Adult spinal V2a interneurons show increased excitability and serotonin-dependent bistability
In mice, most studies of the organization of the spinal central pattern generator (CPG) for locomotion, and its component neuron classes, have been performed on neonatal [postnatal day (P)2-P4] animals. While the neonatal spinal cord can generate a basic locomotor pattern, it is often argued that th...
Saved in:
Published in | Journal of neurophysiology Vol. 113; no. 4; pp. 1124 - 1134 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
15.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In mice, most studies of the organization of the spinal central pattern generator (CPG) for locomotion, and its component neuron classes, have been performed on neonatal [postnatal day (P)2-P4] animals. While the neonatal spinal cord can generate a basic locomotor pattern, it is often argued that the CPG network is in an immature form whose detailed properties mature with postnatal development. Here, we compare intrinsic properties and serotonergic modulation of the V2a class of excitatory spinal interneurons in behaviorally mature (older than P43) mice to those in neonatal mice. Using perforated patch recordings from genetically tagged V2a interneurons, we revealed an age-dependent increase in excitability. The input resistance increased, the rheobase values decreased, and the relation between injected current and firing frequency (F/I plot) showed higher excitability in the adult neurons, with almost all neurons firing tonically during a current step. The adult action potential (AP) properties became narrower and taller, and the AP threshold hyperpolarized. While in neonates the AP afterhyperpolarization was monophasic, most adult V2a interneurons showed a biphasic afterhyperpolarization. Serotonin increased excitability and depolarized most neonatal and adult V2a interneurons. However, in ∼30% of adult V2a interneurons, serotonin additionally elicited spontaneous intrinsic membrane potential bistability, resulting in alternations between hyperpolarized and depolarized states with a dramatically decreased membrane input resistance and facilitation of evoked plateau potentials. This was never seen in younger animals. Our findings indicate a significant postnatal development of the properties of locomotor-related V2a interneurons, which could alter their interpretation of synaptic inputs in the locomotor CPG. |
---|---|
AbstractList | In mice, most studies of the organization of the spinal central pattern generator (CPG) for locomotion, and its component neuron classes, have been performed on neonatal [postnatal day (P)2-P4] animals. While the neonatal spinal cord can generate a basic locomotor pattern, it is often argued that the CPG network is in an immature form whose detailed properties mature with postnatal development. Here, we compare intrinsic properties and serotonergic modulation of the V2a class of excitatory spinal interneurons in behaviorally mature (older than P43) mice to those in neonatal mice. Using perforated patch recordings from genetically tagged V2a interneurons, we revealed an age-dependent increase in excitability. The input resistance increased, the rheobase values decreased, and the relation between injected current and firing frequency (
F
/
I
plot) showed higher excitability in the adult neurons, with almost all neurons firing tonically during a current step. The adult action potential (AP) properties became narrower and taller, and the AP threshold hyperpolarized. While in neonates the AP afterhyperpolarization was monophasic, most adult V2a interneurons showed a biphasic afterhyperpolarization. Serotonin increased excitability and depolarized most neonatal and adult V2a interneurons. However, in ∼30% of adult V2a interneurons, serotonin additionally elicited spontaneous intrinsic membrane potential bistability, resulting in alternations between hyperpolarized and depolarized states with a dramatically decreased membrane input resistance and facilitation of evoked plateau potentials. This was never seen in younger animals. Our findings indicate a significant postnatal development of the properties of locomotor-related V2a interneurons, which could alter their interpretation of synaptic inputs in the locomotor CPG. In mice, most studies of the organization of the spinal central pattern generator (CPG) for locomotion, and its component neuron classes, have been performed on neonatal [postnatal day (P)2-P4] animals. While the neonatal spinal cord can generate a basic locomotor pattern, it is often argued that the CPG network is in an immature form whose detailed properties mature with postnatal development. Here, we compare intrinsic properties and serotonergic modulation of the V2a class of excitatory spinal interneurons in behaviorally mature (older than P43) mice to those in neonatal mice. Using perforated patch recordings from genetically tagged V2a interneurons, we revealed an age-dependent increase in excitability. The input resistance increased, the rheobase values decreased, and the relation between injected current and firing frequency (F/I plot) showed higher excitability in the adult neurons, with almost all neurons firing tonically during a current step. The adult action potential (AP) properties became narrower and taller, and the AP threshold hyperpolarized. While in neonates the AP afterhyperpolarization was monophasic, most adult V2a interneurons showed a biphasic afterhyperpolarization. Serotonin increased excitability and depolarized most neonatal and adult V2a interneurons. However, in ∼30% of adult V2a interneurons, serotonin additionally elicited spontaneous intrinsic membrane potential bistability, resulting in alternations between hyperpolarized and depolarized states with a dramatically decreased membrane input resistance and facilitation of evoked plateau potentials. This was never seen in younger animals. Our findings indicate a significant postnatal development of the properties of locomotor-related V2a interneurons, which could alter their interpretation of synaptic inputs in the locomotor CPG. In mice, most studies of the organization of the spinal central pattern generator (CPG) for locomotion, and its component neuron classes, have been performed on neonatal [postnatal day (P)2-P4] animals. While the neonatal spinal cord can generate a basic locomotor pattern, it is often argued that the CPG network is in an immature form whose detailed properties mature with postnatal development. Here, we compare intrinsic properties and serotonergic modulation of the V2a class of excitatory spinal interneurons in behaviorally mature (older than P43) mice to those in neonatal mice. Using perforated patch recordings from genetically tagged V2a interneurons, we revealed an age-dependent increase in excitability. The input resistance increased, the rheobase values decreased, and the relation between injected current and firing frequency (F/I plot) showed higher excitability in the adult neurons, with almost all neurons firing tonically during a current step. The adult action potential (AP) properties became narrower and taller, and the AP threshold hyperpolarized. While in neonates the AP afterhyperpolarization was monophasic, most adult V2a interneurons showed a biphasic afterhyperpolarization. Serotonin increased excitability and depolarized most neonatal and adult V2a interneurons. However, in similar to 30% of adult V2a interneurons, serotonin additionally elicited spontaneous intrinsic membrane potential bistability, resulting in alternations between hyperpolarized and depolarized states with a dramatically decreased membrane input resistance and facilitation of evoked plateau potentials. This was never seen in younger animals. Our findings indicate a significant postnatal development of the properties of locomotor-related V2a interneurons, which could alter their interpretation of synaptic inputs in the locomotor CPG. |
Author | Hong, Diana N Dietz, Shelby B Harris-Warrick, Ronald M Husch, Andreas |
Author_xml | – sequence: 1 givenname: Andreas surname: Husch fullname: Husch, Andreas organization: Department of Neurobiology and Behavior, Cornell University, Ithaca, New York – sequence: 2 givenname: Shelby B surname: Dietz fullname: Dietz, Shelby B organization: Department of Neurobiology and Behavior, Cornell University, Ithaca, New York – sequence: 3 givenname: Diana N surname: Hong fullname: Hong, Diana N organization: Department of Neurobiology and Behavior, Cornell University, Ithaca, New York – sequence: 4 givenname: Ronald M surname: Harris-Warrick fullname: Harris-Warrick, Ronald M email: ron.harris-warrick@cornell.edu organization: Department of Neurobiology and Behavior, Cornell University, Ithaca, New York ron.harris-warrick@cornell.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25520435$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS1URLeFI1eUI5cs4684viBVFdBKlbgAN2RNnAn1KmsvdgL0v8elH4ITpxnN_PTmjd4JO4opEmMvOWw51-LNLm4BjOJbAVw9YZs6Ey3Xtj9iG4DaSzDmmJ2UsoMKahDP2LHQWoCSesO-no3rvDTlECLOzReBTYgL5UhrTrE05Tr9rBOfCQuNDf3yYcEhzGG5aTCOTaGclhRDbEc6UBwpLs0QygPznD2dcC704r6ess_v3306v2ivPn64PD-7ar2UWrWIwKdeTHIQZvBoDU44UCfAyI6Pk9ZeWKttR2aYJgNcdspYL9HyHvtOojxlb-90D-uwp9FXGxlnd8hhj_nGJQzu300M1-5b-uGUFFZJWwVe3wvk9H2lsrh9KJ7mGSOltTjeQz2kegn_RzutjQSl-4q2d6jPqZRM06MjDu42PbeL7k967ja9yr_6-41H-iEu-RuwbpkO |
CitedBy_id | crossref_primary_10_1113_JP272271 crossref_primary_10_1016_j_bbr_2016_01_006 crossref_primary_10_1113_JP274484 crossref_primary_10_3389_fncel_2018_00506 crossref_primary_10_7554_eLife_42519 crossref_primary_10_1038_s41598_020_73230_w crossref_primary_10_1038_nprot_2017_001 crossref_primary_10_1515_revneuro_2017_0102 crossref_primary_10_1016_j_cophys_2018_12_012 crossref_primary_10_3389_fncir_2022_957084 crossref_primary_10_3389_fneur_2016_00088 crossref_primary_10_3389_fncir_2023_1200902 crossref_primary_10_1152_japplphysiol_00110_2019 crossref_primary_10_1016_j_pneurobio_2017_10_004 crossref_primary_10_1152_jn_00322_2017 crossref_primary_10_1152_jn_00575_2017 crossref_primary_10_3389_fnint_2019_00075 crossref_primary_10_1016_j_expneurol_2023_114589 crossref_primary_10_3389_fncir_2022_839521 crossref_primary_10_1016_j_neuroscience_2017_08_031 crossref_primary_10_1016_j_cub_2022_06_059 crossref_primary_10_3389_fncir_2020_590299 crossref_primary_10_1016_j_celrep_2022_110654 |
Cites_doi | 10.1111/j.1460-9568.2006.04917.x 10.1016/0006-8993(89)90615-X 10.1523/JNEUROSCI.1410-06.2006 10.1523/JNEUROSCI.5796-10.2011 10.1146/annurev.neuro.29.051605.112910 10.1016/S0959-4388(02)00377-X 10.1007/s00424-009-0648-0 10.3389/fncel.2012.00039 10.1038/nrn1137 10.1016/j.neuron.2014.07.018 10.1152/jn.91239.2008 10.1152/jn.00430.2007 10.1152/jn.01110.2009 10.1016/S0361-9230(00)00402-0 10.1523/JNEUROSCI.0124-07.2007 10.1016/0304-3940(90)90354-C 10.1113/jphysiol.1910.sp001362 10.1523/JNEUROSCI.4821-09.2010 10.1523/JNEUROSCI.1483-13.2013 10.1016/j.conb.2010.09.004 10.1016/S0165-0173(98)00024-1 10.1073/pnas.73.5.1641 10.1016/j.cub.2013.03.066 10.1523/JNEUROSCI.4849-09.2010 10.1016/S0896-6273(04)00249-1 10.1002/(SICI)1096-9861(19980928)399:3<289::AID-CNE1>3.0.CO;2-X 10.1111/j.1460-9568.2007.05906.x 10.1038/nature04545 10.1111/j.1749-6632.2012.06801.x 10.1152/jn.00768.2011 10.1152/jn.1956.19.1.75 10.1016/S0301-0082(99)00065-9 10.1016/j.jneumeth.2006.06.006 10.1152/jn.01103.2005 10.1152/jn.1998.80.6.3047 10.1523/JNEUROSCI.2995-12.2012 10.1016/0165-0270(91)90017-T 10.1016/0304-3940(87)90072-3 10.1111/j.1460-9568.2005.03971.x 10.1038/nn.2225 10.1523/JNEUROSCI.4087-13.2014 10.1152/jn.00059.2008 10.1016/j.conb.2005.01.017 10.1111/j.1460-9568.2007.05907.x 10.1016/j.cub.2011.05.029 10.1113/jphysiol.1914.sp001646 10.1113/jphysiol.2011.224931 10.1073/pnas.1216256110 10.1016/S0960-9822(01)00581-4 10.1016/j.brainresrev.2009.08.002 10.1152/jn.00336.2012 10.1038/nature13021 10.1038/nrn2608 10.1016/j.brainresrev.2007.06.018 10.1152/jn.00673.2011 10.1111/j.1749-6632.2010.05539.x 10.1046/j.1460-9568.1999.00765.x 10.1523/JNEUROSCI.1206-09.2009 10.1016/j.neuron.2008.08.009 10.1113/jphysiol.2012.240895 10.1038/ncomms1276 10.1016/j.neuron.2012.05.011 10.1152/jn.01181.2003 10.1038/nature12286 10.1016/0896-6273(94)90354-9 10.1016/B978-0-444-53613-6.00002-2 10.1016/S0165-3806(02)00414-5 10.1152/jn.1998.79.5.2804 10.1002/jnr.490220311 |
ContentType | Journal Article |
Copyright | Copyright © 2015 the American Physiological Society. Copyright © 2015 the American Physiological Society 2015 American Physiological Society |
Copyright_xml | – notice: Copyright © 2015 the American Physiological Society. – notice: Copyright © 2015 the American Physiological Society 2015 American Physiological Society |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7TK 5PM |
DOI | 10.1152/jn.00741.2014 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE CrossRef Neurosciences Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1522-1598 |
EndPage | 1134 |
ExternalDocumentID | 10_1152_jn_00741_2014 25520435 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS017323 – fundername: NINDS NIH HHS grantid: NS-17323 – fundername: NINDS NIH HHS grantid: NS-057599 – fundername: Deutsche Forschungsgemeinschaft grantid: HU-1963-1/1 – fundername: HHS | National Institutes of Health (NIH) grantid: NS057599; NS17323 |
GroupedDBID | --- -DZ -~X .55 18M 29L 2WC 39C 4.4 476 53G 5GY 5VS ABCQX ABIVO ABJNI ABKWE ACGFO ACGFS ACNCT ADBBV ADFNX ADIYS AENEX AFFNX AFOSN AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD EMOBN F5P FRP GX1 H13 H~9 ITBOX KQ8 L7B NPM OK1 P2P RAP RHF RHI RPL RPRKH SJN TR2 UHB UPT W8F WH7 WOQ WOW X7M XSW YBH YQT YSK AAYXX CITATION 7X8 7TK 5PM AETEA |
ID | FETCH-LOGICAL-c3354-aa01f82f3b27bca97afabe6207361df55c299596e7bff70136479c3a918a863a3 |
ISSN | 0022-3077 |
IngestDate | Tue Sep 17 21:03:19 EDT 2024 Fri Oct 25 06:49:28 EDT 2024 Fri Oct 25 21:58:07 EDT 2024 Thu Sep 26 15:46:10 EDT 2024 Sat Sep 28 07:56:23 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | neuromodulation maturation spinal cord locomotion |
Language | English |
License | Copyright © 2015 the American Physiological Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3354-aa01f82f3b27bca97afabe6207361df55c299596e7bff70136479c3a918a863a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://europepmc.org/articles/pmc4329439 |
PMID | 25520435 |
PQID | 1655730458 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4329439 proquest_miscellaneous_1808634830 proquest_miscellaneous_1655730458 crossref_primary_10_1152_jn_00741_2014 pubmed_primary_25520435 |
PublicationCentury | 2000 |
PublicationDate | 2015-Feb-15 |
PublicationDateYYYYMMDD | 2015-02-15 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-Feb-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda, MD |
PublicationTitle | Journal of neurophysiology |
PublicationTitleAlternate | J Neurophysiol |
PublicationYear | 2015 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | 12838332 - Nat Rev Neurosci. 2003 Jul;4(7):573-86 22726829 - Neuron. 2012 Jun 21;74(6):975-89 21900514 - J Neurophysiol. 2011 Nov;106(5):2783-9 17460064 - J Neurosci. 2007 Apr 25;27(17):4507-18 21505430 - Nat Commun. 2011;2:274 21741590 - Curr Biol. 2011 Jul 12;21(13):R513-24 22832564 - J Neurophysiol. 2012 Oct;108(8):2191-202 9862905 - J Neurophysiol. 1998 Dec;80(6):3047-61 16993027 - J Physiol. 1910 Apr 26;40(1-2):28-121 18028107 - Eur J Neurosci. 2007 Dec;26(11):2989-3002 1064036 - Proc Natl Acad Sci U S A. 1976 May;73(5):1641-5 12490254 - Curr Opin Neurobiol. 2002 Dec;12(6):646-51 16525473 - Nature. 2006 Mar 9;440(7081):215-9 10564356 - Eur J Neurosci. 1999 Oct;11(10):3481-7 2709447 - J Neurosci Res. 1989 Mar;22(3):305-21 16836640 - Eur J Neurosci. 2006 Jul;24(2):535-46 7914735 - Neuron. 1994 Aug;13(2):377-93 16993247 - J Physiol. 1914 Mar 31;48(1):18-46 20393059 - J Neurophysiol. 2010 Jul;104(1):366-81 15813943 - Eur J Neurosci. 2005 Mar;21(5):1338-46 19543221 - Nat Rev Neurosci. 2009 Jul;10(7):507-18 3554010 - Neurosci Lett. 1987 Mar 20;75(1):43-8 12128257 - Brain Res Dev Brain Res. 2002 Jul 30;137(1):81-8 19234716 - Pflugers Arch. 2009 Jul;458(3):589-99 22993431 - J Neurosci. 2012 Sep 19;32(38):13145-54 23060747 - Front Cell Neurosci. 2012 Sep 28;6:39 9582246 - J Neurophysiol. 1998 May;79(5):2804-8 11165804 - Brain Res Bull. 2000 Nov 15;53(5):689-710 2819461 - Brain Res. 1989 Nov 20;502(2):205-13 20053884 - J Neurosci. 2010 Jan 6;30(1):24-37 16842860 - J Neurosci Methods. 2006 Dec 15;158(2):251-9 23623549 - Curr Biol. 2013 May 20;23(10):843-9 18940589 - Neuron. 2008 Oct 9;60(1):70-83 19474336 - J Neurosci. 2009 May 27;29(21):7098-109 20053899 - J Neurosci. 2010 Jan 6;30(1):170-82 16775138 - J Neurosci. 2006 Jun 14;26(24):6509-17 20536924 - Ann N Y Acad Sci. 2010 Jun;1198:94-104 18028108 - Eur J Neurosci. 2007 Dec;26(11):3003-15 20889331 - Curr Opin Neurobiol. 2011 Feb;21(1):100-9 23812590 - Nature. 2013 Aug 1;500(7460):85-8 19458153 - J Neurophysiol. 2009 Jul;102(1):337-48 9795120 - Brain Res Brain Res Rev. 1998 Nov;28(1-2):35-43 18997790 - Nat Neurosci. 2008 Dec;11(12):1419-29 15163678 - J Neurophysiol. 2004 Sep;92(3):1566-76 2072734 - J Neurosci Methods. 1991 Mar;37(1):15-26 22351637 - J Physiol. 2012 Apr 1;590(7):1721-36 17825423 - Brain Res Rev. 2008 Jan;57(1):86-93 15721739 - Curr Opin Neurobiol. 2005 Feb;15(1):14-20 24487617 - Nature. 2014 Apr 17;508(7496):357-63 21697376 - J Neurosci. 2011 Jun 22;31(25):9264-78 2186309 - Neurosci Lett. 1990 Mar 26;111(1-2):116-21 25123308 - Neuron. 2014 Aug 20;83(4):934-43 24381274 - J Neurosci. 2014 Jan 1;34(1):134-9 13286723 - J Neurophysiol. 1956 Jan;19(1):75-98 23531000 - Ann N Y Acad Sci. 2013 Mar;1279:32-42 9733079 - J Comp Neurol. 1998 Sep 28;399(3):289-305 22869012 - J Physiol. 2012 Oct 1;590(19):4735-59 11728329 - Curr Biol. 2001 Nov 27;11(23):R986-96 23236181 - Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):E3631-9 17581844 - J Neurophysiol. 2007 Oct;98(4):2157-67 21111198 - Prog Brain Res. 2010;187:19-37 22279189 - J Neurophysiol. 2012 Apr;107(8):2212-9 24068829 - J Neurosci. 2013 Sep 25;33(39):15626-41 10775796 - Prog Neurobiol. 2000 Aug;61(6):543-55 16776587 - Annu Rev Neurosci. 2006;29:279-306 19720083 - Brain Res Rev. 2009 Dec 11;62(1):45-56 16338993 - J Neurophysiol. 2006 Mar;95(3):1545-55 18400961 - J Neurophysiol. 2008 Jun;99(6):2864-76 15134635 - Neuron. 2004 May 13;42(3):375-86 B20 B64 B21 B65 B22 B66 B23 B67 B24 B68 B25 B69 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B9 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50 B51 B53 B10 B54 B11 B55 B12 B13a B56 B13 B57 B14 Neter J (B52) 1996 B58 B15 B59 B16 B17 B18 B19 B60 B61 B62 B63 |
References_xml | – ident: B40 doi: 10.1111/j.1460-9568.2006.04917.x – ident: B62 doi: 10.1016/0006-8993(89)90615-X – ident: B64 doi: 10.1523/JNEUROSCI.1410-06.2006 – ident: B51 doi: 10.1523/JNEUROSCI.5796-10.2011 – ident: B36 doi: 10.1146/annurev.neuro.29.051605.112910 – ident: B31 doi: 10.1016/S0959-4388(02)00377-X – ident: B39 doi: 10.1007/s00424-009-0648-0 – ident: B18 doi: 10.3389/fncel.2012.00039 – ident: B28 doi: 10.1038/nrn1137 – ident: B4 doi: 10.1016/j.neuron.2014.07.018 – ident: B43 doi: 10.1152/jn.91239.2008 – ident: B17 doi: 10.1152/jn.00430.2007 – ident: B16 doi: 10.1152/jn.01110.2009 – ident: B56 doi: 10.1016/S0361-9230(00)00402-0 – ident: B66 doi: 10.1523/JNEUROSCI.0124-07.2007 – ident: B13 doi: 10.1016/0304-3940(90)90354-C – ident: B57 doi: 10.1113/jphysiol.1910.sp001362 – ident: B19 doi: 10.1523/JNEUROSCI.4821-09.2010 – ident: B9 doi: 10.1523/JNEUROSCI.1483-13.2013 – ident: B35 doi: 10.1016/j.conb.2010.09.004 – ident: B13a doi: 10.1016/S0165-0173(98)00024-1 – ident: B59 doi: 10.1073/pnas.73.5.1641 – ident: B37 doi: 10.1016/j.cub.2013.03.066 – ident: B65 doi: 10.1523/JNEUROSCI.4849-09.2010 – ident: B41 doi: 10.1016/S0896-6273(04)00249-1 – ident: B21 doi: 10.1002/(SICI)1096-9861(19980928)399:3<289::AID-CNE1>3.0.CO;2-X – ident: B46 doi: 10.1111/j.1460-9568.2007.05906.x – ident: B25 doi: 10.1038/nature04545 – ident: B61 doi: 10.1111/j.1749-6632.2012.06801.x – volume-title: Applied Linear Regression Models year: 1996 ident: B52 contributor: fullname: Neter J – ident: B1 doi: 10.1152/jn.00768.2011 – ident: B20 doi: 10.1152/jn.1956.19.1.75 – ident: B45 doi: 10.1016/S0301-0082(99)00065-9 – ident: B63 doi: 10.1016/j.jneumeth.2006.06.006 – ident: B69 doi: 10.1152/jn.01103.2005 – ident: B24 doi: 10.1152/jn.1998.80.6.3047 – ident: B33 doi: 10.1523/JNEUROSCI.2995-12.2012 – ident: B54 doi: 10.1016/0165-0270(91)90017-T – ident: B38 doi: 10.1016/0304-3940(87)90072-3 – ident: B53 doi: 10.1111/j.1460-9568.2005.03971.x – ident: B50 doi: 10.1038/nn.2225 – ident: B44 doi: 10.1523/JNEUROSCI.4087-13.2014 – ident: B12 doi: 10.1152/jn.00059.2008 – ident: B27 doi: 10.1016/j.conb.2005.01.017 – ident: B3 doi: 10.1111/j.1460-9568.2007.05907.x – ident: B11 doi: 10.1016/j.cub.2011.05.029 – ident: B10 doi: 10.1113/jphysiol.1914.sp001646 – ident: B58 doi: 10.1113/jphysiol.2011.224931 – ident: B6 doi: 10.1073/pnas.1216256110 – ident: B49 doi: 10.1016/S0960-9822(01)00581-4 – ident: B30 doi: 10.1016/j.brainresrev.2009.08.002 – ident: B2 doi: 10.1152/jn.00336.2012 – ident: B7 doi: 10.1038/nature13021 – ident: B26 doi: 10.1038/nrn2608 – ident: B22 doi: 10.1016/j.brainresrev.2007.06.018 – ident: B32 doi: 10.1152/jn.00673.2011 – ident: B23 doi: 10.1111/j.1749-6632.2010.05539.x – ident: B34 doi: 10.1046/j.1460-9568.1999.00765.x – ident: B15 doi: 10.1523/JNEUROSCI.1206-09.2009 – ident: B14 doi: 10.1016/j.neuron.2008.08.009 – ident: B68 doi: 10.1113/jphysiol.2012.240895 – ident: B67 doi: 10.1038/ncomms1276 – ident: B5 doi: 10.1016/j.neuron.2012.05.011 – ident: B48 doi: 10.1152/jn.01181.2003 – ident: B60 doi: 10.1038/nature12286 – ident: B42 doi: 10.1016/0896-6273(94)90354-9 – ident: B29 doi: 10.1016/B978-0-444-53613-6.00002-2 – ident: B8 doi: 10.1016/S0165-3806(02)00414-5 – ident: B47 doi: 10.1152/jn.1998.79.5.2804 – ident: B55 doi: 10.1002/jnr.490220311 |
SSID | ssj0007502 |
Score | 2.3327298 |
Snippet | In mice, most studies of the organization of the spinal central pattern generator (CPG) for locomotion, and its component neuron classes, have been performed... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 1124 |
SubjectTerms | Action Potentials Animals Interneurons - drug effects Interneurons - physiology Mice Neural Circuits Serotonergic Neurons - drug effects Serotonergic Neurons - physiology Serotonin - pharmacology Spinal Cord - cytology Spinal Cord - growth & development Spinal Cord - physiology |
Title | Adult spinal V2a interneurons show increased excitability and serotonin-dependent bistability |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25520435 https://search.proquest.com/docview/1655730458 https://search.proquest.com/docview/1808634830 https://pubmed.ncbi.nlm.nih.gov/PMC4329439 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZguXBBwPIoLxkJ7aVKaf2Ik2MFu4pgWV4t7AVFtuOoXUGyalLx-PWM7SRNoaCFS1q5lhN5vk4-ezzfIPSEaiUACVkQ5aEOWJiJQOY8DKI4p9GYxIZJmyj86iRM5uzFKe8F2l12Sa1G-sfOvJL_sSq0gV1tluw_WLYbFBrgO9gXrmBhuF7IxlMrnjGszl1lqw9EOvGHlZOoLKphtSi_QoulhRXQSvNNL2uvyu01l-ARy9ruxgZtJdx6qCyd9H3-QFvd6G4_ZGtDPllXvqiUOyEpN-Xql8ZVjB2-X5jPQHW7CE_SnAV-DviUm4BQIlfgdoKP9sN76ndu97rZtW32JyYu39tnaI5M41OJbfHFpjun6zNQG3SxngsFAsh6r2PoyHa7em6lY8-KkWNF9pAe27zT2jj-yev0aH58nM4OT2eX0RUC3si6wZdvN5LyQJlIK77KydOtAbfJym8rkF8P0vaYyew6utbYBk89Pm6gS6a4ifanhazLL9_xAX7TGWsffXKQwR4yGCCD-5DBFjK4gwzuQwYDZPAOyOAeZG6h-dHh7FkSNBU2Ak0pZ4GU40kekZwqIpSWsZC5VCYk4PfDSZZzronVowuNUHkurLwfE7GmMp5EMgqppLfRXlEW5i7CKpKhGUdSZDpjmRKSK0JiNc4yzXIp9AAdtFOZnnshldQtQDlJz4rUzXlq53yAHrcTnYKrs_ErWZhyXaWTkHPhIvt_6RPBGp2yiI4H6I43Tnc7WD3bTHA-QGLLbF0HK7W-_UuxXDjJdUZJDNT93gWe7T66uvkbPEB79WptHgJxrdUjB7yftDKixQ |
link.rule.ids | 230,315,783,787,888,27936,27937 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adult+spinal+V2a+interneurons+show+increased+excitability+and+serotonin-dependent+bistability&rft.jtitle=Journal+of+neurophysiology&rft.au=Husch%2C+Andreas&rft.au=Dietz%2C+Shelby+B&rft.au=Hong%2C+Diana+N&rft.au=Harris-Warrick%2C+Ronald+M&rft.date=2015-02-15&rft.eissn=1522-1598&rft.volume=113&rft.issue=4&rft.spage=1124&rft.epage=1134&rft_id=info:doi/10.1152%2Fjn.00741.2014&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon |