Mitigating the dissolution of V2O5 in aqueous ZnSO4 electrolyte through Ti-doping for zinc storage
Aqueous zinc-ion batteries (AZIBs) have become a hotspot for electrochemical energy storage owing to the high safety, low cost, environmental friendliness, and favourable rate performance. However, the serious dissolution of cathode materials in aqueous electrolytes would lead to poor cyclability, w...
Saved in:
Cover
Loading…
Abstract | Aqueous zinc-ion batteries (AZIBs) have become a hotspot for electrochemical energy storage owing to the high safety, low cost, environmental friendliness, and favourable rate performance. However, the serious dissolution of cathode materials in aqueous electrolytes would lead to poor cyclability, which should be addressed before commercialization. Herein, we designed a Ti-doped V2O5 with yolk-shell microspherical structure for AZIBs. The Ti doping stabilizes the crystal structure and relieves the dissolution of V2O5 in aqueous ZnSO4 electrolyte. The optimized sample, Ti0.2V1.8O4.9, delivers a high capacity (355 mAh/g at 0.05 A/g) as well as good capacity retention (89% after 2500 cycles at 1.0 A/g). This work provides an effective strategy to mitigate the dissolution of cathode material in aqueous ZnSO4 electrolyte for cyclability enhancement.
[Display omitted]
Ti-doped V2O5 yolk-shell microspheres are synthesized by a spray drying method, and the optimized Ti0.2V1.8O4.9 delivers a high capacity and improved cyclability in low cost aqueous ZnSO4 electrolyte. This study provides an effective strategy to mitigate the dissolution issue of cathode material in aqueous electrolytes by transition metal doping. |
---|---|
AbstractList | Aqueous zinc-ion batteries(AZIBs)have become a hotspot for electrochemical energy storage owing to the high safety,low cost,environmental friendliness,and favorable rate performance.However,the seri-ous dissolution of cathode materials in aqueous electrolytes would lead to poor cyclability,which should be addressed before commercialization.Herein,we designed a Ti-doped V2O5 with yolk-shell microspher-ical structure for AZIBs.The Ti doping stabilizes the crystal structure and relieves the dissolution of V2O5 in aqueous ZnSO4 electrolyte.The optimized sample,Ti0.2V18O4.9,delivers a high capacity(355 mAh/g at 0.05 A/g)as well as good capacity retention(89%after 2500 cycles at 1.0 A/g).This work provides an ef-fective strategy to mitigate the dissolution of cathode material in aqueous ZnSO4 electrolyte for cyclability enhancement. Aqueous zinc-ion batteries (AZIBs) have become a hotspot for electrochemical energy storage owing to the high safety, low cost, environmental friendliness, and favourable rate performance. However, the serious dissolution of cathode materials in aqueous electrolytes would lead to poor cyclability, which should be addressed before commercialization. Herein, we designed a Ti-doped V2O5 with yolk-shell microspherical structure for AZIBs. The Ti doping stabilizes the crystal structure and relieves the dissolution of V2O5 in aqueous ZnSO4 electrolyte. The optimized sample, Ti0.2V1.8O4.9, delivers a high capacity (355 mAh/g at 0.05 A/g) as well as good capacity retention (89% after 2500 cycles at 1.0 A/g). This work provides an effective strategy to mitigate the dissolution of cathode material in aqueous ZnSO4 electrolyte for cyclability enhancement. [Display omitted] Ti-doped V2O5 yolk-shell microspheres are synthesized by a spray drying method, and the optimized Ti0.2V1.8O4.9 delivers a high capacity and improved cyclability in low cost aqueous ZnSO4 electrolyte. This study provides an effective strategy to mitigate the dissolution issue of cathode material in aqueous electrolytes by transition metal doping. |
ArticleNumber | 108421 |
Author | Hu, Ping Wei, Zihe Mai, Liqiang Zhou, Liang Zhu, Ting Wang, Xuehua |
AuthorAffiliation | Hubei Longzhong Laboratory,Wuhan University of Technology(Xiangyang Demonstration Zone),Xiangyang 441000,China;State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China%School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,China%Hubei Longzhong Laboratory,Wuhan University of Technology(Xiangyang Demonstration Zone),Xiangyang 441000,China;State Key Laboratory of Advanced Technology for Materials |
AuthorAffiliation_xml | – name: Hubei Longzhong Laboratory,Wuhan University of Technology(Xiangyang Demonstration Zone),Xiangyang 441000,China;State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China%School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,China%Hubei Longzhong Laboratory,Wuhan University of Technology(Xiangyang Demonstration Zone),Xiangyang 441000,China;State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,China |
Author_xml | – sequence: 1 givenname: Zihe surname: Wei fullname: Wei, Zihe organization: Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang 441000, China – sequence: 2 givenname: Xuehua surname: Wang fullname: Wang, Xuehua organization: School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China – sequence: 3 givenname: Ting surname: Zhu fullname: Zhu, Ting organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430205, China – sequence: 4 givenname: Ping surname: Hu fullname: Hu, Ping email: huping316@163.com organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430205, China – sequence: 5 givenname: Liqiang surname: Mai fullname: Mai, Liqiang organization: Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang 441000, China – sequence: 6 givenname: Liang orcidid: 0000-0001-6756-3578 surname: Zhou fullname: Zhou, Liang email: liangzhou@whut.edu.cn organization: Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang 441000, China |
BookMark | eNqFkLtPHDEQh62ISDzCX0DjjmoPP_bhLVIglAAS6IqcUqSxbO94z5eNDbaX11-Pj6OiINWMRr9vRvMdoj0fPCB0QsmCEtqebRbGTJAXjDBeJqJm9As6oKITVdO39V7pCaGVqGm3jw5T2hDChODtAdK3LrtRZedHnNeAB5dSmObsgsfB4t9s2WDnsbqfIcwJ__G_ljWGCUyOYXrOUKAY5nGNV64awt12jQ0RvzhvcMohqhG-oa9WTQmO3-sRWv38sbq4qm6Wl9cX5zeV4bzJFWWq43YgQFvba8FNa3TXCNvZuiGtAGgo6K4FYbqm1mTQminaa046xljb8yN0ulv7qLxVfpSbMEdfDsqXcf30Vxc3NSlumpLsd0kTQ0oRrDQuq-3LOSo3SUrk1qrcyDercmtV7qwWln9g76L7p-Lzf6jvOwrK_w8OokzGgTcwuFhUyiG4T_lXONSUSw |
CitedBy_id | crossref_primary_10_1002_smtd_202300804 crossref_primary_10_1007_s10854_024_13892_8 crossref_primary_10_1021_acs_chemmater_4c00135 crossref_primary_10_1016_j_surfin_2025_106205 crossref_primary_10_1021_acsami_3c09127 crossref_primary_10_1002_ange_202312000 crossref_primary_10_55713_jmmm_v34i3_2084 crossref_primary_10_1002_anie_202312000 crossref_primary_10_1021_acsnano_3c06687 crossref_primary_10_1002_chem_202400567 crossref_primary_10_1002_adfm_202310825 crossref_primary_10_1039_D3TA07984H crossref_primary_10_1016_j_jscs_2024_101869 crossref_primary_10_1021_acsaem_3c00855 crossref_primary_10_1002_aenm_202404815 crossref_primary_10_1007_s10008_023_05795_1 crossref_primary_10_1021_acsaem_3c00777 crossref_primary_10_1039_D4CC01874E |
Cites_doi | 10.1016/j.nanoen.2019.05.005 10.1016/j.jece.2018.08.066 10.1007/s11581-022-04541-3 10.1016/j.ensm.2022.03.023 10.1016/j.ijleo.2021.168516 10.1039/C7TA00100B 10.1021/jp074464w 10.1016/j.jechem.2018.12.023 10.1021/acsenergylett.1c00625 10.1038/s41467-020-16039-5 10.1002/anie.202010287 10.1016/j.cclet.2021.08.058 10.1016/j.cclet.2021.12.049 10.1038/nmat2612 10.1007/s40820-019-0256-2 10.1016/j.est.2019.101047 10.1002/anie.202107697 10.1016/j.cclet.2021.08.081 10.1016/j.ccr.2022.214477 10.1039/C8TA05862H 10.1021/acs.chemrev.9b00628 10.1039/C6TA11194G 10.1021/acsami.9b21579 10.1016/j.cej.2022.137657 10.1016/j.jallcom.2017.10.264 10.1039/D0CC01802C 10.1126/sciadv.aba4098 10.1016/j.cclet.2021.04.045 10.1021/acsami.6b12001 10.1016/j.ensm.2022.07.044 10.1039/C9TA11750D 10.1021/acsaem.0c02126 10.1002/cey2.39 10.1039/C9CC04053F 10.1039/C8CC02250J 10.1016/j.ensm.2019.04.022 10.1016/j.nanoen.2020.104523 10.1016/j.ensm.2018.03.003 10.1007/s00339-019-2736-0 10.1039/D1EE00030F 10.1021/acs.chemmater.2c01695 10.1038/nenergy.2016.119 10.1016/j.jechem.2020.10.007 10.1016/j.nanoen.2019.04.009 10.1021/cm701910c 10.1007/s11426-020-9830-8 10.1021/jp970490q 10.1021/acs.chemrev.9b00248 10.1021/acsenergylett.0c00903 10.1021/acsenergylett.8b00565 |
ContentType | Journal Article |
Copyright | 2023 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2023 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1016/j.cclet.2023.108421 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1878-5964 |
EndPage | 562 |
ExternalDocumentID | zghxkb202401085 10_1016_j_cclet_2023_108421 S1001841723002759 |
GroupedDBID | --K --M .~1 0R~ 188 1B1 1~. 1~5 29B 2B. 2C. 2WC 4.4 457 4G. 5GY 5VR 5VS 6J9 7-5 71M 8P~ 8RM 92E 92I 92Q 93N AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFUIB AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C1A CCEZO CDRFL CHBEP CS3 CW9 DU5 EBS EFJIC EFLBG EJD EO9 EP2 EP3 F5P FA0 FDB FEDTE FIRID FLBIZ FNPLU FYGXN GBLVA GX1 HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ S.. SDF SDG SDH SES SPC SPCBC SSK SSZ T5K TCJ TGP UNMZH UZ4 ~G- -SB -S~ 5XA 5XC AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CAJEB CITATION Q-- SSH U1G U5L 4A8 PSX |
ID | FETCH-LOGICAL-c335t-12a73fd0e16f9b83c6cb758f7f45068ee51eb76e8c754b0dbb2a19b307222693 |
ISSN | 1001-8417 |
IngestDate | Thu May 29 04:08:26 EDT 2025 Tue Jul 01 03:19:11 EDT 2025 Thu Apr 24 23:11:13 EDT 2025 Fri Feb 23 02:36:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Aqueous ZnSO4 electrolyte Aqueous zinc-ion batteries Ti doping Yolk-shell structure V2O5 cathode materials |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c335t-12a73fd0e16f9b83c6cb758f7f45068ee51eb76e8c754b0dbb2a19b307222693 |
ORCID | 0000-0001-6756-3578 |
PageCount | 5 |
ParticipantIDs | wanfang_journals_zghxkb202401085 crossref_citationtrail_10_1016_j_cclet_2023_108421 crossref_primary_10_1016_j_cclet_2023_108421 elsevier_sciencedirect_doi_10_1016_j_cclet_2023_108421 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-00 2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-00 |
PublicationDecade | 2020 |
PublicationTitle | Chinese chemical letters |
PublicationTitle_FL | Chinese Chemical Letters |
PublicationYear | 2024 |
Publisher | Elsevier B.V State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China%School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China Hubei Longzhong Laboratory,Wuhan University of Technology(Xiangyang Demonstration Zone),Xiangyang 441000,China Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,China%Hubei Longzhong Laboratory,Wuhan University of Technology(Xiangyang Demonstration Zone),Xiangyang 441000,China Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,China |
Publisher_xml | – name: Elsevier B.V – name: Hubei Longzhong Laboratory,Wuhan University of Technology(Xiangyang Demonstration Zone),Xiangyang 441000,China – name: Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,China%Hubei Longzhong Laboratory,Wuhan University of Technology(Xiangyang Demonstration Zone),Xiangyang 441000,China – name: Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,China – name: School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China%School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China%State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China – name: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China |
References | Yang, Pan, Shen (bib0008) 2022; 18 Yang, Tang, Liang (bib0029) 2019; 61 Sun, Xu, Xu (bib0040) 2022; 48 Qiu, Xiao, Ai (bib0047) 2017; 9 Zeng, Hao, Wang (bib0007) 2019; 20 Narayanasamy, Kirubasankar, Shi (bib0054) 2020; 56 Chao, Zhou, Xie (bib0004) 2020; 6 Giorgetti, Berrettoni (bib0033) 2007; 19 Du, Zhang, Zhang (bib0038) 2020; 63 Liu, Xu, Li (bib0034) 2022; 460 Hu, Zhu, Ma (bib0053) 2019; 55 Li, Wu, Yan (bib0016) 2020; 12 Xing, Zhang, Li (bib0014) 2022; 52 Liu, Chen, Fang (bib0026) 2019; 11 Niu, Wang, Ma (bib0015) 2022; 33 Jia, Liu, Neale (bib0006) 2020; 120 Wang, Polleux, Lim (bib0058) 2007; 111 Zhang, Liu, Liu (bib0061) 2022; 920 Jia, Wang, Tawiah (bib0005) 2020; 70 Zhang, Wan, Huang (bib0013) 2020; 11 Zhang, Wu, Zhou (bib0035) 2021; 6 Zhou, Shan, Wu (bib0039) 2018; 54 Zhu, Chen, Zhang (bib0046) 2022; 28 Liu, Wu (bib0010) 2022; 33 He, Zhang, Li (bib0011) 2018; 6 Yang, Yang, Huang (bib0037) 2022; 33 Li, Li, Wang (bib0023) 2021; 14 Fu, Hansen, Schwarz (bib0044) 2022; 34 Yan, He, Chen (bib0048) 2018; 30 Neelima, Vandana, Kathirvel (bib0042) 2022; 252 Wang, Wang, Yang (bib0025) 2022; 18 Zhang, Xue, Sun (bib0060) 2022; 445 Koohi-Fayegh, Rosen (bib0001) 2020; 27 Zhu, Hu, Zhao (bib0002) 2020; 120 Lindström, Södergren, Solbrand (bib0059) 1997; 101 Li, Cheng, Hu (bib0017) 2021; 32 Li, Wang, Cheng (bib0022) 2018; 15 Wang, Kale, Cao (bib0021) 2020; 5 Ma, Huang, Zhou (bib0031) 2017; 5 Zeng, Lu, Zhang (bib0019) 2021; 60 Deng, Yuan, Tie (bib0018) 2020; 59 Wang, Shi, Wu (bib0050) 2020; 2 Kundu, Adams, Duffort (bib0003) 2016; 1 Li, Zhang, Zheng (bib0030) 2020; 8 Baltakesmez, Aykaç, Güzeldir (bib0045) 2019; 125 Phatyenchuen, Pongthawornsakun, Panpranot (bib0043) 2018; 6 Brezesinski, Wang, Tolbert (bib0057) 2010; 9 Chen, Wang, Li (bib0028) 2019; 38 Dou, Liang, Gao (bib0032) 2018; 735 Li, Huang, Kalambate (bib0027) 2019; 60 Liu (bib0055) 2019; 22 Zhang, Zuo, Tang (bib0024) 2021; 9 Cui, Zeng, Wu (bib0036) 2022; 9 Huang, Li, Zhang (bib0041) 2022; 34 Wang, Wang, Zhang (bib0049) 2021; 59 Wu, Xiang, Peng (bib0009) 2017; 5 Chen, Zhang, Dong (bib0012) 2022; 433 Xue, Shen, Zhou (bib0020) 2022; 448 Zhang, Dong, Jia (bib0051) 2018; 3 Wang, Zhu, Chao (bib0056) 2017; 29 Dong, Jia, Wang (bib0052) 2020; 3 Niu (10.1016/j.cclet.2023.108421_bib0015) 2022; 33 Wang (10.1016/j.cclet.2023.108421_bib0058) 2007; 111 Neelima (10.1016/j.cclet.2023.108421_bib0042) 2022; 252 Xing (10.1016/j.cclet.2023.108421_bib0014) 2022; 52 Zhang (10.1016/j.cclet.2023.108421_bib0060) 2022; 445 Li (10.1016/j.cclet.2023.108421_bib0023) 2021; 14 Wang (10.1016/j.cclet.2023.108421_bib0056) 2017; 29 Wang (10.1016/j.cclet.2023.108421_bib0049) 2021; 59 He (10.1016/j.cclet.2023.108421_bib0011) 2018; 6 Liu (10.1016/j.cclet.2023.108421_bib0034) 2022; 460 Jia (10.1016/j.cclet.2023.108421_bib0006) 2020; 120 Li (10.1016/j.cclet.2023.108421_bib0017) 2021; 32 Brezesinski (10.1016/j.cclet.2023.108421_bib0057) 2010; 9 Wang (10.1016/j.cclet.2023.108421_bib0021) 2020; 5 Giorgetti (10.1016/j.cclet.2023.108421_bib0033) 2007; 19 Liu (10.1016/j.cclet.2023.108421_bib0026) 2019; 11 Li (10.1016/j.cclet.2023.108421_bib0016) 2020; 12 Zhu (10.1016/j.cclet.2023.108421_bib0002) 2020; 120 Deng (10.1016/j.cclet.2023.108421_bib0018) 2020; 59 Xue (10.1016/j.cclet.2023.108421_bib0020) 2022; 448 Lindström (10.1016/j.cclet.2023.108421_bib0059) 1997; 101 Zhang (10.1016/j.cclet.2023.108421_bib0035) 2021; 6 Narayanasamy (10.1016/j.cclet.2023.108421_bib0054) 2020; 56 Yan (10.1016/j.cclet.2023.108421_bib0048) 2018; 30 Fu (10.1016/j.cclet.2023.108421_bib0044) 2022; 34 Yang (10.1016/j.cclet.2023.108421_bib0008) 2022; 18 Huang (10.1016/j.cclet.2023.108421_bib0041) 2022; 34 Jia (10.1016/j.cclet.2023.108421_bib0005) 2020; 70 Cui (10.1016/j.cclet.2023.108421_bib0036) 2022; 9 Baltakesmez (10.1016/j.cclet.2023.108421_bib0045) 2019; 125 Zeng (10.1016/j.cclet.2023.108421_bib0007) 2019; 20 Kundu (10.1016/j.cclet.2023.108421_bib0003) 2016; 1 Zhou (10.1016/j.cclet.2023.108421_bib0039) 2018; 54 Sun (10.1016/j.cclet.2023.108421_bib0040) 2022; 48 Yang (10.1016/j.cclet.2023.108421_bib0029) 2019; 61 Yang (10.1016/j.cclet.2023.108421_bib0037) 2022; 33 Liu (10.1016/j.cclet.2023.108421_bib0010) 2022; 33 Zhang (10.1016/j.cclet.2023.108421_bib0024) 2021; 9 Wang (10.1016/j.cclet.2023.108421_bib0025) 2022; 18 Hu (10.1016/j.cclet.2023.108421_bib0053) 2019; 55 Zhang (10.1016/j.cclet.2023.108421_bib0061) 2022; 920 Wang (10.1016/j.cclet.2023.108421_bib0050) 2020; 2 Dong (10.1016/j.cclet.2023.108421_bib0052) 2020; 3 Li (10.1016/j.cclet.2023.108421_bib0030) 2020; 8 Ma (10.1016/j.cclet.2023.108421_bib0031) 2017; 5 Li (10.1016/j.cclet.2023.108421_bib0027) 2019; 60 Chao (10.1016/j.cclet.2023.108421_bib0004) 2020; 6 Du (10.1016/j.cclet.2023.108421_bib0038) 2020; 63 Liu (10.1016/j.cclet.2023.108421_bib0055) 2019; 22 Wu (10.1016/j.cclet.2023.108421_bib0009) 2017; 5 Zhang (10.1016/j.cclet.2023.108421_bib0051) 2018; 3 Phatyenchuen (10.1016/j.cclet.2023.108421_bib0043) 2018; 6 Koohi-Fayegh (10.1016/j.cclet.2023.108421_bib0001) 2020; 27 Zhu (10.1016/j.cclet.2023.108421_bib0046) 2022; 28 Zeng (10.1016/j.cclet.2023.108421_bib0019) 2021; 60 Dou (10.1016/j.cclet.2023.108421_bib0032) 2018; 735 Chen (10.1016/j.cclet.2023.108421_bib0028) 2019; 38 Chen (10.1016/j.cclet.2023.108421_bib0012) 2022; 433 Qiu (10.1016/j.cclet.2023.108421_bib0047) 2017; 9 Li (10.1016/j.cclet.2023.108421_bib0022) 2018; 15 Zhang (10.1016/j.cclet.2023.108421_bib0013) 2020; 11 |
References_xml | – volume: 14 start-page: 3796 year: 2021 end-page: 3839 ident: bib0023 publication-title: Energy Environ. Sci. – volume: 111 start-page: 14925 year: 2007 end-page: 14931 ident: bib0058 publication-title: J. Phys. Chem. C – volume: 19 start-page: 5991 year: 2007 end-page: 6000 ident: bib0033 publication-title: Chem. Mater. – volume: 3 start-page: 11183 year: 2020 end-page: 11192 ident: bib0052 publication-title: ACS Appl. Energy Mater. – volume: 12 start-page: 10420 year: 2020 end-page: 10427 ident: bib0016 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 2931 year: 2022 end-page: 2942 ident: bib0046 publication-title: Ionics – volume: 59 start-page: 126 year: 2021 end-page: 133 ident: bib0049 publication-title: J. Energy Chem. – volume: 445 year: 2022 ident: bib0060 publication-title: Chem. Eng. J. – volume: 70 year: 2020 ident: bib0005 publication-title: Nano Energy – volume: 59 start-page: 22002 year: 2020 end-page: 22006 ident: bib0018 publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 345 year: 2017 end-page: 353 ident: bib0047 publication-title: ACS Appl. Mater. Interfaces – volume: 48 start-page: 192 year: 2022 end-page: 204 ident: bib0040 publication-title: Energy Storage Mater – volume: 433 year: 2022 ident: bib0012 publication-title: Chem. Eng. J. – volume: 920 year: 2022 ident: bib0061 publication-title: J. Alloys Compd. – volume: 6 start-page: 2111 year: 2021 end-page: 2120 ident: bib0035 publication-title: ACS Energy Lett – volume: 30 year: 2018 ident: bib0048 publication-title: Adv. Mater. – volume: 5 start-page: 17990 year: 2017 end-page: 17997 ident: bib0009 publication-title: J. Mater. Chem. A – volume: 63 start-page: 1767 year: 2020 end-page: 1776 ident: bib0038 publication-title: Sci. China Chem. – volume: 18 year: 2022 ident: bib0025 publication-title: Small – volume: 34 start-page: 9844 year: 2022 end-page: 9853 ident: bib0044 publication-title: Chem. Mater. – volume: 735 start-page: 109 year: 2018 end-page: 116 ident: bib0032 publication-title: J. Alloys Compd. – volume: 120 start-page: 7795 year: 2020 end-page: 7866 ident: bib0006 publication-title: Chem. Rev. – volume: 9 year: 2021 ident: bib0024 publication-title: Energy Technol – volume: 55 start-page: 8486 year: 2019 end-page: 8489 ident: bib0053 publication-title: Chem. Commun. – volume: 448 year: 2022 ident: bib0020 publication-title: Chem. Eng. J. – volume: 18 year: 2022 ident: bib0008 publication-title: Small – volume: 125 start-page: 441 year: 2019 ident: bib0045 publication-title: Appl. Phys. A – volume: 120 start-page: 851 year: 2020 end-page: 918 ident: bib0002 publication-title: Chem. Rev. – volume: 38 start-page: 20 year: 2019 end-page: 25 ident: bib0028 publication-title: J. Energy Chem. – volume: 460 year: 2022 ident: bib0034 publication-title: Coord. Chem. Rev. – volume: 34 year: 2022 ident: bib0041 publication-title: Adv. Mater. – volume: 1 start-page: 16119 year: 2016 ident: bib0003 publication-title: Nat. Energy – volume: 9 start-page: 9 year: 2022 ident: bib0036 publication-title: Adv. Sci. – volume: 6 start-page: 5655 year: 2018 end-page: 5661 ident: bib0043 publication-title: J. Environ. Chem. Eng. – volume: 6 start-page: 14594 year: 2018 end-page: 14601 ident: bib0011 publication-title: J. Mater. Chem. A – volume: 33 start-page: 1236 year: 2022 end-page: 1244 ident: bib0010 publication-title: Chin. Chem. Lett. – volume: 54 start-page: 4457 year: 2018 end-page: 4460 ident: bib0039 publication-title: Chem. Commun. – volume: 101 start-page: 7717 year: 1997 end-page: 7722 ident: bib0059 publication-title: J. Phys. Chem. B – volume: 3 start-page: 1366 year: 2018 end-page: 1372 ident: bib0051 publication-title: ACS Energy Lett – volume: 32 start-page: 3753 year: 2021 end-page: 3761 ident: bib0017 publication-title: Chin. Chem. Lett. – volume: 56 start-page: 6412 year: 2020 end-page: 6415 ident: bib0054 publication-title: Chem. Commun. – volume: 52 start-page: 291 year: 2022 end-page: 298 ident: bib0014 publication-title: Energy Storage Mater – volume: 6 start-page: eaba4098 year: 2020 ident: bib0004 publication-title: Sci. Adv. – volume: 61 start-page: 617 year: 2019 end-page: 625 ident: bib0029 publication-title: Nano Energy – volume: 11 start-page: 25 year: 2019 ident: bib0026 publication-title: Nano-Micro Lett – volume: 27 year: 2020 ident: bib0001 publication-title: J. Energy Storage – volume: 33 start-page: 1430 year: 2022 end-page: 1434 ident: bib0015 publication-title: Chin. Chem. Lett. – volume: 8 start-page: 5186 year: 2020 end-page: 5193 ident: bib0030 publication-title: J. Mater. Chem. A – volume: 5 start-page: 6522 year: 2017 end-page: 6531 ident: bib0031 publication-title: J. Mater. Chem. A – volume: 29 year: 2017 ident: bib0056 publication-title: Adv. Mater. – volume: 5 start-page: 2256 year: 2020 end-page: 2264 ident: bib0021 publication-title: ACS Energy Lett – volume: 33 start-page: 4628 year: 2022 end-page: 4634 ident: bib0037 publication-title: Chin. Chem. Lett. – volume: 9 start-page: 146 year: 2010 end-page: 151 ident: bib0057 publication-title: Nat. Mater. – volume: 11 start-page: 2199 year: 2020 ident: bib0013 publication-title: Nat. Commun. – volume: 2 start-page: 294 year: 2020 end-page: 301 ident: bib0050 publication-title: Carbon Energy – volume: 60 start-page: 22189 year: 2021 end-page: 22194 ident: bib0019 publication-title: Angew. Chem. Int. Ed. – volume: 252 year: 2022 ident: bib0042 publication-title: Optik – volume: 60 start-page: 752 year: 2019 end-page: 759 ident: bib0027 publication-title: Nano Energy – volume: 15 start-page: 14 year: 2018 end-page: 21 ident: bib0022 publication-title: Energy Storage Mater – volume: 20 start-page: 410 year: 2019 end-page: 437 ident: bib0007 publication-title: Energy Storage Mater – volume: 22 start-page: 25 year: 2019 end-page: 44 ident: bib0055 publication-title: Math. Inequal. Appl. – volume: 61 start-page: 617 year: 2019 ident: 10.1016/j.cclet.2023.108421_bib0029 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.005 – volume: 6 start-page: 5655 year: 2018 ident: 10.1016/j.cclet.2023.108421_bib0043 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2018.08.066 – volume: 28 start-page: 2931 year: 2022 ident: 10.1016/j.cclet.2023.108421_bib0046 publication-title: Ionics doi: 10.1007/s11581-022-04541-3 – volume: 48 start-page: 192 year: 2022 ident: 10.1016/j.cclet.2023.108421_bib0040 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.03.023 – volume: 252 year: 2022 ident: 10.1016/j.cclet.2023.108421_bib0042 publication-title: Optik doi: 10.1016/j.ijleo.2021.168516 – volume: 5 start-page: 17990 year: 2017 ident: 10.1016/j.cclet.2023.108421_bib0009 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00100B – volume: 111 start-page: 14925 year: 2007 ident: 10.1016/j.cclet.2023.108421_bib0058 publication-title: J. Phys. Chem. C doi: 10.1021/jp074464w – volume: 38 start-page: 20 year: 2019 ident: 10.1016/j.cclet.2023.108421_bib0028 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2018.12.023 – volume: 6 start-page: 2111 year: 2021 ident: 10.1016/j.cclet.2023.108421_bib0035 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00625 – volume: 433 year: 2022 ident: 10.1016/j.cclet.2023.108421_bib0012 publication-title: Chem. Eng. J. – volume: 18 year: 2022 ident: 10.1016/j.cclet.2023.108421_bib0008 publication-title: Small – volume: 11 start-page: 2199 year: 2020 ident: 10.1016/j.cclet.2023.108421_bib0013 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16039-5 – volume: 59 start-page: 22002 year: 2020 ident: 10.1016/j.cclet.2023.108421_bib0018 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202010287 – volume: 33 start-page: 1430 year: 2022 ident: 10.1016/j.cclet.2023.108421_bib0015 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.08.058 – volume: 33 start-page: 4628 year: 2022 ident: 10.1016/j.cclet.2023.108421_bib0037 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.12.049 – volume: 34 year: 2022 ident: 10.1016/j.cclet.2023.108421_bib0041 publication-title: Adv. Mater. – volume: 9 start-page: 146 year: 2010 ident: 10.1016/j.cclet.2023.108421_bib0057 publication-title: Nat. Mater. doi: 10.1038/nmat2612 – volume: 9 year: 2021 ident: 10.1016/j.cclet.2023.108421_bib0024 publication-title: Energy Technol. – volume: 11 start-page: 25 year: 2019 ident: 10.1016/j.cclet.2023.108421_bib0026 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0256-2 – volume: 27 year: 2020 ident: 10.1016/j.cclet.2023.108421_bib0001 publication-title: J. Energy Storage doi: 10.1016/j.est.2019.101047 – volume: 60 start-page: 22189 year: 2021 ident: 10.1016/j.cclet.2023.108421_bib0019 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202107697 – volume: 33 start-page: 1236 year: 2022 ident: 10.1016/j.cclet.2023.108421_bib0010 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.08.081 – volume: 460 year: 2022 ident: 10.1016/j.cclet.2023.108421_bib0034 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214477 – volume: 6 start-page: 14594 year: 2018 ident: 10.1016/j.cclet.2023.108421_bib0011 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05862H – volume: 120 start-page: 7795 year: 2020 ident: 10.1016/j.cclet.2023.108421_bib0006 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00628 – volume: 30 year: 2018 ident: 10.1016/j.cclet.2023.108421_bib0048 publication-title: Adv. Mater. – volume: 5 start-page: 6522 year: 2017 ident: 10.1016/j.cclet.2023.108421_bib0031 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA11194G – volume: 12 start-page: 10420 year: 2020 ident: 10.1016/j.cclet.2023.108421_bib0016 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b21579 – volume: 448 year: 2022 ident: 10.1016/j.cclet.2023.108421_bib0020 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137657 – volume: 735 start-page: 109 year: 2018 ident: 10.1016/j.cclet.2023.108421_bib0032 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.10.264 – volume: 56 start-page: 6412 year: 2020 ident: 10.1016/j.cclet.2023.108421_bib0054 publication-title: Chem. Commun. doi: 10.1039/D0CC01802C – volume: 29 year: 2017 ident: 10.1016/j.cclet.2023.108421_bib0056 publication-title: Adv. Mater. – volume: 6 start-page: eaba4098 year: 2020 ident: 10.1016/j.cclet.2023.108421_bib0004 publication-title: Sci. Adv. doi: 10.1126/sciadv.aba4098 – volume: 32 start-page: 3753 year: 2021 ident: 10.1016/j.cclet.2023.108421_bib0017 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.04.045 – volume: 9 start-page: 345 year: 2017 ident: 10.1016/j.cclet.2023.108421_bib0047 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12001 – volume: 52 start-page: 291 year: 2022 ident: 10.1016/j.cclet.2023.108421_bib0014 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.07.044 – volume: 8 start-page: 5186 year: 2020 ident: 10.1016/j.cclet.2023.108421_bib0030 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA11750D – volume: 3 start-page: 11183 year: 2020 ident: 10.1016/j.cclet.2023.108421_bib0052 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c02126 – volume: 9 start-page: 9 year: 2022 ident: 10.1016/j.cclet.2023.108421_bib0036 publication-title: Adv. Sci. – volume: 2 start-page: 294 year: 2020 ident: 10.1016/j.cclet.2023.108421_bib0050 publication-title: Carbon Energy doi: 10.1002/cey2.39 – volume: 55 start-page: 8486 year: 2019 ident: 10.1016/j.cclet.2023.108421_bib0053 publication-title: Chem. Commun. doi: 10.1039/C9CC04053F – volume: 54 start-page: 4457 year: 2018 ident: 10.1016/j.cclet.2023.108421_bib0039 publication-title: Chem. Commun. doi: 10.1039/C8CC02250J – volume: 445 year: 2022 ident: 10.1016/j.cclet.2023.108421_bib0060 publication-title: Chem. Eng. J. – volume: 20 start-page: 410 year: 2019 ident: 10.1016/j.cclet.2023.108421_bib0007 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.04.022 – volume: 70 year: 2020 ident: 10.1016/j.cclet.2023.108421_bib0005 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104523 – volume: 15 start-page: 14 year: 2018 ident: 10.1016/j.cclet.2023.108421_bib0022 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.03.003 – volume: 125 start-page: 441 year: 2019 ident: 10.1016/j.cclet.2023.108421_bib0045 publication-title: Appl. Phys. A doi: 10.1007/s00339-019-2736-0 – volume: 14 start-page: 3796 year: 2021 ident: 10.1016/j.cclet.2023.108421_bib0023 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE00030F – volume: 34 start-page: 9844 year: 2022 ident: 10.1016/j.cclet.2023.108421_bib0044 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.2c01695 – volume: 22 start-page: 25 year: 2019 ident: 10.1016/j.cclet.2023.108421_bib0055 publication-title: Math. Inequal. Appl. – volume: 920 year: 2022 ident: 10.1016/j.cclet.2023.108421_bib0061 publication-title: J. Alloys Compd. – volume: 1 start-page: 16119 year: 2016 ident: 10.1016/j.cclet.2023.108421_bib0003 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.119 – volume: 59 start-page: 126 year: 2021 ident: 10.1016/j.cclet.2023.108421_bib0049 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.10.007 – volume: 60 start-page: 752 year: 2019 ident: 10.1016/j.cclet.2023.108421_bib0027 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.009 – volume: 19 start-page: 5991 year: 2007 ident: 10.1016/j.cclet.2023.108421_bib0033 publication-title: Chem. Mater. doi: 10.1021/cm701910c – volume: 63 start-page: 1767 year: 2020 ident: 10.1016/j.cclet.2023.108421_bib0038 publication-title: Sci. China Chem. doi: 10.1007/s11426-020-9830-8 – volume: 101 start-page: 7717 year: 1997 ident: 10.1016/j.cclet.2023.108421_bib0059 publication-title: J. Phys. Chem. B doi: 10.1021/jp970490q – volume: 120 start-page: 851 year: 2020 ident: 10.1016/j.cclet.2023.108421_bib0002 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00248 – volume: 18 year: 2022 ident: 10.1016/j.cclet.2023.108421_bib0025 publication-title: Small – volume: 5 start-page: 2256 year: 2020 ident: 10.1016/j.cclet.2023.108421_bib0021 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c00903 – volume: 3 start-page: 1366 year: 2018 ident: 10.1016/j.cclet.2023.108421_bib0051 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00565 |
SSID | ssj0028836 |
Score | 2.4301405 |
Snippet | Aqueous zinc-ion batteries (AZIBs) have become a hotspot for electrochemical energy storage owing to the high safety, low cost, environmental friendliness, and... Aqueous zinc-ion batteries(AZIBs)have become a hotspot for electrochemical energy storage owing to the high safety,low cost,environmental friendliness,and... |
SourceID | wanfang crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108421 |
SubjectTerms | Aqueous zinc-ion batteries Aqueous ZnSO4 electrolyte Ti doping V2O5 cathode materials Yolk-shell structure |
Title | Mitigating the dissolution of V2O5 in aqueous ZnSO4 electrolyte through Ti-doping for zinc storage |
URI | https://dx.doi.org/10.1016/j.cclet.2023.108421 https://d.wanfangdata.com.cn/periodical/zghxkb202401085 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaIgQXxFMtFOQDPi1Z5R3nmF1SKmDpoQtd7SWyE4fdUqUINoL2wG9nJnbSbAvlcYnsrJ1EM996Js43M4Q8F_j5jwfcUnEhLD8SgcUFdEPhFQW4xzJWGI08eRfuv_dfz4LZxuZuj7VUr-QwP_9lXMn_aBXOgV4xSvYfNNtdFE5AG_QLR9AwHP9Kx5OlzpBhIp7w27q5H_qAH9yDALczBCz9SHSdV4cH_sDUvTk5W6muSM90aRU6cApJh-fLKh8gaVKs84RY6rMRZ8lLlgYsHrFR0-BjFofYgPNJ0xjtsWTE0pDxhCUBS_fYaMw4ZylnHGY5-BNM4RFLI8bj5ic9ptuUmC-R56OWbX9Wq0UtBkfC2NmGNwyPO1_U3dqO_f26v4vh9vYv0acevIEF8K1GvaEWJC0F4uITQyODiVhpBQ4OzyqQLaZt6cVV6EIwR_UCVsd1asvFdboBvofZjqDb1So3VgB5ZtzXQaWtmdBZVdb-DnrND3TueeM-BNq4XLFMepPkeJgDUpDD63pI7_R1ePillN_nHxffP0kUk43BIZvkhgsvQWh2hj86AhOWiW5i59qHbXNqNezFK7f5nd9185uoStBez6ua3iV3zOsQTTS275ENVd0nt8ZtFcIHRF5gnIIeaA_j9LSkiHG6rKjBOG0wTnsYpwbjtMM4Bf1SxDg1GH9IpnvpdLxvmbogVu55wcpyXBF5ZWErJyxjyb08zCW89pZR6Qd2yJUKHCWjUPE8CnxpF1K6woklWDNwhsPYe0S2qtNKbRNaqlDa0ik8uyh9T4pYxDYsV0Xu-X4BzvsOcVuhZbnJmY-lW06ylhx5nDWSzlDSmZb0DnnRTfqsU8ZcPzxstZEZr1d7sxlA5_qJ1OguM2vS1-wSch7_ecgTchvbeldxl2ytvtTqKfjZK_msgRscX82cnzJSzcY |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitigating+the+dissolution+of+V2O5+in+aqueous+ZnSO4+electrolyte+through+Ti-doping+for+zinc+storage&rft.jtitle=%E4%B8%AD%E5%9B%BD%E5%8C%96%E5%AD%A6%E5%BF%AB%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Zihe+Wei&rft.au=Xuehua+Wang&rft.au=Ting+Zhu&rft.au=Ping+Hu&rft.date=2024&rft.pub=State+Key+Laboratory+of+Advanced+Technology+for+Materials+Synthesis+and+Processing%2CWuhan+University+of+Technology%2CWuhan+430070%2CChina&rft.issn=1001-8417&rft.volume=35&rft.issue=1&rft.spage=558&rft.epage=562&rft_id=info:doi/10.1016%2Fj.cclet.2023.108421&rft.externalDocID=zghxkb202401085 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghxkb%2Fzghxkb.jpg |