D’Alembert function for exact non-smooth modal analysis of the bar in unilateral contact

Non-smooth modal analysis is an extension of modal analysis to non-smooth systems, prone to unilateral contact conditions for instance. The problem of a one-dimensional bar subject to unilateral contact on its boundary has been previously investigated numerically and the corresponding spectrum of vi...

Full description

Saved in:
Bibliographic Details
Published inNonlinear analysis. Hybrid systems Vol. 43; p. 101115
Main Authors Urman, David, Legrand, Mathias, Junca, Stéphane
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2021
Elsevier
Subjects
Online AccessGet full text
ISSN1751-570X
DOI10.1016/j.nahs.2021.101115

Cover

Loading…
Abstract Non-smooth modal analysis is an extension of modal analysis to non-smooth systems, prone to unilateral contact conditions for instance. The problem of a one-dimensional bar subject to unilateral contact on its boundary has been previously investigated numerically and the corresponding spectrum of vibration could be partially explored. In the present work, the non-smooth modal analysis of the above system is reformulated as a set of functional equations through the use of both d’Alembert solution to the wave equation and the method of steps for Neutral Delay Differential Equations. The system features a strong internal resonance condition and it is established that irrational and rational periods of vibration should be carefully distinguished. For irrational periods, it was previously proven that the displacement field of the non-smooth modes of vibration is characterized with piecewise-linear functions in space and time and such a motion is unique for a prescribed energy. However, for rational periods, which are the subject of this work, new periodic solutions are found analytically. Findings consist of families of iso-periodic solutions with piecewise-smooth displacement fields in space and time and continua of piecewise-smooth periodic solutions of the same energy and frequency.
AbstractList Non-smooth modal analysis is an extension of modal analysis to non-smooth systems, prone to unilateral contact conditions for instance. The problem of a one-dimensional bar subject to unilateral contact on its boundary has been previously investigated numerically and the corresponding spectrum of vibration could be partially explored. In the present work, the non-smooth modal analysis of the above system is reformulated as a set of functional equations through the use of both d'Alembert solution to the wave equation and the method of steps for Neutral Delay Differential Equations. The system features a strong internal resonance condition and it is found that irrational and rational periods of vibration should be carefully distinguished. For irrational periods, the displacement field of the non-smooth modes of vibration consist in piecewise-linear functions of space and time and such a motion is unique for a prescribed energy. However, for rational periods, new periodic solutions are found analytically. They belong to families of iso-periodic solutions with piecewise-smooth displacement field in space and time.
Non-smooth modal analysis is an extension of modal analysis to non-smooth systems, prone to unilateral contact conditions for instance. The problem of a one-dimensional bar subject to unilateral contact on its boundary has been previously investigated numerically and the corresponding spectrum of vibration could be partially explored. In the present work, the non-smooth modal analysis of the above system is reformulated as a set of functional equations through the use of both d’Alembert solution to the wave equation and the method of steps for Neutral Delay Differential Equations. The system features a strong internal resonance condition and it is established that irrational and rational periods of vibration should be carefully distinguished. For irrational periods, it was previously proven that the displacement field of the non-smooth modes of vibration is characterized with piecewise-linear functions in space and time and such a motion is unique for a prescribed energy. However, for rational periods, which are the subject of this work, new periodic solutions are found analytically. Findings consist of families of iso-periodic solutions with piecewise-smooth displacement fields in space and time and continua of piecewise-smooth periodic solutions of the same energy and frequency.
ArticleNumber 101115
Author Urman, David
Legrand, Mathias
Junca, Stéphane
Author_xml – sequence: 1
  givenname: David
  orcidid: 0000-0002-6194-5847
  surname: Urman
  fullname: Urman, David
  email: david.urman@mail.mcgill.ca
  organization: Department of Mechanical Engineering, McGill University, Montreal, Canada
– sequence: 2
  givenname: Mathias
  orcidid: 0000-0002-4455-6604
  surname: Legrand
  fullname: Legrand, Mathias
  organization: Department of Mechanical Engineering, McGill University, Montreal, Canada
– sequence: 3
  givenname: Stéphane
  orcidid: 0000-0003-0445-255X
  surname: Junca
  fullname: Junca, Stéphane
  organization: LJAD Mathematics, Inria & CNRS, Université Côte d’Azur, Nice, France
BackLink https://hal.science/hal-02984137$$DView record in HAL
BookMark eNp9kLtOwzAUhj0UiRZ4ASavDCm2kzSJxFKVS5EqsYCEWKwT51hxldrIdiu68Rq8Hk9CosLC0OlIR_93Lt-EjKyzSMglZ1PO-Ox6PbXQhqlggg8NzvMRGfMi50lesNdTMglhzVheiTIbk7fb78-veYebGn2kemtVNM5S7TzFD1CR9sOTsHEutnTjGugoWOj2wQTqNI0t0ho8NZZurekgou8TytnYo-fkREMX8OK3npGX-7vnxTJZPT08LuarRKVpFhOtEUVZNylwVuZ5oVl_GKuqtGhEDRUrhFJNJbgqNM5EDiLNBDacpYh5WWhIz8jVYW4LnXz3ZgN-Lx0YuZyv5NBjoioznhY70WfLQ1Z5F4JHLZWJMLwcPZhOciYHh3ItB4dycCgPDntU_EP_dh2Fbg4Q9gJ2Br0MyqBV2BiPKsrGmWP4D2gCj90
CitedBy_id crossref_primary_10_1007_s11071_021_06994_z
crossref_primary_10_1007_s11071_023_08823_x
crossref_primary_10_1007_s11071_023_09014_4
crossref_primary_10_1016_j_jsv_2022_117385
Cites_doi 10.1007/s11071-017-4025-9
10.1515/meceng-2016-0017
10.1016/j.cnsns.2016.08.022
10.1016/j.ymssp.2015.03.017
10.1090/S0025-5718-1989-0969491-5
10.1016/j.ymssp.2018.11.009
10.1137/100791440
10.1016/0022-0396(84)90030-5
10.1016/j.ymssp.2008.04.003
10.1007/BF00162236
10.1007/s11071-018-04734-4
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Attribution - NonCommercial
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Attribution - NonCommercial
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.nahs.2021.101115
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID oai_HAL_hal_02984137v2
10_1016_j_nahs_2021_101115
S1751570X21001059
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
IHE
J1W
J9A
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SST
SSW
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
1XC
VOOES
ID FETCH-LOGICAL-c334t-ffee28bd3a108557f028409937d2ba9072ccd921c7fe625a2342ed103ee587fa3
IEDL.DBID .~1
ISSN 1751-570X
IngestDate Tue Jun 24 07:03:30 EDT 2025
Tue Jul 01 01:40:02 EDT 2025
Thu Apr 24 22:56:19 EDT 2025
Fri Feb 23 02:46:37 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Unilateral contact
D’Alembert function
Neutral Delay Differential Equation
Non-smooth modal analysis
Periodic solutions
Method of steps
Vibration analysis
Signorini complementarity conditions
d'Alembert function
unilateral contact
nonsmooth modal analysis
vibration analysis
Language English
License Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-ffee28bd3a108557f028409937d2ba9072ccd921c7fe625a2342ed103ee587fa3
ORCID 0000-0002-4455-6604
0000-0002-6194-5847
0000-0003-0445-255X
OpenAccessLink https://hal.science/hal-02984137
ParticipantIDs hal_primary_oai_HAL_hal_02984137v2
crossref_citationtrail_10_1016_j_nahs_2021_101115
crossref_primary_10_1016_j_nahs_2021_101115
elsevier_sciencedirect_doi_10_1016_j_nahs_2021_101115
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
2021-12
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Nonlinear analysis. Hybrid systems
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Bertrand (b9) 2020
Brogliato (b16) 1999
Shaw (b3) 2014; vol. 555
Peter, Schreyer, Leine (b4) 2019; 120
Tao, Gibert (b8) 2019; 95
Yoong, Thorin, Legrand (b6) 2018; 91
Evans (b19) 2010
Moussi, Bellizzi, Cochelin, Nistor (b5) 2015; 64-65
Peeters, Viguié, Sérandour, Kerschen, Golinval. Nonlinear normal modes (b14) 2009; 23
Yoong (b12) 2018
Erneux (b23) 2009
.
Thorin, Legrand (b2) 2018
Lebeau, Schatzman (b21) 1984; 53
Legrand, Junca, Heng (b11) 2017; 45
Schatzman, Bercovier (b20) 1989; 53
Schreyer, Leine (b7) 2016; LXIII
Païdoussis, Semler (b18) 1993; 4
James, Acary, Pérignon (b1) 2018
D. Urman, M. Legrand, Nonlinear modal analysis of the bar in unilateral contact via analytical weak-solutions to the wave equation, in: Proceedings of the 27th CANCAM, 2019.
Powers (b22) 1972
Yastrebov (b17) 2013
Kerschen (b13) 2014; volu. 555
Doyen, Ern, Piperno (b15) 2011; 33
Tao (10.1016/j.nahs.2021.101115_b8) 2019; 95
Yastrebov (10.1016/j.nahs.2021.101115_b17) 2013
James (10.1016/j.nahs.2021.101115_b1) 2018
Legrand (10.1016/j.nahs.2021.101115_b11) 2017; 45
Powers (10.1016/j.nahs.2021.101115_b22) 1972
Yoong (10.1016/j.nahs.2021.101115_b6) 2018; 91
Kerschen (10.1016/j.nahs.2021.101115_b13) 2014; volu. 555
Evans (10.1016/j.nahs.2021.101115_b19) 2010
Lebeau (10.1016/j.nahs.2021.101115_b21) 1984; 53
Peter (10.1016/j.nahs.2021.101115_b4) 2019; 120
Brogliato (10.1016/j.nahs.2021.101115_b16) 1999
Païdoussis (10.1016/j.nahs.2021.101115_b18) 1993; 4
Schatzman (10.1016/j.nahs.2021.101115_b20) 1989; 53
Moussi (10.1016/j.nahs.2021.101115_b5) 2015; 64-65
Doyen (10.1016/j.nahs.2021.101115_b15) 2011; 33
10.1016/j.nahs.2021.101115_b10
Thorin (10.1016/j.nahs.2021.101115_b2) 2018
Erneux (10.1016/j.nahs.2021.101115_b23) 2009
Peeters (10.1016/j.nahs.2021.101115_b14) 2009; 23
Schreyer (10.1016/j.nahs.2021.101115_b7) 2016; LXIII
Yoong (10.1016/j.nahs.2021.101115_b12) 2018
Shaw (10.1016/j.nahs.2021.101115_b3) 2014; vol. 555
Bertrand (10.1016/j.nahs.2021.101115_b9) 2020
References_xml – volume: 91
  start-page: 2453
  year: 2018
  end-page: 2476
  ident: b6
  article-title: Nonsmooth modal analysis of an elastic bar subject to a unilateral contact constraint
  publication-title: Nonlinear Dynam.
– year: 1972
  ident: b22
  article-title: Boundary Value Problems and Partial Differential Equations
– year: 2009
  ident: b23
  article-title: Applied Delay Differential Equations
– volume: 4
  start-page: 655
  year: 1993
  end-page: 670
  ident: b18
  article-title: Nonlinear and chaotic oscillations of a constrained cantilevered pipe conveying fluid: A full nonlinear analysis
  publication-title: Nonlinear Dynam.
– year: 2010
  ident: b19
  article-title: Partial Differential Equations
– year: 2013
  ident: b17
  article-title: Numerical Methods in Contact Mechanics
– volume: 33
  start-page: 223
  year: 2011
  end-page: 249
  ident: b15
  article-title: Time-integration schemes for the finite element dynamic Signorini problem
  publication-title: SIAM J. Sci. Comput.
– volume: 53
  start-page: 55
  year: 1989
  end-page: 79
  ident: b20
  article-title: Numerical approximation of a wave equation with unilateral constraints
  publication-title: Math. Comp.
– reference: .
– volume: LXIII
  start-page: 297
  year: 2016
  end-page: 314
  ident: b7
  article-title: A mixed shooting-harmonic balance method for unilaterally constrained mechanical systems
  publication-title: Arch. Mech. Eng.
– volume: volu. 555
  start-page: 1
  year: 2014
  end-page: 46
  ident: b13
  article-title: Definition and fundamental properties of nonlinear normal modes
  publication-title: Modal Analysis of Nonlinear Mechanical Systems
– volume: 53
  start-page: 309
  year: 1984
  end-page: 361
  ident: b21
  article-title: A wave problem in a half-space with a unilateral constraint at the boundary
  publication-title: J. Differential Equations
– volume: vol. 555
  start-page: 47
  year: 2014
  end-page: 74
  ident: b3
  article-title: Invariant manifold representations of nonlinear modes of vibration
  publication-title: Modal Analysis of Nonlinear Mechanical Systems
– volume: 45
  start-page: 190
  year: 2017
  end-page: 219
  ident: b11
  article-title: Nonsmooth modal analysis of a
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– start-page: 93
  year: 2018
  end-page: 134
  ident: b1
  article-title: Periodic motions of coupled impact oscillators
  publication-title: Advanced Topics in Nonsmooth Dynamics: Transactions of the European Network for Nonsmooth Dynamics
– start-page: 191
  year: 2018
  end-page: 234
  ident: b2
  article-title: Nonsmooth modal analysis: From the discrete to the continuous settings
  publication-title: Advanced Topics in Nonsmooth Dynamics: Transactions of the European Network for Nonsmooth Dynamics
– reference: D. Urman, M. Legrand, Nonlinear modal analysis of the bar in unilateral contact via analytical weak-solutions to the wave equation, in: Proceedings of the 27th CANCAM, 2019.
– year: 1999
  ident: b16
  article-title: Nonsmooth Mechanics: Models, Dynamics and Control, Vol. 2
– volume: 23
  start-page: 195
  year: 2009
  end-page: 216
  ident: b14
  article-title: Part II: Toward a practical computation using numerical continuation techniques
  publication-title: Mech. Syst. Signal Process.
– volume: 120
  start-page: 793
  year: 2019
  end-page: 807
  ident: b4
  article-title: A method for numerical and experimental nonlinear modal analysis of nonsmooth systems
  publication-title: Mech. Syst. Signal Process.
– volume: 95
  start-page: 2963
  year: 2019
  end-page: 2993
  ident: b8
  article-title: Periodic orbits of a conservative 2-DOF vibro-impact system by piecewise continuation: bifurcations and fractals
  publication-title: Nonlinear Dynam.
– year: 2018
  ident: b12
  article-title: Nonsmooth Modal Analysis of a Finite Linear Elastic Bar Subject To Unilateral Contact Constraint
– volume: 64-65
  start-page: 266
  year: 2015
  end-page: 281
  ident: b5
  article-title: Nonlinear normal modes of a two degrees-of-freedom piecewise linear system
  publication-title: Mech. Syst. Signal Process.
– year: 2020
  ident: b9
  article-title: Periodic Solutions of a One-Dimensional Elastic Bar Subject To a Unilateral Constraint
– volume: 91
  start-page: 2453
  issue: 4
  year: 2018
  ident: 10.1016/j.nahs.2021.101115_b6
  article-title: Nonsmooth modal analysis of an elastic bar subject to a unilateral contact constraint
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-017-4025-9
– volume: LXIII
  start-page: 297
  issue: 2
  year: 2016
  ident: 10.1016/j.nahs.2021.101115_b7
  article-title: A mixed shooting-harmonic balance method for unilaterally constrained mechanical systems
  publication-title: Arch. Mech. Eng.
  doi: 10.1515/meceng-2016-0017
– year: 1972
  ident: 10.1016/j.nahs.2021.101115_b22
– year: 2020
  ident: 10.1016/j.nahs.2021.101115_b9
– volume: volu. 555
  start-page: 1
  year: 2014
  ident: 10.1016/j.nahs.2021.101115_b13
  article-title: Definition and fundamental properties of nonlinear normal modes
– volume: 45
  start-page: 190
  year: 2017
  ident: 10.1016/j.nahs.2021.101115_b11
  article-title: Nonsmooth modal analysis of a N-degree-of-freedom system undergoing a purely elastic impact law
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2016.08.022
– start-page: 93
  year: 2018
  ident: 10.1016/j.nahs.2021.101115_b1
  article-title: Periodic motions of coupled impact oscillators
– volume: 64-65
  start-page: 266
  year: 2015
  ident: 10.1016/j.nahs.2021.101115_b5
  article-title: Nonlinear normal modes of a two degrees-of-freedom piecewise linear system
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.03.017
– year: 2018
  ident: 10.1016/j.nahs.2021.101115_b12
– volume: 53
  start-page: 55
  issue: 187
  year: 1989
  ident: 10.1016/j.nahs.2021.101115_b20
  article-title: Numerical approximation of a wave equation with unilateral constraints
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1989-0969491-5
– volume: 120
  start-page: 793
  year: 2019
  ident: 10.1016/j.nahs.2021.101115_b4
  article-title: A method for numerical and experimental nonlinear modal analysis of nonsmooth systems
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.11.009
– volume: 33
  start-page: 223
  issue: 1
  year: 2011
  ident: 10.1016/j.nahs.2021.101115_b15
  article-title: Time-integration schemes for the finite element dynamic Signorini problem
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/100791440
– volume: 53
  start-page: 309
  issue: 3
  year: 1984
  ident: 10.1016/j.nahs.2021.101115_b21
  article-title: A wave problem in a half-space with a unilateral constraint at the boundary
  publication-title: J. Differential Equations
  doi: 10.1016/0022-0396(84)90030-5
– volume: 23
  start-page: 195
  issue: 1
  year: 2009
  ident: 10.1016/j.nahs.2021.101115_b14
  article-title: Part II: Toward a practical computation using numerical continuation techniques
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2008.04.003
– volume: vol. 555
  start-page: 47
  year: 2014
  ident: 10.1016/j.nahs.2021.101115_b3
  article-title: Invariant manifold representations of nonlinear modes of vibration
– year: 2013
  ident: 10.1016/j.nahs.2021.101115_b17
– year: 2010
  ident: 10.1016/j.nahs.2021.101115_b19
– volume: 4
  start-page: 655
  issue: 6
  year: 1993
  ident: 10.1016/j.nahs.2021.101115_b18
  article-title: Nonlinear and chaotic oscillations of a constrained cantilevered pipe conveying fluid: A full nonlinear analysis
  publication-title: Nonlinear Dynam.
  doi: 10.1007/BF00162236
– ident: 10.1016/j.nahs.2021.101115_b10
– year: 1999
  ident: 10.1016/j.nahs.2021.101115_b16
– start-page: 191
  year: 2018
  ident: 10.1016/j.nahs.2021.101115_b2
  article-title: Nonsmooth modal analysis: From the discrete to the continuous settings
– volume: 95
  start-page: 2963
  year: 2019
  ident: 10.1016/j.nahs.2021.101115_b8
  article-title: Periodic orbits of a conservative 2-DOF vibro-impact system by piecewise continuation: bifurcations and fractals
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-018-04734-4
– year: 2009
  ident: 10.1016/j.nahs.2021.101115_b23
SSID ssj0059284
Score 2.2740147
Snippet Non-smooth modal analysis is an extension of modal analysis to non-smooth systems, prone to unilateral contact conditions for instance. The problem of a...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 101115
SubjectTerms D’Alembert function
Engineering Sciences
Mechanics
Method of steps
Neutral Delay Differential Equation
Non-smooth modal analysis
Periodic solutions
Signorini complementarity conditions
Structural mechanics
Unilateral contact
Vibration analysis
Title D’Alembert function for exact non-smooth modal analysis of the bar in unilateral contact
URI https://dx.doi.org/10.1016/j.nahs.2021.101115
https://hal.science/hal-02984137
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qvehBfGJ9lEW8SWyy2W3aY6iW-mgvWihewibZxUialjYVT-Lf8O_5S5zJCwTx4DHL7mb5ZpnHMvMNIefCF9xm0jQk2FoIUEwBelBJI2gLm8sgtHSIBc7DUXsw5rcTMamRXlkLg2mVhe7PdXqmrYuRVoFmax5FrQcwfJZwzAmzsjaPWMSH7HVwpy_fqzQP0WVZ12GcbODsonAmz_FKZEbZzSwcsLA17u_Gae25fGbNzE5_m2wV_iJ18yPtkJpKdsnmsCJbXe6Rp6uvj083VtjaI6VoqBBsCt4oVW8ySClE-MZyOgOZ0OkshN1kwURCZ5rCRtSXCxoldJVEscSK5JhiBjss3Sfj_vVjb2AULROMwLZ5amitFOv4oS2xqkA4GtwHiODABwmZLyEQZkEQdpkVOFpB5COZzZkKLdNWSnQcLe0DUodDqUNCeQjYORwCHmVy7jMphcZ3Iu1LgaztDWKVWHlBwSeObS1ir0wce_EQXw_x9XJ8G-SiWjPP2TT-nC1KEXg_7oQH6v7PdWcgr-oHSKA9cO89HEPCeTDbzis7-ufmx2QDv_KMlhNSTxcrdQp-Seo3s4vXJOvuzd1g9A3h0OC1
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH8Ylvg3iTsm2aWPe4qEt1HxddWLyEtE1wZd0VreLRv-Hf85c406YLguzBa5pJw5cwjzDzDcCJTKQIufY9jbYWAxRfoh402kvPZCh0mgU2owLnbu8s7oubgRzMwUVVC0NplU73lzq90NZupO7QrD8Ph_VbNHyBjPwBD4o2j415WCB2KlGDheZ1O-5VClk2eNF4mOZ7JOBqZ8o0r7EuWLt5QAMBdcf92z7NP1QvrYXlaa3CinMZWbPc1RrMmfE6LHenfKuvG3B_-f351RwZ6u6RM7JVhDdDh5SZD53mDIN87_VpgsfCniYZrqYdGQmbWIYLsUS_sOGYvY2HI01FySNGSewougn91tXdRey5rgleGoYi96w1hp8nWaipsEBGFj0IDOLQDcl4ojEW5mmaNXiQRtZg8KN5KLjJAj80Rp5HVodbUMNNmW1gIkPsIoExj_GFSLjW0tJTkU20JOL2HQgqrFTqKMWps8VIVbljj4rwVYSvKvHdgdOpzHNJqDFztqyOQP26Fgo1_ky5Yzyv6Q-IQztudhSNEec8Wu7one_-c_EjWIzvuh3Vue6192CJvpQJLvtQy1_ezAG6KXly6K7hD6Hz42Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=D%E2%80%99Alembert+function+for+exact+non-smooth+modal+analysis+of+the+bar+in+unilateral+contact&rft.jtitle=Nonlinear+analysis.+Hybrid+systems&rft.au=Urman%2C+David&rft.au=Legrand%2C+Mathias&rft.au=Junca%2C+St%C3%A9phane&rft.date=2021-12-01&rft.pub=Elsevier+Ltd&rft.issn=1751-570X&rft.volume=43&rft_id=info:doi/10.1016%2Fj.nahs.2021.101115&rft.externalDocID=S1751570X21001059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-570X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-570X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-570X&client=summon