Equitably Colored Balanced Incomplete Block Designs

In this paper, we determine the necessary and sufficient conditions for the existence of an equitably ℓ‐colorable balanced incomplete block design for any positive integer ℓ⩾2. In particular, we present a method for constructing nontrivial equitably ℓ‐colorable BIBDs and prove that these examples ar...

Full description

Saved in:
Bibliographic Details
Published inJournal of combinatorial designs Vol. 24; no. 7; pp. 299 - 307
Main Authors Luther, Robert D., Pike, David A.
Format Journal Article
LanguageEnglish
Published Hoboken Blackwell Publishing Ltd 01.07.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1063-8539
1520-6610
DOI10.1002/jcd.21427

Cover

Loading…
Abstract In this paper, we determine the necessary and sufficient conditions for the existence of an equitably ℓ‐colorable balanced incomplete block design for any positive integer ℓ⩾2. In particular, we present a method for constructing nontrivial equitably ℓ‐colorable BIBDs and prove that these examples are the only nontrivial examples that exist. We also observe that every equitable ℓ‐coloring of a BIBD yields both an equalized ℓ‐coloring and a proper 2‐coloring of the same BIBD.
AbstractList In this paper, we determine the necessary and sufficient conditions for the existence of an equitably ℓ‐colorable balanced incomplete block design for any positive integer ℓ⩾2. In particular, we present a method for constructing nontrivial equitably ℓ‐colorable BIBDs and prove that these examples are the only nontrivial examples that exist. We also observe that every equitable ℓ‐coloring of a BIBD yields both an equalized ℓ‐coloring and a proper 2‐coloring of the same BIBD.
In this paper, we determine the necessary and sufficient conditions for the existence of an equitably -colorable balanced incomplete block design for any positive integer 2. In particular, we present a method for constructing nontrivial equitably -colorable BIBDs and prove that these examples are the only nontrivial examples that exist. We also observe that every equitable -coloring of a BIBD yields both an equalized -coloring and a proper 2-coloring of the same BIBD.
In this paper, we determine the necessary and sufficient conditions for the existence of an equitably ℓ‐colorable balanced incomplete block design for any positive integer . In particular, we present a method for constructing nontrivial equitably ℓ‐colorable BIBDs and prove that these examples are the only nontrivial examples that exist. We also observe that every equitable ℓ‐coloring of a BIBD yields both an equalized ℓ‐coloring and a proper 2‐coloring of the same BIBD.
Author Luther, Robert D.
Pike, David A.
Author_xml – sequence: 1
  givenname: Robert D.
  surname: Luther
  fullname: Luther, Robert D.
  email: rdl863@mun.ca
  organization: Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, A1C 5S7, Newfoundland, Canada
– sequence: 2
  givenname: David A.
  surname: Pike
  fullname: Pike, David A.
  organization: Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, A1C 5S7, Newfoundland, Canada
BookMark eNp9kEtPwkAUhScGEwFd-A-auHJRmEdn2i6lAmKIj4hxOWmHW1MYOjBTovx7B1EXJrq6Z3G-c-89HdSqTQ0InRPcIxjT_kLNe5REND5CbcIpDoUguOU1FixMOEtPUMe5BcY4TZloIzbcbKsmL_QuyIw2FubBINd5rbyY1Mqs1hoaCAbaqGVwDa56rd0pOi5z7eDsa3bR82g4y27C6f14kl1NQ8UYj8OYEgX-pgQYBwYxSVOeElUWKRdERCQqiOCcl3OcFCqPClqo_VWCFoIqAMG66OKQu7ZmswXXyIXZ2tqvlCROEky5oMy7Lg8uZY1zFkq5ttUqtztJsNx3In0n8rMT7-3_8ir_fFOZurF5pf8j3ioNu7-j5W12_U2EB6JyDbz_ELldShGzmMuXu7GkTzM8Hj0m8oF9AKNpgSw
CODEN JDESEU
CitedBy_id crossref_primary_10_1002_jcd_21937
Cites_doi 10.1016/S0012-365X(00)00388-5
10.1016/j.jcta.2013.12.004
10.1016/j.disc.2003.11.019
10.1093/oso/9780198535768.001.0001
ContentType Journal Article
Copyright 2015 Wiley Periodicals, Inc.
Copyright © 2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2015 Wiley Periodicals, Inc.
– notice: Copyright © 2016 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/jcd.21427
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1520-6610
EndPage 307
ExternalDocumentID 4051718051
10_1002_jcd_21427
JCD21427
ark_67375_WNG_2ST0GFQ8_P
Genre article
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
186
1OB
1OC
1ZS
31~
33P
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5VS
6TJ
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADIZJ
ADMGS
ADOZA
ADXAS
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BNHUX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
FEDTE
FSPIC
G-S
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
H~9
LATKE
LAW
LC2
LC3
LEEKS
LH4
LP6
LP7
LW6
LYRES
M6L
MEWTI
MK4
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
VH1
VQA
W99
WH7
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XJT
XPP
XV2
XXG
YQT
ZZTAW
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3357-721ce0028e35e3e7199591cfb95616414b16555fd08bca4b2bc009962b62cee63
IEDL.DBID DR2
ISSN 1063-8539
IngestDate Fri Jul 25 12:21:40 EDT 2025
Thu Apr 24 23:07:43 EDT 2025
Tue Jul 01 01:29:32 EDT 2025
Wed Jan 22 16:24:37 EST 2025
Wed Oct 30 09:54:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3357-721ce0028e35e3e7199591cfb95616414b16555fd08bca4b2bc009962b62cee63
Notes ark:/67375/WNG-2ST0GFQ8-P
ArticleID:JCD21427
istex:EF045AAF81B5922FA998D38CEE7F06646FBF4122
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1788025623
PQPubID 1006355
PageCount 9
ParticipantIDs proquest_journals_1788025623
crossref_primary_10_1002_jcd_21427
crossref_citationtrail_10_1002_jcd_21427
wiley_primary_10_1002_jcd_21427_JCD21427
istex_primary_ark_67375_WNG_2ST0GFQ8_P
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07
July 2016
2016-07-00
20160701
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of combinatorial designs
PublicationTitleAlternate J. Combin. Designs
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References P. Adams, D. Bryant, and M. Waterhouse, Some equitably 2-colourable cycle decompositions, Ars Combinatoria 85 (2007), 49-64.
P. Adams, D. Bryant, J. Lefevre, and M. Waterhouse, Some equitably 3-colourable cycle decompositions, Discrete Math 284 (1-3) (2004), 21-35.
C. J. Colbourn and A. Rosa, Triple Systems. Clarendon Press, Oxford, 1999.
S. Milici, A. Rosa, and V. Voloshin, Colouring Steiner systems with specified block colour patterns, Discrete Math 240 (13) (2001), 145-160.
D. Horsley and D.A. Pike, On balanced incomplete block designs with specified weak chromatic number, J Combin Theory-S A 123 (2014), 123-153.
V. I. Voloshin, Coloring Mixed Hypergraphs: Theory, Algorithms and Applications, American Mathematical Society, Providence, Rhode Island, 2002.
1992
2007; 85
2001; 240
2002
2004; 284
2014; 123
1999
Colbourn C. J. (e_1_2_6_4_1) 1992
e_1_2_6_7_1
e_1_2_6_6_1
Adams P. (e_1_2_6_3_1) 2007; 85
Voloshin V. I. (e_1_2_6_8_1) 2002
e_1_2_6_2_1
Colbourn C. J. (e_1_2_6_5_1) 1999
References_xml – reference: C. J. Colbourn and A. Rosa, Triple Systems. Clarendon Press, Oxford, 1999.
– reference: P. Adams, D. Bryant, J. Lefevre, and M. Waterhouse, Some equitably 3-colourable cycle decompositions, Discrete Math 284 (1-3) (2004), 21-35.
– reference: P. Adams, D. Bryant, and M. Waterhouse, Some equitably 2-colourable cycle decompositions, Ars Combinatoria 85 (2007), 49-64.
– reference: V. I. Voloshin, Coloring Mixed Hypergraphs: Theory, Algorithms and Applications, American Mathematical Society, Providence, Rhode Island, 2002.
– reference: S. Milici, A. Rosa, and V. Voloshin, Colouring Steiner systems with specified block colour patterns, Discrete Math 240 (13) (2001), 145-160.
– reference: D. Horsley and D.A. Pike, On balanced incomplete block designs with specified weak chromatic number, J Combin Theory-S A 123 (2014), 123-153.
– volume: 85
  start-page: 49
  year: 2007
  end-page: 64
  article-title: Some equitably 2‐colourable cycle decompositions
  publication-title: Ars Combinatoria
– volume: 240
  start-page: 145
  issue: 13
  year: 2001
  end-page: 160
  article-title: Colouring Steiner systems with specified block colour patterns
  publication-title: Discrete Math
– volume: 123
  start-page: 123
  year: 2014
  end-page: 153
  article-title: On balanced incomplete block designs with specified weak chromatic number
  publication-title: J Combin Theory–S A
– volume: 284
  start-page: 21
  issue: 1–3
  year: 2004
  end-page: 35
  article-title: Some equitably 3‐colourable cycle decompositions
  publication-title: Discrete Math
– year: 2002
– start-page: 401
  year: 1992
  end-page: 430
– year: 1999
– ident: e_1_2_6_7_1
  doi: 10.1016/S0012-365X(00)00388-5
– ident: e_1_2_6_6_1
  doi: 10.1016/j.jcta.2013.12.004
– ident: e_1_2_6_2_1
  doi: 10.1016/j.disc.2003.11.019
– start-page: 401
  volume-title: Wiley‐Intersci Ser Discrete Math Optim
  year: 1992
  ident: e_1_2_6_4_1
– volume-title: Triple Systems
  year: 1999
  ident: e_1_2_6_5_1
  doi: 10.1093/oso/9780198535768.001.0001
– volume: 85
  start-page: 49
  year: 2007
  ident: e_1_2_6_3_1
  article-title: Some equitably 2‐colourable cycle decompositions
  publication-title: Ars Combinatoria
– volume-title: Coloring Mixed Hypergraphs: Theory, Algorithms and Applications
  year: 2002
  ident: e_1_2_6_8_1
SSID ssj0009936
Score 2.041488
Snippet In this paper, we determine the necessary and sufficient conditions for the existence of an equitably ℓ‐colorable balanced incomplete block design for any...
In this paper, we determine the necessary and sufficient conditions for the existence of an equitably -colorable balanced incomplete block design for any...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 299
SubjectTerms 05C15
block designAMS subject classifications: 05B05
equitable coloring
equitable coloring; block designAMS subject classifications: 05B05
Title Equitably Colored Balanced Incomplete Block Designs
URI https://api.istex.fr/ark:/67375/WNG-2ST0GFQ8-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcd.21427
https://www.proquest.com/docview/1788025623
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC5kvLgHX7uL44sgy7KXjJPudGeCJ2fGUQZW9qHoYaFJdRLQkVHnAeqvt6oziQ8UZG99qJBOVXd_X4WqrwG-oYxTSXmyr4h7-GGi0Ecrcp-xMmwSIEdFle-xPjoN--fqfA72yl6YQh-i-uHGO8Od17zBExzvPomGXtq0wXph3EkeSM26-d0_T9JRhLuus4gg2CdIiktVoabYrZ58gUXz7Na7F0TzOV11eNNbgn_lTIsyk0FjOsGGfXgl4vifn7IMizMe6u0XC2cF5rLhKnz6WYm4jj-DPLidXkwSvLr3OnREjrLUa3MhpKUBHStci06M22sTHA68rqsEGX-B097BSefIn92x4FspVeRTAmgzTrwyqTKZRdyxHQc2R2541WEQYqCVUnnabKFNQhRo2bdaoBaEr1p-hdrwepitgRfGluhQmuZ8oTXmiEkgrI6stdiK8jitw4_S28bOBMj5HowrU0gnC0N-MM4PddipTG8K1Y23jL67kFUWyWjAZWqRMmfHh0b8PWke9n63zK86bJYxNbMdOjYB5f7M94SkebngvP8m0-903WD946YbsEDcSheVvZtQm4ym2Rbxlwluw_x-u9vubbsF-wg7XOkn
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6l5EB74NWihqeFEOrFId712rHEhbwJJKJtEFzQyru2pTYoQB5S21_fmXVsSAUS6m0PY-169vF9s5r5FuBQ8SDiGCfbArmH7YZC2UqzxCasdCsIyH6a5dv3Oldu90bcFOAkq4VJ9SHyCzfaGea8pg1OF9LHT6qhP3VUJsEw_x0UXSQaFHo1vj2JRyHymtoiBGEbQSnIdIUq7Dj_dAGNiuTYXwtU8zlhNYjTWoXbbKxposmwPJuqsv7zj4zj__7MGqzMqah1mq6ddSjEow340Mt1XCcfgTcfZz-mobr7bdXxlBzHkVWjXEiNDTxZKB0dSbdVQ0QcWg2TDDL5BFet5qDesefPLNiac-HbGAPqmGKvmIuYxz4VbQeOThTVvHqu4yrHE0IkUaWqdOgqpjQ512PKYwixHt-EpdH9KP4MlhtoZERRlNCb1ipRKnSY9nyttar6SRCV4EvmbqnnGuT0FMadTNWTmUQ_SOOHEhzkpg-p8MZLRkdmznKLcDykTDVfyOt-W7Lvg0q79bUqL0uwk02qnG_SiXQw_CfKxziOy8zO6z3Jbr1hGltvN92H5c6gdyEvzvrn2_AeqZaXJvruwNJ0PIt3kc5M1Z5ZtX8Bh1jr1A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB48QPTBW1zPIiK-dHebNOkWn3QvXXVZL_RBCE3agq6sugeov95Juq0HCuJbHqY0nUnyfVNmvgBsS-qHFPNkmyH3sN2ASVsqEtsaK90iArKXVPk2-eGV27hhNyOwl_bCJPoQ2Q83vTPMea03-FMYFz5EQ-9VmNd6Yd4ojLscmYRmROcf2lEIvKa1CDHYRkzyU1mhIilkj34Bo3Ht15cvTPMzXzWAU5uB23SqSZ1JOz_oy7x6-6bi-M9vmYXpIRG19pOVMwcjUWcepk4zFdfeAtDq8-CuH8iHV6uMZ2Q3Cq0DXQmpcIDnii5GR8ptHSAetq2KKQXpLcJVrXpZPrSHlyzYilLm2ZgBqkhnXhFlEY083bLtOyqWuuOVu44rHc4Yi8NiSarAlUQq7VtOJCcIsJwuwVjnsRMtg-X6CvlQGMb6RmsZSxk4RHFPKSVLXuyHOdhNvS3UUIFcX4TxIBLtZCLQD8L4IQdbmelTIrvxk9GOCVlmEXTbuk7NY-K6WRfk4rJYr52VRCsHa2lMxXCL9oSDyb8mfITivExwfn-TaJQrZrDyd9NNmGhVauLkqHm8CpPIs3hS5bsGY_3uIFpHLtOXG2bNvgPSOeqD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Equitably+Colored+Balanced+Incomplete+Block+Designs&rft.jtitle=Journal+of+combinatorial+designs&rft.au=Luther%2C+Robert+D&rft.au=Pike%2C+David+A&rft.date=2016-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1063-8539&rft.eissn=1520-6610&rft.volume=24&rft.issue=7&rft.spage=299&rft_id=info:doi/10.1002%2Fjcd.21427&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4051718051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-8539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-8539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-8539&client=summon