Classifying cracks at sub-class level in closed circuit television sewer inspection videos

This paper presents a novel computer vision based system to support automated PACP (Pipeline Assessment Certification Program) coding for cracks. The proposed system comprises five major steps: 1) identifying forward facing view (FFV) with pipeline viewpoint detector, 2) obtaining stable edge inform...

Full description

Saved in:
Bibliographic Details
Published inAutomation in construction Vol. 118; p. 103289
Main Authors Zuo, Xin, Dai, Bin, Shan, Yongwei, Shen, Jifeng, Hu, Chunlong, Huang, Shucheng
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.10.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a novel computer vision based system to support automated PACP (Pipeline Assessment Certification Program) coding for cracks. The proposed system comprises five major steps: 1) identifying forward facing view (FFV) with pipeline viewpoint detector, 2) obtaining stable edge information using structure edge detector, 3) acquiring crack segments and inner circle area of the pipeline with image binarization, 4) generating a 2D angular-diameter histogram for each frame, and 5) training a crack category classifier with support vector machine (SVM). The experimental results demonstrated that the proposed system can not only detect the cracks and categorize the crack type per PACP standard effectively but can also run about 10 frames per second (fps) in real world CCTV videos with 320 × 240 resolutions. In terms of accuracy in detecting cracks, the proposed method reaches about 91%, 88% and 90% recall for longitudinal cracks (CL), circumferential cracks (CC) and multiple cracks (CM), respectively. This paper contributes to the overall body of knowledge by providing an innovative framework that supports real-time crack identification and coding per PACP standards, which will lay a strong foundation for the development of a fully automated PACP sewer pipeline inspection system. •Algorithms to classify subclass level cracks in sewer inspections were proposed.•The recall rate of the proposed crack classification algorithm can reach over 90%.•The algorithm showed sound performance while video running at a speed of 10 pfs.
AbstractList This paper presents a novel computer vision based system to support automated PACP (Pipeline Assessment Certification Program) coding for cracks. The proposed system comprises five major steps: 1) identifying forward facing view (FFV) with pipeline viewpoint detector, 2) obtaining stable edge information using structure edge detector, 3) acquiring crack segments and inner circle area of the pipeline with image binarization, 4) generating a 2D angular-diameter histogram for each frame, and 5) training a crack category classifier with support vector machine (SVM). The experimental results demonstrated that the proposed system can not only detect the cracks and categorize the crack type per PACP standard effectively but can also run about 10 frames per second (fps) in real world CCTV videos with 320 × 240 resolutions. In terms of accuracy in detecting cracks, the proposed method reaches about 91%, 88% and 90% recall for longitudinal cracks (CL), circumferential cracks (CC) and multiple cracks (CM), respectively. This paper contributes to the overall body of knowledge by providing an innovative framework that supports real-time crack identification and coding per PACP standards, which will lay a strong foundation for the development of a fully automated PACP sewer pipeline inspection system. •Algorithms to classify subclass level cracks in sewer inspections were proposed.•The recall rate of the proposed crack classification algorithm can reach over 90%.•The algorithm showed sound performance while video running at a speed of 10 pfs.
This paper presents a novel computer vision based system to support automated PACP (Pipeline Assessment Certification Program) coding for cracks. The proposed system comprises five major steps: 1) identifying forward facing view (FFV) with pipeline viewpoint detector, 2) obtaining stable edge information using structure edge detector, 3) acquiring crack segments and inner circle area of the pipeline with image binarization, 4) generating a 2D angular-diameter histogram for each frame, and 5) training a crack category classifier with support vector machine (SVM). The experimental results demonstrated that the proposed system can not only detect the cracks and categorize the crack type per PACP standard effectively but can also run about 10 frames per second (fps) in real world CCTV videos with 320 × 240 resolutions. In terms of accuracy in detecting cracks, the proposed method reaches about 91%, 88% and 90% recall for longitudinal cracks (CL), circumferential cracks (CC) and multiple cracks (CM), respectively. This paper contributes to the overall body of knowledge by providing an innovative framework that supports real-time crack identification and coding per PACP standards, which will lay a strong foundation for the development of a fully automated PACP sewer pipeline inspection system.
ArticleNumber 103289
Author Huang, Shucheng
Shen, Jifeng
Dai, Bin
Hu, Chunlong
Zuo, Xin
Shan, Yongwei
Author_xml – sequence: 1
  givenname: Xin
  surname: Zuo
  fullname: Zuo, Xin
  email: zx089266@gmail.com
  organization: School of Computer Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
– sequence: 2
  givenname: Bin
  surname: Dai
  fullname: Dai, Bin
  email: daibin@hebau.edu.cn
  organization: School of Urban and Rural Construction, Hebei Agricultural University, Baoding, Hebei 071000, China
– sequence: 3
  givenname: Yongwei
  surname: Shan
  fullname: Shan, Yongwei
  email: yongwei.shan@okstate.edu
  organization: School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK 74078, USA
– sequence: 4
  givenname: Jifeng
  surname: Shen
  fullname: Shen, Jifeng
  email: shenjifeng@ujs.edu.cn
  organization: School of electronic and informatics engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
– sequence: 5
  givenname: Chunlong
  surname: Hu
  fullname: Hu, Chunlong
  email: huchunlong@just.edu.cn
  organization: School of Computer Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
– sequence: 6
  givenname: Shucheng
  surname: Huang
  fullname: Huang, Shucheng
  email: schuang6@126.com
  organization: School of Computer Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
BookMark eNqFkMlOwzAQhi1UJNrCG3CwxDnFS1YOSKhikypxgQsXy51MkEOIi-0U9e1xFE4c4DSamf-f5VuQWW97JOScsxVnPL9sV3oIYPuVYGIsSVFWR2TOy0IkRVnxGZmzSuRJVrLshCy8bxljBcurOXldd9p70xxM_0bBaXj3VAfqh20CY4d2uMeOmp5CZz3WFIyDwQQaMHaMN7anHr_QRYnfIYSxsDc1Wn9KjhvdeTz7iUvycnf7vH5INk_3j-ubTQJSpiFp6kwU26aUDFFURSm0lJmEWnIuOPCsbKTWQpcpZDGREgqsRCWbOup0ui3kklxMc3fOfg7og2rt4Pq4Uok0SzOeCymj6mpSgbPeO2wUmKDHc4PTplOcqZGlatXEUo0s1cQymtNf5p0zH9od_rNdTzaM7-8NOuXBYA9YGxdRqdqavwd8A-2wksg
CitedBy_id crossref_primary_10_1007_s00138_022_01327_5
crossref_primary_10_3390_buildings13030590
crossref_primary_10_3390_s22072722
crossref_primary_10_1016_j_conbuildmat_2022_126584
crossref_primary_10_1016_j_engfailanal_2022_106482
crossref_primary_10_1016_j_ijpvp_2021_104381
crossref_primary_10_1016_j_tust_2023_105480
crossref_primary_10_1016_j_autcon_2024_105577
crossref_primary_10_1002_advs_202304352
crossref_primary_10_36680_j_itcon_2023_009
crossref_primary_10_1016_j_autcon_2021_103912
crossref_primary_10_1061_JPSEA2_PSENG_1482
crossref_primary_10_1080_10298436_2023_2219366
crossref_primary_10_1007_s13349_024_00841_6
crossref_primary_10_1109_ACCESS_2022_3168660
Cites_doi 10.1006/jcss.1997.1504
10.1109/TPAMI.2014.2300479
10.1016/j.eswa.2008.02.006
10.1061/(ASCE)IS.1943-555X.0000161
10.1016/j.autcon.2005.02.005
10.1016/j.eswa.2007.08.013
10.1016/j.eswa.2010.07.103
10.1016/j.autcon.2018.03.028
10.1016/j.autcon.2019.04.013
10.1016/j.autcon.2005.02.006
10.1016/j.measurement.2012.05.032
10.1016/j.autcon.2008.12.003
10.1016/j.patcog.2016.09.010
10.1016/j.autcon.2005.06.007
10.1109/ICCV.1998.710815
10.1016/j.imavis.2005.05.017
10.1016/S0031-3203(97)00037-X
10.1016/j.autcon.2019.102967
10.1016/j.autcon.2018.08.006
10.1061/(ASCE)PS.1949-1204.0000161
10.1016/j.autcon.2005.02.007
10.1016/j.watres.2017.01.050
10.1109/TPAMI.2014.2377715
10.1016/j.autcon.2013.10.012
10.1007/s00138-011-0394-0
10.1080/15732479.2010.541265
10.1080/15732479.2017.1356858
10.2175/193864711802837309
10.1109/5254.708428
10.1061/(ASCE)1076-0342(2001)7:2(77)
10.1016/j.autcon.2019.01.017
10.2175/193864706783789464
10.1016/0169-7439(87)80084-9
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Oct 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Oct 2020
DBID AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.autcon.2020.103289
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1872-7891
ExternalDocumentID 10_1016_j_autcon_2020_103289
S0926580519305497
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7SP
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-fd527bf830ee29782a3353cd31121c158f3aa2a84c515833c7e9293fda33a4b73
IEDL.DBID .~1
ISSN 0926-5805
IngestDate Fri Jul 25 04:57:16 EDT 2025
Tue Jul 01 03:18:13 EDT 2025
Thu Apr 24 22:57:18 EDT 2025
Fri Feb 23 02:48:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Computer vision
Automated defects detection
Crack detection and categorization
Sewer
PACP
View classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-fd527bf830ee29782a3353cd31121c158f3aa2a84c515833c7e9293fda33a4b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2454516233
PQPubID 2045277
ParticipantIDs proquest_journals_2454516233
crossref_citationtrail_10_1016_j_autcon_2020_103289
crossref_primary_10_1016_j_autcon_2020_103289
elsevier_sciencedirect_doi_10_1016_j_autcon_2020_103289
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Automation in construction
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Wirahadikusumah, Abraham, Iseley (bb0205) 2001; 7
Jahanshahi, Masri, Padgett, Sukhatme (bb0105) 2013; 24
Freund, Schapire (bb0065) 1997; 55
Kumar, Abraham, Jahanshahi, Iseley, Starr (bb0115) 2018; 91
Yang, Su (bb0225) 2009; 36
Urquhart (bb0195) 2006; 2006
Dirksen, Clemens, Korving, Cherqui, Le Gauffre, Ertl, Plihal, Müller, Snaterse (bb0035) 2013; 9
Li, Cong, Guo (bb0120) 2019; 101
Duran, Althoefer, Seneviratne (bb0050) 2002; 3
Cheng, Wang (bb0025) 2018; 95
Dollár, Zitnick (bb0045) 2015; 37
Hearst, Dumais, Osuna, Platt, Scholkopf (bb0085) 1998; 13
Koo, Ariaratnam (bb0110) 2006; 15
Sinha, Fieguth (bb0175) 2006; 15
Yang, Su, Pan, Yang (bb0230) 2011; 38
Carnacina, Larrarte, Leonardi (bb0015) 2017; 112
Chang, Lin (bb0020) 2018
Lim, Zitnick, Dollár (bb0125) 2013
Dollár, Appel, Belongie, Perona (bb0040) 2014; 36
Ékes, Mahmood (bb0055) 2019
Wang, Huang (bb0200) 2010; 5
Iyer, Sinha (bb0100) 2005; 23
Fieguth, Sinha (bb0060) 1999; 4
Dalal, Triggs (bb0030) 2005; 1
NASSCO (National Association of Sewer Service Companies) (bb0140) 2015
Halfawy, Hengmeechai (bb0075) 2014; 38
Sinha, Fieguth (bb0170) 2006; 15
Xu, Luxmoore, Davies (bb0215) 1998; 31
ASCE (American Society of Civil Engineers) (bb0005) 2017
Halfawy, Hengmeechai (bb0080) 2013; 20
NASSCO (bb0145) 2019
Liu, Kleiner (bb0130) 2013; 46
Shen, Zuo, Li, Yang, Ling (bb0165) 2017; 63
Caradot, Rouault, Clemens, Cherqui (bb0010) 2018; 14
Neubeck, Van Gool (bb0150) 2006; 3
Sinha, Fieguth (bb0180) 2006; 15
Yin, Chen, Bouferguene, Zaman, Al-Hussein, Kurach (bb0235) 2020; 109
Guo, Soibelman, Garrett (bb0070) 2009; 18
Olson, Delen (bb0155) 2008
Wold, Esbensen, Geladi (bb0210) 1987; 2
Hengmeechai (bb0090) 2013
Tuccillo, Wilmut, Feeney, Martel, Selvakumar (bb0190) 2011; 2011
Yang, Su (bb0220) 2008; 35
Meijer, Scholten, Clemens, Knobbe (bb0135) 2019; 104
Tomasi, Manduchi (bb0185) 1998
(bb0095) 2019
Selvakumar, Tuccillo, Martel, Matthews, Feeney (bb0160) 2013; 5
NASSCO (10.1016/j.autcon.2020.103289_bb0145)
Freund (10.1016/j.autcon.2020.103289_bb0065) 1997; 55
Kumar (10.1016/j.autcon.2020.103289_bb0115) 2018; 91
Li (10.1016/j.autcon.2020.103289_bb0120) 2019; 101
Halfawy (10.1016/j.autcon.2020.103289_bb0080) 2013; 20
Chang (10.1016/j.autcon.2020.103289_bb0020)
Halfawy (10.1016/j.autcon.2020.103289_bb0075) 2014; 38
Urquhart (10.1016/j.autcon.2020.103289_bb0195) 2006; 2006
Wirahadikusumah (10.1016/j.autcon.2020.103289_bb0205) 2001; 7
Cheng (10.1016/j.autcon.2020.103289_bb0025) 2018; 95
Neubeck (10.1016/j.autcon.2020.103289_bb0150) 2006; 3
Dirksen (10.1016/j.autcon.2020.103289_bb0035) 2013; 9
Sinha (10.1016/j.autcon.2020.103289_bb0170) 2006; 15
Guo (10.1016/j.autcon.2020.103289_bb0070) 2009; 18
Dalal (10.1016/j.autcon.2020.103289_bb0030) 2005; 1
Yin (10.1016/j.autcon.2020.103289_bb0235) 2020; 109
NASSCO (National Association of Sewer Service Companies) (10.1016/j.autcon.2020.103289_bb0140)
Fieguth (10.1016/j.autcon.2020.103289_bb0060) 1999; 4
Carnacina (10.1016/j.autcon.2020.103289_bb0015) 2017; 112
Jahanshahi (10.1016/j.autcon.2020.103289_bb0105) 2013; 24
Lim (10.1016/j.autcon.2020.103289_bb0125) 2013
Sinha (10.1016/j.autcon.2020.103289_bb0175) 2006; 15
Hearst (10.1016/j.autcon.2020.103289_bb0085) 1998; 13
Tomasi (10.1016/j.autcon.2020.103289_bb0185) 1998
Xu (10.1016/j.autcon.2020.103289_bb0215) 1998; 31
Yang (10.1016/j.autcon.2020.103289_bb0230) 2011; 38
Caradot (10.1016/j.autcon.2020.103289_bb0010) 2018; 14
Liu (10.1016/j.autcon.2020.103289_bb0130) 2013; 46
Koo (10.1016/j.autcon.2020.103289_bb0110) 2006; 15
Olson (10.1016/j.autcon.2020.103289_bb0155) 2008
Shen (10.1016/j.autcon.2020.103289_bb0165) 2017; 63
Dollár (10.1016/j.autcon.2020.103289_bb0045) 2015; 37
Selvakumar (10.1016/j.autcon.2020.103289_bb0160) 2013; 5
Yang (10.1016/j.autcon.2020.103289_bb0220) 2008; 35
Meijer (10.1016/j.autcon.2020.103289_bb0135) 2019; 104
Dollár (10.1016/j.autcon.2020.103289_bb0040) 2014; 36
ASCE (American Society of Civil Engineers) (10.1016/j.autcon.2020.103289_bb0005)
Yang (10.1016/j.autcon.2020.103289_bb0225) 2009; 36
Duran (10.1016/j.autcon.2020.103289_bb0050) 2002; 3
Ékes (10.1016/j.autcon.2020.103289_bb0055) 2019
Wold (10.1016/j.autcon.2020.103289_bb0210) 1987; 2
Hengmeechai (10.1016/j.autcon.2020.103289_bb0090) 2013
Sinha (10.1016/j.autcon.2020.103289_bb0180) 2006; 15
Iyer (10.1016/j.autcon.2020.103289_bb0100) 2005; 23
Tuccillo (10.1016/j.autcon.2020.103289_bb0190) 2011; 2011
Wang (10.1016/j.autcon.2020.103289_bb0200) 2010; 5
References_xml – volume: 36
  start-page: 3562
  year: 2009
  end-page: 3573
  ident: bb0225
  article-title: Segmenting ideal morphologies of sewer pipe defects on CCTV images for automated diagnosis
  publication-title: Expert Syst. Appl.
– volume: 95
  start-page: 155
  year: 2018
  end-page: 171
  ident: bb0025
  article-title: Automated detection of sewer pipe defects in closed-circuit television images using deep learning techniques
  publication-title: Autom. Constr.
– volume: 35
  start-page: 1327
  year: 2008
  end-page: 1337
  ident: bb0220
  article-title: Automated diagnosis of sewer pipe defects based on machine learning approaches
  publication-title: Expert Syst. Appl.
– volume: 38
  start-page: 1
  year: 2014
  end-page: 13
  ident: bb0075
  article-title: Automated defect detection in sewer closed circuit television images using histograms of oriented gradients and support vector machine
  publication-title: Autom. Constr.
– year: 2019
  ident: bb0095
  article-title: History of sanitary sewers, sinkhole in Sterling Heights, Michigan, the history of sanitary sewers, Queen Creek, AZ
– volume: 2011
  year: 2011
  ident: bb0190
  article-title: Field demonstration of electro-scan defect location technology for condition assessment of wastewater collection systems
  publication-title: Proc. Water Environ. Fed.
– volume: 18
  start-page: 587
  year: 2009
  end-page: 596
  ident: bb0070
  article-title: Automated defect detection for sewer pipeline inspection and condition assessment
  publication-title: Autom. Constr.
– volume: 63
  start-page: 127
  year: 2017
  end-page: 138
  ident: bb0165
  article-title: A novel pixel neighborhood differential statistic feature for pedestrian and face detection
  publication-title: Pattern Recogn.
– volume: 109
  year: 2020
  ident: bb0235
  article-title: A deep learning-based framework for an automated defect detection system for sewer pipes
  publication-title: Autom. Constr.
– volume: 5
  start-page: 2530
  year: 2010
  end-page: 2533
  ident: bb0200
  article-title: Comparison analysis on present image-based crack detection methods in concrete structures
  publication-title: International Congress on Image and Signal Processing
– year: 2019
  ident: bb0145
  article-title: Pipeline assessment and certification program (PACP)
– volume: 91
  start-page: 273
  year: 2018
  end-page: 283
  ident: bb0115
  article-title: Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks
  publication-title: Autom. Constr.
– volume: 104
  start-page: 281
  year: 2019
  end-page: 298
  ident: bb0135
  article-title: A defect classification methodology for sewer image sets with convolutional neural networks
  publication-title: Autom. Constr.
– volume: 31
  start-page: 169
  year: 1998
  end-page: 180
  ident: bb0215
  article-title: Sewer pipe deformation assessment by image analysis of video surveys
  publication-title: Pattern Recogn.
– volume: 13
  start-page: 18
  year: 1998
  end-page: 28
  ident: bb0085
  article-title: Support vector machines
  publication-title: IEEE Intelligent Systems and Their Applications
– volume: 15
  start-page: 58
  year: 2006
  end-page: 72
  ident: bb0170
  article-title: Automated detection of cracks in buried concrete pipe images
  publication-title: Autom. Constr.
– volume: 24
  start-page: 227
  year: 2013
  end-page: 241
  ident: bb0105
  article-title: An innovative methodology for detection and quantification of cracks through incorporation of depth perception
  publication-title: Mach. Vis. Appl.
– volume: 55
  start-page: 119
  year: 1997
  end-page: 139
  ident: bb0065
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
– volume: 4
  start-page: 395
  year: 1999
  end-page: 399
  ident: bb0060
  article-title: Automated analysis and detection of cracks in underground scanned pipes
  publication-title: IEEE International Conference on Image Processing
– start-page: 3158
  year: 2013
  end-page: 3165
  ident: bb0125
  article-title: Sketch tokens: a learned mid-level representation for contour and object detection
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 3
  start-page: 850
  year: 2006
  end-page: 855
  ident: bb0150
  article-title: Efficient non-maximum suppression
  publication-title: IEEE International Conference on Pattern Recognition
– volume: 23
  start-page: 921
  year: 2005
  end-page: 933
  ident: bb0100
  article-title: A robust approach for automatic detection and segmentation of cracks in underground pipeline images
  publication-title: Image Vis. Comput.
– volume: 7
  start-page: 77
  year: 2001
  end-page: 84
  ident: bb0205
  article-title: Challenging issues in modeling deterioration of combined sewers
  publication-title: J. Infrastruct. Syst.
– start-page: 198
  year: 2019
  end-page: 204
  ident: bb0055
  article-title: Looking into the Void: Condition Assessment with Pipe Penetrating Radar, Pipelines 2019: Condition Assessment, Construction, and Rehabilitation
– volume: 9
  start-page: 214
  year: 2013
  end-page: 228
  ident: bb0035
  article-title: The consistency of visual sewer inspection data
  publication-title: Struct. Infrastruct. Eng.
– year: 2018
  ident: bb0020
  article-title: LIBSVM: a library for support vector machines
– volume: 101
  start-page: 199
  year: 2019
  end-page: 208
  ident: bb0120
  article-title: Sewer damage detection from imbalanced CCTV inspection data using deep convolutional neural networks with hierarchical classification
  publication-title: Autom. Constr.
– year: 2015
  ident: bb0140
  article-title: NASSCO's pipeline assessment and certification program
– volume: 15
  start-page: 73
  year: 2006
  end-page: 83
  ident: bb0175
  article-title: Neuro-fuzzy network for the classification of buried pipe defects
  publication-title: Autom. Constr.
– volume: 20
  start-page: 4013014
  year: 2013
  ident: bb0080
  article-title: Efficient algorithm for crack detection in sewer images from closed-circuit television inspections
  publication-title: J. Infrastruct. Syst.
– volume: 15
  start-page: 479
  year: 2006
  end-page: 488
  ident: bb0110
  article-title: Innovative method for assessment of underground sewer pipe condition
  publication-title: Autom. Constr.
– volume: 1
  start-page: 886
  year: 2005
  end-page: 893
  ident: bb0030
  article-title: Histograms of oriented gradients for human detection
  publication-title: IEEE Conference on Computer Vision & Pattern Recognition
– volume: 46
  start-page: 1
  year: 2013
  end-page: 15
  ident: bb0130
  article-title: State of the art review of inspection technologies for condition assessment of water pipes
  publication-title: Measurement
– volume: 15
  start-page: 47
  year: 2006
  end-page: 57
  ident: bb0180
  article-title: Segmentation of buried concrete pipe images
  publication-title: Autom. Constr.
– year: 2017
  ident: bb0005
  article-title: 2017 infrastructure report card: wastewater
– volume: 2
  start-page: 37
  year: 1987
  end-page: 52
  ident: bb0210
  article-title: Principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 112
  start-page: 279
  year: 2017
  end-page: 290
  ident: bb0015
  article-title: Acoustic measurement and morphological features of organic sediment deposits in combined sewer networks
  publication-title: Water Res.
– volume: 36
  start-page: 1532
  year: 2014
  end-page: 1545
  ident: bb0040
  article-title: Fast feature pyramids for object detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 37
  start-page: 1558
  year: 2015
  end-page: 1570
  ident: bb0045
  article-title: Fast edge detection using structured forests
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2013
  ident: bb0090
  article-title: Automated Analysis of Sewer Inspection Closed Circuit Television Videos Using Image Processing Techniques
– volume: 14
  start-page: 264
  year: 2018
  end-page: 273
  ident: bb0010
  article-title: Evaluation of uncertainties in sewer condition assessment
  publication-title: Struct. Infrastruct. Eng.
– volume: 38
  start-page: 1766
  year: 2011
  end-page: 1776
  ident: bb0230
  article-title: Systematic image quality assessment for sewer inspection
  publication-title: Expert Syst. Appl.
– start-page: 839
  year: 1998
  end-page: 846
  ident: bb0185
  article-title: Bilateral filtering for gray and color images
  publication-title: IEEE International Conference on Computer Vision
– year: 2008
  ident: bb0155
  article-title: Advanced Data Mining Techniques
– volume: 3
  start-page: 2551
  year: 2002
  end-page: 2556
  ident: bb0050
  article-title: Automated sewer pipe inspection through image processing
  publication-title: IEEE International Conference on Robotics and Automation
– volume: 5
  start-page: 04013018
  year: 2013
  ident: bb0160
  article-title: Demonstration and evaluation of state-of-the-art wastewater collection systems condition assessment technologies
  publication-title: J. Pipeline Systems Engineering and Practice
– volume: 2006
  start-page: 41
  year: 2006
  end-page: 51
  ident: bb0195
  article-title: Asset management around the world–the expertise of Australia/New Zealand, the UK and the US
  publication-title: Proc. Water Environ. Fed.
– volume: 55
  start-page: 119
  issue: 1
  year: 1997
  ident: 10.1016/j.autcon.2020.103289_bb0065
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1997.1504
– volume: 36
  start-page: 1532
  issue: 8
  year: 2014
  ident: 10.1016/j.autcon.2020.103289_bb0040
  article-title: Fast feature pyramids for object detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2300479
– ident: 10.1016/j.autcon.2020.103289_bb0140
– volume: 36
  start-page: 3562
  issue: 2
  year: 2009
  ident: 10.1016/j.autcon.2020.103289_bb0225
  article-title: Segmenting ideal morphologies of sewer pipe defects on CCTV images for automated diagnosis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.02.006
– start-page: 198
  year: 2019
  ident: 10.1016/j.autcon.2020.103289_bb0055
– volume: 3
  start-page: 850
  year: 2006
  ident: 10.1016/j.autcon.2020.103289_bb0150
  article-title: Efficient non-maximum suppression
– volume: 20
  start-page: 4013014
  issue: 2
  year: 2013
  ident: 10.1016/j.autcon.2020.103289_bb0080
  article-title: Efficient algorithm for crack detection in sewer images from closed-circuit television inspections
  publication-title: J. Infrastruct. Syst.
  doi: 10.1061/(ASCE)IS.1943-555X.0000161
– start-page: 3158
  year: 2013
  ident: 10.1016/j.autcon.2020.103289_bb0125
  article-title: Sketch tokens: a learned mid-level representation for contour and object detection
– volume: 15
  start-page: 73
  issue: 1
  year: 2006
  ident: 10.1016/j.autcon.2020.103289_bb0175
  article-title: Neuro-fuzzy network for the classification of buried pipe defects
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2005.02.005
– volume: 3
  start-page: 2551
  year: 2002
  ident: 10.1016/j.autcon.2020.103289_bb0050
  article-title: Automated sewer pipe inspection through image processing
– volume: 35
  start-page: 1327
  issue: 3
  year: 2008
  ident: 10.1016/j.autcon.2020.103289_bb0220
  article-title: Automated diagnosis of sewer pipe defects based on machine learning approaches
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.08.013
– volume: 38
  start-page: 1766
  issue: 3
  year: 2011
  ident: 10.1016/j.autcon.2020.103289_bb0230
  article-title: Systematic image quality assessment for sewer inspection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.07.103
– volume: 91
  start-page: 273
  year: 2018
  ident: 10.1016/j.autcon.2020.103289_bb0115
  article-title: Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.03.028
– volume: 104
  start-page: 281
  year: 2019
  ident: 10.1016/j.autcon.2020.103289_bb0135
  article-title: A defect classification methodology for sewer image sets with convolutional neural networks
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.04.013
– volume: 15
  start-page: 58
  issue: 1
  year: 2006
  ident: 10.1016/j.autcon.2020.103289_bb0170
  article-title: Automated detection of cracks in buried concrete pipe images
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2005.02.006
– volume: 1
  start-page: 886
  year: 2005
  ident: 10.1016/j.autcon.2020.103289_bb0030
  article-title: Histograms of oriented gradients for human detection
– ident: 10.1016/j.autcon.2020.103289_bb0005
– volume: 46
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.autcon.2020.103289_bb0130
  article-title: State of the art review of inspection technologies for condition assessment of water pipes
  publication-title: Measurement
  doi: 10.1016/j.measurement.2012.05.032
– volume: 18
  start-page: 587
  issue: 5
  year: 2009
  ident: 10.1016/j.autcon.2020.103289_bb0070
  article-title: Automated defect detection for sewer pipeline inspection and condition assessment
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2008.12.003
– volume: 63
  start-page: 127
  year: 2017
  ident: 10.1016/j.autcon.2020.103289_bb0165
  article-title: A novel pixel neighborhood differential statistic feature for pedestrian and face detection
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2016.09.010
– volume: 15
  start-page: 479
  issue: 4
  year: 2006
  ident: 10.1016/j.autcon.2020.103289_bb0110
  article-title: Innovative method for assessment of underground sewer pipe condition
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2005.06.007
– year: 2013
  ident: 10.1016/j.autcon.2020.103289_bb0090
– start-page: 839
  year: 1998
  ident: 10.1016/j.autcon.2020.103289_bb0185
  article-title: Bilateral filtering for gray and color images
  publication-title: IEEE International Conference on Computer Vision
  doi: 10.1109/ICCV.1998.710815
– volume: 23
  start-page: 921
  issue: 10
  year: 2005
  ident: 10.1016/j.autcon.2020.103289_bb0100
  article-title: A robust approach for automatic detection and segmentation of cracks in underground pipeline images
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2005.05.017
– volume: 31
  start-page: 169
  issue: 2
  year: 1998
  ident: 10.1016/j.autcon.2020.103289_bb0215
  article-title: Sewer pipe deformation assessment by image analysis of video surveys
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(97)00037-X
– volume: 109
  year: 2020
  ident: 10.1016/j.autcon.2020.103289_bb0235
  article-title: A deep learning-based framework for an automated defect detection system for sewer pipes
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.102967
– volume: 95
  start-page: 155
  year: 2018
  ident: 10.1016/j.autcon.2020.103289_bb0025
  article-title: Automated detection of sewer pipe defects in closed-circuit television images using deep learning techniques
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.08.006
– volume: 5
  start-page: 04013018
  issue: 2
  year: 2013
  ident: 10.1016/j.autcon.2020.103289_bb0160
  article-title: Demonstration and evaluation of state-of-the-art wastewater collection systems condition assessment technologies
  publication-title: J. Pipeline Systems Engineering and Practice
  doi: 10.1061/(ASCE)PS.1949-1204.0000161
– volume: 5
  start-page: 2530
  year: 2010
  ident: 10.1016/j.autcon.2020.103289_bb0200
  article-title: Comparison analysis on present image-based crack detection methods in concrete structures
– volume: 15
  start-page: 47
  issue: 1
  year: 2006
  ident: 10.1016/j.autcon.2020.103289_bb0180
  article-title: Segmentation of buried concrete pipe images
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2005.02.007
– volume: 112
  start-page: 279
  year: 2017
  ident: 10.1016/j.autcon.2020.103289_bb0015
  article-title: Acoustic measurement and morphological features of organic sediment deposits in combined sewer networks
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.01.050
– volume: 37
  start-page: 1558
  issue: 8
  year: 2015
  ident: 10.1016/j.autcon.2020.103289_bb0045
  article-title: Fast edge detection using structured forests
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2377715
– volume: 4
  start-page: 395
  year: 1999
  ident: 10.1016/j.autcon.2020.103289_bb0060
  article-title: Automated analysis and detection of cracks in underground scanned pipes
– volume: 38
  start-page: 1
  year: 2014
  ident: 10.1016/j.autcon.2020.103289_bb0075
  article-title: Automated defect detection in sewer closed circuit television images using histograms of oriented gradients and support vector machine
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2013.10.012
– volume: 24
  start-page: 227
  issue: 2
  year: 2013
  ident: 10.1016/j.autcon.2020.103289_bb0105
  article-title: An innovative methodology for detection and quantification of cracks through incorporation of depth perception
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-011-0394-0
– year: 2008
  ident: 10.1016/j.autcon.2020.103289_bb0155
– volume: 9
  start-page: 214
  issue: 3
  year: 2013
  ident: 10.1016/j.autcon.2020.103289_bb0035
  article-title: The consistency of visual sewer inspection data
  publication-title: Struct. Infrastruct. Eng.
  doi: 10.1080/15732479.2010.541265
– volume: 14
  start-page: 264
  issue: 2
  year: 2018
  ident: 10.1016/j.autcon.2020.103289_bb0010
  article-title: Evaluation of uncertainties in sewer condition assessment
  publication-title: Struct. Infrastruct. Eng.
  doi: 10.1080/15732479.2017.1356858
– volume: 2011
  issue: 5
  year: 2011
  ident: 10.1016/j.autcon.2020.103289_bb0190
  article-title: Field demonstration of electro-scan defect location technology for condition assessment of wastewater collection systems
  publication-title: Proc. Water Environ. Fed.
  doi: 10.2175/193864711802837309
– volume: 13
  start-page: 18
  issue: 4
  year: 1998
  ident: 10.1016/j.autcon.2020.103289_bb0085
  article-title: Support vector machines
  publication-title: IEEE Intelligent Systems and Their Applications
  doi: 10.1109/5254.708428
– volume: 7
  start-page: 77
  issue: 2
  year: 2001
  ident: 10.1016/j.autcon.2020.103289_bb0205
  article-title: Challenging issues in modeling deterioration of combined sewers
  publication-title: J. Infrastruct. Syst.
  doi: 10.1061/(ASCE)1076-0342(2001)7:2(77)
– volume: 101
  start-page: 199
  year: 2019
  ident: 10.1016/j.autcon.2020.103289_bb0120
  article-title: Sewer damage detection from imbalanced CCTV inspection data using deep convolutional neural networks with hierarchical classification
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.01.017
– ident: 10.1016/j.autcon.2020.103289_bb0145
– ident: 10.1016/j.autcon.2020.103289_bb0020
– volume: 2006
  start-page: 41
  issue: 1
  year: 2006
  ident: 10.1016/j.autcon.2020.103289_bb0195
  article-title: Asset management around the world–the expertise of Australia/New Zealand, the UK and the US
  publication-title: Proc. Water Environ. Fed.
  doi: 10.2175/193864706783789464
– volume: 2
  start-page: 37
  issue: 1–3
  year: 1987
  ident: 10.1016/j.autcon.2020.103289_bb0210
  article-title: Principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(87)80084-9
SSID ssj0007069
Score 2.3805165
Snippet This paper presents a novel computer vision based system to support automated PACP (Pipeline Assessment Certification Program) coding for cracks. The proposed...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103289
SubjectTerms Automated defects detection
Automation
Closed circuit television
Coding
Computer vision
Crack detection and categorization
Cracks
Diameters
Flaw detection
Frames per second
Histograms
Inspection
PACP
Pipelines
Sewer
Sewer pipes
Support vector machines
Video
View classification
Vision systems
Title Classifying cracks at sub-class level in closed circuit television sewer inspection videos
URI https://dx.doi.org/10.1016/j.autcon.2020.103289
https://www.proquest.com/docview/2454516233
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lHtSDaFWsL3Lwmnabyb6ORSxVsRctFC8hm01hpbRld4s3f7uT7K4vEMHjZifLMpPMfAPzzRByBUlq8A5xNjAcExQEuCwJA8M84BjdVCKMI9I-TILxVNzN_FmLXDdcGFtWWfv-yqc7b12v9Gtt9tdZ1n_0Yo7h00EQxB2xZZQLEdpT3nv7LPMIvaDqt8cDZqUb-pyr8VKb0madHDFTz3WWi38LTz8ctYs-o32yV8NGOqz-7IC0zLJDthtWcdEhu18aCx6SZzfrMnMcJqpzy6OnqqTFJmHavqELWytEsyXVi1VhUqqzXG-ykpYfdHNamFeTo0jFxcQFy9hbFUdkOrp5uh6zeooC0wCiZPPU52Eyj8AzhmPOyBWADzoFtNBAD_xoDkpxFQmN0CYC0KFByATzFOWUSEI4Ju3lamlOCB3oKLX93v00DkTgKaVigwhH65inmJiFXQKN8qSuW4zbSRcL2dSSvchK5dKqXFYq7xL2sWtdtdj4Qz5s7CK_HRWJUeCPneeNGWV9VQvJhW-HFXOA039_-Izs2KeqyO-ctMt8Yy4QrJTJpTuNl2RreHs_nrwDFkToRQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6qHtSD-MS3OXiN3Wb2eRSx1Ed70YJ4CdlsCiulle4Wb_52J9nd-gARvCaTZZlJZr6B-WYAzjHNDL0hwTtGUIJCAJenUWi4h4Kim0p944i0_UHYG_q3T8FTC64aLowtq6x9f-XTnbeuV9q1Ntuved5-8BJB4dNBEMIdSbQEKz49XzvG4OL9s84j8sKq4Z4IuRVv-HOuyEvNS5t2CgJNF661XPJbfPrhqV346W7CRo0b2WX1a1vQMpNtWG1oxcU2rH_pLLgDz27YZe5ITEzPLJGeqZIV85Rru8PGtliI5ROmx9PCZEznMz3PS1Yu-OasMG9mRiIVGZMWLGVvWuzCsHv9eNXj9RgFrhH9ko-yQETpKEbPGEFJo1CIAeoMyUQd3QniESolVOxrwjYxoo4MYSYcZSSn_DTCPVieTCdmH1hHx5lt-B5kSeiHnlIqMQRxtE5ERplZdADYKE_quse4HXUxlk0x2YusVC6tymWl8gPgi1OvVY-NP-Sjxi7y212RFAb-OHncmFHWb7WQwg_stGKBePjvD5_Bau-xfy_vbwZ3R7Bmd6qKv2NYLmdzc0LIpUxP3c38AHRD6dM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classifying+cracks+at+sub-class+level+in+closed+circuit+television+sewer+inspection+videos&rft.jtitle=Automation+in+construction&rft.au=Zuo%2C+Xin&rft.au=Dai%2C+Bin&rft.au=Shan%2C+Yongwei&rft.au=Shen%2C+Jifeng&rft.date=2020-10-01&rft.pub=Elsevier+B.V&rft.issn=0926-5805&rft.eissn=1872-7891&rft.volume=118&rft_id=info:doi/10.1016%2Fj.autcon.2020.103289&rft.externalDocID=S0926580519305497
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon