Classifying cracks at sub-class level in closed circuit television sewer inspection videos
This paper presents a novel computer vision based system to support automated PACP (Pipeline Assessment Certification Program) coding for cracks. The proposed system comprises five major steps: 1) identifying forward facing view (FFV) with pipeline viewpoint detector, 2) obtaining stable edge inform...
Saved in:
Published in | Automation in construction Vol. 118; p. 103289 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.10.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a novel computer vision based system to support automated PACP (Pipeline Assessment Certification Program) coding for cracks. The proposed system comprises five major steps: 1) identifying forward facing view (FFV) with pipeline viewpoint detector, 2) obtaining stable edge information using structure edge detector, 3) acquiring crack segments and inner circle area of the pipeline with image binarization, 4) generating a 2D angular-diameter histogram for each frame, and 5) training a crack category classifier with support vector machine (SVM). The experimental results demonstrated that the proposed system can not only detect the cracks and categorize the crack type per PACP standard effectively but can also run about 10 frames per second (fps) in real world CCTV videos with 320 × 240 resolutions. In terms of accuracy in detecting cracks, the proposed method reaches about 91%, 88% and 90% recall for longitudinal cracks (CL), circumferential cracks (CC) and multiple cracks (CM), respectively. This paper contributes to the overall body of knowledge by providing an innovative framework that supports real-time crack identification and coding per PACP standards, which will lay a strong foundation for the development of a fully automated PACP sewer pipeline inspection system.
•Algorithms to classify subclass level cracks in sewer inspections were proposed.•The recall rate of the proposed crack classification algorithm can reach over 90%.•The algorithm showed sound performance while video running at a speed of 10 pfs. |
---|---|
AbstractList | This paper presents a novel computer vision based system to support automated PACP (Pipeline Assessment Certification Program) coding for cracks. The proposed system comprises five major steps: 1) identifying forward facing view (FFV) with pipeline viewpoint detector, 2) obtaining stable edge information using structure edge detector, 3) acquiring crack segments and inner circle area of the pipeline with image binarization, 4) generating a 2D angular-diameter histogram for each frame, and 5) training a crack category classifier with support vector machine (SVM). The experimental results demonstrated that the proposed system can not only detect the cracks and categorize the crack type per PACP standard effectively but can also run about 10 frames per second (fps) in real world CCTV videos with 320 × 240 resolutions. In terms of accuracy in detecting cracks, the proposed method reaches about 91%, 88% and 90% recall for longitudinal cracks (CL), circumferential cracks (CC) and multiple cracks (CM), respectively. This paper contributes to the overall body of knowledge by providing an innovative framework that supports real-time crack identification and coding per PACP standards, which will lay a strong foundation for the development of a fully automated PACP sewer pipeline inspection system.
•Algorithms to classify subclass level cracks in sewer inspections were proposed.•The recall rate of the proposed crack classification algorithm can reach over 90%.•The algorithm showed sound performance while video running at a speed of 10 pfs. This paper presents a novel computer vision based system to support automated PACP (Pipeline Assessment Certification Program) coding for cracks. The proposed system comprises five major steps: 1) identifying forward facing view (FFV) with pipeline viewpoint detector, 2) obtaining stable edge information using structure edge detector, 3) acquiring crack segments and inner circle area of the pipeline with image binarization, 4) generating a 2D angular-diameter histogram for each frame, and 5) training a crack category classifier with support vector machine (SVM). The experimental results demonstrated that the proposed system can not only detect the cracks and categorize the crack type per PACP standard effectively but can also run about 10 frames per second (fps) in real world CCTV videos with 320 × 240 resolutions. In terms of accuracy in detecting cracks, the proposed method reaches about 91%, 88% and 90% recall for longitudinal cracks (CL), circumferential cracks (CC) and multiple cracks (CM), respectively. This paper contributes to the overall body of knowledge by providing an innovative framework that supports real-time crack identification and coding per PACP standards, which will lay a strong foundation for the development of a fully automated PACP sewer pipeline inspection system. |
ArticleNumber | 103289 |
Author | Huang, Shucheng Shen, Jifeng Dai, Bin Hu, Chunlong Zuo, Xin Shan, Yongwei |
Author_xml | – sequence: 1 givenname: Xin surname: Zuo fullname: Zuo, Xin email: zx089266@gmail.com organization: School of Computer Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China – sequence: 2 givenname: Bin surname: Dai fullname: Dai, Bin email: daibin@hebau.edu.cn organization: School of Urban and Rural Construction, Hebei Agricultural University, Baoding, Hebei 071000, China – sequence: 3 givenname: Yongwei surname: Shan fullname: Shan, Yongwei email: yongwei.shan@okstate.edu organization: School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK 74078, USA – sequence: 4 givenname: Jifeng surname: Shen fullname: Shen, Jifeng email: shenjifeng@ujs.edu.cn organization: School of electronic and informatics engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China – sequence: 5 givenname: Chunlong surname: Hu fullname: Hu, Chunlong email: huchunlong@just.edu.cn organization: School of Computer Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China – sequence: 6 givenname: Shucheng surname: Huang fullname: Huang, Shucheng email: schuang6@126.com organization: School of Computer Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China |
BookMark | eNqFkMlOwzAQhi1UJNrCG3CwxDnFS1YOSKhikypxgQsXy51MkEOIi-0U9e1xFE4c4DSamf-f5VuQWW97JOScsxVnPL9sV3oIYPuVYGIsSVFWR2TOy0IkRVnxGZmzSuRJVrLshCy8bxljBcurOXldd9p70xxM_0bBaXj3VAfqh20CY4d2uMeOmp5CZz3WFIyDwQQaMHaMN7anHr_QRYnfIYSxsDc1Wn9KjhvdeTz7iUvycnf7vH5INk_3j-ubTQJSpiFp6kwU26aUDFFURSm0lJmEWnIuOPCsbKTWQpcpZDGREgqsRCWbOup0ui3kklxMc3fOfg7og2rt4Pq4Uok0SzOeCymj6mpSgbPeO2wUmKDHc4PTplOcqZGlatXEUo0s1cQymtNf5p0zH9od_rNdTzaM7-8NOuXBYA9YGxdRqdqavwd8A-2wksg |
CitedBy_id | crossref_primary_10_1007_s00138_022_01327_5 crossref_primary_10_3390_buildings13030590 crossref_primary_10_3390_s22072722 crossref_primary_10_1016_j_conbuildmat_2022_126584 crossref_primary_10_1016_j_engfailanal_2022_106482 crossref_primary_10_1016_j_ijpvp_2021_104381 crossref_primary_10_1016_j_tust_2023_105480 crossref_primary_10_1016_j_autcon_2024_105577 crossref_primary_10_1002_advs_202304352 crossref_primary_10_36680_j_itcon_2023_009 crossref_primary_10_1016_j_autcon_2021_103912 crossref_primary_10_1061_JPSEA2_PSENG_1482 crossref_primary_10_1080_10298436_2023_2219366 crossref_primary_10_1007_s13349_024_00841_6 crossref_primary_10_1109_ACCESS_2022_3168660 |
Cites_doi | 10.1006/jcss.1997.1504 10.1109/TPAMI.2014.2300479 10.1016/j.eswa.2008.02.006 10.1061/(ASCE)IS.1943-555X.0000161 10.1016/j.autcon.2005.02.005 10.1016/j.eswa.2007.08.013 10.1016/j.eswa.2010.07.103 10.1016/j.autcon.2018.03.028 10.1016/j.autcon.2019.04.013 10.1016/j.autcon.2005.02.006 10.1016/j.measurement.2012.05.032 10.1016/j.autcon.2008.12.003 10.1016/j.patcog.2016.09.010 10.1016/j.autcon.2005.06.007 10.1109/ICCV.1998.710815 10.1016/j.imavis.2005.05.017 10.1016/S0031-3203(97)00037-X 10.1016/j.autcon.2019.102967 10.1016/j.autcon.2018.08.006 10.1061/(ASCE)PS.1949-1204.0000161 10.1016/j.autcon.2005.02.007 10.1016/j.watres.2017.01.050 10.1109/TPAMI.2014.2377715 10.1016/j.autcon.2013.10.012 10.1007/s00138-011-0394-0 10.1080/15732479.2010.541265 10.1080/15732479.2017.1356858 10.2175/193864711802837309 10.1109/5254.708428 10.1061/(ASCE)1076-0342(2001)7:2(77) 10.1016/j.autcon.2019.01.017 10.2175/193864706783789464 10.1016/0169-7439(87)80084-9 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Oct 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Oct 2020 |
DBID | AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.autcon.2020.103289 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1872-7891 |
ExternalDocumentID | 10_1016_j_autcon_2020_103289 S0926580519305497 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A NEJ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7SP 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c334t-fd527bf830ee29782a3353cd31121c158f3aa2a84c515833c7e9293fda33a4b73 |
IEDL.DBID | .~1 |
ISSN | 0926-5805 |
IngestDate | Fri Jul 25 04:57:16 EDT 2025 Tue Jul 01 03:18:13 EDT 2025 Thu Apr 24 22:57:18 EDT 2025 Fri Feb 23 02:48:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Computer vision Automated defects detection Crack detection and categorization Sewer PACP View classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-fd527bf830ee29782a3353cd31121c158f3aa2a84c515833c7e9293fda33a4b73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2454516233 |
PQPubID | 2045277 |
ParticipantIDs | proquest_journals_2454516233 crossref_citationtrail_10_1016_j_autcon_2020_103289 crossref_primary_10_1016_j_autcon_2020_103289 elsevier_sciencedirect_doi_10_1016_j_autcon_2020_103289 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2020 2020-10-00 20201001 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Automation in construction |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Wirahadikusumah, Abraham, Iseley (bb0205) 2001; 7 Jahanshahi, Masri, Padgett, Sukhatme (bb0105) 2013; 24 Freund, Schapire (bb0065) 1997; 55 Kumar, Abraham, Jahanshahi, Iseley, Starr (bb0115) 2018; 91 Yang, Su (bb0225) 2009; 36 Urquhart (bb0195) 2006; 2006 Dirksen, Clemens, Korving, Cherqui, Le Gauffre, Ertl, Plihal, Müller, Snaterse (bb0035) 2013; 9 Li, Cong, Guo (bb0120) 2019; 101 Duran, Althoefer, Seneviratne (bb0050) 2002; 3 Cheng, Wang (bb0025) 2018; 95 Dollár, Zitnick (bb0045) 2015; 37 Hearst, Dumais, Osuna, Platt, Scholkopf (bb0085) 1998; 13 Koo, Ariaratnam (bb0110) 2006; 15 Sinha, Fieguth (bb0175) 2006; 15 Yang, Su, Pan, Yang (bb0230) 2011; 38 Carnacina, Larrarte, Leonardi (bb0015) 2017; 112 Chang, Lin (bb0020) 2018 Lim, Zitnick, Dollár (bb0125) 2013 Dollár, Appel, Belongie, Perona (bb0040) 2014; 36 Ékes, Mahmood (bb0055) 2019 Wang, Huang (bb0200) 2010; 5 Iyer, Sinha (bb0100) 2005; 23 Fieguth, Sinha (bb0060) 1999; 4 Dalal, Triggs (bb0030) 2005; 1 NASSCO (National Association of Sewer Service Companies) (bb0140) 2015 Halfawy, Hengmeechai (bb0075) 2014; 38 Sinha, Fieguth (bb0170) 2006; 15 Xu, Luxmoore, Davies (bb0215) 1998; 31 ASCE (American Society of Civil Engineers) (bb0005) 2017 Halfawy, Hengmeechai (bb0080) 2013; 20 NASSCO (bb0145) 2019 Liu, Kleiner (bb0130) 2013; 46 Shen, Zuo, Li, Yang, Ling (bb0165) 2017; 63 Caradot, Rouault, Clemens, Cherqui (bb0010) 2018; 14 Neubeck, Van Gool (bb0150) 2006; 3 Sinha, Fieguth (bb0180) 2006; 15 Yin, Chen, Bouferguene, Zaman, Al-Hussein, Kurach (bb0235) 2020; 109 Guo, Soibelman, Garrett (bb0070) 2009; 18 Olson, Delen (bb0155) 2008 Wold, Esbensen, Geladi (bb0210) 1987; 2 Hengmeechai (bb0090) 2013 Tuccillo, Wilmut, Feeney, Martel, Selvakumar (bb0190) 2011; 2011 Yang, Su (bb0220) 2008; 35 Meijer, Scholten, Clemens, Knobbe (bb0135) 2019; 104 Tomasi, Manduchi (bb0185) 1998 (bb0095) 2019 Selvakumar, Tuccillo, Martel, Matthews, Feeney (bb0160) 2013; 5 NASSCO (10.1016/j.autcon.2020.103289_bb0145) Freund (10.1016/j.autcon.2020.103289_bb0065) 1997; 55 Kumar (10.1016/j.autcon.2020.103289_bb0115) 2018; 91 Li (10.1016/j.autcon.2020.103289_bb0120) 2019; 101 Halfawy (10.1016/j.autcon.2020.103289_bb0080) 2013; 20 Chang (10.1016/j.autcon.2020.103289_bb0020) Halfawy (10.1016/j.autcon.2020.103289_bb0075) 2014; 38 Urquhart (10.1016/j.autcon.2020.103289_bb0195) 2006; 2006 Wirahadikusumah (10.1016/j.autcon.2020.103289_bb0205) 2001; 7 Cheng (10.1016/j.autcon.2020.103289_bb0025) 2018; 95 Neubeck (10.1016/j.autcon.2020.103289_bb0150) 2006; 3 Dirksen (10.1016/j.autcon.2020.103289_bb0035) 2013; 9 Sinha (10.1016/j.autcon.2020.103289_bb0170) 2006; 15 Guo (10.1016/j.autcon.2020.103289_bb0070) 2009; 18 Dalal (10.1016/j.autcon.2020.103289_bb0030) 2005; 1 Yin (10.1016/j.autcon.2020.103289_bb0235) 2020; 109 NASSCO (National Association of Sewer Service Companies) (10.1016/j.autcon.2020.103289_bb0140) Fieguth (10.1016/j.autcon.2020.103289_bb0060) 1999; 4 Carnacina (10.1016/j.autcon.2020.103289_bb0015) 2017; 112 Jahanshahi (10.1016/j.autcon.2020.103289_bb0105) 2013; 24 Lim (10.1016/j.autcon.2020.103289_bb0125) 2013 Sinha (10.1016/j.autcon.2020.103289_bb0175) 2006; 15 Hearst (10.1016/j.autcon.2020.103289_bb0085) 1998; 13 Tomasi (10.1016/j.autcon.2020.103289_bb0185) 1998 Xu (10.1016/j.autcon.2020.103289_bb0215) 1998; 31 Yang (10.1016/j.autcon.2020.103289_bb0230) 2011; 38 Caradot (10.1016/j.autcon.2020.103289_bb0010) 2018; 14 Liu (10.1016/j.autcon.2020.103289_bb0130) 2013; 46 Koo (10.1016/j.autcon.2020.103289_bb0110) 2006; 15 Olson (10.1016/j.autcon.2020.103289_bb0155) 2008 Shen (10.1016/j.autcon.2020.103289_bb0165) 2017; 63 Dollár (10.1016/j.autcon.2020.103289_bb0045) 2015; 37 Selvakumar (10.1016/j.autcon.2020.103289_bb0160) 2013; 5 Yang (10.1016/j.autcon.2020.103289_bb0220) 2008; 35 Meijer (10.1016/j.autcon.2020.103289_bb0135) 2019; 104 Dollár (10.1016/j.autcon.2020.103289_bb0040) 2014; 36 ASCE (American Society of Civil Engineers) (10.1016/j.autcon.2020.103289_bb0005) Yang (10.1016/j.autcon.2020.103289_bb0225) 2009; 36 Duran (10.1016/j.autcon.2020.103289_bb0050) 2002; 3 Ékes (10.1016/j.autcon.2020.103289_bb0055) 2019 Wold (10.1016/j.autcon.2020.103289_bb0210) 1987; 2 Hengmeechai (10.1016/j.autcon.2020.103289_bb0090) 2013 Sinha (10.1016/j.autcon.2020.103289_bb0180) 2006; 15 Iyer (10.1016/j.autcon.2020.103289_bb0100) 2005; 23 Tuccillo (10.1016/j.autcon.2020.103289_bb0190) 2011; 2011 Wang (10.1016/j.autcon.2020.103289_bb0200) 2010; 5 |
References_xml | – volume: 36 start-page: 3562 year: 2009 end-page: 3573 ident: bb0225 article-title: Segmenting ideal morphologies of sewer pipe defects on CCTV images for automated diagnosis publication-title: Expert Syst. Appl. – volume: 95 start-page: 155 year: 2018 end-page: 171 ident: bb0025 article-title: Automated detection of sewer pipe defects in closed-circuit television images using deep learning techniques publication-title: Autom. Constr. – volume: 35 start-page: 1327 year: 2008 end-page: 1337 ident: bb0220 article-title: Automated diagnosis of sewer pipe defects based on machine learning approaches publication-title: Expert Syst. Appl. – volume: 38 start-page: 1 year: 2014 end-page: 13 ident: bb0075 article-title: Automated defect detection in sewer closed circuit television images using histograms of oriented gradients and support vector machine publication-title: Autom. Constr. – year: 2019 ident: bb0095 article-title: History of sanitary sewers, sinkhole in Sterling Heights, Michigan, the history of sanitary sewers, Queen Creek, AZ – volume: 2011 year: 2011 ident: bb0190 article-title: Field demonstration of electro-scan defect location technology for condition assessment of wastewater collection systems publication-title: Proc. Water Environ. Fed. – volume: 18 start-page: 587 year: 2009 end-page: 596 ident: bb0070 article-title: Automated defect detection for sewer pipeline inspection and condition assessment publication-title: Autom. Constr. – volume: 63 start-page: 127 year: 2017 end-page: 138 ident: bb0165 article-title: A novel pixel neighborhood differential statistic feature for pedestrian and face detection publication-title: Pattern Recogn. – volume: 109 year: 2020 ident: bb0235 article-title: A deep learning-based framework for an automated defect detection system for sewer pipes publication-title: Autom. Constr. – volume: 5 start-page: 2530 year: 2010 end-page: 2533 ident: bb0200 article-title: Comparison analysis on present image-based crack detection methods in concrete structures publication-title: International Congress on Image and Signal Processing – year: 2019 ident: bb0145 article-title: Pipeline assessment and certification program (PACP) – volume: 91 start-page: 273 year: 2018 end-page: 283 ident: bb0115 article-title: Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks publication-title: Autom. Constr. – volume: 104 start-page: 281 year: 2019 end-page: 298 ident: bb0135 article-title: A defect classification methodology for sewer image sets with convolutional neural networks publication-title: Autom. Constr. – volume: 31 start-page: 169 year: 1998 end-page: 180 ident: bb0215 article-title: Sewer pipe deformation assessment by image analysis of video surveys publication-title: Pattern Recogn. – volume: 13 start-page: 18 year: 1998 end-page: 28 ident: bb0085 article-title: Support vector machines publication-title: IEEE Intelligent Systems and Their Applications – volume: 15 start-page: 58 year: 2006 end-page: 72 ident: bb0170 article-title: Automated detection of cracks in buried concrete pipe images publication-title: Autom. Constr. – volume: 24 start-page: 227 year: 2013 end-page: 241 ident: bb0105 article-title: An innovative methodology for detection and quantification of cracks through incorporation of depth perception publication-title: Mach. Vis. Appl. – volume: 55 start-page: 119 year: 1997 end-page: 139 ident: bb0065 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. Syst. Sci. – volume: 4 start-page: 395 year: 1999 end-page: 399 ident: bb0060 article-title: Automated analysis and detection of cracks in underground scanned pipes publication-title: IEEE International Conference on Image Processing – start-page: 3158 year: 2013 end-page: 3165 ident: bb0125 article-title: Sketch tokens: a learned mid-level representation for contour and object detection publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 3 start-page: 850 year: 2006 end-page: 855 ident: bb0150 article-title: Efficient non-maximum suppression publication-title: IEEE International Conference on Pattern Recognition – volume: 23 start-page: 921 year: 2005 end-page: 933 ident: bb0100 article-title: A robust approach for automatic detection and segmentation of cracks in underground pipeline images publication-title: Image Vis. Comput. – volume: 7 start-page: 77 year: 2001 end-page: 84 ident: bb0205 article-title: Challenging issues in modeling deterioration of combined sewers publication-title: J. Infrastruct. Syst. – start-page: 198 year: 2019 end-page: 204 ident: bb0055 article-title: Looking into the Void: Condition Assessment with Pipe Penetrating Radar, Pipelines 2019: Condition Assessment, Construction, and Rehabilitation – volume: 9 start-page: 214 year: 2013 end-page: 228 ident: bb0035 article-title: The consistency of visual sewer inspection data publication-title: Struct. Infrastruct. Eng. – year: 2018 ident: bb0020 article-title: LIBSVM: a library for support vector machines – volume: 101 start-page: 199 year: 2019 end-page: 208 ident: bb0120 article-title: Sewer damage detection from imbalanced CCTV inspection data using deep convolutional neural networks with hierarchical classification publication-title: Autom. Constr. – year: 2015 ident: bb0140 article-title: NASSCO's pipeline assessment and certification program – volume: 15 start-page: 73 year: 2006 end-page: 83 ident: bb0175 article-title: Neuro-fuzzy network for the classification of buried pipe defects publication-title: Autom. Constr. – volume: 20 start-page: 4013014 year: 2013 ident: bb0080 article-title: Efficient algorithm for crack detection in sewer images from closed-circuit television inspections publication-title: J. Infrastruct. Syst. – volume: 15 start-page: 479 year: 2006 end-page: 488 ident: bb0110 article-title: Innovative method for assessment of underground sewer pipe condition publication-title: Autom. Constr. – volume: 1 start-page: 886 year: 2005 end-page: 893 ident: bb0030 article-title: Histograms of oriented gradients for human detection publication-title: IEEE Conference on Computer Vision & Pattern Recognition – volume: 46 start-page: 1 year: 2013 end-page: 15 ident: bb0130 article-title: State of the art review of inspection technologies for condition assessment of water pipes publication-title: Measurement – volume: 15 start-page: 47 year: 2006 end-page: 57 ident: bb0180 article-title: Segmentation of buried concrete pipe images publication-title: Autom. Constr. – year: 2017 ident: bb0005 article-title: 2017 infrastructure report card: wastewater – volume: 2 start-page: 37 year: 1987 end-page: 52 ident: bb0210 article-title: Principal component analysis publication-title: Chemom. Intell. Lab. Syst. – volume: 112 start-page: 279 year: 2017 end-page: 290 ident: bb0015 article-title: Acoustic measurement and morphological features of organic sediment deposits in combined sewer networks publication-title: Water Res. – volume: 36 start-page: 1532 year: 2014 end-page: 1545 ident: bb0040 article-title: Fast feature pyramids for object detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 37 start-page: 1558 year: 2015 end-page: 1570 ident: bb0045 article-title: Fast edge detection using structured forests publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2013 ident: bb0090 article-title: Automated Analysis of Sewer Inspection Closed Circuit Television Videos Using Image Processing Techniques – volume: 14 start-page: 264 year: 2018 end-page: 273 ident: bb0010 article-title: Evaluation of uncertainties in sewer condition assessment publication-title: Struct. Infrastruct. Eng. – volume: 38 start-page: 1766 year: 2011 end-page: 1776 ident: bb0230 article-title: Systematic image quality assessment for sewer inspection publication-title: Expert Syst. Appl. – start-page: 839 year: 1998 end-page: 846 ident: bb0185 article-title: Bilateral filtering for gray and color images publication-title: IEEE International Conference on Computer Vision – year: 2008 ident: bb0155 article-title: Advanced Data Mining Techniques – volume: 3 start-page: 2551 year: 2002 end-page: 2556 ident: bb0050 article-title: Automated sewer pipe inspection through image processing publication-title: IEEE International Conference on Robotics and Automation – volume: 5 start-page: 04013018 year: 2013 ident: bb0160 article-title: Demonstration and evaluation of state-of-the-art wastewater collection systems condition assessment technologies publication-title: J. Pipeline Systems Engineering and Practice – volume: 2006 start-page: 41 year: 2006 end-page: 51 ident: bb0195 article-title: Asset management around the world–the expertise of Australia/New Zealand, the UK and the US publication-title: Proc. Water Environ. Fed. – volume: 55 start-page: 119 issue: 1 year: 1997 ident: 10.1016/j.autcon.2020.103289_bb0065 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. Syst. Sci. doi: 10.1006/jcss.1997.1504 – volume: 36 start-page: 1532 issue: 8 year: 2014 ident: 10.1016/j.autcon.2020.103289_bb0040 article-title: Fast feature pyramids for object detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2300479 – ident: 10.1016/j.autcon.2020.103289_bb0140 – volume: 36 start-page: 3562 issue: 2 year: 2009 ident: 10.1016/j.autcon.2020.103289_bb0225 article-title: Segmenting ideal morphologies of sewer pipe defects on CCTV images for automated diagnosis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.02.006 – start-page: 198 year: 2019 ident: 10.1016/j.autcon.2020.103289_bb0055 – volume: 3 start-page: 850 year: 2006 ident: 10.1016/j.autcon.2020.103289_bb0150 article-title: Efficient non-maximum suppression – volume: 20 start-page: 4013014 issue: 2 year: 2013 ident: 10.1016/j.autcon.2020.103289_bb0080 article-title: Efficient algorithm for crack detection in sewer images from closed-circuit television inspections publication-title: J. Infrastruct. Syst. doi: 10.1061/(ASCE)IS.1943-555X.0000161 – start-page: 3158 year: 2013 ident: 10.1016/j.autcon.2020.103289_bb0125 article-title: Sketch tokens: a learned mid-level representation for contour and object detection – volume: 15 start-page: 73 issue: 1 year: 2006 ident: 10.1016/j.autcon.2020.103289_bb0175 article-title: Neuro-fuzzy network for the classification of buried pipe defects publication-title: Autom. Constr. doi: 10.1016/j.autcon.2005.02.005 – volume: 3 start-page: 2551 year: 2002 ident: 10.1016/j.autcon.2020.103289_bb0050 article-title: Automated sewer pipe inspection through image processing – volume: 35 start-page: 1327 issue: 3 year: 2008 ident: 10.1016/j.autcon.2020.103289_bb0220 article-title: Automated diagnosis of sewer pipe defects based on machine learning approaches publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.08.013 – volume: 38 start-page: 1766 issue: 3 year: 2011 ident: 10.1016/j.autcon.2020.103289_bb0230 article-title: Systematic image quality assessment for sewer inspection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.07.103 – volume: 91 start-page: 273 year: 2018 ident: 10.1016/j.autcon.2020.103289_bb0115 article-title: Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.03.028 – volume: 104 start-page: 281 year: 2019 ident: 10.1016/j.autcon.2020.103289_bb0135 article-title: A defect classification methodology for sewer image sets with convolutional neural networks publication-title: Autom. Constr. doi: 10.1016/j.autcon.2019.04.013 – volume: 15 start-page: 58 issue: 1 year: 2006 ident: 10.1016/j.autcon.2020.103289_bb0170 article-title: Automated detection of cracks in buried concrete pipe images publication-title: Autom. Constr. doi: 10.1016/j.autcon.2005.02.006 – volume: 1 start-page: 886 year: 2005 ident: 10.1016/j.autcon.2020.103289_bb0030 article-title: Histograms of oriented gradients for human detection – ident: 10.1016/j.autcon.2020.103289_bb0005 – volume: 46 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.autcon.2020.103289_bb0130 article-title: State of the art review of inspection technologies for condition assessment of water pipes publication-title: Measurement doi: 10.1016/j.measurement.2012.05.032 – volume: 18 start-page: 587 issue: 5 year: 2009 ident: 10.1016/j.autcon.2020.103289_bb0070 article-title: Automated defect detection for sewer pipeline inspection and condition assessment publication-title: Autom. Constr. doi: 10.1016/j.autcon.2008.12.003 – volume: 63 start-page: 127 year: 2017 ident: 10.1016/j.autcon.2020.103289_bb0165 article-title: A novel pixel neighborhood differential statistic feature for pedestrian and face detection publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2016.09.010 – volume: 15 start-page: 479 issue: 4 year: 2006 ident: 10.1016/j.autcon.2020.103289_bb0110 article-title: Innovative method for assessment of underground sewer pipe condition publication-title: Autom. Constr. doi: 10.1016/j.autcon.2005.06.007 – year: 2013 ident: 10.1016/j.autcon.2020.103289_bb0090 – start-page: 839 year: 1998 ident: 10.1016/j.autcon.2020.103289_bb0185 article-title: Bilateral filtering for gray and color images publication-title: IEEE International Conference on Computer Vision doi: 10.1109/ICCV.1998.710815 – volume: 23 start-page: 921 issue: 10 year: 2005 ident: 10.1016/j.autcon.2020.103289_bb0100 article-title: A robust approach for automatic detection and segmentation of cracks in underground pipeline images publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2005.05.017 – volume: 31 start-page: 169 issue: 2 year: 1998 ident: 10.1016/j.autcon.2020.103289_bb0215 article-title: Sewer pipe deformation assessment by image analysis of video surveys publication-title: Pattern Recogn. doi: 10.1016/S0031-3203(97)00037-X – volume: 109 year: 2020 ident: 10.1016/j.autcon.2020.103289_bb0235 article-title: A deep learning-based framework for an automated defect detection system for sewer pipes publication-title: Autom. Constr. doi: 10.1016/j.autcon.2019.102967 – volume: 95 start-page: 155 year: 2018 ident: 10.1016/j.autcon.2020.103289_bb0025 article-title: Automated detection of sewer pipe defects in closed-circuit television images using deep learning techniques publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.08.006 – volume: 5 start-page: 04013018 issue: 2 year: 2013 ident: 10.1016/j.autcon.2020.103289_bb0160 article-title: Demonstration and evaluation of state-of-the-art wastewater collection systems condition assessment technologies publication-title: J. Pipeline Systems Engineering and Practice doi: 10.1061/(ASCE)PS.1949-1204.0000161 – volume: 5 start-page: 2530 year: 2010 ident: 10.1016/j.autcon.2020.103289_bb0200 article-title: Comparison analysis on present image-based crack detection methods in concrete structures – volume: 15 start-page: 47 issue: 1 year: 2006 ident: 10.1016/j.autcon.2020.103289_bb0180 article-title: Segmentation of buried concrete pipe images publication-title: Autom. Constr. doi: 10.1016/j.autcon.2005.02.007 – volume: 112 start-page: 279 year: 2017 ident: 10.1016/j.autcon.2020.103289_bb0015 article-title: Acoustic measurement and morphological features of organic sediment deposits in combined sewer networks publication-title: Water Res. doi: 10.1016/j.watres.2017.01.050 – volume: 37 start-page: 1558 issue: 8 year: 2015 ident: 10.1016/j.autcon.2020.103289_bb0045 article-title: Fast edge detection using structured forests publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2377715 – volume: 4 start-page: 395 year: 1999 ident: 10.1016/j.autcon.2020.103289_bb0060 article-title: Automated analysis and detection of cracks in underground scanned pipes – volume: 38 start-page: 1 year: 2014 ident: 10.1016/j.autcon.2020.103289_bb0075 article-title: Automated defect detection in sewer closed circuit television images using histograms of oriented gradients and support vector machine publication-title: Autom. Constr. doi: 10.1016/j.autcon.2013.10.012 – volume: 24 start-page: 227 issue: 2 year: 2013 ident: 10.1016/j.autcon.2020.103289_bb0105 article-title: An innovative methodology for detection and quantification of cracks through incorporation of depth perception publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-011-0394-0 – year: 2008 ident: 10.1016/j.autcon.2020.103289_bb0155 – volume: 9 start-page: 214 issue: 3 year: 2013 ident: 10.1016/j.autcon.2020.103289_bb0035 article-title: The consistency of visual sewer inspection data publication-title: Struct. Infrastruct. Eng. doi: 10.1080/15732479.2010.541265 – volume: 14 start-page: 264 issue: 2 year: 2018 ident: 10.1016/j.autcon.2020.103289_bb0010 article-title: Evaluation of uncertainties in sewer condition assessment publication-title: Struct. Infrastruct. Eng. doi: 10.1080/15732479.2017.1356858 – volume: 2011 issue: 5 year: 2011 ident: 10.1016/j.autcon.2020.103289_bb0190 article-title: Field demonstration of electro-scan defect location technology for condition assessment of wastewater collection systems publication-title: Proc. Water Environ. Fed. doi: 10.2175/193864711802837309 – volume: 13 start-page: 18 issue: 4 year: 1998 ident: 10.1016/j.autcon.2020.103289_bb0085 article-title: Support vector machines publication-title: IEEE Intelligent Systems and Their Applications doi: 10.1109/5254.708428 – volume: 7 start-page: 77 issue: 2 year: 2001 ident: 10.1016/j.autcon.2020.103289_bb0205 article-title: Challenging issues in modeling deterioration of combined sewers publication-title: J. Infrastruct. Syst. doi: 10.1061/(ASCE)1076-0342(2001)7:2(77) – volume: 101 start-page: 199 year: 2019 ident: 10.1016/j.autcon.2020.103289_bb0120 article-title: Sewer damage detection from imbalanced CCTV inspection data using deep convolutional neural networks with hierarchical classification publication-title: Autom. Constr. doi: 10.1016/j.autcon.2019.01.017 – ident: 10.1016/j.autcon.2020.103289_bb0145 – ident: 10.1016/j.autcon.2020.103289_bb0020 – volume: 2006 start-page: 41 issue: 1 year: 2006 ident: 10.1016/j.autcon.2020.103289_bb0195 article-title: Asset management around the world–the expertise of Australia/New Zealand, the UK and the US publication-title: Proc. Water Environ. Fed. doi: 10.2175/193864706783789464 – volume: 2 start-page: 37 issue: 1–3 year: 1987 ident: 10.1016/j.autcon.2020.103289_bb0210 article-title: Principal component analysis publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/0169-7439(87)80084-9 |
SSID | ssj0007069 |
Score | 2.3805165 |
Snippet | This paper presents a novel computer vision based system to support automated PACP (Pipeline Assessment Certification Program) coding for cracks. The proposed... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103289 |
SubjectTerms | Automated defects detection Automation Closed circuit television Coding Computer vision Crack detection and categorization Cracks Diameters Flaw detection Frames per second Histograms Inspection PACP Pipelines Sewer Sewer pipes Support vector machines Video View classification Vision systems |
Title | Classifying cracks at sub-class level in closed circuit television sewer inspection videos |
URI | https://dx.doi.org/10.1016/j.autcon.2020.103289 https://www.proquest.com/docview/2454516233 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lHtSDaFWsL3Lwmnabyb6ORSxVsRctFC8hm01hpbRld4s3f7uT7K4vEMHjZifLMpPMfAPzzRByBUlq8A5xNjAcExQEuCwJA8M84BjdVCKMI9I-TILxVNzN_FmLXDdcGFtWWfv-yqc7b12v9Gtt9tdZ1n_0Yo7h00EQxB2xZZQLEdpT3nv7LPMIvaDqt8cDZqUb-pyr8VKb0madHDFTz3WWi38LTz8ctYs-o32yV8NGOqz-7IC0zLJDthtWcdEhu18aCx6SZzfrMnMcJqpzy6OnqqTFJmHavqELWytEsyXVi1VhUqqzXG-ykpYfdHNamFeTo0jFxcQFy9hbFUdkOrp5uh6zeooC0wCiZPPU52Eyj8AzhmPOyBWADzoFtNBAD_xoDkpxFQmN0CYC0KFByATzFOWUSEI4Ju3lamlOCB3oKLX93v00DkTgKaVigwhH65inmJiFXQKN8qSuW4zbSRcL2dSSvchK5dKqXFYq7xL2sWtdtdj4Qz5s7CK_HRWJUeCPneeNGWV9VQvJhW-HFXOA039_-Izs2KeqyO-ctMt8Yy4QrJTJpTuNl2RreHs_nrwDFkToRQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6qHtSD-MS3OXiN3Wb2eRSx1Ed70YJ4CdlsCiulle4Wb_52J9nd-gARvCaTZZlJZr6B-WYAzjHNDL0hwTtGUIJCAJenUWi4h4Kim0p944i0_UHYG_q3T8FTC64aLowtq6x9f-XTnbeuV9q1Ntuved5-8BJB4dNBEMIdSbQEKz49XzvG4OL9s84j8sKq4Z4IuRVv-HOuyEvNS5t2CgJNF661XPJbfPrhqV346W7CRo0b2WX1a1vQMpNtWG1oxcU2rH_pLLgDz27YZe5ITEzPLJGeqZIV85Rru8PGtliI5ROmx9PCZEznMz3PS1Yu-OasMG9mRiIVGZMWLGVvWuzCsHv9eNXj9RgFrhH9ko-yQETpKEbPGEFJo1CIAeoMyUQd3QniESolVOxrwjYxoo4MYSYcZSSn_DTCPVieTCdmH1hHx5lt-B5kSeiHnlIqMQRxtE5ERplZdADYKE_quse4HXUxlk0x2YusVC6tymWl8gPgi1OvVY-NP-Sjxi7y212RFAb-OHncmFHWb7WQwg_stGKBePjvD5_Bau-xfy_vbwZ3R7Bmd6qKv2NYLmdzc0LIpUxP3c38AHRD6dM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classifying+cracks+at+sub-class+level+in+closed+circuit+television+sewer+inspection+videos&rft.jtitle=Automation+in+construction&rft.au=Zuo%2C+Xin&rft.au=Dai%2C+Bin&rft.au=Shan%2C+Yongwei&rft.au=Shen%2C+Jifeng&rft.date=2020-10-01&rft.pub=Elsevier+B.V&rft.issn=0926-5805&rft.eissn=1872-7891&rft.volume=118&rft_id=info:doi/10.1016%2Fj.autcon.2020.103289&rft.externalDocID=S0926580519305497 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon |