Adult spinal V2a interneurons show increased excitability and serotonin-dependent bistability

In mice, most studies of the organization of the spinal central pattern generator (CPG) for locomotion, and its component neuron classes, have been performed on neonatal [postnatal day (P)2-P4] animals. While the neonatal spinal cord can generate a basic locomotor pattern, it is often argued that th...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 113; no. 4; pp. 1124 - 1134
Main Authors Husch, Andreas, Dietz, Shelby B, Hong, Diana N, Harris-Warrick, Ronald M
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 15.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In mice, most studies of the organization of the spinal central pattern generator (CPG) for locomotion, and its component neuron classes, have been performed on neonatal [postnatal day (P)2-P4] animals. While the neonatal spinal cord can generate a basic locomotor pattern, it is often argued that the CPG network is in an immature form whose detailed properties mature with postnatal development. Here, we compare intrinsic properties and serotonergic modulation of the V2a class of excitatory spinal interneurons in behaviorally mature (older than P43) mice to those in neonatal mice. Using perforated patch recordings from genetically tagged V2a interneurons, we revealed an age-dependent increase in excitability. The input resistance increased, the rheobase values decreased, and the relation between injected current and firing frequency (F/I plot) showed higher excitability in the adult neurons, with almost all neurons firing tonically during a current step. The adult action potential (AP) properties became narrower and taller, and the AP threshold hyperpolarized. While in neonates the AP afterhyperpolarization was monophasic, most adult V2a interneurons showed a biphasic afterhyperpolarization. Serotonin increased excitability and depolarized most neonatal and adult V2a interneurons. However, in ∼30% of adult V2a interneurons, serotonin additionally elicited spontaneous intrinsic membrane potential bistability, resulting in alternations between hyperpolarized and depolarized states with a dramatically decreased membrane input resistance and facilitation of evoked plateau potentials. This was never seen in younger animals. Our findings indicate a significant postnatal development of the properties of locomotor-related V2a interneurons, which could alter their interpretation of synaptic inputs in the locomotor CPG.
AbstractList In mice, most studies of the organization of the spinal central pattern generator (CPG) for locomotion, and its component neuron classes, have been performed on neonatal [postnatal day (P)2-P4] animals. While the neonatal spinal cord can generate a basic locomotor pattern, it is often argued that the CPG network is in an immature form whose detailed properties mature with postnatal development. Here, we compare intrinsic properties and serotonergic modulation of the V2a class of excitatory spinal interneurons in behaviorally mature (older than P43) mice to those in neonatal mice. Using perforated patch recordings from genetically tagged V2a interneurons, we revealed an age-dependent increase in excitability. The input resistance increased, the rheobase values decreased, and the relation between injected current and firing frequency ( F / I plot) showed higher excitability in the adult neurons, with almost all neurons firing tonically during a current step. The adult action potential (AP) properties became narrower and taller, and the AP threshold hyperpolarized. While in neonates the AP afterhyperpolarization was monophasic, most adult V2a interneurons showed a biphasic afterhyperpolarization. Serotonin increased excitability and depolarized most neonatal and adult V2a interneurons. However, in ∼30% of adult V2a interneurons, serotonin additionally elicited spontaneous intrinsic membrane potential bistability, resulting in alternations between hyperpolarized and depolarized states with a dramatically decreased membrane input resistance and facilitation of evoked plateau potentials. This was never seen in younger animals. Our findings indicate a significant postnatal development of the properties of locomotor-related V2a interneurons, which could alter their interpretation of synaptic inputs in the locomotor CPG.
In mice, most studies of the organization of the spinal central pattern generator (CPG) for locomotion, and its component neuron classes, have been performed on neonatal [postnatal day (P)2-P4] animals. While the neonatal spinal cord can generate a basic locomotor pattern, it is often argued that the CPG network is in an immature form whose detailed properties mature with postnatal development. Here, we compare intrinsic properties and serotonergic modulation of the V2a class of excitatory spinal interneurons in behaviorally mature (older than P43) mice to those in neonatal mice. Using perforated patch recordings from genetically tagged V2a interneurons, we revealed an age-dependent increase in excitability. The input resistance increased, the rheobase values decreased, and the relation between injected current and firing frequency (F/I plot) showed higher excitability in the adult neurons, with almost all neurons firing tonically during a current step. The adult action potential (AP) properties became narrower and taller, and the AP threshold hyperpolarized. While in neonates the AP afterhyperpolarization was monophasic, most adult V2a interneurons showed a biphasic afterhyperpolarization. Serotonin increased excitability and depolarized most neonatal and adult V2a interneurons. However, in ∼30% of adult V2a interneurons, serotonin additionally elicited spontaneous intrinsic membrane potential bistability, resulting in alternations between hyperpolarized and depolarized states with a dramatically decreased membrane input resistance and facilitation of evoked plateau potentials. This was never seen in younger animals. Our findings indicate a significant postnatal development of the properties of locomotor-related V2a interneurons, which could alter their interpretation of synaptic inputs in the locomotor CPG.
In mice, most studies of the organization of the spinal central pattern generator (CPG) for locomotion, and its component neuron classes, have been performed on neonatal [postnatal day (P)2-P4] animals. While the neonatal spinal cord can generate a basic locomotor pattern, it is often argued that the CPG network is in an immature form whose detailed properties mature with postnatal development. Here, we compare intrinsic properties and serotonergic modulation of the V2a class of excitatory spinal interneurons in behaviorally mature (older than P43) mice to those in neonatal mice. Using perforated patch recordings from genetically tagged V2a interneurons, we revealed an age-dependent increase in excitability. The input resistance increased, the rheobase values decreased, and the relation between injected current and firing frequency (F/I plot) showed higher excitability in the adult neurons, with almost all neurons firing tonically during a current step. The adult action potential (AP) properties became narrower and taller, and the AP threshold hyperpolarized. While in neonates the AP afterhyperpolarization was monophasic, most adult V2a interneurons showed a biphasic afterhyperpolarization. Serotonin increased excitability and depolarized most neonatal and adult V2a interneurons. However, in similar to 30% of adult V2a interneurons, serotonin additionally elicited spontaneous intrinsic membrane potential bistability, resulting in alternations between hyperpolarized and depolarized states with a dramatically decreased membrane input resistance and facilitation of evoked plateau potentials. This was never seen in younger animals. Our findings indicate a significant postnatal development of the properties of locomotor-related V2a interneurons, which could alter their interpretation of synaptic inputs in the locomotor CPG.
Author Hong, Diana N
Dietz, Shelby B
Harris-Warrick, Ronald M
Husch, Andreas
Author_xml – sequence: 1
  givenname: Andreas
  surname: Husch
  fullname: Husch, Andreas
  organization: Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
– sequence: 2
  givenname: Shelby B
  surname: Dietz
  fullname: Dietz, Shelby B
  organization: Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
– sequence: 3
  givenname: Diana N
  surname: Hong
  fullname: Hong, Diana N
  organization: Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
– sequence: 4
  givenname: Ronald M
  surname: Harris-Warrick
  fullname: Harris-Warrick, Ronald M
  email: ron.harris-warrick@cornell.edu
  organization: Department of Neurobiology and Behavior, Cornell University, Ithaca, New York ron.harris-warrick@cornell.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25520435$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS1URLeFI1eUI5cs4684viBVFdBKlbgAN2RNnAn1KmsvdgL0v8elH4ITpxnN_PTmjd4JO4opEmMvOWw51-LNLm4BjOJbAVw9YZs6Ey3Xtj9iG4DaSzDmmJ2UsoMKahDP2LHQWoCSesO-no3rvDTlECLOzReBTYgL5UhrTrE05Tr9rBOfCQuNDf3yYcEhzGG5aTCOTaGclhRDbEc6UBwpLs0QygPznD2dcC704r6ess_v3306v2ivPn64PD-7ar2UWrWIwKdeTHIQZvBoDU44UCfAyI6Pk9ZeWKttR2aYJgNcdspYL9HyHvtOojxlb-90D-uwp9FXGxlnd8hhj_nGJQzu300M1-5b-uGUFFZJWwVe3wvk9H2lsrh9KJ7mGSOltTjeQz2kegn_RzutjQSl-4q2d6jPqZRM06MjDu42PbeL7k967ja9yr_6-41H-iEu-RuwbpkO
CitedBy_id crossref_primary_10_1113_JP272271
crossref_primary_10_1016_j_bbr_2016_01_006
crossref_primary_10_1113_JP274484
crossref_primary_10_3389_fncel_2018_00506
crossref_primary_10_7554_eLife_42519
crossref_primary_10_1038_s41598_020_73230_w
crossref_primary_10_1038_nprot_2017_001
crossref_primary_10_1515_revneuro_2017_0102
crossref_primary_10_1016_j_cophys_2018_12_012
crossref_primary_10_3389_fncir_2022_957084
crossref_primary_10_3389_fneur_2016_00088
crossref_primary_10_3389_fncir_2023_1200902
crossref_primary_10_1152_japplphysiol_00110_2019
crossref_primary_10_1016_j_pneurobio_2017_10_004
crossref_primary_10_1152_jn_00322_2017
crossref_primary_10_1152_jn_00575_2017
crossref_primary_10_3389_fnint_2019_00075
crossref_primary_10_1016_j_expneurol_2023_114589
crossref_primary_10_3389_fncir_2022_839521
crossref_primary_10_1016_j_neuroscience_2017_08_031
crossref_primary_10_1016_j_cub_2022_06_059
crossref_primary_10_3389_fncir_2020_590299
crossref_primary_10_1016_j_celrep_2022_110654
Cites_doi 10.1111/j.1460-9568.2006.04917.x
10.1016/0006-8993(89)90615-X
10.1523/JNEUROSCI.1410-06.2006
10.1523/JNEUROSCI.5796-10.2011
10.1146/annurev.neuro.29.051605.112910
10.1016/S0959-4388(02)00377-X
10.1007/s00424-009-0648-0
10.3389/fncel.2012.00039
10.1038/nrn1137
10.1016/j.neuron.2014.07.018
10.1152/jn.91239.2008
10.1152/jn.00430.2007
10.1152/jn.01110.2009
10.1016/S0361-9230(00)00402-0
10.1523/JNEUROSCI.0124-07.2007
10.1016/0304-3940(90)90354-C
10.1113/jphysiol.1910.sp001362
10.1523/JNEUROSCI.4821-09.2010
10.1523/JNEUROSCI.1483-13.2013
10.1016/j.conb.2010.09.004
10.1016/S0165-0173(98)00024-1
10.1073/pnas.73.5.1641
10.1016/j.cub.2013.03.066
10.1523/JNEUROSCI.4849-09.2010
10.1016/S0896-6273(04)00249-1
10.1002/(SICI)1096-9861(19980928)399:3<289::AID-CNE1>3.0.CO;2-X
10.1111/j.1460-9568.2007.05906.x
10.1038/nature04545
10.1111/j.1749-6632.2012.06801.x
10.1152/jn.00768.2011
10.1152/jn.1956.19.1.75
10.1016/S0301-0082(99)00065-9
10.1016/j.jneumeth.2006.06.006
10.1152/jn.01103.2005
10.1152/jn.1998.80.6.3047
10.1523/JNEUROSCI.2995-12.2012
10.1016/0165-0270(91)90017-T
10.1016/0304-3940(87)90072-3
10.1111/j.1460-9568.2005.03971.x
10.1038/nn.2225
10.1523/JNEUROSCI.4087-13.2014
10.1152/jn.00059.2008
10.1016/j.conb.2005.01.017
10.1111/j.1460-9568.2007.05907.x
10.1016/j.cub.2011.05.029
10.1113/jphysiol.1914.sp001646
10.1113/jphysiol.2011.224931
10.1073/pnas.1216256110
10.1016/S0960-9822(01)00581-4
10.1016/j.brainresrev.2009.08.002
10.1152/jn.00336.2012
10.1038/nature13021
10.1038/nrn2608
10.1016/j.brainresrev.2007.06.018
10.1152/jn.00673.2011
10.1111/j.1749-6632.2010.05539.x
10.1046/j.1460-9568.1999.00765.x
10.1523/JNEUROSCI.1206-09.2009
10.1016/j.neuron.2008.08.009
10.1113/jphysiol.2012.240895
10.1038/ncomms1276
10.1016/j.neuron.2012.05.011
10.1152/jn.01181.2003
10.1038/nature12286
10.1016/0896-6273(94)90354-9
10.1016/B978-0-444-53613-6.00002-2
10.1016/S0165-3806(02)00414-5
10.1152/jn.1998.79.5.2804
10.1002/jnr.490220311
ContentType Journal Article
Copyright Copyright © 2015 the American Physiological Society.
Copyright © 2015 the American Physiological Society 2015 American Physiological Society
Copyright_xml – notice: Copyright © 2015 the American Physiological Society.
– notice: Copyright © 2015 the American Physiological Society 2015 American Physiological Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7TK
5PM
DOI 10.1152/jn.00741.2014
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList
MEDLINE
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
EndPage 1134
ExternalDocumentID 10_1152_jn_00741_2014
25520435
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS017323
– fundername: NINDS NIH HHS
  grantid: NS-17323
– fundername: NINDS NIH HHS
  grantid: NS-057599
– fundername: Deutsche Forschungsgemeinschaft
  grantid: HU-1963-1/1
– fundername: HHS | National Institutes of Health (NIH)
  grantid: NS057599; NS17323
GroupedDBID ---
-DZ
-~X
.55
18M
29L
2WC
39C
4.4
476
53G
5GY
5VS
ABCQX
ABIVO
ABJNI
ABKWE
ACGFO
ACGFS
ACNCT
ADBBV
ADFNX
ADIYS
AENEX
AFFNX
AFOSN
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
EMOBN
F5P
FRP
GX1
H13
H~9
ITBOX
KQ8
L7B
NPM
OK1
P2P
RAP
RHF
RHI
RPL
RPRKH
SJN
TR2
UHB
UPT
W8F
WH7
WOQ
WOW
X7M
XSW
YBH
YQT
YSK
AAYXX
CITATION
7X8
7TK
5PM
AETEA
ID FETCH-LOGICAL-c3354-aa01f82f3b27bca97afabe6207361df55c299596e7bff70136479c3a918a863a3
ISSN 0022-3077
IngestDate Tue Sep 17 21:03:19 EDT 2024
Fri Oct 25 06:49:28 EDT 2024
Fri Oct 25 21:58:07 EDT 2024
Thu Sep 26 15:46:10 EDT 2024
Sat Sep 28 07:56:23 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords neuromodulation
maturation
spinal cord
locomotion
Language English
License Copyright © 2015 the American Physiological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3354-aa01f82f3b27bca97afabe6207361df55c299596e7bff70136479c3a918a863a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://europepmc.org/articles/pmc4329439
PMID 25520435
PQID 1655730458
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4329439
proquest_miscellaneous_1808634830
proquest_miscellaneous_1655730458
crossref_primary_10_1152_jn_00741_2014
pubmed_primary_25520435
PublicationCentury 2000
PublicationDate 2015-Feb-15
PublicationDateYYYYMMDD 2015-02-15
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-Feb-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda, MD
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2015
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References 12838332 - Nat Rev Neurosci. 2003 Jul;4(7):573-86
22726829 - Neuron. 2012 Jun 21;74(6):975-89
21900514 - J Neurophysiol. 2011 Nov;106(5):2783-9
17460064 - J Neurosci. 2007 Apr 25;27(17):4507-18
21505430 - Nat Commun. 2011;2:274
21741590 - Curr Biol. 2011 Jul 12;21(13):R513-24
22832564 - J Neurophysiol. 2012 Oct;108(8):2191-202
9862905 - J Neurophysiol. 1998 Dec;80(6):3047-61
16993027 - J Physiol. 1910 Apr 26;40(1-2):28-121
18028107 - Eur J Neurosci. 2007 Dec;26(11):2989-3002
1064036 - Proc Natl Acad Sci U S A. 1976 May;73(5):1641-5
12490254 - Curr Opin Neurobiol. 2002 Dec;12(6):646-51
16525473 - Nature. 2006 Mar 9;440(7081):215-9
10564356 - Eur J Neurosci. 1999 Oct;11(10):3481-7
2709447 - J Neurosci Res. 1989 Mar;22(3):305-21
16836640 - Eur J Neurosci. 2006 Jul;24(2):535-46
7914735 - Neuron. 1994 Aug;13(2):377-93
16993247 - J Physiol. 1914 Mar 31;48(1):18-46
20393059 - J Neurophysiol. 2010 Jul;104(1):366-81
15813943 - Eur J Neurosci. 2005 Mar;21(5):1338-46
19543221 - Nat Rev Neurosci. 2009 Jul;10(7):507-18
3554010 - Neurosci Lett. 1987 Mar 20;75(1):43-8
12128257 - Brain Res Dev Brain Res. 2002 Jul 30;137(1):81-8
19234716 - Pflugers Arch. 2009 Jul;458(3):589-99
22993431 - J Neurosci. 2012 Sep 19;32(38):13145-54
23060747 - Front Cell Neurosci. 2012 Sep 28;6:39
9582246 - J Neurophysiol. 1998 May;79(5):2804-8
11165804 - Brain Res Bull. 2000 Nov 15;53(5):689-710
2819461 - Brain Res. 1989 Nov 20;502(2):205-13
20053884 - J Neurosci. 2010 Jan 6;30(1):24-37
16842860 - J Neurosci Methods. 2006 Dec 15;158(2):251-9
23623549 - Curr Biol. 2013 May 20;23(10):843-9
18940589 - Neuron. 2008 Oct 9;60(1):70-83
19474336 - J Neurosci. 2009 May 27;29(21):7098-109
20053899 - J Neurosci. 2010 Jan 6;30(1):170-82
16775138 - J Neurosci. 2006 Jun 14;26(24):6509-17
20536924 - Ann N Y Acad Sci. 2010 Jun;1198:94-104
18028108 - Eur J Neurosci. 2007 Dec;26(11):3003-15
20889331 - Curr Opin Neurobiol. 2011 Feb;21(1):100-9
23812590 - Nature. 2013 Aug 1;500(7460):85-8
19458153 - J Neurophysiol. 2009 Jul;102(1):337-48
9795120 - Brain Res Brain Res Rev. 1998 Nov;28(1-2):35-43
18997790 - Nat Neurosci. 2008 Dec;11(12):1419-29
15163678 - J Neurophysiol. 2004 Sep;92(3):1566-76
2072734 - J Neurosci Methods. 1991 Mar;37(1):15-26
22351637 - J Physiol. 2012 Apr 1;590(7):1721-36
17825423 - Brain Res Rev. 2008 Jan;57(1):86-93
15721739 - Curr Opin Neurobiol. 2005 Feb;15(1):14-20
24487617 - Nature. 2014 Apr 17;508(7496):357-63
21697376 - J Neurosci. 2011 Jun 22;31(25):9264-78
2186309 - Neurosci Lett. 1990 Mar 26;111(1-2):116-21
25123308 - Neuron. 2014 Aug 20;83(4):934-43
24381274 - J Neurosci. 2014 Jan 1;34(1):134-9
13286723 - J Neurophysiol. 1956 Jan;19(1):75-98
23531000 - Ann N Y Acad Sci. 2013 Mar;1279:32-42
9733079 - J Comp Neurol. 1998 Sep 28;399(3):289-305
22869012 - J Physiol. 2012 Oct 1;590(19):4735-59
11728329 - Curr Biol. 2001 Nov 27;11(23):R986-96
23236181 - Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):E3631-9
17581844 - J Neurophysiol. 2007 Oct;98(4):2157-67
21111198 - Prog Brain Res. 2010;187:19-37
22279189 - J Neurophysiol. 2012 Apr;107(8):2212-9
24068829 - J Neurosci. 2013 Sep 25;33(39):15626-41
10775796 - Prog Neurobiol. 2000 Aug;61(6):543-55
16776587 - Annu Rev Neurosci. 2006;29:279-306
19720083 - Brain Res Rev. 2009 Dec 11;62(1):45-56
16338993 - J Neurophysiol. 2006 Mar;95(3):1545-55
18400961 - J Neurophysiol. 2008 Jun;99(6):2864-76
15134635 - Neuron. 2004 May 13;42(3):375-86
B20
B64
B21
B65
B22
B66
B23
B67
B24
B68
B25
B69
B26
B27
B28
B29
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
B50
B51
B53
B10
B54
B11
B55
B12
B13a
B56
B13
B57
B14
Neter J (B52) 1996
B58
B15
B59
B16
B17
B18
B19
B60
B61
B62
B63
References_xml – ident: B40
  doi: 10.1111/j.1460-9568.2006.04917.x
– ident: B62
  doi: 10.1016/0006-8993(89)90615-X
– ident: B64
  doi: 10.1523/JNEUROSCI.1410-06.2006
– ident: B51
  doi: 10.1523/JNEUROSCI.5796-10.2011
– ident: B36
  doi: 10.1146/annurev.neuro.29.051605.112910
– ident: B31
  doi: 10.1016/S0959-4388(02)00377-X
– ident: B39
  doi: 10.1007/s00424-009-0648-0
– ident: B18
  doi: 10.3389/fncel.2012.00039
– ident: B28
  doi: 10.1038/nrn1137
– ident: B4
  doi: 10.1016/j.neuron.2014.07.018
– ident: B43
  doi: 10.1152/jn.91239.2008
– ident: B17
  doi: 10.1152/jn.00430.2007
– ident: B16
  doi: 10.1152/jn.01110.2009
– ident: B56
  doi: 10.1016/S0361-9230(00)00402-0
– ident: B66
  doi: 10.1523/JNEUROSCI.0124-07.2007
– ident: B13
  doi: 10.1016/0304-3940(90)90354-C
– ident: B57
  doi: 10.1113/jphysiol.1910.sp001362
– ident: B19
  doi: 10.1523/JNEUROSCI.4821-09.2010
– ident: B9
  doi: 10.1523/JNEUROSCI.1483-13.2013
– ident: B35
  doi: 10.1016/j.conb.2010.09.004
– ident: B13a
  doi: 10.1016/S0165-0173(98)00024-1
– ident: B59
  doi: 10.1073/pnas.73.5.1641
– ident: B37
  doi: 10.1016/j.cub.2013.03.066
– ident: B65
  doi: 10.1523/JNEUROSCI.4849-09.2010
– ident: B41
  doi: 10.1016/S0896-6273(04)00249-1
– ident: B21
  doi: 10.1002/(SICI)1096-9861(19980928)399:3<289::AID-CNE1>3.0.CO;2-X
– ident: B46
  doi: 10.1111/j.1460-9568.2007.05906.x
– ident: B25
  doi: 10.1038/nature04545
– ident: B61
  doi: 10.1111/j.1749-6632.2012.06801.x
– volume-title: Applied Linear Regression Models
  year: 1996
  ident: B52
  contributor:
    fullname: Neter J
– ident: B1
  doi: 10.1152/jn.00768.2011
– ident: B20
  doi: 10.1152/jn.1956.19.1.75
– ident: B45
  doi: 10.1016/S0301-0082(99)00065-9
– ident: B63
  doi: 10.1016/j.jneumeth.2006.06.006
– ident: B69
  doi: 10.1152/jn.01103.2005
– ident: B24
  doi: 10.1152/jn.1998.80.6.3047
– ident: B33
  doi: 10.1523/JNEUROSCI.2995-12.2012
– ident: B54
  doi: 10.1016/0165-0270(91)90017-T
– ident: B38
  doi: 10.1016/0304-3940(87)90072-3
– ident: B53
  doi: 10.1111/j.1460-9568.2005.03971.x
– ident: B50
  doi: 10.1038/nn.2225
– ident: B44
  doi: 10.1523/JNEUROSCI.4087-13.2014
– ident: B12
  doi: 10.1152/jn.00059.2008
– ident: B27
  doi: 10.1016/j.conb.2005.01.017
– ident: B3
  doi: 10.1111/j.1460-9568.2007.05907.x
– ident: B11
  doi: 10.1016/j.cub.2011.05.029
– ident: B10
  doi: 10.1113/jphysiol.1914.sp001646
– ident: B58
  doi: 10.1113/jphysiol.2011.224931
– ident: B6
  doi: 10.1073/pnas.1216256110
– ident: B49
  doi: 10.1016/S0960-9822(01)00581-4
– ident: B30
  doi: 10.1016/j.brainresrev.2009.08.002
– ident: B2
  doi: 10.1152/jn.00336.2012
– ident: B7
  doi: 10.1038/nature13021
– ident: B26
  doi: 10.1038/nrn2608
– ident: B22
  doi: 10.1016/j.brainresrev.2007.06.018
– ident: B32
  doi: 10.1152/jn.00673.2011
– ident: B23
  doi: 10.1111/j.1749-6632.2010.05539.x
– ident: B34
  doi: 10.1046/j.1460-9568.1999.00765.x
– ident: B15
  doi: 10.1523/JNEUROSCI.1206-09.2009
– ident: B14
  doi: 10.1016/j.neuron.2008.08.009
– ident: B68
  doi: 10.1113/jphysiol.2012.240895
– ident: B67
  doi: 10.1038/ncomms1276
– ident: B5
  doi: 10.1016/j.neuron.2012.05.011
– ident: B48
  doi: 10.1152/jn.01181.2003
– ident: B60
  doi: 10.1038/nature12286
– ident: B42
  doi: 10.1016/0896-6273(94)90354-9
– ident: B29
  doi: 10.1016/B978-0-444-53613-6.00002-2
– ident: B8
  doi: 10.1016/S0165-3806(02)00414-5
– ident: B47
  doi: 10.1152/jn.1998.79.5.2804
– ident: B55
  doi: 10.1002/jnr.490220311
SSID ssj0007502
Score 2.3327298
Snippet In mice, most studies of the organization of the spinal central pattern generator (CPG) for locomotion, and its component neuron classes, have been performed...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 1124
SubjectTerms Action Potentials
Animals
Interneurons - drug effects
Interneurons - physiology
Mice
Neural Circuits
Serotonergic Neurons - drug effects
Serotonergic Neurons - physiology
Serotonin - pharmacology
Spinal Cord - cytology
Spinal Cord - growth & development
Spinal Cord - physiology
Title Adult spinal V2a interneurons show increased excitability and serotonin-dependent bistability
URI https://www.ncbi.nlm.nih.gov/pubmed/25520435
https://search.proquest.com/docview/1655730458
https://search.proquest.com/docview/1808634830
https://pubmed.ncbi.nlm.nih.gov/PMC4329439
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZguXBBwPIoLxkJ7aVKaf2Ik2MFu4pgWV4t7AVFtuOoXUGyalLx-PWM7SRNoaCFS1q5lhN5vk4-ezzfIPSEaiUACVkQ5aEOWJiJQOY8DKI4p9GYxIZJmyj86iRM5uzFKe8F2l12Sa1G-sfOvJL_sSq0gV1tluw_WLYbFBrgO9gXrmBhuF7IxlMrnjGszl1lqw9EOvGHlZOoLKphtSi_QoulhRXQSvNNL2uvyu01l-ARy9ruxgZtJdx6qCyd9H3-QFvd6G4_ZGtDPllXvqiUOyEpN-Xql8ZVjB2-X5jPQHW7CE_SnAV-DviUm4BQIlfgdoKP9sN76ndu97rZtW32JyYu39tnaI5M41OJbfHFpjun6zNQG3SxngsFAsh6r2PoyHa7em6lY8-KkWNF9pAe27zT2jj-yev0aH58nM4OT2eX0RUC3si6wZdvN5LyQJlIK77KydOtAbfJym8rkF8P0vaYyew6utbYBk89Pm6gS6a4ifanhazLL9_xAX7TGWsffXKQwR4yGCCD-5DBFjK4gwzuQwYDZPAOyOAeZG6h-dHh7FkSNBU2Ak0pZ4GU40kekZwqIpSWsZC5VCYk4PfDSZZzronVowuNUHkurLwfE7GmMp5EMgqppLfRXlEW5i7CKpKhGUdSZDpjmRKSK0JiNc4yzXIp9AAdtFOZnnshldQtQDlJz4rUzXlq53yAHrcTnYKrs_ErWZhyXaWTkHPhIvt_6RPBGp2yiI4H6I43Tnc7WD3bTHA-QGLLbF0HK7W-_UuxXDjJdUZJDNT93gWe7T66uvkbPEB79WptHgJxrdUjB7yftDKixQ
link.rule.ids 230,315,783,787,888,27936,27937
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adult+spinal+V2a+interneurons+show+increased+excitability+and+serotonin-dependent+bistability&rft.jtitle=Journal+of+neurophysiology&rft.au=Husch%2C+Andreas&rft.au=Dietz%2C+Shelby+B&rft.au=Hong%2C+Diana+N&rft.au=Harris-Warrick%2C+Ronald+M&rft.date=2015-02-15&rft.eissn=1522-1598&rft.volume=113&rft.issue=4&rft.spage=1124&rft.epage=1134&rft_id=info:doi/10.1152%2Fjn.00741.2014&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon