Association of biochar properties with changes in soil bacterial, fungal and fauna communities and nutrient cycling processes
Soil microorganisms play crucial roles in soil nutrient cycling, carbon sequestration, fertility maintenance and crop health and production. To date, the responses of microorganisms, such as microbial activity, diversity, community structure and nutrient cycling processes, to biochar addition have b...
Saved in:
Published in | Biochar (Online) Vol. 3; no. 3; pp. 239 - 254 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil microorganisms play crucial roles in soil nutrient cycling, carbon sequestration, fertility maintenance and crop health and production. To date, the responses of microorganisms, such as microbial activity, diversity, community structure and nutrient cycling processes, to biochar addition have been widely reported. However, the relationships between soil microbial groups (bacteria, fungi and microscopic fauna) and biochar physicochemical properties have not been summarized. In this review, we conclude that biochar affects soil microbial growth, diversity and community compositions by directly providing growth promoters for soil biota or indirectly changing soil basic properties. The porous structure, labile C, high pH and electrochemical properties of biochar play an important role in determining soil microbial abundance and communities, and their mediated N and P cycling processes, while the effects and underlying mechanisms vary with biochar types that are affected by pyrolysis temperature and feedstock type. Finally, we highlight some issues related to research methodology and subjects that are still poorly understood or controversial, and the perspectives for further research in microbial responses to biochar addition. |
---|---|
AbstractList | Soil microorganisms play crucial roles in soil nutrient cycling, carbon sequestration, fertility maintenance and crop health and production. To date, the responses of microorganisms, such as microbial activity, diversity, community structure and nutrient cycling processes, to biochar addition have been widely reported. However, the relationships between soil microbial groups (bacteria, fungi and microscopic fauna) and biochar physicochemical properties have not been summarized. In this review, we conclude that biochar affects soil microbial growth, diversity and community compositions by directly providing growth promoters for soil biota or indirectly changing soil basic properties. The porous structure, labile C, high pH and electrochemical properties of biochar play an important role in determining soil microbial abundance and communities, and their mediated N and P cycling processes, while the effects and underlying mechanisms vary with biochar types that are affected by pyrolysis temperature and feedstock type. Finally, we highlight some issues related to research methodology and subjects that are still poorly understood or controversial, and the perspectives for further research in microbial responses to biochar addition. |
Author | Zhu, Hang Li, Jihui Tang, C. Xu, Jianming Xiong, Xinquan Xu, Haojie Dai, Zhongmin Leng, Peng |
Author_xml | – sequence: 1 givenname: Zhongmin surname: Dai fullname: Dai, Zhongmin organization: Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, The Rural Development Academy, Zhejiang University, Shangdong (Linyi) Institute of Modern Agriculture, Zhejiang University – sequence: 2 givenname: Xinquan surname: Xiong fullname: Xiong, Xinquan organization: Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University – sequence: 3 givenname: Hang surname: Zhu fullname: Zhu, Hang organization: Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University – sequence: 4 givenname: Haojie surname: Xu fullname: Xu, Haojie organization: Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University – sequence: 5 givenname: Peng surname: Leng fullname: Leng, Peng organization: Linyi City Academy of Agricultural Sciences – sequence: 6 givenname: Jihui surname: Li fullname: Li, Jihui organization: Linyi City Academy of Agricultural Sciences – sequence: 7 givenname: C. surname: Tang fullname: Tang, C. organization: Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne Campus – sequence: 8 givenname: Jianming orcidid: 0000-0002-2954-9764 surname: Xu fullname: Xu, Jianming email: jmxu@zju.edu.cn organization: Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, The Rural Development Academy, Zhejiang University |
BookMark | eNp9kM9OAyEQh4mpibX2BTzxAK4CS5fdY9P4LzHxomfCskNLs4UG2NgefHdpqxcPPc3ML_NNMt81GjnvAKFbSu4pIeIhciZEWRBGC0JI0xS7CzRmM8YLUVdi9Nc3gl2haYzrvMRmlFZlM0bf8xi9tipZ77A3uLVer1TA2-C3EJKFiL9sWuEcumUerMPR2x63SicIVvV32AxuqXqsXIeNGpzC2m82g7NH-JC6IQULLmG91711y8NxDTFCvEGXRvURpr91gj6fHj8WL8Xb-_PrYv5W6LKcpYKpmlWipTPQ2gCnWtRtR3RlgHa6Y8CYannd8sawihDe8o6RhlFKBUBZcygnqD7d1cHHGMBIbdPx5xSU7SUl8mBSnkzKbFIeTcpdRtk_dBvsRoX9eag8QTEvZ29Brv0QXH7xHPUDgayMZg |
CitedBy_id | crossref_primary_10_1088_1755_1315_1241_1_012104 crossref_primary_10_1016_j_scitotenv_2024_175643 crossref_primary_10_1016_j_envres_2022_114278 crossref_primary_10_1007_s42106_024_00325_z crossref_primary_10_1039_D2RA04847G crossref_primary_10_1016_j_jenvman_2025_124768 crossref_primary_10_1071_CP21790 crossref_primary_10_3390_toxics11010053 crossref_primary_10_1007_s42729_023_01547_2 crossref_primary_10_1016_j_envpol_2023_121414 crossref_primary_10_1007_s42773_024_00308_3 crossref_primary_10_1016_j_envres_2024_120155 crossref_primary_10_1016_j_hazadv_2025_100673 crossref_primary_10_1016_j_envres_2023_115927 crossref_primary_10_1016_j_scitotenv_2024_172802 crossref_primary_10_1038_s41598_024_76082_w crossref_primary_10_1016_j_jhazmat_2023_132408 crossref_primary_10_1016_j_scitotenv_2022_155746 crossref_primary_10_1016_j_scitotenv_2024_176748 crossref_primary_10_1016_j_still_2024_106097 crossref_primary_10_1016_j_matpr_2023_04_542 crossref_primary_10_1016_j_scitotenv_2024_172942 crossref_primary_10_1016_j_scitotenv_2023_168545 crossref_primary_10_3389_fmicb_2022_980241 crossref_primary_10_3390_su131911104 crossref_primary_10_1007_s11368_022_03277_x crossref_primary_10_1007_s42729_024_01629_9 crossref_primary_10_1007_s42773_024_00319_0 crossref_primary_10_3390_agronomy12081879 crossref_primary_10_1016_j_soilbio_2021_108420 crossref_primary_10_1016_j_jenvman_2022_116745 crossref_primary_10_1007_s42773_023_00267_1 crossref_primary_10_1016_j_chemosphere_2021_133476 crossref_primary_10_1016_j_envc_2022_100540 crossref_primary_10_1016_j_envpol_2024_124033 crossref_primary_10_1007_s42832_023_0222_2 crossref_primary_10_1016_j_scitotenv_2023_169585 crossref_primary_10_3390_plants11060814 crossref_primary_10_1016_j_jenvman_2024_122764 crossref_primary_10_3390_agronomy13010053 crossref_primary_10_1007_s00248_023_02235_5 crossref_primary_10_3389_fmicb_2024_1330237 crossref_primary_10_3390_su151914643 crossref_primary_10_3390_c9030067 crossref_primary_10_1016_j_indcrop_2025_120761 crossref_primary_10_1016_j_pedsph_2024_06_007 crossref_primary_10_1007_s11356_025_36014_1 crossref_primary_10_1007_s42773_023_00291_1 crossref_primary_10_3389_fenvs_2023_1059449 crossref_primary_10_1016_j_indcrop_2025_120518 crossref_primary_10_1016_j_scitotenv_2022_156474 crossref_primary_10_1016_j_envpol_2023_121559 crossref_primary_10_1016_j_renene_2024_120777 crossref_primary_10_1016_j_scitotenv_2022_159346 crossref_primary_10_1111_gcbb_70021 crossref_primary_10_3390_agronomy14061215 crossref_primary_10_1016_j_scitotenv_2024_172509 crossref_primary_10_1007_s11356_022_24651_9 crossref_primary_10_1016_j_fcr_2023_109141 crossref_primary_10_15835_nbha50212688 crossref_primary_10_1016_j_chemosphere_2022_137025 crossref_primary_10_2174_0115734137282899240102085324 crossref_primary_10_1016_j_scitotenv_2024_170064 crossref_primary_10_1016_j_jhydrol_2023_129266 crossref_primary_10_1016_j_envpol_2022_119609 crossref_primary_10_3390_plants13233345 crossref_primary_10_1016_j_envpol_2024_124601 crossref_primary_10_1016_j_apsoil_2022_104503 crossref_primary_10_1007_s00374_022_01643_y crossref_primary_10_1007_s10343_022_00647_w crossref_primary_10_1007_s42773_022_00166_x crossref_primary_10_1016_j_scitotenv_2023_169618 crossref_primary_10_1016_j_scitotenv_2024_176283 crossref_primary_10_1039_D4EN01019A crossref_primary_10_1111_ppl_13986 crossref_primary_10_1002_ldr_4990 crossref_primary_10_1007_s10343_022_00702_6 crossref_primary_10_1016_j_jenvman_2022_114786 crossref_primary_10_1016_j_scitotenv_2023_162024 crossref_primary_10_1007_s00253_023_12701_2 crossref_primary_10_3390_microorganisms10081593 crossref_primary_10_3390_su17041675 crossref_primary_10_1016_j_jenvman_2024_121032 crossref_primary_10_3390_su15129200 crossref_primary_10_1080_00103624_2024_2420855 crossref_primary_10_1080_03650340_2022_2132479 crossref_primary_10_1016_j_scienta_2024_113699 crossref_primary_10_3389_fpls_2023_1277510 crossref_primary_10_1016_j_jaap_2022_105693 crossref_primary_10_1007_s42729_025_02328_9 crossref_primary_10_1016_j_cej_2023_141700 crossref_primary_10_1016_j_eti_2024_103659 crossref_primary_10_1071_FP23257 crossref_primary_10_4491_eer_2023_631 crossref_primary_10_1007_s43615_025_00525_3 crossref_primary_10_1016_j_jhazmat_2023_131990 crossref_primary_10_1016_j_jenvman_2022_114758 crossref_primary_10_3390_pr10040682 crossref_primary_10_3390_f14061114 crossref_primary_10_1007_s42773_022_00142_5 crossref_primary_10_1007_s11368_024_03733_w crossref_primary_10_1128_spectrum_04075_23 crossref_primary_10_3390_biomass4030045 crossref_primary_10_1002_advs_202307793 crossref_primary_10_1016_j_cej_2023_141380 crossref_primary_10_3390_su17041748 crossref_primary_10_1007_s42729_023_01489_9 crossref_primary_10_1016_j_biortech_2023_130179 crossref_primary_10_1016_j_scitotenv_2024_173679 crossref_primary_10_1016_j_scitotenv_2024_177757 crossref_primary_10_3390_microorganisms10102078 crossref_primary_10_1186_s12915_024_02011_y crossref_primary_10_3389_fagro_2024_1397974 crossref_primary_10_1007_s42729_024_01977_6 crossref_primary_10_1134_S1064229323602202 crossref_primary_10_1016_j_chemosphere_2024_143098 crossref_primary_10_3390_agriculture14010037 crossref_primary_10_3390_f14101977 crossref_primary_10_1016_j_scitotenv_2023_163966 crossref_primary_10_3390_agriculture14010039 crossref_primary_10_1007_s42773_022_00192_9 crossref_primary_10_1016_j_indcrop_2024_119805 crossref_primary_10_1080_15226514_2025_2473594 crossref_primary_10_1002_ldr_5029 crossref_primary_10_3390_microorganisms12030447 crossref_primary_10_1016_j_scitotenv_2022_157753 crossref_primary_10_1007_s11356_022_19011_6 crossref_primary_10_1007_s42773_024_00411_5 crossref_primary_10_1016_j_apsoil_2023_105162 crossref_primary_10_2478_rtuect_2023_0009 crossref_primary_10_1016_j_envres_2023_116596 crossref_primary_10_3390_f14050928 crossref_primary_10_1007_s42729_024_01964_x crossref_primary_10_1016_j_micres_2024_127696 crossref_primary_10_3389_fmicb_2022_1038536 crossref_primary_10_1016_j_soilbio_2022_108838 crossref_primary_10_1016_j_jclepro_2024_143211 crossref_primary_10_1016_j_soilbio_2024_109328 crossref_primary_10_1007_s42773_024_00363_w crossref_primary_10_3390_su17062784 crossref_primary_10_7745_KJSSF_2021_54_4_451 crossref_primary_10_3390_plants14060922 crossref_primary_10_3390_molecules26164783 crossref_primary_10_1016_j_scitotenv_2024_171458 crossref_primary_10_3390_su16104060 crossref_primary_10_3389_fmicb_2022_967746 crossref_primary_10_1016_j_jclepro_2024_142237 crossref_primary_10_1016_j_biteb_2022_101115 crossref_primary_10_1016_j_biombioe_2024_107531 crossref_primary_10_1038_s41598_025_94784_7 crossref_primary_10_32604_phyton_2025_058970 crossref_primary_10_1016_j_jenvman_2024_121861 crossref_primary_10_1016_j_scitotenv_2022_153461 crossref_primary_10_7717_peerj_17023 crossref_primary_10_1016_j_apsoil_2024_105317 crossref_primary_10_1016_j_scitotenv_2022_154790 crossref_primary_10_1016_j_biombioe_2024_107416 crossref_primary_10_1007_s11368_024_03916_5 crossref_primary_10_1007_s42729_024_02189_8 crossref_primary_10_1016_j_cej_2024_152496 crossref_primary_10_1016_j_envpol_2022_120632 crossref_primary_10_1186_s13213_022_01708_1 crossref_primary_10_1007_s42773_024_00312_7 crossref_primary_10_1007_s10163_023_01645_4 crossref_primary_10_1007_s42729_024_01762_5 crossref_primary_10_1016_j_scitotenv_2022_158620 crossref_primary_10_1016_j_ecoenv_2021_112681 crossref_primary_10_1016_j_jclepro_2023_137316 crossref_primary_10_1007_s42832_024_0267_x crossref_primary_10_1016_j_jece_2024_114283 crossref_primary_10_1007_s44246_025_00193_w |
Cites_doi | 10.1016/j.soilbio.2019.03.002 10.1016/j.geoderma.2014.01.023 10.1016/j.soilbio.2011.07.020 10.1128/mSphere.00085-17 10.1016/j.biortech.2010.11.018 10.1016/j.soilbio.2016.12.023 10.1016/j.geoderma.2019.113992 10.1016/j.soilbio.2013.10.051 10.1007/s00374-020-01436-1 10.1016/j.scitotenv.2020.141593 10.1128/aem.40.6.1067-1079.1980 10.1002/jpln.201900205 10.1093/femsre/fuy006 10.1111/j.1462-2920.2008.01701.x 10.1007/s42773-020-00039-1 10.1016/j.soilbio.2011.06.016 10.1111/gcb.14163 10.1128/aem.02775-08 10.1038/srep16221 10.1016/j.soilbio.2015.01.009 10.1016/j.soilbio.2016.12.006 10.1038/s41598-017-10427-6 10.1016/j.scitotenv.2020.141057 10.1038/srep36101 10.1038/ncomms14873 10.1016/j.jenvman.2016.10.041 10.1007/s00374-020-01525-1 10.1016/j.mib.2015.04.004 10.1016/j.chemosphere.2017.01.130 10.1016/j.soilbio.2020.107716 10.1038/nrmicro3109 10.1016/j.scitotenv.2020.143048 10.1007/s10533-007-9132-0 10.1016/j.geoderma.2019.114162 10.1016/j.scitotenv.2018.06.018 10.1016/j.agee.2016.11.016 10.1016/j.scitotenv.2018.08.372 10.1111/ejss.12290 10.2503/jjshs.71.370 10.1111/ejss.12388 10.1007/s11356-017-8505-8 10.1007/978-3-319-08216-5 10.1016/j.foreco.2017.09.038 10.1016/j.scitotenv.2016.03.220 10.1016/j.soilbio.2017.03.005 10.1016/j.soilbio.2013.06.004 10.1007/s11356-014-4067-1 10.1016/j.biortech.2012.03.022 10.1016/j.envPol.2012.07.009 10.1016/j.jenvman.2015.10.007 10.1021/ez5002209 10.1002/ldr.2838 10.1016/j.apsoil.2019.04.017 10.1016/j.soilbio.2018.04.019 10.1016/j.biombioe.2013.12.010 10.1016/j.chemosphere.2015.06.044 10.1016/j.scitotenv.2020.136958 10.1016/j.soilbio.2016.02.003 10.1021/acs.est.8b02340 10.1007/s11356-019-05604-1 10.1038/ismej.2015.235 10.1016/j.soilbio.2018.10.007 10.21273/hortsci.47.12.1736 10.1016/j.soilbio.2013.11.013 10.1016/j.scitotenv.2020.143817 10.1016/j.soilbio.2017.06.001 10.1002/ldr.3029 10.3389/fmicb.2014.00219 10.1016/j.chemosphere.2019.03.069 10.1016/j.soilbio.2018.09.001 10.1016/j.agee.2017.08.029 10.1038/ismej.2017.171 10.1007/s42773-019-00009-2 10.1016/j.chemosphere.2015.06.084 10.1016/j.chemosphere.2012.05.085 10.1021/acssuschemeng.8b04253 10.1016/j.soilbio.2019.107678 10.1016/j.apsoil.2015.02.012 10.2307/3545580 10.1111/1574-6976.12028 10.1111/ejss.12100 10.1016/j.scitotenv.2016.09.025 10.1111/1574-6941.12391 10.4324/9780203762264 10.1038/s41396-021-00896-z 10.1016/j.scitotenv.2019.133984 10.1111/ejss.12542 10.1016/j.foreco.2019.117857 10.1007/s12517-019-4239-x 10.1016/j.scitotenv.2018.04.278 10.1016/j.apsoil.2015.10.021 10.1007/978-3-319-08575-3 10.1094/pdis-10-10-0741 10.1007/s00374-020-01502-8 10.1080/01904167.2015.1089903 10.1007/s11104-010-0544-6 10.1016/j.scitotenv.2017.11.214 10.1021/es500906d 10.1016/j.chemosphere.2015.07.015 10.1038/ncomms4694 10.1186/s12898-020-00304-8 10.1007/s00374-018-1333-2 10.1007/s11368-013-0680-8 10.1038/ismej.2010.58 10.1002/ldr.3230 10.1016/j.apsoil.2017.02.018 10.1016/j.soilbio.2020.107868 10.1016/j.scitotenv.2018.07.224 10.1016/j.apsoil.2017.03.020 10.1111/gcbb.12119 10.1016/j.scitotenv.2020.143657 10.2136/sssaj2013.07.0258 10.1016/j.soilbio.2012.10.033 10.1016/j.scitotenv.2019.06.441 10.1038/nrmicro.2017.87 10.1016/j.scitotenv.2016.12.169 10.1038/ismej.2013.160 10.4324/9781849770552 10.4155/cmt.10.32 10.1016/j.scitotenv.2018.03.201 10.1038/s41396-019-0567-9 10.1126/sciadv.aax8787 10.1016/j.apsoil.2018.05.009 10.1016/j.heliyon.2018.e00704 10.1016/j.soilbio.2011.04.022 10.1038/ismej.2012.8 10.1021/acs.estlett.5b00354 10.1007/s11368-013-0698-y 10.1038/srep26425 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 |
Copyright_xml | – notice: The Author(s) 2021 |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s42773-021-00099-x |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2524-7867 |
EndPage | 254 |
ExternalDocumentID | 10_1007_s42773_021_00099_x |
GrantInformation_xml | – fundername: Serving Local Economic Development Project of Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University grantid: ZDNY-2020-FWLY01006 – fundername: Fundamental Research Funds for the Central Universities funderid: http://dx.doi.org/10.13039/501100012226 – fundername: Young Elite Scientists Sponsorship Program by CAST grantid: 2018QNRC001 – fundername: National Science Foundation of China grantid: 41520104001; 41807033 |
GroupedDBID | 0R~ AAHBH AAHNG AAJSJ AAKKN AAYZJ ABDBF ABECU ABEEZ ABFTV ABKCH ABMQK ABTEG ABTMW ACACY ACOKC ACULB ACZOJ ADKNI ADURQ ADYFF AFGXO AFQWF AGDGC AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AXYYD C24 C6C EBLON EBS EJD FNLPD GROUPED_DOAJ H13 M~E NQJWS OK1 RSV SNPRN SOHCF SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR AASML AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CITATION |
ID | FETCH-LOGICAL-c335t-2a8267b15eccfe41c78bd0c6fe1dcd2e22ab48b49f26004b4d20921117ee384e3 |
IEDL.DBID | C6C |
ISSN | 2524-7972 |
IngestDate | Tue Jul 01 03:16:37 EDT 2025 Thu Apr 24 22:56:47 EDT 2025 Fri Feb 21 02:48:28 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Nutrient cycling Microbial communities Biochar property Enzyme Diversity Crop health |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c335t-2a8267b15eccfe41c78bd0c6fe1dcd2e22ab48b49f26004b4d20921117ee384e3 |
ORCID | 0000-0002-2954-9764 |
OpenAccessLink | https://doi.org/10.1007/s42773-021-00099-x |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1007_s42773_021_00099_x crossref_primary_10_1007_s42773_021_00099_x springer_journals_10_1007_s42773_021_00099_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210900 2021-09-00 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 9 year: 2021 text: 20210900 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Biochar (Online) |
PublicationTitleAbbrev | Biochar |
PublicationYear | 2021 |
Publisher | Springer Singapore |
Publisher_xml | – name: Springer Singapore |
References | Graber, Harel, Kolton (CR36) 2010; 337 Gray, Johnson, Dragila, Kleber (CR37) 2014; 61 Han, Lan, Chen, Yu, Bie (CR40) 2017; 7 Weiss, Van Treuren, Lozupone (CR102) 2016; 10 Dai, Li, Zhang, Wu, Luo, Kuzyakov, Brookes, Xu (CR24) 2019; 30 Xu, Seshadri, Sarkar (CR108) 2018; 621 Geisen, Mitchell, Adl (CR35) 2018; 42 Dai, Zhang, Tang, Muhammad, Wu, Brookes, Xu (CR21) 2017; 581 Saquing, Yu, Chiu (CR91) 2016; 3 Watzinger, Feichtmair, Kitzler, Zehetner, Kloss, Wimmer, Zechmeister-Boltenstern, Soja (CR101) 2014; 65 Yu, Yu, Lu, Tang, Liu, Brookes, Xu (CR117) 2018; 640 Xiao, Rasmann, Yue, Lian, Zou, Wang (CR105) 2019; 696 Rousk, Brookes, Baath (CR89) 2009; 75 Yang, Cao, Gao, Zhao, Li (CR110) 2015; 22 Yuan, Xu, Zhang (CR122) 2011; 102 Yu, Meng, Yu (CR119) 2019; 650 Zhou, Heal, Tigabu, Xia, Hu, Yin, Ma (CR129) 2020; 455 Han, Douds, Boateng (CR39) 2016; 39 Liu, Meng, Jiang, Yang, Lan, Cheng, Chen (CR63) 2017; 116 Zhang, Cheng, Feng (CR125) 2017; 24 Pokharel, Ma, Chang (CR87) 2020; 2 Fierer (CR32) 2017; 15 Ameloot, Sleutel, Das, Kanagaratnam, de Neve (CR2) 2015; 7 Smets, Leff, Bradford, McCulley, Lebeer, Fierer (CR92) 2016; 96 Berry, Widder (CR6) 2014; 5 Rousk, Baath, Brookes, Lauber, Lozupone, Caporaso, Knight, Fierer (CR90) 2010; 4 Yang, Ravnskov, Andersen (CR112) 2020; 183 Yu, Liang, Dai, Li, Luo, Tang, Xu (CR121) 2021; 763 Faust, Lahti, Gonze, de Vos, Raes (CR30) 2015; 25 Dai, Barberan, Li, Brookes, Xu (CR20) 2017; 2 Novak, Cantrell, Watts, Busscher, Johnson (CR81) 2014; 14 Dai, Hu, Xu, Zhang, Brookes, He, Xu (CR18) 2016; 6 Mooshammer, Wanek, Hämmerle (CR76) 2014; 5 Li, Li, Chang (CR58) 2018; 122 Tsai, Liu, Chen, Chang, Tsai (CR98) 2012; 89 Yu, Ling, Singh, Luo, Xu (CR120) 2020; 746 Hansen, Müller-Stöver, Imparato, Krogh, Jensen, Dolmer, Hauggaard-Nielsen (CR41) 2017; 186 Li, Wang, Chang, Jiang, Song (CR60) 2020; 749 Abujabhah, Bound, Doyle, Bowman (CR1) 2016; 98 Dai, Liu, Chen (CR25) 2020; 14 Elzobair, Stromberger, Ippolito, Lentz (CR28) 2016; 142 Jin, Liang, He, Liu, Tian, Shi (CR50) 2016; 142 Yu, Chen, Pan, Li, Kuzyakov, Xu, Brookes, Luo (CR118) 2018; 69 Noyce, Winsborough, Fulthorpe, Basiliko (CR82) 2016; 6 Xu, Gao, Yang (CR109) 2019; 225 Yang, Lou, Wang, Wu, Xu (CR111) 2018; 633 Oliverio, Geisen, Delgado-Baquerizo, Maestre, Turner, Fierer (CR83) 2020; 6 Sun, Levin, Guzman, Enders, Muller, Angenent, Lehmann (CR96) 2017; 8 Gao, DeLuca (CR34) 2020; 148 Wu, Senbayram, Zang (CR104) 2018; 129 Lugtenberg (CR68) 2015 Harter, Weigold, El-Hadidi, Huson, Kappler, Behrens (CR43) 2016; 562 Dai, Su, Chen (CR23) 2018; 24 Guo, Zhao, Liu (CR38) 2020; 363 Zhou, Zhou, Zhang (CR128) 2017; 405 Biederman, Phelps, Ross, Polzin, Harpole (CR7) 2017; 236 Asiloglu, Sevilir, Samuel (CR4) 2021; 57 Huang, Liu, Zeng, Xu, Huang, Deng, Wang, Wan (CR46) 2017; 174 Kappler, Wuestner, Ruecker, Harter, Halama, Behrens (CR51) 2014; 1 Nguyen, Koide, Dell, Drohan, Skinner, Adler, Nord (CR78) 2014; 78 Suliman, Harsh, Abu-Lail, Fortuna, Dallmeyer, Garcia-Perez (CR95) 2017; 574 Zwart, Kim (CR130) 2012; 47 Muhammad, Dai, Xiao (CR77) 2014; 226 Wang, Zheng, Liu, Yun, Hu (CR100) 2020; 359 Xu, Shao, Zhang, Junna (CR107) 2018; 29 Cross, Sohi (CR16) 2011; 43 Herrmann, Lesueur, Robin, Robain, Wiriyakitnateekul, Bräu (CR44) 2019; 689 Yu, Yuan, Tang, Wang, Zhou (CR116) 2015; 5 Chen, Sun, Li, Liu, Zhang, Zheng, Pan (CR10) 2016; 67 Kluepfel, Keiluweit, Kleber, Sander (CR54) 2014; 48 Liu, Yang, Hu (CR66) 2020; 56 Dai, Enders, Rodrigues, Hanley, Brookes, Xu, Lehmann (CR22) 2018; 126 Khadem, Raiesi (CR52) 2017; 114 Khan, Zaidi, Musarrat (CR53) 2014 Quilliam, Glanville, Wade, Jones (CR88) 2013; 65 Nguyen, Wallace, Xu (CR79) 2018; 636 Pei, Zhuang, Cui, Li, Li, Wu, Fang (CR85) 2017; 249 Yang, Wu, Wang, An, Jin, Sun, Wang (CR113) 2021; 758 Elmer, Pignatello (CR27) 2011; 95 Palansooriya, Wong, Hashimoto (CR84) 2019; 1 Zhang, Xiang, Jing, Zhang (CR126) 2019; 26 Azeem, Sun, Crowley (CR5) 2020; 715 Freddo, Cai, Reid (CR33) 2012; 171 Madigan, Martinko, Dunlap, Clark (CR72) 2008; 11 Sun, Levin, Schmidt (CR97) 2018; 52 Matsubara, Hasegawa, Fukui (CR74) 2002; 71 Enders, Hanley, Whitman, Joseph, Lehmann (CR29) 2012; 114 Cobb, Wilson, Goad, Grusak (CR15) 2018; 4 Harter, Krause, Schuettler, Ruser, Fromme, Scholten, Kappler, Behrens (CR42) 2014; 8 Irfan, Hussain, Khan (CR48) 2019; 12 Chen, Liu, Li, Zheng, Qu, Zheng, Zhang, Pan (CR9) 2015; 91 Luo, Durenkamp, De Nobili, Lin, Brookes (CR69) 2011; 43 Ying, Li, Wang, Lan, He, Bai (CR115) 2017; 107 Lehmann, Joseph (CR56) 2015 Spokas (CR93) 2010; 1 Zhang, Ma, Tang, Yu, Lv, Mazza Rodrigues, Dahlgren, Xu (CR127) 2021 Li, Liu, Pan (CR59) 2019; 128 Caporaso, Lauber, Walters (CR8) 2012; 6 Cleveland, Liptzin (CR14) 2007; 85 Zackrisson, Nilsson, Wardle (CR124) 1996; 77 Philippot, Raaijmakers, Lemanceau, van der Putten (CR86) 2013; 11 Lehmann, Rillig, Thies, Masiello, Hockaday, Crowley (CR57) 2011; 43 Cheng, Lee, Tang, Zhang (CR13) 2019; 140 Liu, Li, Yu (CR64) 2018; 29 Luo, Durenkamp, De Nobili, Lin, Devonshire, Brookes (CR70) 2013; 57 Liu, Tan, Gong, Huang (CR65) 2019; 7 Wang, Zong, Zheng, Liu, Chen, Xing (CR99) 2015; 138 Dai, Meng, Muhammad, Liu, Wang, He, Brookes, Xu (CR17) 2013; 13 Luo, Zang, Yu (CR71) 2017; 106 Dai, Meng, Shi, Xu, Lian, Brookes, Xu (CR19) 2016; 67 Feng, Sheng, Cai, Wang, Zhu (CR31) 2018; 645 Xiong, Jousset, Guo (CR106) 2018; 12 Asiloglu, Samuel, Sevilir (CR3) 2021; 57 Subedi, Taupe, Pelissetti, Petruzzelli, Bertora, Leahy, Grignani (CR94) 2016; 166 Liu, Zhang, Li (CR67) 2020; 20 Woolet, Whitman (CR103) 2020; 141 Hu, Liu, Wang (CR45) 2014; 90 Nicol, Leininger, Schleper, Prosser (CR80) 2008; 10 Mendes, Garbeva, Raaijmakers (CR75) 2013; 37 Hurst, Gerba, Cech (CR47) 1980; 40 Yao, Liu, Yu, Li, Jin, Liu, Wang (CR114) 2017; 110 Liu, Sui, Yu, Shi, Chu, Jin, Liu, Wang (CR62) 2015; 83 Chen, Chen, Xu (CR11) 2019; 55 Chen, Liu, Mo, Jiang, Yang, Lin (CR12) 2020; 757 Lin, Ding, Liu, He, Yoo, Yuan, Chen, Fan (CR61) 2017; 113 Maestrini, Herrmann, Nannipieri, Schmidt, Abiven (CR73) 2014; 69 Yuan, Zhang, Li (CR123) 2019; 133 Lehmann, Joseph (CR55) 2012 Jaiswal, Elad, Graber, Frenkel (CR49) 2014; 69 DeForest, Otuya (CR26) 2020; 142 T Liu (99_CR66) 2020; 56 L Yu (99_CR116) 2015; 5 S Liu (99_CR63) 2017; 116 J Lehmann (99_CR57) 2011; 43 M Zhang (99_CR125) 2017; 24 C Zhou (99_CR129) 2020; 455 Z Xiao (99_CR105) 2019; 696 KA Spokas (99_CR93) 2010; 1 L Yu (99_CR117) 2018; 640 Z Wang (99_CR99) 2015; 138 J Harter (99_CR42) 2014; 8 R Mendes (99_CR75) 2013; 37 T Sun (99_CR97) 2018; 52 X Liu (99_CR67) 2020; 20 G Han (99_CR40) 2017; 7 GL Noyce (99_CR82) 2016; 6 J Rousk (99_CR90) 2010; 4 IS Abujabhah (99_CR1) 2016; 98 DL Huang (99_CR46) 2017; 174 Y Matsubara (99_CR74) 2002; 71 D Berry (99_CR6) 2014; 5 X Liu (99_CR64) 2018; 29 A Watzinger (99_CR101) 2014; 65 J Chen (99_CR9) 2015; 91 R Asiloglu (99_CR3) 2021; 57 J Harter (99_CR43) 2016; 562 Z Dai (99_CR18) 2016; 6 N Ameloot (99_CR2) 2015; 7 WH Elmer (99_CR27) 2011; 95 M Yu (99_CR119) 2019; 650 Y Lin (99_CR61) 2017; 113 A Cross (99_CR16) 2011; 43 Y Xu (99_CR108) 2018; 621 Z Dai (99_CR22) 2018; 126 J Cheng (99_CR13) 2019; 140 JH Yuan (99_CR122) 2011; 102 J Chen (99_CR10) 2016; 67 MS Khan (99_CR53) 2014 Y Wang (99_CR100) 2020; 359 Z Dai (99_CR25) 2020; 14 G Xu (99_CR107) 2018; 29 A Enders (99_CR29) 2012; 114 GY Zhou (99_CR128) 2017; 405 KN Palansooriya (99_CR84) 2019; 1 Q Yao (99_CR114) 2017; 110 Z Dai (99_CR24) 2019; 30 N Muhammad (99_CR77) 2014; 226 V Hansen (99_CR41) 2017; 186 Y Li (99_CR59) 2019; 128 AB Cobb (99_CR15) 2018; 4 L Zhang (99_CR127) 2021 M Xu (99_CR109) 2019; 225 H Yuan (99_CR123) 2019; 133 CC Cleveland (99_CR14) 2007; 85 JM Saquing (99_CR91) 2016; 3 DC Zwart (99_CR130) 2012; 47 A Kappler (99_CR51) 2014; 1 L Kluepfel (99_CR54) 2014; 48 J Chen (99_CR11) 2019; 55 Z Dai (99_CR19) 2016; 67 TTN Nguyen (99_CR79) 2018; 636 M Irfan (99_CR48) 2019; 12 J Lehmann (99_CR56) 2015 Z Dai (99_CR21) 2017; 581 R Asiloglu (99_CR4) 2021; 57 Y Luo (99_CR70) 2013; 57 L Herrmann (99_CR44) 2019; 689 Y Luo (99_CR71) 2017; 106 W Suliman (99_CR95) 2017; 574 W Xiong (99_CR106) 2018; 12 J Rousk (99_CR89) 2009; 75 S Gao (99_CR34) 2020; 148 B Lugtenberg (99_CR68) 2015 GW Nicol (99_CR80) 2008; 10 M Azeem (99_CR5) 2020; 715 J Liu (99_CR62) 2015; 83 KA Elzobair (99_CR28) 2016; 142 P Pokharel (99_CR87) 2020; 2 W Smets (99_CR92) 2016; 96 MT Madigan (99_CR72) 2008; 11 M Gray (99_CR37) 2014; 61 JG Caporaso (99_CR8) 2012; 6 L Zhang (99_CR126) 2019; 26 Z Dai (99_CR23) 2018; 24 J Lehmann (99_CR55) 2012 LA Biederman (99_CR7) 2017; 236 A Freddo (99_CR33) 2012; 171 R Subedi (99_CR94) 2016; 166 J Woolet (99_CR103) 2020; 141 L Yang (99_CR111) 2018; 633 F Yang (99_CR110) 2015; 22 L Yang (99_CR113) 2021; 758 Z Yu (99_CR118) 2018; 69 P Chen (99_CR12) 2020; 757 Y Luo (99_CR69) 2011; 43 M Mooshammer (99_CR76) 2014; 5 D Wu (99_CR104) 2018; 129 Z Feng (99_CR31) 2018; 645 S Geisen (99_CR35) 2018; 42 RS Quilliam (99_CR88) 2013; 65 O Zackrisson (99_CR124) 1996; 77 Z Dai (99_CR17) 2013; 13 Y Li (99_CR58) 2018; 122 Y Jin (99_CR50) 2016; 142 M Yu (99_CR121) 2021; 763 X Li (99_CR60) 2020; 749 JL DeForest (99_CR26) 2020; 142 B Hu (99_CR45) 2014; 90 ER Graber (99_CR36) 2010; 337 N Fierer (99_CR32) 2017; 15 Z Dai (99_CR20) 2017; 2 CJ Hurst (99_CR47) 1980; 40 BT Nguyen (99_CR78) 2014; 78 Y Han (99_CR39) 2016; 39 Q Yang (99_CR112) 2020; 183 J Pei (99_CR85) 2017; 249 S Weiss (99_CR102) 2016; 10 K Guo (99_CR38) 2020; 363 JM Novak (99_CR81) 2014; 14 J Ying (99_CR115) 2017; 107 L Philippot (99_CR86) 2013; 11 A Khadem (99_CR52) 2017; 114 K Faust (99_CR30) 2015; 25 WT Tsai (99_CR98) 2012; 89 AK Jaiswal (99_CR49) 2014; 69 T Sun (99_CR96) 2017; 8 L Liu (99_CR65) 2019; 7 B Maestrini (99_CR73) 2014; 69 AM Oliverio (99_CR83) 2020; 6 Z Yu (99_CR120) 2020; 746 |
References_xml | – volume: 133 start-page: 94 year: 2019 end-page: 96 ident: CR123 article-title: Biochar’s role as an electron shuttle for mediating soil N O emissions publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2019.03.002 – volume: 226 start-page: 270 year: 2014 end-page: 278 ident: CR77 article-title: Changes in microbial community structure due to biochars generated from different feedstocks and their relationships with soil chemical properties publication-title: Geoderma doi: 10.1016/j.geoderma.2014.01.023 – volume: 43 start-page: 2304 year: 2011 end-page: 2314 ident: CR69 article-title: Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.07.020 – volume: 2 start-page: e00085 year: 2017 end-page: 17 ident: CR20 article-title: Bacterial community composition associated with pyrogenic organic matter (biochar) varies with pyrolysis temperature and colonization environment publication-title: Msphere doi: 10.1128/mSphere.00085-17 – volume: 102 start-page: 3488 year: 2011 end-page: 3497 ident: CR122 article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.11.018 – volume: 107 start-page: 10 year: 2017 end-page: 18 ident: CR115 article-title: Contrasting effects of nitrogen forms and soil pH on ammonia oxidizing microorganisms and their responses to long-term nitrogen fertilization in a typical steppe ecosystem publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.12.023 – volume: 359 start-page: 113992 year: 2020 ident: CR100 article-title: Short-term impact of fire-deposited charcoal on soil microbial community abundance and composition in a subtropical plantation in China publication-title: Geoderma doi: 10.1016/j.geoderma.2019.113992 – volume: 69 start-page: 110 year: 2014 end-page: 118 ident: CR49 article-title: Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2013.10.051 – volume: 56 start-page: 597 year: 2020 end-page: 606 ident: CR66 article-title: Biochar exerts negative effects on soil fauna across multiple trophic levels in a cultivated acidic soil publication-title: Biol Fert Soils doi: 10.1007/s00374-020-01436-1 – volume: 749 start-page: 141593 year: 2020 ident: CR60 article-title: Biochar increases soil microbial biomass but has variable effects on microbial diversity: a meta-analysis publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.141593 – volume: 40 start-page: 1067 year: 1980 end-page: 1079 ident: CR47 article-title: Effects of environmental variables and soil characteristics on virus survival in soil publication-title: Appl Environ Microbiol doi: 10.1128/aem.40.6.1067-1079.1980 – volume: 183 start-page: 220 year: 2020 end-page: 232 ident: CR112 article-title: Nutrient uptake and growth of potato: Arbuscular mycorrhiza symbiosis interacts with quality and quantity of amended biochars publication-title: J Soil Sci Plant Nut doi: 10.1002/jpln.201900205 – volume: 42 start-page: 293 year: 2018 end-page: 323 ident: CR35 article-title: Soil protists: a fertile frontier in soil biology research publication-title: FEMS Microbiol Rev doi: 10.1093/femsre/fuy006 – volume: 10 start-page: 2966 year: 2008 end-page: 2978 ident: CR80 article-title: The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2008.01701.x – volume: 2 start-page: 65 year: 2020 end-page: 79 ident: CR87 article-title: Biochar increases soil microbial biomass with changes in extra-and intracellular enzyme activities: a global meta-analysis publication-title: Biochar doi: 10.1007/s42773-020-00039-1 – volume: 43 start-page: 2127 year: 2011 end-page: 2134 ident: CR16 article-title: The priming potential of biochar products in relation to labile carbon contents and soil organic matter status publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.06.016 – volume: 24 start-page: 3452 year: 2018 end-page: 3461 ident: CR23 article-title: Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe publication-title: Glob Chang Biol doi: 10.1111/gcb.14163 – volume: 75 start-page: 1589 year: 2009 end-page: 1596 ident: CR89 article-title: Contrasting Soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization publication-title: Appl Environ Microbiol doi: 10.1128/aem.02775-08 – volume: 5 start-page: 16221 year: 2015 ident: CR116 article-title: Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens publication-title: Sci Rep-Uk doi: 10.1038/srep16221 – volume: 83 start-page: 29 year: 2015 end-page: 39 ident: CR62 article-title: Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.01.009 – volume: 106 start-page: 28 year: 2017 end-page: 35 ident: CR71 article-title: Priming effects in biochar enriched soils using a three-source-partitioning approach: 14C labelling and 13C natural abundance publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.12.006 – volume: 7 start-page: 10184 year: 2017 ident: CR40 article-title: Response of soil microbial community to application of biochar in cotton soils with different continuous cropping years publication-title: Sci Rep doi: 10.1038/s41598-017-10427-6 – volume: 746 start-page: 141057 year: 2020 ident: CR120 article-title: Gain in carbon: Deciphering the abiotic and biotic mechanisms of biochar-induced negative priming effects in contrasting soils publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.141057 – volume: 6 start-page: 36101 year: 2016 ident: CR18 article-title: Sensitive responders among bacterial and fungal microbiome to pyrogenic organic matter (biochar) addition differed greatly between rhizosphere and bulk soils publication-title: Sci Rep doi: 10.1038/srep36101 – volume: 8 start-page: 14873 year: 2017 ident: CR96 article-title: Rapid electron transfer by the carbon matrix in natural pyrogenic carbon publication-title: Nat Commun doi: 10.1038/ncomms14873 – volume: 186 start-page: 88 year: 2017 end-page: 95 ident: CR41 article-title: The effects of straw or straw-derived gasification biochar applications on soil quality and crop productivity: a farm case study publication-title: J Environ Manage doi: 10.1016/j.jenvman.2016.10.041 – volume: 57 start-page: 293 year: 2021 end-page: 304 ident: CR4 article-title: Effect of protists on rhizobacterial community composition and rice plant growth in a biochar amended soil publication-title: Biol Fert Soils doi: 10.1007/s00374-020-01525-1 – volume: 25 start-page: 56 year: 2015 end-page: 66 ident: CR30 article-title: Metagenomics meets time series analysis: unraveling microbial community dynamics publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2015.04.004 – volume: 174 start-page: 545 year: 2017 end-page: 553 ident: CR46 article-title: The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.01.130 – volume: 142 start-page: 107716 year: 2020 ident: CR26 article-title: Soil nitrification increases with elevated phosphorus or soil pH in an acidic mixed mesophytic deciduous forest publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2020.107716 – volume: 11 start-page: 789 year: 2013 end-page: 799 ident: CR86 article-title: Going back to the roots: the microbial ecology of the rhizosphere publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro3109 – volume: 763 start-page: 143048 year: 2021 ident: CR121 article-title: Plant material and its biochar differ in their effects on nitrogen mineralization and nitrification in a subtropical forest soil publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.143048 – volume: 85 start-page: 235 year: 2007 end-page: 252 ident: CR14 article-title: C : N : P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? publication-title: Biogeochemistry doi: 10.1007/s10533-007-9132-0 – volume: 363 start-page: 114162 year: 2020 ident: CR38 article-title: Pyrolysis temperature of biochar affects ecoenzymatic stoichiometry and microbial nutrient-use efficiency in a bamboo forest soil publication-title: Geoderma doi: 10.1016/j.geoderma.2019.114162 – volume: 640 start-page: 1221 year: 2018 end-page: 1230 ident: CR117 article-title: Combined application of biochar and nitrogen fertilizer benefits nitrogen retention in the rhizosphere of soybean by increasing microbial biomass but not altering microbial community structure publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.06.018 – volume: 236 start-page: 78 year: 2017 end-page: 87 ident: CR7 article-title: Biochar and manure alter few aspects of prairie development: a field test publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2016.11.016 – volume: 650 start-page: 626 year: 2019 end-page: 632 ident: CR119 article-title: Changes in nitrogen related functional genes along soil pH, C and nutrient gradients in the charosphere publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.08.372 – volume: 67 start-page: 40 year: 2016 end-page: 50 ident: CR19 article-title: Effects of manure- and lignocellulose-derived biochars on adsorption and desorption of zinc by acidic types of soil with different properties publication-title: Eur J Soil Sci doi: 10.1111/ejss.12290 – volume: 71 start-page: 370 year: 2002 end-page: 374 ident: CR74 article-title: Incidence of Fusarium root rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments publication-title: J Jpn Soc Hortic Sci doi: 10.2503/jjshs.71.370 – volume: 67 start-page: 857 year: 2016 end-page: 867 ident: CR10 article-title: Change in active microbial community structure, abundance and carbon cycling in an acid rice paddy soil with the addition of biochar publication-title: Eur J Soil Sci doi: 10.1111/ejss.12388 – volume: 24 start-page: 10108 year: 2017 end-page: 10120 ident: CR125 article-title: Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China publication-title: Environ Sci Pollut R doi: 10.1007/s11356-017-8505-8 – year: 2014 ident: CR53 publication-title: Phosphate solubilizing microorganisms: principles and application of microphos technology doi: 10.1007/978-3-319-08216-5 – volume: 405 start-page: 339 year: 2017 end-page: 349 ident: CR128 article-title: Biochar increased soil respiration in temperate forests but had no effects in subtropical forests publication-title: Forest Ecol Manag doi: 10.1016/j.foreco.2017.09.038 – volume: 562 start-page: 379 year: 2016 end-page: 390 ident: CR43 article-title: Soil biochar amendment shapes the composition of N O-reducing microbial communities publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.03.220 – volume: 110 start-page: 56 year: 2017 end-page: 67 ident: CR114 article-title: Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2017.03.005 – volume: 65 start-page: 287 year: 2013 end-page: 293 ident: CR88 article-title: Life in the ‘charosphere’—does biochar in agricultural soil provide a significant habitat for microorganisms? publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2013.06.004 – volume: 22 start-page: 9184 year: 2015 end-page: 9192 ident: CR110 article-title: Short-term effects of rice straw biochar on sorption, emission, and transformation of soil NH -N publication-title: Environ Sci Pollut R doi: 10.1007/s11356-014-4067-1 – volume: 114 start-page: 644 year: 2012 end-page: 653 ident: CR29 article-title: Characterization of biochars to evaluate recalcitrance and agronomic performance publication-title: Bioresour Technol doi: 10.1016/j.biortech.2012.03.022 – volume: 171 start-page: 18 year: 2012 end-page: 24 ident: CR33 article-title: Environmental contextualisation of potential toxic elements and polycyclic aromatic hydrocarbons in biochar publication-title: Environ Pollut doi: 10.1016/j.envPol.2012.07.009 – volume: 166 start-page: 73 year: 2016 end-page: 83 ident: CR94 article-title: Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: influence of pyrolysis temperature and feedstock type publication-title: J Environ Manage doi: 10.1016/j.jenvman.2015.10.007 – volume: 1 start-page: 339 year: 2014 end-page: 344 ident: CR51 article-title: Biochar as an electron shuttle between bacteria and Fe(III) minerals publication-title: Environ Sci Tech Let doi: 10.1021/ez5002209 – volume: 29 start-page: 2172 year: 2018 end-page: 2182 ident: CR64 article-title: Simultaneous measurement of bacterial abundance and composition in response to biochar in soybean field soil using 16S rRNA gene sequencing publication-title: Land Degrad Dev doi: 10.1002/ldr.2838 – volume: 140 start-page: 126 year: 2019 end-page: 134 ident: CR13 article-title: Long-term effects of biochar amendment on rhizosphere and bulk soil microbial communities in a karst region, southwest China publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2019.04.017 – volume: 122 start-page: 173 year: 2018 end-page: 185 ident: CR58 article-title: Biochar reduces soil heterotrophic respiration in a subtropical plantation through increasing soil organic carbon recalcitrancy and decreasing carbon degrading microbial activity publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2018.04.019 – volume: 61 start-page: 196 year: 2014 end-page: 205 ident: CR37 article-title: Water uptake in biochars: the roles of porosity and hydrophobicity publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2013.12.010 – volume: 142 start-page: 145 year: 2016 end-page: 152 ident: CR28 article-title: Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.06.044 – volume: 715 start-page: 136958 year: 2020 ident: CR5 article-title: Crop types have stronger effects on soil microbial communities and functionalities than biochar or fertilizer during two cycles of legume-cereal rotations of dry land publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.136958 – volume: 96 start-page: 145 year: 2016 end-page: 151 ident: CR92 article-title: A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.02.003 – volume: 52 start-page: 8538 year: 2018 end-page: 8547 ident: CR97 article-title: Simultaneous quantification of electron transfer by carbon matrices and functional groups in pyrogenic carbon publication-title: Environ Sci Technol doi: 10.1021/acs.est.8b02340 – volume: 26 start-page: 22990 year: 2019 end-page: 23001 ident: CR126 article-title: Biochar amendment effects on the activities of soil carbon, nitrogen, and phosphorus hydrolytic enzymes: a meta-analysis publication-title: Environ Sci Pollut R doi: 10.1007/s11356-019-05604-1 – volume: 10 start-page: 1669 year: 2016 end-page: 1681 ident: CR102 article-title: Correlation detection strategies in microbial data sets vary widely in sensitivity and precision publication-title: ISME J doi: 10.1038/ismej.2015.235 – volume: 128 start-page: 89 year: 2019 end-page: 99 ident: CR59 article-title: T4-type viruses: Important impacts on shaping bacterial community along a chronosequence of 2000-year old paddy soils publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2018.10.007 – volume: 47 start-page: 1736 year: 2012 end-page: 1740 ident: CR130 article-title: Biochar amendment increases resistance to stem lesions caused byphytophthora spp. in tree seedlings publication-title: HortScience doi: 10.21273/hortsci.47.12.1736 – volume: 69 start-page: 291 year: 2014 end-page: 301 ident: CR73 article-title: Ryegrass-derived pyrogenic organic matter changes organic carbon and nitrogen mineralization in a temperate forest soil publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2013.11.013 – volume: 757 start-page: 143817 year: 2020 ident: CR12 article-title: Microbial mechanism of biochar addition on nitrogen leaching and retention in tea soils from different plantation ages publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.143817 – volume: 113 start-page: 89 year: 2017 end-page: 98 ident: CR61 article-title: Wheat straw-derived biochar amendment stimulated N O emissions from rice paddy soils by regulating the amoA genes of ammonia-oxidizing bacteria publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2017.06.001 – volume: 29 start-page: 2720 year: 2018 end-page: 2727 ident: CR107 article-title: Nonadditive effects of biochar amendments on soil phosphorus fractions in two contrasting soils publication-title: Land Degrad Dev doi: 10.1002/ldr.3029 – volume: 5 start-page: 219 year: 2014 ident: CR6 article-title: Deciphering microbial interactions and detecting keystone species with co-occurrence networks publication-title: Front Microbiol doi: 10.3389/fmicb.2014.00219 – volume: 225 start-page: 311 year: 2019 end-page: 319 ident: CR109 article-title: Biochar impacts on phosphorus cycling in rice ecosystem publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.03.069 – volume: 126 start-page: 159 year: 2018 end-page: 167 ident: CR22 article-title: Soil fungal taxonomic and functional community composition as affected by biochar properties publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2018.09.001 – volume: 249 start-page: 156 year: 2017 end-page: 164 ident: CR85 article-title: Biochar decreased the temperature sensitivity of soil carbon decomposition in a paddy field publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2017.08.029 – volume: 12 start-page: 634 year: 2018 end-page: 638 ident: CR106 article-title: Soil protist communities form a dynamic hub in the soil microbiome publication-title: ISME J doi: 10.1038/ismej.2017.171 – volume: 1 start-page: 3 year: 2019 end-page: 22 ident: CR84 article-title: Response of microbial communities to biochar-amended soils: a critical review publication-title: Biochar doi: 10.1007/s42773-019-00009-2 – volume: 138 start-page: 576 year: 2015 end-page: 583 ident: CR99 article-title: Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.06.084 – volume: 89 start-page: 198 year: 2012 end-page: 203 ident: CR98 article-title: Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.05.085 – volume: 7 start-page: 22 year: 2019 end-page: 32 ident: CR65 article-title: Migration and transformation mechanisms of nutrient elements (N, P, K) within biochar in straw-biochar-soil-plant systems: a review publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.8b04253 – volume: 141 start-page: 107678 year: 2020 ident: CR103 article-title: Pyrogenic organic matter effects on soil bacterial community composition publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2019.107678 – volume: 91 start-page: 68 year: 2015 end-page: 79 ident: CR9 article-title: Consistent increase in abundance and diversity but variable change in community composition of bacteria in topsoil of rice paddy under short term biochar treatment across three sites from South China publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2015.02.012 – volume: 77 start-page: 10 year: 1996 end-page: 19 ident: CR124 article-title: Key ecological function of charcoal from wildfire in the Boreal forest publication-title: Oikos doi: 10.2307/3545580 – volume: 37 start-page: 634 year: 2013 end-page: 663 ident: CR75 article-title: The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms publication-title: FEMS Microbiol Rev doi: 10.1111/1574-6976.12028 – volume: 65 start-page: 40 year: 2014 end-page: 51 ident: CR101 article-title: Soil microbial communities responded to biochar application in temperate soils and slowly metabolized C-13-labelled biochar as revealed by C-13 PLFA analyses: results from a short-term incubation and pot experiment publication-title: Eur J Soil Sci doi: 10.1111/ejss.12100 – volume: 574 start-page: 139 year: 2017 end-page: 147 ident: CR95 article-title: The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.09.025 – volume: 90 start-page: 290 year: 2014 end-page: 299 ident: CR45 article-title: pH-dominated niche segregation of ammonia-oxidising microorganisms in Chinese agricultural soils publication-title: FEMS Microbiol Ecol doi: 10.1111/1574-6941.12391 – year: 2015 ident: CR56 publication-title: Biochar for Environmental Management: Science, Technology and Implementation doi: 10.4324/9780203762264 – year: 2021 ident: CR127 article-title: Habitat heterogeneity induced by pyrogenic organic matter in wildfire-perturbed soils mediates bacterial community assembly processes publication-title: ISME J doi: 10.1038/s41396-021-00896-z – volume: 696 start-page: 133984 year: 2019 ident: CR105 article-title: The effect of biochar amendment on N-cycling genes in soils: a meta-analysis publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.133984 – volume: 69 start-page: 521 year: 2018 end-page: 534 ident: CR118 article-title: Feedstock determines biochar-induced soil priming effects by stimulating the activity of specific microorganisms publication-title: Eur J Soil Sci doi: 10.1111/ejss.12542 – volume: 455 start-page: 117857 year: 2020 ident: CR129 article-title: Biochar addition to forest plantation soil enhances phosphorus availability and soil bacterial community diversity (vol 455, 117635, 2020) publication-title: Forest Ecol Manag doi: 10.1016/j.foreco.2019.117857 – volume: 12 start-page: 95 year: 2019 ident: CR48 article-title: Response of soil microbial biomass and enzymatic activity to biochar amendment in the organic carbon deficient arid soil: a 2-year field study publication-title: Arab J Geosci doi: 10.1007/s12517-019-4239-x – volume: 636 start-page: 142 year: 2018 end-page: 151 ident: CR79 article-title: The effects of short term, long term and reapplication of biochar on soil bacteria publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.04.278 – volume: 98 start-page: 243 year: 2016 end-page: 253 ident: CR1 article-title: Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2015.10.021 – year: 2015 ident: CR68 publication-title: Principles of plant-microbe interactions: microbes for sustainable agriculture. Princ Plant-Microbe Interact Microbes Sustain Agric doi: 10.1007/978-3-319-08575-3 – volume: 95 start-page: 960 year: 2011 end-page: 966 ident: CR27 article-title: Effect of Biochar amendments on mycorrhizal associations and fusarium crown and root rot of asparagus in replant soils publication-title: Plant Dis doi: 10.1094/pdis-10-10-0741 – volume: 57 start-page: 15 year: 2021 end-page: 29 ident: CR3 article-title: Biochar affects taxonomic and functional community composition of protists publication-title: Biol Fert Soils doi: 10.1007/s00374-020-01502-8 – volume: 39 start-page: 1654 year: 2016 end-page: 1662 ident: CR39 article-title: Effect of biochar soil-amendments on Allium porrum growth and arbuscular mycorrhizal fungus colonization publication-title: J Plant Nutr doi: 10.1080/01904167.2015.1089903 – volume: 337 start-page: 481 year: 2010 end-page: 496 ident: CR36 article-title: Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media publication-title: Plant Soil doi: 10.1007/s11104-010-0544-6 – volume: 11 start-page: 65 year: 2008 end-page: 73 ident: CR72 article-title: Brock Biology of Microorganisms, 12th edn publication-title: Int Microbiol – volume: 621 start-page: 148 year: 2018 end-page: 159 ident: CR108 article-title: Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.11.214 – volume: 48 start-page: 5601 year: 2014 end-page: 5611 ident: CR54 article-title: Redox properties of plant biomass-derived black carbon (biochar) publication-title: Environ Sci Technol doi: 10.1021/es500906d – volume: 142 start-page: 128 year: 2016 end-page: 135 ident: CR50 article-title: Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: a microcosm incubation study publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.07.015 – volume: 5 start-page: 3694 year: 2014 ident: CR76 article-title: Adjustment of microbial nitrogen use efficiency to carbon: Nitrogen imbalances regulates soil nitrogen cycling publication-title: Nat Commun doi: 10.1038/ncomms4694 – volume: 20 start-page: 39 year: 2020 ident: CR67 article-title: Soil nematode community and crop productivity in response to 5-year biochar and manure addition to yellow cinnamon soil publication-title: BMC Ecol doi: 10.1186/s12898-020-00304-8 – volume: 55 start-page: 185 year: 2019 end-page: 197 ident: CR11 article-title: Organic carbon quality, composition of main microbial groups, enzyme activities, and temperature sensitivity of soil respiration of an acid paddy soil treated with biochar publication-title: Biol Fert Soils doi: 10.1007/s00374-018-1333-2 – volume: 14 start-page: 330 year: 2014 end-page: 343 ident: CR81 article-title: Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks publication-title: J Soil Sediment doi: 10.1007/s11368-013-0680-8 – volume: 4 start-page: 1340 year: 2010 end-page: 1351 ident: CR90 article-title: Soil bacterial and fungal communities across a pH gradient in an arable soil publication-title: ISME J doi: 10.1038/ismej.2010.58 – volume: 30 start-page: 406 year: 2019 end-page: 416 ident: CR24 article-title: Easily mineralizable carbon in manure-based biochar added to a soil influences N O emissions and microbial-N cycling genes publication-title: Land Degrad Dev doi: 10.1002/ldr.3230 – volume: 114 start-page: 16 year: 2017 end-page: 27 ident: CR52 article-title: Responses of microbial performance and community to corn biochar in calcareous sandy and clayey soils publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2017.02.018 – volume: 148 start-page: 107868 year: 2020 ident: CR34 article-title: Biochar alters nitrogen and phosphorus dynamics in a western rangeland ecosystem publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2020.107868 – volume: 645 start-page: 887 year: 2018 end-page: 894 ident: CR31 article-title: Separated pathways for biochar to affect soil N O emission under different moisture contents publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.07.224 – volume: 116 start-page: 12 year: 2017 end-page: 22 ident: CR63 article-title: Rice husk biochar impacts soil phosphorous availability, phosphatase activities and bacterial community characteristics in three different soil types publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2017.03.020 – volume: 7 start-page: 135 year: 2015 end-page: 144 ident: CR2 article-title: Biochar amendment to soils with contrasting organic matter level: effects on N mineralization and biological soil properties publication-title: GCB Bioenergy doi: 10.1111/gcbb.12119 – volume: 758 start-page: 143657 year: 2021 ident: CR113 article-title: Effects of biochar addition on the abundance, speciation, availability, and leaching loss of soil phosphorus publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.143657 – volume: 78 start-page: 531 year: 2014 end-page: 537 ident: CR78 article-title: Turnover of soil carbon following addition of switchgrass-derived biochar to four soils publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2013.07.0258 – volume: 57 start-page: 513 year: 2013 end-page: 523 ident: CR70 article-title: Microbial biomass growth, following incorporation of biochars produced at 350 ℃ or 700 ℃, in a silty-clay loam soil of high and low pH publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.10.033 – volume: 689 start-page: 970 year: 2019 end-page: 979 ident: CR44 article-title: Impact of biochar application dose on soil microbial communities associated with rubber trees in North East Thailand publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.06.441 – volume: 15 start-page: 579 year: 2017 end-page: 590 ident: CR32 article-title: Embracing the unknown: disentangling the complexities of the soil microbiome publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro.2017.87 – volume: 581 start-page: 601 year: 2017 end-page: 611 ident: CR21 article-title: Potential role of biochars in decreasing soil acidification-a critical review publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.12.169 – volume: 8 start-page: 660 year: 2014 end-page: 674 ident: CR42 article-title: Linking N O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community publication-title: ISME J doi: 10.1038/ismej.2013.160 – year: 2012 ident: CR55 publication-title: Biochar for environmental management: science and technology doi: 10.4324/9781849770552 – volume: 1 start-page: 289 year: 2010 end-page: 303 ident: CR93 article-title: Review of the stability of biochar in soils: predictability of O: C molar ratios publication-title: Carbon Manage doi: 10.4155/cmt.10.32 – volume: 633 start-page: 360 year: 2018 end-page: 371 ident: CR111 article-title: Use of an improved high-throughput absolute abundance quantification method to characterize soil bacterial community and dynamics publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.03.201 – volume: 14 start-page: 757 year: 2020 end-page: 770 ident: CR25 article-title: Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems publication-title: ISME J doi: 10.1038/s41396-019-0567-9 – volume: 6 start-page: eaax8787 year: 2020 ident: CR83 article-title: The global-scale distributions of soil protists and their contributions to belowground systems publication-title: Sci Adv doi: 10.1126/sciadv.aax8787 – volume: 129 start-page: 121 year: 2018 end-page: 127 ident: CR104 article-title: Effect of biochar origin and soil pH on greenhouse gas emissions from sandy and clay soils publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2018.05.009 – volume: 4 start-page: e00704 year: 2018 ident: CR15 article-title: Influence of alternative soil amendments on mycorrhizal fungi and cowpea production publication-title: Heliyon doi: 10.1016/j.heliyon.2018.e00704 – volume: 43 start-page: 1812 year: 2011 end-page: 1836 ident: CR57 article-title: Biochar effects on soil biota—a review publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.04.022 – volume: 6 start-page: 1621 year: 2012 end-page: 1624 ident: CR8 article-title: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms publication-title: ISME J doi: 10.1038/ismej.2012.8 – volume: 3 start-page: 62 year: 2016 end-page: 66 ident: CR91 article-title: Wood-derived black carbon (biochar) as a microbial electron donor and acceptor publication-title: Environ Sci Tech Let doi: 10.1021/acs.estlett.5b00354 – volume: 13 start-page: 989 year: 2013 end-page: 1000 ident: CR17 article-title: The potential feasibility for soil improvement, based on the properties of biochars pyrolyzed from different feedstocks publication-title: J Soil Sediment doi: 10.1007/s11368-013-0698-y – volume: 6 start-page: 26425 year: 2016 ident: CR82 article-title: The microbiomes and metagenomes of forest biochars publication-title: Sci Rep-Uk doi: 10.1038/srep26425 – volume: 1 start-page: 339 year: 2014 ident: 99_CR51 publication-title: Environ Sci Tech Let doi: 10.1021/ez5002209 – volume: 186 start-page: 88 year: 2017 ident: 99_CR41 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2016.10.041 – volume: 67 start-page: 40 year: 2016 ident: 99_CR19 publication-title: Eur J Soil Sci doi: 10.1111/ejss.12290 – volume: 126 start-page: 159 year: 2018 ident: 99_CR22 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2018.09.001 – volume: 140 start-page: 126 year: 2019 ident: 99_CR13 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2019.04.017 – volume: 114 start-page: 644 year: 2012 ident: 99_CR29 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2012.03.022 – volume: 107 start-page: 10 year: 2017 ident: 99_CR115 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.12.023 – volume: 15 start-page: 579 year: 2017 ident: 99_CR32 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro.2017.87 – volume: 47 start-page: 1736 year: 2012 ident: 99_CR130 publication-title: HortScience doi: 10.21273/hortsci.47.12.1736 – volume: 71 start-page: 370 year: 2002 ident: 99_CR74 publication-title: J Jpn Soc Hortic Sci doi: 10.2503/jjshs.71.370 – volume: 249 start-page: 156 year: 2017 ident: 99_CR85 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2017.08.029 – volume: 226 start-page: 270 year: 2014 ident: 99_CR77 publication-title: Geoderma doi: 10.1016/j.geoderma.2014.01.023 – volume: 89 start-page: 198 year: 2012 ident: 99_CR98 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.05.085 – volume: 57 start-page: 15 year: 2021 ident: 99_CR3 publication-title: Biol Fert Soils doi: 10.1007/s00374-020-01502-8 – volume: 67 start-page: 857 year: 2016 ident: 99_CR10 publication-title: Eur J Soil Sci doi: 10.1111/ejss.12388 – volume: 96 start-page: 145 year: 2016 ident: 99_CR92 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.02.003 – volume: 12 start-page: 95 year: 2019 ident: 99_CR48 publication-title: Arab J Geosci doi: 10.1007/s12517-019-4239-x – volume: 113 start-page: 89 year: 2017 ident: 99_CR61 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2017.06.001 – volume: 83 start-page: 29 year: 2015 ident: 99_CR62 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.01.009 – volume: 29 start-page: 2720 year: 2018 ident: 99_CR107 publication-title: Land Degrad Dev doi: 10.1002/ldr.3029 – volume: 581 start-page: 601 year: 2017 ident: 99_CR21 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.12.169 – volume: 10 start-page: 1669 year: 2016 ident: 99_CR102 publication-title: ISME J doi: 10.1038/ismej.2015.235 – volume: 78 start-page: 531 year: 2014 ident: 99_CR78 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2013.07.0258 – volume: 2 start-page: e00085 year: 2017 ident: 99_CR20 publication-title: Msphere doi: 10.1128/mSphere.00085-17 – volume: 749 start-page: 141593 year: 2020 ident: 99_CR60 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.141593 – volume: 236 start-page: 78 year: 2017 ident: 99_CR7 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2016.11.016 – volume: 5 start-page: 219 year: 2014 ident: 99_CR6 publication-title: Front Microbiol doi: 10.3389/fmicb.2014.00219 – volume: 746 start-page: 141057 year: 2020 ident: 99_CR120 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.141057 – volume-title: Principles of plant-microbe interactions: microbes for sustainable agriculture. Princ Plant-Microbe Interact Microbes Sustain Agric year: 2015 ident: 99_CR68 doi: 10.1007/978-3-319-08575-3 – volume: 689 start-page: 970 year: 2019 ident: 99_CR44 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.06.441 – volume: 24 start-page: 10108 year: 2017 ident: 99_CR125 publication-title: Environ Sci Pollut R doi: 10.1007/s11356-017-8505-8 – volume: 6 start-page: 26425 year: 2016 ident: 99_CR82 publication-title: Sci Rep-Uk doi: 10.1038/srep26425 – volume: 359 start-page: 113992 year: 2020 ident: 99_CR100 publication-title: Geoderma doi: 10.1016/j.geoderma.2019.113992 – volume: 114 start-page: 16 year: 2017 ident: 99_CR52 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2017.02.018 – volume: 6 start-page: eaax8787 year: 2020 ident: 99_CR83 publication-title: Sci Adv doi: 10.1126/sciadv.aax8787 – volume: 696 start-page: 133984 year: 2019 ident: 99_CR105 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.133984 – volume: 3 start-page: 62 year: 2016 ident: 99_CR91 publication-title: Environ Sci Tech Let doi: 10.1021/acs.estlett.5b00354 – volume: 43 start-page: 2304 year: 2011 ident: 99_CR69 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.07.020 – volume: 141 start-page: 107678 year: 2020 ident: 99_CR103 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2019.107678 – volume: 8 start-page: 660 year: 2014 ident: 99_CR42 publication-title: ISME J doi: 10.1038/ismej.2013.160 – volume: 633 start-page: 360 year: 2018 ident: 99_CR111 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.03.201 – volume: 174 start-page: 545 year: 2017 ident: 99_CR46 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.01.130 – volume: 5 start-page: 3694 year: 2014 ident: 99_CR76 publication-title: Nat Commun doi: 10.1038/ncomms4694 – volume: 95 start-page: 960 year: 2011 ident: 99_CR27 publication-title: Plant Dis doi: 10.1094/pdis-10-10-0741 – volume: 129 start-page: 121 year: 2018 ident: 99_CR104 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2018.05.009 – volume: 11 start-page: 789 year: 2013 ident: 99_CR86 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro3109 – volume: 14 start-page: 330 year: 2014 ident: 99_CR81 publication-title: J Soil Sediment doi: 10.1007/s11368-013-0680-8 – volume: 43 start-page: 2127 year: 2011 ident: 99_CR16 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.06.016 – volume: 6 start-page: 36101 year: 2016 ident: 99_CR18 publication-title: Sci Rep doi: 10.1038/srep36101 – volume: 57 start-page: 513 year: 2013 ident: 99_CR70 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.10.033 – volume: 225 start-page: 311 year: 2019 ident: 99_CR109 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.03.069 – volume: 77 start-page: 10 year: 1996 ident: 99_CR124 publication-title: Oikos doi: 10.2307/3545580 – volume: 22 start-page: 9184 year: 2015 ident: 99_CR110 publication-title: Environ Sci Pollut R doi: 10.1007/s11356-014-4067-1 – volume: 7 start-page: 10184 year: 2017 ident: 99_CR40 publication-title: Sci Rep doi: 10.1038/s41598-017-10427-6 – volume: 171 start-page: 18 year: 2012 ident: 99_CR33 publication-title: Environ Pollut doi: 10.1016/j.envPol.2012.07.009 – volume: 10 start-page: 2966 year: 2008 ident: 99_CR80 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2008.01701.x – volume-title: Phosphate solubilizing microorganisms: principles and application of microphos technology year: 2014 ident: 99_CR53 doi: 10.1007/978-3-319-08216-5 – volume: 26 start-page: 22990 year: 2019 ident: 99_CR126 publication-title: Environ Sci Pollut R doi: 10.1007/s11356-019-05604-1 – volume: 11 start-page: 65 year: 2008 ident: 99_CR72 publication-title: Int Microbiol – volume: 20 start-page: 39 year: 2020 ident: 99_CR67 publication-title: BMC Ecol doi: 10.1186/s12898-020-00304-8 – volume: 166 start-page: 73 year: 2016 ident: 99_CR94 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2015.10.007 – year: 2021 ident: 99_CR127 publication-title: ISME J doi: 10.1038/s41396-021-00896-z – volume: 363 start-page: 114162 year: 2020 ident: 99_CR38 publication-title: Geoderma doi: 10.1016/j.geoderma.2019.114162 – volume: 102 start-page: 3488 year: 2011 ident: 99_CR122 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.11.018 – volume: 122 start-page: 173 year: 2018 ident: 99_CR58 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2018.04.019 – volume: 4 start-page: e00704 year: 2018 ident: 99_CR15 publication-title: Heliyon doi: 10.1016/j.heliyon.2018.e00704 – volume: 43 start-page: 1812 year: 2011 ident: 99_CR57 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.04.022 – volume: 37 start-page: 634 year: 2013 ident: 99_CR75 publication-title: FEMS Microbiol Rev doi: 10.1111/1574-6976.12028 – volume: 85 start-page: 235 year: 2007 ident: 99_CR14 publication-title: Biogeochemistry doi: 10.1007/s10533-007-9132-0 – volume: 91 start-page: 68 year: 2015 ident: 99_CR9 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2015.02.012 – volume: 7 start-page: 22 year: 2019 ident: 99_CR65 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.8b04253 – volume: 142 start-page: 107716 year: 2020 ident: 99_CR26 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2020.107716 – volume: 405 start-page: 339 year: 2017 ident: 99_CR128 publication-title: Forest Ecol Manag doi: 10.1016/j.foreco.2017.09.038 – volume: 562 start-page: 379 year: 2016 ident: 99_CR43 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.03.220 – volume-title: Biochar for environmental management: science and technology year: 2012 ident: 99_CR55 doi: 10.4324/9781849770552 – volume: 116 start-page: 12 year: 2017 ident: 99_CR63 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2017.03.020 – volume: 69 start-page: 291 year: 2014 ident: 99_CR73 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2013.11.013 – volume: 138 start-page: 576 year: 2015 ident: 99_CR99 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.06.084 – volume: 42 start-page: 293 year: 2018 ident: 99_CR35 publication-title: FEMS Microbiol Rev doi: 10.1093/femsre/fuy006 – volume: 4 start-page: 1340 year: 2010 ident: 99_CR90 publication-title: ISME J doi: 10.1038/ismej.2010.58 – volume: 25 start-page: 56 year: 2015 ident: 99_CR30 publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2015.04.004 – volume: 128 start-page: 89 year: 2019 ident: 99_CR59 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2018.10.007 – volume: 7 start-page: 135 year: 2015 ident: 99_CR2 publication-title: GCB Bioenergy doi: 10.1111/gcbb.12119 – volume: 645 start-page: 887 year: 2018 ident: 99_CR31 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.07.224 – volume: 69 start-page: 521 year: 2018 ident: 99_CR118 publication-title: Eur J Soil Sci doi: 10.1111/ejss.12542 – volume-title: Biochar for Environmental Management: Science, Technology and Implementation year: 2015 ident: 99_CR56 doi: 10.4324/9780203762264 – volume: 39 start-page: 1654 year: 2016 ident: 99_CR39 publication-title: J Plant Nutr doi: 10.1080/01904167.2015.1089903 – volume: 48 start-page: 5601 year: 2014 ident: 99_CR54 publication-title: Environ Sci Technol doi: 10.1021/es500906d – volume: 98 start-page: 243 year: 2016 ident: 99_CR1 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2015.10.021 – volume: 6 start-page: 1621 year: 2012 ident: 99_CR8 publication-title: ISME J doi: 10.1038/ismej.2012.8 – volume: 106 start-page: 28 year: 2017 ident: 99_CR71 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.12.006 – volume: 1 start-page: 289 year: 2010 ident: 99_CR93 publication-title: Carbon Manage doi: 10.4155/cmt.10.32 – volume: 636 start-page: 142 year: 2018 ident: 99_CR79 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.04.278 – volume: 142 start-page: 145 year: 2016 ident: 99_CR28 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.06.044 – volume: 148 start-page: 107868 year: 2020 ident: 99_CR34 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2020.107868 – volume: 1 start-page: 3 year: 2019 ident: 99_CR84 publication-title: Biochar doi: 10.1007/s42773-019-00009-2 – volume: 12 start-page: 634 year: 2018 ident: 99_CR106 publication-title: ISME J doi: 10.1038/ismej.2017.171 – volume: 337 start-page: 481 year: 2010 ident: 99_CR36 publication-title: Plant Soil doi: 10.1007/s11104-010-0544-6 – volume: 90 start-page: 290 year: 2014 ident: 99_CR45 publication-title: FEMS Microbiol Ecol doi: 10.1111/1574-6941.12391 – volume: 110 start-page: 56 year: 2017 ident: 99_CR114 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2017.03.005 – volume: 8 start-page: 14873 year: 2017 ident: 99_CR96 publication-title: Nat Commun doi: 10.1038/ncomms14873 – volume: 69 start-page: 110 year: 2014 ident: 99_CR49 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2013.10.051 – volume: 757 start-page: 143817 year: 2020 ident: 99_CR12 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.143817 – volume: 183 start-page: 220 year: 2020 ident: 99_CR112 publication-title: J Soil Sci Plant Nut doi: 10.1002/jpln.201900205 – volume: 763 start-page: 143048 year: 2021 ident: 99_CR121 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.143048 – volume: 640 start-page: 1221 year: 2018 ident: 99_CR117 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.06.018 – volume: 56 start-page: 597 year: 2020 ident: 99_CR66 publication-title: Biol Fert Soils doi: 10.1007/s00374-020-01436-1 – volume: 455 start-page: 117857 year: 2020 ident: 99_CR129 publication-title: Forest Ecol Manag doi: 10.1016/j.foreco.2019.117857 – volume: 142 start-page: 128 year: 2016 ident: 99_CR50 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.07.015 – volume: 65 start-page: 287 year: 2013 ident: 99_CR88 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2013.06.004 – volume: 52 start-page: 8538 year: 2018 ident: 99_CR97 publication-title: Environ Sci Technol doi: 10.1021/acs.est.8b02340 – volume: 715 start-page: 136958 year: 2020 ident: 99_CR5 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.136958 – volume: 2 start-page: 65 year: 2020 ident: 99_CR87 publication-title: Biochar doi: 10.1007/s42773-020-00039-1 – volume: 13 start-page: 989 year: 2013 ident: 99_CR17 publication-title: J Soil Sediment doi: 10.1007/s11368-013-0698-y – volume: 57 start-page: 293 year: 2021 ident: 99_CR4 publication-title: Biol Fert Soils doi: 10.1007/s00374-020-01525-1 – volume: 5 start-page: 16221 year: 2015 ident: 99_CR116 publication-title: Sci Rep-Uk doi: 10.1038/srep16221 – volume: 14 start-page: 757 year: 2020 ident: 99_CR25 publication-title: ISME J doi: 10.1038/s41396-019-0567-9 – volume: 29 start-page: 2172 year: 2018 ident: 99_CR64 publication-title: Land Degrad Dev doi: 10.1002/ldr.2838 – volume: 55 start-page: 185 year: 2019 ident: 99_CR11 publication-title: Biol Fert Soils doi: 10.1007/s00374-018-1333-2 – volume: 574 start-page: 139 year: 2017 ident: 99_CR95 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.09.025 – volume: 40 start-page: 1067 year: 1980 ident: 99_CR47 publication-title: Appl Environ Microbiol doi: 10.1128/aem.40.6.1067-1079.1980 – volume: 650 start-page: 626 year: 2019 ident: 99_CR119 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.08.372 – volume: 30 start-page: 406 year: 2019 ident: 99_CR24 publication-title: Land Degrad Dev doi: 10.1002/ldr.3230 – volume: 758 start-page: 143657 year: 2021 ident: 99_CR113 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.143657 – volume: 133 start-page: 94 year: 2019 ident: 99_CR123 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2019.03.002 – volume: 65 start-page: 40 year: 2014 ident: 99_CR101 publication-title: Eur J Soil Sci doi: 10.1111/ejss.12100 – volume: 61 start-page: 196 year: 2014 ident: 99_CR37 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2013.12.010 – volume: 621 start-page: 148 year: 2018 ident: 99_CR108 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.11.214 – volume: 75 start-page: 1589 year: 2009 ident: 99_CR89 publication-title: Appl Environ Microbiol doi: 10.1128/aem.02775-08 – volume: 24 start-page: 3452 year: 2018 ident: 99_CR23 publication-title: Glob Chang Biol doi: 10.1111/gcb.14163 |
SSID | ssj0002511639 ssib053820432 ssib046561560 |
Score | 2.586711 |
SecondaryResourceType | review_article |
Snippet | Soil microorganisms play crucial roles in soil nutrient cycling, carbon sequestration, fertility maintenance and crop health and production. To date, the... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 239 |
SubjectTerms | Agriculture Ceramics Composites Earth and Environmental Science Environment Environmental Engineering/Biotechnology Fossil Fuels (incl. Carbon Capture) Glass Natural Materials Renewable and Green Energy Review Soil Science & Conservation |
Title | Association of biochar properties with changes in soil bacterial, fungal and fauna communities and nutrient cycling processes |
URI | https://link.springer.com/article/10.1007/s42773-021-00099-x |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8JAEF6KvbSH0ie1L_bQW13qPpJNjiIWKdhTBW9hXxFBohiF9tD-9u5somgpQiHkEGYJzMxmZnbyfYPQY-SjnuW-OtHSpETwPCWaUk5M2nbWUW0TCdjhwVvcH4rXUTSqaXIAC_Orf_9cCiYldBopCdkM8fniYUS5hDEN3bi79h2g_aJbqb7fx4D6ZJvzFkil4zBYjEVMEJlKVmNo_n7NbpzabZKG2PNyik7qpBF3KiufoQNXnKPjznhRE2e4C_S1pWc8y7GezABQhedw2L4A1lQMR664AvqWeFLgcjaZYl2xNatpC_sQ58MFVoXFuVoVCpsKPBIWw9MCmPt9kMLmEwCVYzyvUAauvETDl957t0_q0QrEcB4tCVO-rJCaRt6CuRPUyETbtolzR62xzDGmtEi0SHMgsBdaWNZOfa1IpXM8EY5foUYxK9w1wv5Ly3KdpspfIuY2UYpKq-JEaS1crpqIrhWZmZp3HMZfTLMNY3JQfuaVnwXlZx9N9LRZM69YN_ZKt9b2yeodWO4Rv_mf-C06YsEv4L-yO9RYLlbu3iciS_0QPNDfB9-9H6JW1J8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEA5FD20PpU9qnzn0VgMmm91sjkupWKtequBtyWuLILviKrSH_vcm-xCFIhT2tCQEJpN8k5l8XwB48i3qac-eTiRTHFEv4Uhi7CHFO0YbLHXIHHd4OAp6E9qf-tOKFJbXt93rkmSxU2_IbpQw5mqOGBVxDbKRYzP0g9BvgGYU9T_6tR85CTC8FfbbNe0YoGSTe3FhdVA8MkZ8QhHjjFR8mr8H2sWs3YJpgUPdU3BSBZAwKmf8DByY9BwcR5_LSkTDXICfLZvDLIFyljlyFVy4xPvSKahCl36FJek3h7MU5tlsDmWp3CzmbWjhzkIHFKmGiVinAqqSSFJ0dn9Tp-JvAQuqb0eu_ISLknFg8ksw6b6OX3qoemYBKc_zV4gIe8RgEvt2NhNDsWKh1B0VJAZrpYkhREgaSsoTJ2ZPJdWkw-25ETNjvJAa7wo00iw11wDaXZckknNhPxp4OhQCMy2CUEhJTSJaANeGjFWlQe6ewpjHG_XkwvixNX5cGD_-aoHnTZ9FqcCxt3W7np-4Wo35nuY3_2v-CA574-EgHryN3m_BESl8xN03uwON1XJt7m2AspIPlT_-Alw229E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SQfQgPrE-c_CmwSab3ewepVrqEw8K3pY8S6FsS1tBD_53M9kHLYgg7GmZsDAz2Xkk3zcIncc-6pnIVydK6IzwyGVEURoRnXWssVSZVAB2-Ok56b_x-_f4fQHFH26710eSJaYBWJqK-dXEuKsG-MaZEHD-SEnIcYjPIld9pUKh_Oom3dqjgAyMLhQAfncDFpQ1XRhIsJMwbozFjBORCVYha37_zHL0Wj46DRGpt4U2q1QSX5e230YrtthBG9eDaUWnYXfR94L28dhhNRwDzApPoAU_BS5VDI1YXMJ_Z3hY4Nl4OMKq5HCWo0vsA58PIlgWBjv5UUisS0hJWAxvC-Dz96rD-gtglgM8KbEHdraH3nq3r90-qQYuEB1F8Zww6YsNoWjs7eosp1qkynR04iw12jDLmFQ8VTxzQGvPFTesk_kKkgpro5TbaB-1inFhDxD2_1_mVJZJ__AkMqmUVBiZpFIpbp1sI1orMtcVGzkMxRjlDY9yUH7ulZ8H5eefbXTRrJmUXBx_Sl_W9smrfTn7Q_zwf-JnaO3lppc_3j0_HKF1FlwELp4do9Z8-mFPfKYyV6fBGX8AXWTeqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Association+of+biochar+properties+with+changes+in+soil+bacterial%2C+fungal+and+fauna+communities+and+nutrient+cycling+processes&rft.jtitle=Biochar+%28Online%29&rft.au=Dai%2C+Zhongmin&rft.au=Xiong%2C+Xinquan&rft.au=Zhu%2C+Hang&rft.au=Xu%2C+Haojie&rft.date=2021-09-01&rft.issn=2524-7972&rft.eissn=2524-7867&rft.volume=3&rft.issue=3&rft.spage=239&rft.epage=254&rft_id=info:doi/10.1007%2Fs42773-021-00099-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42773_021_00099_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-7972&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-7972&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-7972&client=summon |