Mitigating the dissolution of V2O5 in aqueous ZnSO4 electrolyte through Ti-doping for zinc storage

Aqueous zinc-ion batteries (AZIBs) have become a hotspot for electrochemical energy storage owing to the high safety, low cost, environmental friendliness, and favourable rate performance. However, the serious dissolution of cathode materials in aqueous electrolytes would lead to poor cyclability, w...

Full description

Saved in:
Bibliographic Details
Published inChinese chemical letters Vol. 35; no. 1; pp. 108421 - 562
Main Authors Wei, Zihe, Wang, Xuehua, Zhu, Ting, Hu, Ping, Mai, Liqiang, Zhou, Liang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2024
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China
School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China%School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China
Hubei Longzhong Laboratory,Wuhan University of Technology(Xiangyang Demonstration Zone),Xiangyang 441000,China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,China%Hubei Longzhong Laboratory,Wuhan University of Technology(Xiangyang Demonstration Zone),Xiangyang 441000,China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aqueous zinc-ion batteries (AZIBs) have become a hotspot for electrochemical energy storage owing to the high safety, low cost, environmental friendliness, and favourable rate performance. However, the serious dissolution of cathode materials in aqueous electrolytes would lead to poor cyclability, which should be addressed before commercialization. Herein, we designed a Ti-doped V2O5 with yolk-shell microspherical structure for AZIBs. The Ti doping stabilizes the crystal structure and relieves the dissolution of V2O5 in aqueous ZnSO4 electrolyte. The optimized sample, Ti0.2V1.8O4.9, delivers a high capacity (355 mAh/g at 0.05 A/g) as well as good capacity retention (89% after 2500 cycles at 1.0 A/g). This work provides an effective strategy to mitigate the dissolution of cathode material in aqueous ZnSO4 electrolyte for cyclability enhancement. [Display omitted] Ti-doped V2O5 yolk-shell microspheres are synthesized by a spray drying method, and the optimized Ti0.2V1.8O4.9 delivers a high capacity and improved cyclability in low cost aqueous ZnSO4 electrolyte. This study provides an effective strategy to mitigate the dissolution issue of cathode material in aqueous electrolytes by transition metal doping.
AbstractList Aqueous zinc-ion batteries(AZIBs)have become a hotspot for electrochemical energy storage owing to the high safety,low cost,environmental friendliness,and favorable rate performance.However,the seri-ous dissolution of cathode materials in aqueous electrolytes would lead to poor cyclability,which should be addressed before commercialization.Herein,we designed a Ti-doped V2O5 with yolk-shell microspher-ical structure for AZIBs.The Ti doping stabilizes the crystal structure and relieves the dissolution of V2O5 in aqueous ZnSO4 electrolyte.The optimized sample,Ti0.2V18O4.9,delivers a high capacity(355 mAh/g at 0.05 A/g)as well as good capacity retention(89%after 2500 cycles at 1.0 A/g).This work provides an ef-fective strategy to mitigate the dissolution of cathode material in aqueous ZnSO4 electrolyte for cyclability enhancement.
Aqueous zinc-ion batteries (AZIBs) have become a hotspot for electrochemical energy storage owing to the high safety, low cost, environmental friendliness, and favourable rate performance. However, the serious dissolution of cathode materials in aqueous electrolytes would lead to poor cyclability, which should be addressed before commercialization. Herein, we designed a Ti-doped V2O5 with yolk-shell microspherical structure for AZIBs. The Ti doping stabilizes the crystal structure and relieves the dissolution of V2O5 in aqueous ZnSO4 electrolyte. The optimized sample, Ti0.2V1.8O4.9, delivers a high capacity (355 mAh/g at 0.05 A/g) as well as good capacity retention (89% after 2500 cycles at 1.0 A/g). This work provides an effective strategy to mitigate the dissolution of cathode material in aqueous ZnSO4 electrolyte for cyclability enhancement. [Display omitted] Ti-doped V2O5 yolk-shell microspheres are synthesized by a spray drying method, and the optimized Ti0.2V1.8O4.9 delivers a high capacity and improved cyclability in low cost aqueous ZnSO4 electrolyte. This study provides an effective strategy to mitigate the dissolution issue of cathode material in aqueous electrolytes by transition metal doping.
ArticleNumber 108421
Author Hu, Ping
Wei, Zihe
Mai, Liqiang
Zhou, Liang
Zhu, Ting
Wang, Xuehua
AuthorAffiliation Hubei Longzhong Laboratory,Wuhan University of Technology(Xiangyang Demonstration Zone),Xiangyang 441000,China;State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China%School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,China%Hubei Longzhong Laboratory,Wuhan University of Technology(Xiangyang Demonstration Zone),Xiangyang 441000,China;State Key Laboratory of Advanced Technology for Materials
AuthorAffiliation_xml – name: Hubei Longzhong Laboratory,Wuhan University of Technology(Xiangyang Demonstration Zone),Xiangyang 441000,China;State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China%School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,China%Hubei Longzhong Laboratory,Wuhan University of Technology(Xiangyang Demonstration Zone),Xiangyang 441000,China;State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,China
Author_xml – sequence: 1
  givenname: Zihe
  surname: Wei
  fullname: Wei, Zihe
  organization: Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang 441000, China
– sequence: 2
  givenname: Xuehua
  surname: Wang
  fullname: Wang, Xuehua
  organization: School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
– sequence: 3
  givenname: Ting
  surname: Zhu
  fullname: Zhu, Ting
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430205, China
– sequence: 4
  givenname: Ping
  surname: Hu
  fullname: Hu, Ping
  email: huping316@163.com
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430205, China
– sequence: 5
  givenname: Liqiang
  surname: Mai
  fullname: Mai, Liqiang
  organization: Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang 441000, China
– sequence: 6
  givenname: Liang
  orcidid: 0000-0001-6756-3578
  surname: Zhou
  fullname: Zhou, Liang
  email: liangzhou@whut.edu.cn
  organization: Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang 441000, China
BookMark eNqFkLtPHDEQh62ISDzCX0DjjmoPP_bhLVIglAAS6IqcUqSxbO94z5eNDbaX11-Pj6OiINWMRr9vRvMdoj0fPCB0QsmCEtqebRbGTJAXjDBeJqJm9As6oKITVdO39V7pCaGVqGm3jw5T2hDChODtAdK3LrtRZedHnNeAB5dSmObsgsfB4t9s2WDnsbqfIcwJ__G_ljWGCUyOYXrOUKAY5nGNV64awt12jQ0RvzhvcMohqhG-oa9WTQmO3-sRWv38sbq4qm6Wl9cX5zeV4bzJFWWq43YgQFvba8FNa3TXCNvZuiGtAGgo6K4FYbqm1mTQminaa046xljb8yN0ulv7qLxVfpSbMEdfDsqXcf30Vxc3NSlumpLsd0kTQ0oRrDQuq-3LOSo3SUrk1qrcyDercmtV7qwWln9g76L7p-Lzf6jvOwrK_w8OokzGgTcwuFhUyiG4T_lXONSUSw
CitedBy_id crossref_primary_10_1002_smtd_202300804
crossref_primary_10_1007_s10854_024_13892_8
crossref_primary_10_1021_acs_chemmater_4c00135
crossref_primary_10_1016_j_surfin_2025_106205
crossref_primary_10_1021_acsami_3c09127
crossref_primary_10_1002_ange_202312000
crossref_primary_10_55713_jmmm_v34i3_2084
crossref_primary_10_1002_anie_202312000
crossref_primary_10_1021_acsnano_3c06687
crossref_primary_10_1002_chem_202400567
crossref_primary_10_1002_adfm_202310825
crossref_primary_10_1039_D3TA07984H
crossref_primary_10_1016_j_jscs_2024_101869
crossref_primary_10_1021_acsaem_3c00855
crossref_primary_10_1002_aenm_202404815
crossref_primary_10_1007_s10008_023_05795_1
crossref_primary_10_1021_acsaem_3c00777
crossref_primary_10_1039_D4CC01874E
Cites_doi 10.1016/j.nanoen.2019.05.005
10.1016/j.jece.2018.08.066
10.1007/s11581-022-04541-3
10.1016/j.ensm.2022.03.023
10.1016/j.ijleo.2021.168516
10.1039/C7TA00100B
10.1021/jp074464w
10.1016/j.jechem.2018.12.023
10.1021/acsenergylett.1c00625
10.1038/s41467-020-16039-5
10.1002/anie.202010287
10.1016/j.cclet.2021.08.058
10.1016/j.cclet.2021.12.049
10.1038/nmat2612
10.1007/s40820-019-0256-2
10.1016/j.est.2019.101047
10.1002/anie.202107697
10.1016/j.cclet.2021.08.081
10.1016/j.ccr.2022.214477
10.1039/C8TA05862H
10.1021/acs.chemrev.9b00628
10.1039/C6TA11194G
10.1021/acsami.9b21579
10.1016/j.cej.2022.137657
10.1016/j.jallcom.2017.10.264
10.1039/D0CC01802C
10.1126/sciadv.aba4098
10.1016/j.cclet.2021.04.045
10.1021/acsami.6b12001
10.1016/j.ensm.2022.07.044
10.1039/C9TA11750D
10.1021/acsaem.0c02126
10.1002/cey2.39
10.1039/C9CC04053F
10.1039/C8CC02250J
10.1016/j.ensm.2019.04.022
10.1016/j.nanoen.2020.104523
10.1016/j.ensm.2018.03.003
10.1007/s00339-019-2736-0
10.1039/D1EE00030F
10.1021/acs.chemmater.2c01695
10.1038/nenergy.2016.119
10.1016/j.jechem.2020.10.007
10.1016/j.nanoen.2019.04.009
10.1021/cm701910c
10.1007/s11426-020-9830-8
10.1021/jp970490q
10.1021/acs.chemrev.9b00248
10.1021/acsenergylett.0c00903
10.1021/acsenergylett.8b00565
ContentType Journal Article
Copyright 2023
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2023
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/j.cclet.2023.108421
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1878-5964
EndPage 562
ExternalDocumentID zghxkb202401085
10_1016_j_cclet_2023_108421
S1001841723002759
GroupedDBID --K
--M
.~1
0R~
188
1B1
1~.
1~5
29B
2B.
2C.
2WC
4.4
457
4G.
5GY
5VR
5VS
6J9
7-5
71M
8P~
8RM
92E
92I
92Q
93N
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C1A
CCEZO
CDRFL
CHBEP
CS3
CW9
DU5
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
F5P
FA0
FDB
FEDTE
FIRID
FLBIZ
FNPLU
FYGXN
GBLVA
GX1
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
S..
SDF
SDG
SDH
SES
SPC
SPCBC
SSK
SSZ
T5K
TCJ
TGP
UNMZH
UZ4
~G-
-SB
-S~
5XA
5XC
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CAJEB
CITATION
Q--
SSH
U1G
U5L
4A8
PSX
ID FETCH-LOGICAL-c335t-12a73fd0e16f9b83c6cb758f7f45068ee51eb76e8c754b0dbb2a19b307222693
ISSN 1001-8417
IngestDate Thu May 29 04:08:26 EDT 2025
Tue Jul 01 03:19:11 EDT 2025
Thu Apr 24 23:11:13 EDT 2025
Fri Feb 23 02:36:39 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Aqueous ZnSO4 electrolyte
Aqueous zinc-ion batteries
Ti doping
Yolk-shell structure
V2O5 cathode materials
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c335t-12a73fd0e16f9b83c6cb758f7f45068ee51eb76e8c754b0dbb2a19b307222693
ORCID 0000-0001-6756-3578
PageCount 5
ParticipantIDs wanfang_journals_zghxkb202401085
crossref_citationtrail_10_1016_j_cclet_2023_108421
crossref_primary_10_1016_j_cclet_2023_108421
elsevier_sciencedirect_doi_10_1016_j_cclet_2023_108421
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-00
2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-00
PublicationDecade 2020
PublicationTitle Chinese chemical letters
PublicationTitle_FL Chinese Chemical Letters
PublicationYear 2024
Publisher Elsevier B.V
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China
School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China%School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China
Hubei Longzhong Laboratory,Wuhan University of Technology(Xiangyang Demonstration Zone),Xiangyang 441000,China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,China%Hubei Longzhong Laboratory,Wuhan University of Technology(Xiangyang Demonstration Zone),Xiangyang 441000,China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,China
Publisher_xml – name: Elsevier B.V
– name: Hubei Longzhong Laboratory,Wuhan University of Technology(Xiangyang Demonstration Zone),Xiangyang 441000,China
– name: Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,China%Hubei Longzhong Laboratory,Wuhan University of Technology(Xiangyang Demonstration Zone),Xiangyang 441000,China
– name: Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,China
– name: School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China%School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China
– name: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China
References Yang, Pan, Shen (bib0008) 2022; 18
Yang, Tang, Liang (bib0029) 2019; 61
Sun, Xu, Xu (bib0040) 2022; 48
Qiu, Xiao, Ai (bib0047) 2017; 9
Zeng, Hao, Wang (bib0007) 2019; 20
Narayanasamy, Kirubasankar, Shi (bib0054) 2020; 56
Chao, Zhou, Xie (bib0004) 2020; 6
Giorgetti, Berrettoni (bib0033) 2007; 19
Du, Zhang, Zhang (bib0038) 2020; 63
Liu, Xu, Li (bib0034) 2022; 460
Hu, Zhu, Ma (bib0053) 2019; 55
Li, Wu, Yan (bib0016) 2020; 12
Xing, Zhang, Li (bib0014) 2022; 52
Liu, Chen, Fang (bib0026) 2019; 11
Niu, Wang, Ma (bib0015) 2022; 33
Jia, Liu, Neale (bib0006) 2020; 120
Wang, Polleux, Lim (bib0058) 2007; 111
Zhang, Liu, Liu (bib0061) 2022; 920
Jia, Wang, Tawiah (bib0005) 2020; 70
Zhang, Wan, Huang (bib0013) 2020; 11
Zhang, Wu, Zhou (bib0035) 2021; 6
Zhou, Shan, Wu (bib0039) 2018; 54
Zhu, Chen, Zhang (bib0046) 2022; 28
Liu, Wu (bib0010) 2022; 33
He, Zhang, Li (bib0011) 2018; 6
Yang, Yang, Huang (bib0037) 2022; 33
Li, Li, Wang (bib0023) 2021; 14
Fu, Hansen, Schwarz (bib0044) 2022; 34
Yan, He, Chen (bib0048) 2018; 30
Neelima, Vandana, Kathirvel (bib0042) 2022; 252
Wang, Wang, Yang (bib0025) 2022; 18
Zhang, Xue, Sun (bib0060) 2022; 445
Koohi-Fayegh, Rosen (bib0001) 2020; 27
Zhu, Hu, Zhao (bib0002) 2020; 120
Lindström, Södergren, Solbrand (bib0059) 1997; 101
Li, Cheng, Hu (bib0017) 2021; 32
Li, Wang, Cheng (bib0022) 2018; 15
Wang, Kale, Cao (bib0021) 2020; 5
Ma, Huang, Zhou (bib0031) 2017; 5
Zeng, Lu, Zhang (bib0019) 2021; 60
Deng, Yuan, Tie (bib0018) 2020; 59
Wang, Shi, Wu (bib0050) 2020; 2
Kundu, Adams, Duffort (bib0003) 2016; 1
Li, Zhang, Zheng (bib0030) 2020; 8
Baltakesmez, Aykaç, Güzeldir (bib0045) 2019; 125
Phatyenchuen, Pongthawornsakun, Panpranot (bib0043) 2018; 6
Brezesinski, Wang, Tolbert (bib0057) 2010; 9
Chen, Wang, Li (bib0028) 2019; 38
Dou, Liang, Gao (bib0032) 2018; 735
Li, Huang, Kalambate (bib0027) 2019; 60
Liu (bib0055) 2019; 22
Zhang, Zuo, Tang (bib0024) 2021; 9
Cui, Zeng, Wu (bib0036) 2022; 9
Huang, Li, Zhang (bib0041) 2022; 34
Wang, Wang, Zhang (bib0049) 2021; 59
Wu, Xiang, Peng (bib0009) 2017; 5
Chen, Zhang, Dong (bib0012) 2022; 433
Xue, Shen, Zhou (bib0020) 2022; 448
Zhang, Dong, Jia (bib0051) 2018; 3
Wang, Zhu, Chao (bib0056) 2017; 29
Dong, Jia, Wang (bib0052) 2020; 3
Niu (10.1016/j.cclet.2023.108421_bib0015) 2022; 33
Wang (10.1016/j.cclet.2023.108421_bib0058) 2007; 111
Neelima (10.1016/j.cclet.2023.108421_bib0042) 2022; 252
Xing (10.1016/j.cclet.2023.108421_bib0014) 2022; 52
Zhang (10.1016/j.cclet.2023.108421_bib0060) 2022; 445
Li (10.1016/j.cclet.2023.108421_bib0023) 2021; 14
Wang (10.1016/j.cclet.2023.108421_bib0056) 2017; 29
Wang (10.1016/j.cclet.2023.108421_bib0049) 2021; 59
He (10.1016/j.cclet.2023.108421_bib0011) 2018; 6
Liu (10.1016/j.cclet.2023.108421_bib0034) 2022; 460
Jia (10.1016/j.cclet.2023.108421_bib0006) 2020; 120
Li (10.1016/j.cclet.2023.108421_bib0017) 2021; 32
Brezesinski (10.1016/j.cclet.2023.108421_bib0057) 2010; 9
Wang (10.1016/j.cclet.2023.108421_bib0021) 2020; 5
Giorgetti (10.1016/j.cclet.2023.108421_bib0033) 2007; 19
Liu (10.1016/j.cclet.2023.108421_bib0026) 2019; 11
Li (10.1016/j.cclet.2023.108421_bib0016) 2020; 12
Zhu (10.1016/j.cclet.2023.108421_bib0002) 2020; 120
Deng (10.1016/j.cclet.2023.108421_bib0018) 2020; 59
Xue (10.1016/j.cclet.2023.108421_bib0020) 2022; 448
Lindström (10.1016/j.cclet.2023.108421_bib0059) 1997; 101
Zhang (10.1016/j.cclet.2023.108421_bib0035) 2021; 6
Narayanasamy (10.1016/j.cclet.2023.108421_bib0054) 2020; 56
Yan (10.1016/j.cclet.2023.108421_bib0048) 2018; 30
Fu (10.1016/j.cclet.2023.108421_bib0044) 2022; 34
Yang (10.1016/j.cclet.2023.108421_bib0008) 2022; 18
Huang (10.1016/j.cclet.2023.108421_bib0041) 2022; 34
Jia (10.1016/j.cclet.2023.108421_bib0005) 2020; 70
Cui (10.1016/j.cclet.2023.108421_bib0036) 2022; 9
Baltakesmez (10.1016/j.cclet.2023.108421_bib0045) 2019; 125
Zeng (10.1016/j.cclet.2023.108421_bib0007) 2019; 20
Kundu (10.1016/j.cclet.2023.108421_bib0003) 2016; 1
Zhou (10.1016/j.cclet.2023.108421_bib0039) 2018; 54
Sun (10.1016/j.cclet.2023.108421_bib0040) 2022; 48
Yang (10.1016/j.cclet.2023.108421_bib0029) 2019; 61
Yang (10.1016/j.cclet.2023.108421_bib0037) 2022; 33
Liu (10.1016/j.cclet.2023.108421_bib0010) 2022; 33
Zhang (10.1016/j.cclet.2023.108421_bib0024) 2021; 9
Wang (10.1016/j.cclet.2023.108421_bib0025) 2022; 18
Hu (10.1016/j.cclet.2023.108421_bib0053) 2019; 55
Zhang (10.1016/j.cclet.2023.108421_bib0061) 2022; 920
Wang (10.1016/j.cclet.2023.108421_bib0050) 2020; 2
Dong (10.1016/j.cclet.2023.108421_bib0052) 2020; 3
Li (10.1016/j.cclet.2023.108421_bib0030) 2020; 8
Ma (10.1016/j.cclet.2023.108421_bib0031) 2017; 5
Li (10.1016/j.cclet.2023.108421_bib0027) 2019; 60
Chao (10.1016/j.cclet.2023.108421_bib0004) 2020; 6
Du (10.1016/j.cclet.2023.108421_bib0038) 2020; 63
Liu (10.1016/j.cclet.2023.108421_bib0055) 2019; 22
Wu (10.1016/j.cclet.2023.108421_bib0009) 2017; 5
Zhang (10.1016/j.cclet.2023.108421_bib0051) 2018; 3
Phatyenchuen (10.1016/j.cclet.2023.108421_bib0043) 2018; 6
Koohi-Fayegh (10.1016/j.cclet.2023.108421_bib0001) 2020; 27
Zhu (10.1016/j.cclet.2023.108421_bib0046) 2022; 28
Zeng (10.1016/j.cclet.2023.108421_bib0019) 2021; 60
Dou (10.1016/j.cclet.2023.108421_bib0032) 2018; 735
Chen (10.1016/j.cclet.2023.108421_bib0028) 2019; 38
Chen (10.1016/j.cclet.2023.108421_bib0012) 2022; 433
Qiu (10.1016/j.cclet.2023.108421_bib0047) 2017; 9
Li (10.1016/j.cclet.2023.108421_bib0022) 2018; 15
Zhang (10.1016/j.cclet.2023.108421_bib0013) 2020; 11
References_xml – volume: 14
  start-page: 3796
  year: 2021
  end-page: 3839
  ident: bib0023
  publication-title: Energy Environ. Sci.
– volume: 111
  start-page: 14925
  year: 2007
  end-page: 14931
  ident: bib0058
  publication-title: J. Phys. Chem. C
– volume: 19
  start-page: 5991
  year: 2007
  end-page: 6000
  ident: bib0033
  publication-title: Chem. Mater.
– volume: 3
  start-page: 11183
  year: 2020
  end-page: 11192
  ident: bib0052
  publication-title: ACS Appl. Energy Mater.
– volume: 12
  start-page: 10420
  year: 2020
  end-page: 10427
  ident: bib0016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 2931
  year: 2022
  end-page: 2942
  ident: bib0046
  publication-title: Ionics
– volume: 59
  start-page: 126
  year: 2021
  end-page: 133
  ident: bib0049
  publication-title: J. Energy Chem.
– volume: 445
  year: 2022
  ident: bib0060
  publication-title: Chem. Eng. J.
– volume: 70
  year: 2020
  ident: bib0005
  publication-title: Nano Energy
– volume: 59
  start-page: 22002
  year: 2020
  end-page: 22006
  ident: bib0018
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 345
  year: 2017
  end-page: 353
  ident: bib0047
  publication-title: ACS Appl. Mater. Interfaces
– volume: 48
  start-page: 192
  year: 2022
  end-page: 204
  ident: bib0040
  publication-title: Energy Storage Mater
– volume: 433
  year: 2022
  ident: bib0012
  publication-title: Chem. Eng. J.
– volume: 920
  year: 2022
  ident: bib0061
  publication-title: J. Alloys Compd.
– volume: 6
  start-page: 2111
  year: 2021
  end-page: 2120
  ident: bib0035
  publication-title: ACS Energy Lett
– volume: 30
  year: 2018
  ident: bib0048
  publication-title: Adv. Mater.
– volume: 5
  start-page: 17990
  year: 2017
  end-page: 17997
  ident: bib0009
  publication-title: J. Mater. Chem. A
– volume: 63
  start-page: 1767
  year: 2020
  end-page: 1776
  ident: bib0038
  publication-title: Sci. China Chem.
– volume: 18
  year: 2022
  ident: bib0025
  publication-title: Small
– volume: 34
  start-page: 9844
  year: 2022
  end-page: 9853
  ident: bib0044
  publication-title: Chem. Mater.
– volume: 735
  start-page: 109
  year: 2018
  end-page: 116
  ident: bib0032
  publication-title: J. Alloys Compd.
– volume: 120
  start-page: 7795
  year: 2020
  end-page: 7866
  ident: bib0006
  publication-title: Chem. Rev.
– volume: 9
  year: 2021
  ident: bib0024
  publication-title: Energy Technol
– volume: 55
  start-page: 8486
  year: 2019
  end-page: 8489
  ident: bib0053
  publication-title: Chem. Commun.
– volume: 448
  year: 2022
  ident: bib0020
  publication-title: Chem. Eng. J.
– volume: 18
  year: 2022
  ident: bib0008
  publication-title: Small
– volume: 125
  start-page: 441
  year: 2019
  ident: bib0045
  publication-title: Appl. Phys. A
– volume: 120
  start-page: 851
  year: 2020
  end-page: 918
  ident: bib0002
  publication-title: Chem. Rev.
– volume: 38
  start-page: 20
  year: 2019
  end-page: 25
  ident: bib0028
  publication-title: J. Energy Chem.
– volume: 460
  year: 2022
  ident: bib0034
  publication-title: Coord. Chem. Rev.
– volume: 34
  year: 2022
  ident: bib0041
  publication-title: Adv. Mater.
– volume: 1
  start-page: 16119
  year: 2016
  ident: bib0003
  publication-title: Nat. Energy
– volume: 9
  start-page: 9
  year: 2022
  ident: bib0036
  publication-title: Adv. Sci.
– volume: 6
  start-page: 5655
  year: 2018
  end-page: 5661
  ident: bib0043
  publication-title: J. Environ. Chem. Eng.
– volume: 6
  start-page: 14594
  year: 2018
  end-page: 14601
  ident: bib0011
  publication-title: J. Mater. Chem. A
– volume: 33
  start-page: 1236
  year: 2022
  end-page: 1244
  ident: bib0010
  publication-title: Chin. Chem. Lett.
– volume: 54
  start-page: 4457
  year: 2018
  end-page: 4460
  ident: bib0039
  publication-title: Chem. Commun.
– volume: 101
  start-page: 7717
  year: 1997
  end-page: 7722
  ident: bib0059
  publication-title: J. Phys. Chem. B
– volume: 3
  start-page: 1366
  year: 2018
  end-page: 1372
  ident: bib0051
  publication-title: ACS Energy Lett
– volume: 32
  start-page: 3753
  year: 2021
  end-page: 3761
  ident: bib0017
  publication-title: Chin. Chem. Lett.
– volume: 56
  start-page: 6412
  year: 2020
  end-page: 6415
  ident: bib0054
  publication-title: Chem. Commun.
– volume: 52
  start-page: 291
  year: 2022
  end-page: 298
  ident: bib0014
  publication-title: Energy Storage Mater
– volume: 6
  start-page: eaba4098
  year: 2020
  ident: bib0004
  publication-title: Sci. Adv.
– volume: 61
  start-page: 617
  year: 2019
  end-page: 625
  ident: bib0029
  publication-title: Nano Energy
– volume: 11
  start-page: 25
  year: 2019
  ident: bib0026
  publication-title: Nano-Micro Lett
– volume: 27
  year: 2020
  ident: bib0001
  publication-title: J. Energy Storage
– volume: 33
  start-page: 1430
  year: 2022
  end-page: 1434
  ident: bib0015
  publication-title: Chin. Chem. Lett.
– volume: 8
  start-page: 5186
  year: 2020
  end-page: 5193
  ident: bib0030
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 6522
  year: 2017
  end-page: 6531
  ident: bib0031
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  ident: bib0056
  publication-title: Adv. Mater.
– volume: 5
  start-page: 2256
  year: 2020
  end-page: 2264
  ident: bib0021
  publication-title: ACS Energy Lett
– volume: 33
  start-page: 4628
  year: 2022
  end-page: 4634
  ident: bib0037
  publication-title: Chin. Chem. Lett.
– volume: 9
  start-page: 146
  year: 2010
  end-page: 151
  ident: bib0057
  publication-title: Nat. Mater.
– volume: 11
  start-page: 2199
  year: 2020
  ident: bib0013
  publication-title: Nat. Commun.
– volume: 2
  start-page: 294
  year: 2020
  end-page: 301
  ident: bib0050
  publication-title: Carbon Energy
– volume: 60
  start-page: 22189
  year: 2021
  end-page: 22194
  ident: bib0019
  publication-title: Angew. Chem. Int. Ed.
– volume: 252
  year: 2022
  ident: bib0042
  publication-title: Optik
– volume: 60
  start-page: 752
  year: 2019
  end-page: 759
  ident: bib0027
  publication-title: Nano Energy
– volume: 15
  start-page: 14
  year: 2018
  end-page: 21
  ident: bib0022
  publication-title: Energy Storage Mater
– volume: 20
  start-page: 410
  year: 2019
  end-page: 437
  ident: bib0007
  publication-title: Energy Storage Mater
– volume: 22
  start-page: 25
  year: 2019
  end-page: 44
  ident: bib0055
  publication-title: Math. Inequal. Appl.
– volume: 61
  start-page: 617
  year: 2019
  ident: 10.1016/j.cclet.2023.108421_bib0029
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.005
– volume: 6
  start-page: 5655
  year: 2018
  ident: 10.1016/j.cclet.2023.108421_bib0043
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2018.08.066
– volume: 28
  start-page: 2931
  year: 2022
  ident: 10.1016/j.cclet.2023.108421_bib0046
  publication-title: Ionics
  doi: 10.1007/s11581-022-04541-3
– volume: 48
  start-page: 192
  year: 2022
  ident: 10.1016/j.cclet.2023.108421_bib0040
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.03.023
– volume: 252
  year: 2022
  ident: 10.1016/j.cclet.2023.108421_bib0042
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.168516
– volume: 5
  start-page: 17990
  year: 2017
  ident: 10.1016/j.cclet.2023.108421_bib0009
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00100B
– volume: 111
  start-page: 14925
  year: 2007
  ident: 10.1016/j.cclet.2023.108421_bib0058
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp074464w
– volume: 38
  start-page: 20
  year: 2019
  ident: 10.1016/j.cclet.2023.108421_bib0028
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2018.12.023
– volume: 6
  start-page: 2111
  year: 2021
  ident: 10.1016/j.cclet.2023.108421_bib0035
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00625
– volume: 433
  year: 2022
  ident: 10.1016/j.cclet.2023.108421_bib0012
  publication-title: Chem. Eng. J.
– volume: 18
  year: 2022
  ident: 10.1016/j.cclet.2023.108421_bib0008
  publication-title: Small
– volume: 11
  start-page: 2199
  year: 2020
  ident: 10.1016/j.cclet.2023.108421_bib0013
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16039-5
– volume: 59
  start-page: 22002
  year: 2020
  ident: 10.1016/j.cclet.2023.108421_bib0018
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202010287
– volume: 33
  start-page: 1430
  year: 2022
  ident: 10.1016/j.cclet.2023.108421_bib0015
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2021.08.058
– volume: 33
  start-page: 4628
  year: 2022
  ident: 10.1016/j.cclet.2023.108421_bib0037
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2021.12.049
– volume: 34
  year: 2022
  ident: 10.1016/j.cclet.2023.108421_bib0041
  publication-title: Adv. Mater.
– volume: 9
  start-page: 146
  year: 2010
  ident: 10.1016/j.cclet.2023.108421_bib0057
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2612
– volume: 9
  year: 2021
  ident: 10.1016/j.cclet.2023.108421_bib0024
  publication-title: Energy Technol.
– volume: 11
  start-page: 25
  year: 2019
  ident: 10.1016/j.cclet.2023.108421_bib0026
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0256-2
– volume: 27
  year: 2020
  ident: 10.1016/j.cclet.2023.108421_bib0001
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2019.101047
– volume: 60
  start-page: 22189
  year: 2021
  ident: 10.1016/j.cclet.2023.108421_bib0019
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202107697
– volume: 33
  start-page: 1236
  year: 2022
  ident: 10.1016/j.cclet.2023.108421_bib0010
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2021.08.081
– volume: 460
  year: 2022
  ident: 10.1016/j.cclet.2023.108421_bib0034
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214477
– volume: 6
  start-page: 14594
  year: 2018
  ident: 10.1016/j.cclet.2023.108421_bib0011
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05862H
– volume: 120
  start-page: 7795
  year: 2020
  ident: 10.1016/j.cclet.2023.108421_bib0006
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00628
– volume: 30
  year: 2018
  ident: 10.1016/j.cclet.2023.108421_bib0048
  publication-title: Adv. Mater.
– volume: 5
  start-page: 6522
  year: 2017
  ident: 10.1016/j.cclet.2023.108421_bib0031
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA11194G
– volume: 12
  start-page: 10420
  year: 2020
  ident: 10.1016/j.cclet.2023.108421_bib0016
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b21579
– volume: 448
  year: 2022
  ident: 10.1016/j.cclet.2023.108421_bib0020
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137657
– volume: 735
  start-page: 109
  year: 2018
  ident: 10.1016/j.cclet.2023.108421_bib0032
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.10.264
– volume: 56
  start-page: 6412
  year: 2020
  ident: 10.1016/j.cclet.2023.108421_bib0054
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC01802C
– volume: 29
  year: 2017
  ident: 10.1016/j.cclet.2023.108421_bib0056
  publication-title: Adv. Mater.
– volume: 6
  start-page: eaba4098
  year: 2020
  ident: 10.1016/j.cclet.2023.108421_bib0004
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba4098
– volume: 32
  start-page: 3753
  year: 2021
  ident: 10.1016/j.cclet.2023.108421_bib0017
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2021.04.045
– volume: 9
  start-page: 345
  year: 2017
  ident: 10.1016/j.cclet.2023.108421_bib0047
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12001
– volume: 52
  start-page: 291
  year: 2022
  ident: 10.1016/j.cclet.2023.108421_bib0014
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.07.044
– volume: 8
  start-page: 5186
  year: 2020
  ident: 10.1016/j.cclet.2023.108421_bib0030
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA11750D
– volume: 3
  start-page: 11183
  year: 2020
  ident: 10.1016/j.cclet.2023.108421_bib0052
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c02126
– volume: 9
  start-page: 9
  year: 2022
  ident: 10.1016/j.cclet.2023.108421_bib0036
  publication-title: Adv. Sci.
– volume: 2
  start-page: 294
  year: 2020
  ident: 10.1016/j.cclet.2023.108421_bib0050
  publication-title: Carbon Energy
  doi: 10.1002/cey2.39
– volume: 55
  start-page: 8486
  year: 2019
  ident: 10.1016/j.cclet.2023.108421_bib0053
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC04053F
– volume: 54
  start-page: 4457
  year: 2018
  ident: 10.1016/j.cclet.2023.108421_bib0039
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC02250J
– volume: 445
  year: 2022
  ident: 10.1016/j.cclet.2023.108421_bib0060
  publication-title: Chem. Eng. J.
– volume: 20
  start-page: 410
  year: 2019
  ident: 10.1016/j.cclet.2023.108421_bib0007
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.04.022
– volume: 70
  year: 2020
  ident: 10.1016/j.cclet.2023.108421_bib0005
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104523
– volume: 15
  start-page: 14
  year: 2018
  ident: 10.1016/j.cclet.2023.108421_bib0022
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.03.003
– volume: 125
  start-page: 441
  year: 2019
  ident: 10.1016/j.cclet.2023.108421_bib0045
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-2736-0
– volume: 14
  start-page: 3796
  year: 2021
  ident: 10.1016/j.cclet.2023.108421_bib0023
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE00030F
– volume: 34
  start-page: 9844
  year: 2022
  ident: 10.1016/j.cclet.2023.108421_bib0044
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.2c01695
– volume: 22
  start-page: 25
  year: 2019
  ident: 10.1016/j.cclet.2023.108421_bib0055
  publication-title: Math. Inequal. Appl.
– volume: 920
  year: 2022
  ident: 10.1016/j.cclet.2023.108421_bib0061
  publication-title: J. Alloys Compd.
– volume: 1
  start-page: 16119
  year: 2016
  ident: 10.1016/j.cclet.2023.108421_bib0003
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.119
– volume: 59
  start-page: 126
  year: 2021
  ident: 10.1016/j.cclet.2023.108421_bib0049
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.10.007
– volume: 60
  start-page: 752
  year: 2019
  ident: 10.1016/j.cclet.2023.108421_bib0027
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.009
– volume: 19
  start-page: 5991
  year: 2007
  ident: 10.1016/j.cclet.2023.108421_bib0033
  publication-title: Chem. Mater.
  doi: 10.1021/cm701910c
– volume: 63
  start-page: 1767
  year: 2020
  ident: 10.1016/j.cclet.2023.108421_bib0038
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-020-9830-8
– volume: 101
  start-page: 7717
  year: 1997
  ident: 10.1016/j.cclet.2023.108421_bib0059
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp970490q
– volume: 120
  start-page: 851
  year: 2020
  ident: 10.1016/j.cclet.2023.108421_bib0002
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00248
– volume: 18
  year: 2022
  ident: 10.1016/j.cclet.2023.108421_bib0025
  publication-title: Small
– volume: 5
  start-page: 2256
  year: 2020
  ident: 10.1016/j.cclet.2023.108421_bib0021
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00903
– volume: 3
  start-page: 1366
  year: 2018
  ident: 10.1016/j.cclet.2023.108421_bib0051
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00565
SSID ssj0028836
Score 2.4301405
Snippet Aqueous zinc-ion batteries (AZIBs) have become a hotspot for electrochemical energy storage owing to the high safety, low cost, environmental friendliness, and...
Aqueous zinc-ion batteries(AZIBs)have become a hotspot for electrochemical energy storage owing to the high safety,low cost,environmental friendliness,and...
SourceID wanfang
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108421
SubjectTerms Aqueous zinc-ion batteries
Aqueous ZnSO4 electrolyte
Ti doping
V2O5 cathode materials
Yolk-shell structure
Title Mitigating the dissolution of V2O5 in aqueous ZnSO4 electrolyte through Ti-doping for zinc storage
URI https://dx.doi.org/10.1016/j.cclet.2023.108421
https://d.wanfangdata.com.cn/periodical/zghxkb202401085
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaIgQXxFMtFOQDPi1Z5R3nmF1SKmDpoQtd7SWyE4fdUqUINoL2wG9nJnbSbAvlcYnsrJ1EM996Js43M4Q8F_j5jwfcUnEhLD8SgcUFdEPhFQW4xzJWGI08eRfuv_dfz4LZxuZuj7VUr-QwP_9lXMn_aBXOgV4xSvYfNNtdFE5AG_QLR9AwHP9Kx5OlzpBhIp7w27q5H_qAH9yDALczBCz9SHSdV4cH_sDUvTk5W6muSM90aRU6cApJh-fLKh8gaVKs84RY6rMRZ8lLlgYsHrFR0-BjFofYgPNJ0xjtsWTE0pDxhCUBS_fYaMw4ZylnHGY5-BNM4RFLI8bj5ic9ptuUmC-R56OWbX9Wq0UtBkfC2NmGNwyPO1_U3dqO_f26v4vh9vYv0acevIEF8K1GvaEWJC0F4uITQyODiVhpBQ4OzyqQLaZt6cVV6EIwR_UCVsd1asvFdboBvofZjqDb1So3VgB5ZtzXQaWtmdBZVdb-DnrND3TueeM-BNq4XLFMepPkeJgDUpDD63pI7_R1ePillN_nHxffP0kUk43BIZvkhgsvQWh2hj86AhOWiW5i59qHbXNqNezFK7f5nd9185uoStBez6ua3iV3zOsQTTS275ENVd0nt8ZtFcIHRF5gnIIeaA_j9LSkiHG6rKjBOG0wTnsYpwbjtMM4Bf1SxDg1GH9IpnvpdLxvmbogVu55wcpyXBF5ZWErJyxjyb08zCW89pZR6Qd2yJUKHCWjUPE8CnxpF1K6woklWDNwhsPYe0S2qtNKbRNaqlDa0ik8uyh9T4pYxDYsV0Xu-X4BzvsOcVuhZbnJmY-lW06ylhx5nDWSzlDSmZb0DnnRTfqsU8ZcPzxstZEZr1d7sxlA5_qJ1OguM2vS1-wSch7_ecgTchvbeldxl2ytvtTqKfjZK_msgRscX82cnzJSzcY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitigating+the+dissolution+of+V2O5+in+aqueous+ZnSO4+electrolyte+through+Ti-doping+for+zinc+storage&rft.jtitle=%E4%B8%AD%E5%9B%BD%E5%8C%96%E5%AD%A6%E5%BF%AB%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Zihe+Wei&rft.au=Xuehua+Wang&rft.au=Ting+Zhu&rft.au=Ping+Hu&rft.date=2024&rft.pub=State+Key+Laboratory+of+Advanced+Technology+for+Materials+Synthesis+and+Processing%2CWuhan+University+of+Technology%2CWuhan+430070%2CChina&rft.issn=1001-8417&rft.volume=35&rft.issue=1&rft.spage=558&rft.epage=562&rft_id=info:doi/10.1016%2Fj.cclet.2023.108421&rft.externalDocID=zghxkb202401085
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghxkb%2Fzghxkb.jpg