h1U4zv_lBkR0abQif_IgiqdXJ5dHjR6ydNpYQkl1JPE8WFCwXjLgImn4FUDlyXZ4VWhYa060IGnBnHQ-h6pp1QKZMgZZ4FAO0iZNogC-VN6TcJzRSIuLsgAhcWxRgohMkZKCOdj250ukVEqyCbN2nEsZrFb9vyxX7ZWqsWtYqNUatbZP950GSWReP97mmreftqM9ho598fSJt1ss1RrOzj6OfDNQj0bSOW5J__V_YXstS_GJza05OzH9vkIwqcPcXskIXp7Z3fjeBkCnv15vsL8wfgFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Se-decorated+SnO2%2FrGO+composite+spheres+and+their+sodium+storage+performances&rft.jtitle=%E4%B8%AD%E5%9B%BD%E5%8C%96%E5%AD%A6%E5%BF%AB%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Peng+Zhang&rft.au=Bin+Cao&rft.au=Razium+A.+Soomro&rft.au=Ning+Sun&rft.date=2021&rft.pub=State+Key+Laboratory+of+Organic-Inorganic+Composites%2CBeijing+Key+Laboratory+of+Electrochemical+Process+and+Technology+for+Materials%2CBeijing+University+of+Chemical+Technology%2CBeijing+100029%2CChina%25State+Key+Laboratory+of+Organic-Inorganic+Composites%2CBeijing+Key+Laboratory+of+Electrochemical+Process+and+Technology+for+Materials%2CBeijing+University+of+Chemical+Technology%2CBeijing+100029%2CChina&rft.issn=1001-8417&rft.volume=32&rft.issue=1&rft.spage=282&rft.epage=285&rft_id=info:doi/10.1016%2Fj.cclet.2020.10.006&rft.externalDocID=zghxkb202101051
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghxkb%2Fzghxkb.jpg