D’Alembert function for exact non-smooth modal analysis of the bar in unilateral contact
Non-smooth modal analysis is an extension of modal analysis to non-smooth systems, prone to unilateral contact conditions for instance. The problem of a one-dimensional bar subject to unilateral contact on its boundary has been previously investigated numerically and the corresponding spectrum of vi...
Saved in:
Published in | Nonlinear analysis. Hybrid systems Vol. 43; p. 101115 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1751-570X |
DOI | 10.1016/j.nahs.2021.101115 |
Cover
Loading…
Abstract | Non-smooth modal analysis is an extension of modal analysis to non-smooth systems, prone to unilateral contact conditions for instance. The problem of a one-dimensional bar subject to unilateral contact on its boundary has been previously investigated numerically and the corresponding spectrum of vibration could be partially explored. In the present work, the non-smooth modal analysis of the above system is reformulated as a set of functional equations through the use of both d’Alembert solution to the wave equation and the method of steps for Neutral Delay Differential Equations. The system features a strong internal resonance condition and it is established that irrational and rational periods of vibration should be carefully distinguished. For irrational periods, it was previously proven that the displacement field of the non-smooth modes of vibration is characterized with piecewise-linear functions in space and time and such a motion is unique for a prescribed energy. However, for rational periods, which are the subject of this work, new periodic solutions are found analytically. Findings consist of families of iso-periodic solutions with piecewise-smooth displacement fields in space and time and continua of piecewise-smooth periodic solutions of the same energy and frequency. |
---|---|
AbstractList | Non-smooth modal analysis is an extension of modal analysis to non-smooth systems, prone to unilateral contact conditions for instance. The problem of a one-dimensional bar subject to unilateral contact on its boundary has been previously investigated numerically and the corresponding spectrum of vibration could be partially explored. In the present work, the non-smooth modal analysis of the above system is reformulated as a set of functional equations through the use of both d'Alembert solution to the wave equation and the method of steps for Neutral Delay Differential Equations. The system features a strong internal resonance condition and it is found that irrational and rational periods of vibration should be carefully distinguished. For irrational periods, the displacement field of the non-smooth modes of vibration consist in piecewise-linear functions of space and time and such a motion is unique for a prescribed energy. However, for rational periods, new periodic solutions are found analytically. They belong to families of iso-periodic solutions with piecewise-smooth displacement field in space and time. Non-smooth modal analysis is an extension of modal analysis to non-smooth systems, prone to unilateral contact conditions for instance. The problem of a one-dimensional bar subject to unilateral contact on its boundary has been previously investigated numerically and the corresponding spectrum of vibration could be partially explored. In the present work, the non-smooth modal analysis of the above system is reformulated as a set of functional equations through the use of both d’Alembert solution to the wave equation and the method of steps for Neutral Delay Differential Equations. The system features a strong internal resonance condition and it is established that irrational and rational periods of vibration should be carefully distinguished. For irrational periods, it was previously proven that the displacement field of the non-smooth modes of vibration is characterized with piecewise-linear functions in space and time and such a motion is unique for a prescribed energy. However, for rational periods, which are the subject of this work, new periodic solutions are found analytically. Findings consist of families of iso-periodic solutions with piecewise-smooth displacement fields in space and time and continua of piecewise-smooth periodic solutions of the same energy and frequency. |
ArticleNumber | 101115 |
Author | Urman, David Legrand, Mathias Junca, Stéphane |
Author_xml | – sequence: 1 givenname: David orcidid: 0000-0002-6194-5847 surname: Urman fullname: Urman, David email: david.urman@mail.mcgill.ca organization: Department of Mechanical Engineering, McGill University, Montreal, Canada – sequence: 2 givenname: Mathias orcidid: 0000-0002-4455-6604 surname: Legrand fullname: Legrand, Mathias organization: Department of Mechanical Engineering, McGill University, Montreal, Canada – sequence: 3 givenname: Stéphane orcidid: 0000-0003-0445-255X surname: Junca fullname: Junca, Stéphane organization: LJAD Mathematics, Inria & CNRS, Université Côte d’Azur, Nice, France |
BackLink | https://hal.science/hal-02984137$$DView record in HAL |
BookMark | eNp9kLtOwzAUhj0UiRZ4ASavDCm2kzSJxFKVS5EqsYCEWKwT51hxldrIdiu68Rq8Hk9CosLC0OlIR_93Lt-EjKyzSMglZ1PO-Ox6PbXQhqlggg8NzvMRGfMi50lesNdTMglhzVheiTIbk7fb78-veYebGn2kemtVNM5S7TzFD1CR9sOTsHEutnTjGugoWOj2wQTqNI0t0ho8NZZurekgou8TytnYo-fkREMX8OK3npGX-7vnxTJZPT08LuarRKVpFhOtEUVZNylwVuZ5oVl_GKuqtGhEDRUrhFJNJbgqNM5EDiLNBDacpYh5WWhIz8jVYW4LnXz3ZgN-Lx0YuZyv5NBjoioznhY70WfLQ1Z5F4JHLZWJMLwcPZhOciYHh3ItB4dycCgPDntU_EP_dh2Fbg4Q9gJ2Br0MyqBV2BiPKsrGmWP4D2gCj90 |
CitedBy_id | crossref_primary_10_1007_s11071_021_06994_z crossref_primary_10_1007_s11071_023_08823_x crossref_primary_10_1007_s11071_023_09014_4 crossref_primary_10_1016_j_jsv_2022_117385 |
Cites_doi | 10.1007/s11071-017-4025-9 10.1515/meceng-2016-0017 10.1016/j.cnsns.2016.08.022 10.1016/j.ymssp.2015.03.017 10.1090/S0025-5718-1989-0969491-5 10.1016/j.ymssp.2018.11.009 10.1137/100791440 10.1016/0022-0396(84)90030-5 10.1016/j.ymssp.2008.04.003 10.1007/BF00162236 10.1007/s11071-018-04734-4 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Attribution - NonCommercial |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Attribution - NonCommercial |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.nahs.2021.101115 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
ExternalDocumentID | oai_HAL_hal_02984137v2 10_1016_j_nahs_2021_101115 S1751570X21001059 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABAOU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN GBLVA HZ~ IHE J1W J9A JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SPD SST SSW SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 1XC VOOES |
ID | FETCH-LOGICAL-c334t-ffee28bd3a108557f028409937d2ba9072ccd921c7fe625a2342ed103ee587fa3 |
IEDL.DBID | .~1 |
ISSN | 1751-570X |
IngestDate | Tue Jun 24 07:03:30 EDT 2025 Tue Jul 01 01:40:02 EDT 2025 Thu Apr 24 22:56:19 EDT 2025 Fri Feb 23 02:46:37 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Unilateral contact D’Alembert function Neutral Delay Differential Equation Non-smooth modal analysis Periodic solutions Method of steps Vibration analysis Signorini complementarity conditions d'Alembert function unilateral contact nonsmooth modal analysis vibration analysis |
Language | English |
License | Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-ffee28bd3a108557f028409937d2ba9072ccd921c7fe625a2342ed103ee587fa3 |
ORCID | 0000-0002-4455-6604 0000-0002-6194-5847 0000-0003-0445-255X |
OpenAccessLink | https://hal.science/hal-02984137 |
ParticipantIDs | hal_primary_oai_HAL_hal_02984137v2 crossref_citationtrail_10_1016_j_nahs_2021_101115 crossref_primary_10_1016_j_nahs_2021_101115 elsevier_sciencedirect_doi_10_1016_j_nahs_2021_101115 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 2021-12 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationTitle | Nonlinear analysis. Hybrid systems |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Bertrand (b9) 2020 Brogliato (b16) 1999 Shaw (b3) 2014; vol. 555 Peter, Schreyer, Leine (b4) 2019; 120 Tao, Gibert (b8) 2019; 95 Yoong, Thorin, Legrand (b6) 2018; 91 Evans (b19) 2010 Moussi, Bellizzi, Cochelin, Nistor (b5) 2015; 64-65 Peeters, Viguié, Sérandour, Kerschen, Golinval. Nonlinear normal modes (b14) 2009; 23 Yoong (b12) 2018 Erneux (b23) 2009 . Thorin, Legrand (b2) 2018 Lebeau, Schatzman (b21) 1984; 53 Legrand, Junca, Heng (b11) 2017; 45 Schatzman, Bercovier (b20) 1989; 53 Schreyer, Leine (b7) 2016; LXIII Païdoussis, Semler (b18) 1993; 4 James, Acary, Pérignon (b1) 2018 D. Urman, M. Legrand, Nonlinear modal analysis of the bar in unilateral contact via analytical weak-solutions to the wave equation, in: Proceedings of the 27th CANCAM, 2019. Powers (b22) 1972 Yastrebov (b17) 2013 Kerschen (b13) 2014; volu. 555 Doyen, Ern, Piperno (b15) 2011; 33 Tao (10.1016/j.nahs.2021.101115_b8) 2019; 95 Yastrebov (10.1016/j.nahs.2021.101115_b17) 2013 James (10.1016/j.nahs.2021.101115_b1) 2018 Legrand (10.1016/j.nahs.2021.101115_b11) 2017; 45 Powers (10.1016/j.nahs.2021.101115_b22) 1972 Yoong (10.1016/j.nahs.2021.101115_b6) 2018; 91 Kerschen (10.1016/j.nahs.2021.101115_b13) 2014; volu. 555 Evans (10.1016/j.nahs.2021.101115_b19) 2010 Lebeau (10.1016/j.nahs.2021.101115_b21) 1984; 53 Peter (10.1016/j.nahs.2021.101115_b4) 2019; 120 Brogliato (10.1016/j.nahs.2021.101115_b16) 1999 Païdoussis (10.1016/j.nahs.2021.101115_b18) 1993; 4 Schatzman (10.1016/j.nahs.2021.101115_b20) 1989; 53 Moussi (10.1016/j.nahs.2021.101115_b5) 2015; 64-65 Doyen (10.1016/j.nahs.2021.101115_b15) 2011; 33 10.1016/j.nahs.2021.101115_b10 Thorin (10.1016/j.nahs.2021.101115_b2) 2018 Erneux (10.1016/j.nahs.2021.101115_b23) 2009 Peeters (10.1016/j.nahs.2021.101115_b14) 2009; 23 Schreyer (10.1016/j.nahs.2021.101115_b7) 2016; LXIII Yoong (10.1016/j.nahs.2021.101115_b12) 2018 Shaw (10.1016/j.nahs.2021.101115_b3) 2014; vol. 555 Bertrand (10.1016/j.nahs.2021.101115_b9) 2020 |
References_xml | – volume: 91 start-page: 2453 year: 2018 end-page: 2476 ident: b6 article-title: Nonsmooth modal analysis of an elastic bar subject to a unilateral contact constraint publication-title: Nonlinear Dynam. – year: 1972 ident: b22 article-title: Boundary Value Problems and Partial Differential Equations – year: 2009 ident: b23 article-title: Applied Delay Differential Equations – volume: 4 start-page: 655 year: 1993 end-page: 670 ident: b18 article-title: Nonlinear and chaotic oscillations of a constrained cantilevered pipe conveying fluid: A full nonlinear analysis publication-title: Nonlinear Dynam. – year: 2010 ident: b19 article-title: Partial Differential Equations – year: 2013 ident: b17 article-title: Numerical Methods in Contact Mechanics – volume: 33 start-page: 223 year: 2011 end-page: 249 ident: b15 article-title: Time-integration schemes for the finite element dynamic Signorini problem publication-title: SIAM J. Sci. Comput. – volume: 53 start-page: 55 year: 1989 end-page: 79 ident: b20 article-title: Numerical approximation of a wave equation with unilateral constraints publication-title: Math. Comp. – reference: . – volume: LXIII start-page: 297 year: 2016 end-page: 314 ident: b7 article-title: A mixed shooting-harmonic balance method for unilaterally constrained mechanical systems publication-title: Arch. Mech. Eng. – volume: volu. 555 start-page: 1 year: 2014 end-page: 46 ident: b13 article-title: Definition and fundamental properties of nonlinear normal modes publication-title: Modal Analysis of Nonlinear Mechanical Systems – volume: 53 start-page: 309 year: 1984 end-page: 361 ident: b21 article-title: A wave problem in a half-space with a unilateral constraint at the boundary publication-title: J. Differential Equations – volume: vol. 555 start-page: 47 year: 2014 end-page: 74 ident: b3 article-title: Invariant manifold representations of nonlinear modes of vibration publication-title: Modal Analysis of Nonlinear Mechanical Systems – volume: 45 start-page: 190 year: 2017 end-page: 219 ident: b11 article-title: Nonsmooth modal analysis of a publication-title: Commun. Nonlinear Sci. Numer. Simul. – start-page: 93 year: 2018 end-page: 134 ident: b1 article-title: Periodic motions of coupled impact oscillators publication-title: Advanced Topics in Nonsmooth Dynamics: Transactions of the European Network for Nonsmooth Dynamics – start-page: 191 year: 2018 end-page: 234 ident: b2 article-title: Nonsmooth modal analysis: From the discrete to the continuous settings publication-title: Advanced Topics in Nonsmooth Dynamics: Transactions of the European Network for Nonsmooth Dynamics – reference: D. Urman, M. Legrand, Nonlinear modal analysis of the bar in unilateral contact via analytical weak-solutions to the wave equation, in: Proceedings of the 27th CANCAM, 2019. – year: 1999 ident: b16 article-title: Nonsmooth Mechanics: Models, Dynamics and Control, Vol. 2 – volume: 23 start-page: 195 year: 2009 end-page: 216 ident: b14 article-title: Part II: Toward a practical computation using numerical continuation techniques publication-title: Mech. Syst. Signal Process. – volume: 120 start-page: 793 year: 2019 end-page: 807 ident: b4 article-title: A method for numerical and experimental nonlinear modal analysis of nonsmooth systems publication-title: Mech. Syst. Signal Process. – volume: 95 start-page: 2963 year: 2019 end-page: 2993 ident: b8 article-title: Periodic orbits of a conservative 2-DOF vibro-impact system by piecewise continuation: bifurcations and fractals publication-title: Nonlinear Dynam. – year: 2018 ident: b12 article-title: Nonsmooth Modal Analysis of a Finite Linear Elastic Bar Subject To Unilateral Contact Constraint – volume: 64-65 start-page: 266 year: 2015 end-page: 281 ident: b5 article-title: Nonlinear normal modes of a two degrees-of-freedom piecewise linear system publication-title: Mech. Syst. Signal Process. – year: 2020 ident: b9 article-title: Periodic Solutions of a One-Dimensional Elastic Bar Subject To a Unilateral Constraint – volume: 91 start-page: 2453 issue: 4 year: 2018 ident: 10.1016/j.nahs.2021.101115_b6 article-title: Nonsmooth modal analysis of an elastic bar subject to a unilateral contact constraint publication-title: Nonlinear Dynam. doi: 10.1007/s11071-017-4025-9 – volume: LXIII start-page: 297 issue: 2 year: 2016 ident: 10.1016/j.nahs.2021.101115_b7 article-title: A mixed shooting-harmonic balance method for unilaterally constrained mechanical systems publication-title: Arch. Mech. Eng. doi: 10.1515/meceng-2016-0017 – year: 1972 ident: 10.1016/j.nahs.2021.101115_b22 – year: 2020 ident: 10.1016/j.nahs.2021.101115_b9 – volume: volu. 555 start-page: 1 year: 2014 ident: 10.1016/j.nahs.2021.101115_b13 article-title: Definition and fundamental properties of nonlinear normal modes – volume: 45 start-page: 190 year: 2017 ident: 10.1016/j.nahs.2021.101115_b11 article-title: Nonsmooth modal analysis of a N-degree-of-freedom system undergoing a purely elastic impact law publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2016.08.022 – start-page: 93 year: 2018 ident: 10.1016/j.nahs.2021.101115_b1 article-title: Periodic motions of coupled impact oscillators – volume: 64-65 start-page: 266 year: 2015 ident: 10.1016/j.nahs.2021.101115_b5 article-title: Nonlinear normal modes of a two degrees-of-freedom piecewise linear system publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.03.017 – year: 2018 ident: 10.1016/j.nahs.2021.101115_b12 – volume: 53 start-page: 55 issue: 187 year: 1989 ident: 10.1016/j.nahs.2021.101115_b20 article-title: Numerical approximation of a wave equation with unilateral constraints publication-title: Math. Comp. doi: 10.1090/S0025-5718-1989-0969491-5 – volume: 120 start-page: 793 year: 2019 ident: 10.1016/j.nahs.2021.101115_b4 article-title: A method for numerical and experimental nonlinear modal analysis of nonsmooth systems publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.11.009 – volume: 33 start-page: 223 issue: 1 year: 2011 ident: 10.1016/j.nahs.2021.101115_b15 article-title: Time-integration schemes for the finite element dynamic Signorini problem publication-title: SIAM J. Sci. Comput. doi: 10.1137/100791440 – volume: 53 start-page: 309 issue: 3 year: 1984 ident: 10.1016/j.nahs.2021.101115_b21 article-title: A wave problem in a half-space with a unilateral constraint at the boundary publication-title: J. Differential Equations doi: 10.1016/0022-0396(84)90030-5 – volume: 23 start-page: 195 issue: 1 year: 2009 ident: 10.1016/j.nahs.2021.101115_b14 article-title: Part II: Toward a practical computation using numerical continuation techniques publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2008.04.003 – volume: vol. 555 start-page: 47 year: 2014 ident: 10.1016/j.nahs.2021.101115_b3 article-title: Invariant manifold representations of nonlinear modes of vibration – year: 2013 ident: 10.1016/j.nahs.2021.101115_b17 – year: 2010 ident: 10.1016/j.nahs.2021.101115_b19 – volume: 4 start-page: 655 issue: 6 year: 1993 ident: 10.1016/j.nahs.2021.101115_b18 article-title: Nonlinear and chaotic oscillations of a constrained cantilevered pipe conveying fluid: A full nonlinear analysis publication-title: Nonlinear Dynam. doi: 10.1007/BF00162236 – ident: 10.1016/j.nahs.2021.101115_b10 – year: 1999 ident: 10.1016/j.nahs.2021.101115_b16 – start-page: 191 year: 2018 ident: 10.1016/j.nahs.2021.101115_b2 article-title: Nonsmooth modal analysis: From the discrete to the continuous settings – volume: 95 start-page: 2963 year: 2019 ident: 10.1016/j.nahs.2021.101115_b8 article-title: Periodic orbits of a conservative 2-DOF vibro-impact system by piecewise continuation: bifurcations and fractals publication-title: Nonlinear Dynam. doi: 10.1007/s11071-018-04734-4 – year: 2009 ident: 10.1016/j.nahs.2021.101115_b23 |
SSID | ssj0059284 |
Score | 2.2740147 |
Snippet | Non-smooth modal analysis is an extension of modal analysis to non-smooth systems, prone to unilateral contact conditions for instance. The problem of a... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 101115 |
SubjectTerms | D’Alembert function Engineering Sciences Mechanics Method of steps Neutral Delay Differential Equation Non-smooth modal analysis Periodic solutions Signorini complementarity conditions Structural mechanics Unilateral contact Vibration analysis |
Title | D’Alembert function for exact non-smooth modal analysis of the bar in unilateral contact |
URI | https://dx.doi.org/10.1016/j.nahs.2021.101115 https://hal.science/hal-02984137 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qvehBfGJ9lEW8SWyy2W3aY6iW-mgvWihewibZxUialjYVT-Lf8O_5S5zJCwTx4DHL7mb5ZpnHMvMNIefCF9xm0jQk2FoIUEwBelBJI2gLm8sgtHSIBc7DUXsw5rcTMamRXlkLg2mVhe7PdXqmrYuRVoFmax5FrQcwfJZwzAmzsjaPWMSH7HVwpy_fqzQP0WVZ12GcbODsonAmz_FKZEbZzSwcsLA17u_Gae25fGbNzE5_m2wV_iJ18yPtkJpKdsnmsCJbXe6Rp6uvj083VtjaI6VoqBBsCt4oVW8ySClE-MZyOgOZ0OkshN1kwURCZ5rCRtSXCxoldJVEscSK5JhiBjss3Sfj_vVjb2AULROMwLZ5amitFOv4oS2xqkA4GtwHiODABwmZLyEQZkEQdpkVOFpB5COZzZkKLdNWSnQcLe0DUodDqUNCeQjYORwCHmVy7jMphcZ3Iu1LgaztDWKVWHlBwSeObS1ir0wce_EQXw_x9XJ8G-SiWjPP2TT-nC1KEXg_7oQH6v7PdWcgr-oHSKA9cO89HEPCeTDbzis7-ufmx2QDv_KMlhNSTxcrdQp-Seo3s4vXJOvuzd1g9A3h0OC1 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH8Ylvg3iTsm2aWPe4qEt1HxddWLyEtE1wZd0VreLRv-Hf85c406YLguzBa5pJw5cwjzDzDcCJTKQIufY9jbYWAxRfoh402kvPZCh0mgU2owLnbu8s7oubgRzMwUVVC0NplU73lzq90NZupO7QrD8Ph_VbNHyBjPwBD4o2j415WCB2KlGDheZ1O-5VClk2eNF4mOZ7JOBqZ8o0r7EuWLt5QAMBdcf92z7NP1QvrYXlaa3CinMZWbPc1RrMmfE6LHenfKuvG3B_-f351RwZ6u6RM7JVhDdDh5SZD53mDIN87_VpgsfCniYZrqYdGQmbWIYLsUS_sOGYvY2HI01FySNGSewougn91tXdRey5rgleGoYi96w1hp8nWaipsEBGFj0IDOLQDcl4ojEW5mmaNXiQRtZg8KN5KLjJAj80Rp5HVodbUMNNmW1gIkPsIoExj_GFSLjW0tJTkU20JOL2HQgqrFTqKMWps8VIVbljj4rwVYSvKvHdgdOpzHNJqDFztqyOQP26Fgo1_ky5Yzyv6Q-IQztudhSNEec8Wu7one_-c_EjWIzvuh3Vue6192CJvpQJLvtQy1_ezAG6KXly6K7hD6Hz42Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=D%E2%80%99Alembert+function+for+exact+non-smooth+modal+analysis+of+the+bar+in+unilateral+contact&rft.jtitle=Nonlinear+analysis.+Hybrid+systems&rft.au=Urman%2C+David&rft.au=Legrand%2C+Mathias&rft.au=Junca%2C+St%C3%A9phane&rft.date=2021-12-01&rft.pub=Elsevier+Ltd&rft.issn=1751-570X&rft.volume=43&rft_id=info:doi/10.1016%2Fj.nahs.2021.101115&rft.externalDocID=S1751570X21001059 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-570X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-570X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-570X&client=summon |