Upwind scheme to solve time-periodic temperature effect on convective nanofluid flow in a square cavity
The phenomenon of natural convection of copper–water nanofluid inside a square cavity with time-periodic temperature is studied numerically. The studied configuration is subjected to a temperature gradient, with the bottom wall ( y = 0) maintained to cold temperature and the top one ( y = L ) sub...
Saved in:
Published in | European physical journal plus Vol. 137; no. 2; p. 224 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
12.02.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The phenomenon of natural convection of copper–water nanofluid inside a square cavity with time-periodic temperature is studied numerically. The studied configuration is subjected to a temperature gradient, with the bottom wall (
y
= 0) maintained to cold temperature and the top one (
y
=
L
) subject to a periodic temperature. The other walls, at
x
= 0 and
x
=
L
, are adiabatic. Dimensionless governing equations formulated using stream function, vorticity, and temperature have been solved by finite difference method, where the upwind scheme was employed. The studied configuration is similar to a cooling block that follows the solar panel in these different inclinations. The objective of the study is to predict the behaviour of this block filled with copper-based nanofluids in the cooling of the solar device. A calculation code was performed to analyse the effect of Rayleigh number (Ra), the oscillations frequency (
f
), the effect of cavity inclination angle, and nanoparticle suspension rate on fluid flow and heat transfer as well as the appearance of cooling periods. It has been found that a good intensification of heat transfer is directly related to the increase in Rayleigh number and the increase in the frequency of temperature oscillation, which is considered a very good control parameter that intensifies convective flow and heat transfer. |
---|---|
AbstractList | The phenomenon of natural convection of copper–water nanofluid inside a square cavity with time-periodic temperature is studied numerically. The studied configuration is subjected to a temperature gradient, with the bottom wall (y = 0) maintained to cold temperature and the top one (y = L) subject to a periodic temperature. The other walls, at x = 0 and x = L, are adiabatic. Dimensionless governing equations formulated using stream function, vorticity, and temperature have been solved by finite difference method, where the upwind scheme was employed. The studied configuration is similar to a cooling block that follows the solar panel in these different inclinations. The objective of the study is to predict the behaviour of this block filled with copper-based nanofluids in the cooling of the solar device. A calculation code was performed to analyse the effect of Rayleigh number (Ra), the oscillations frequency (f), the effect of cavity inclination angle, and nanoparticle suspension rate on fluid flow and heat transfer as well as the appearance of cooling periods. It has been found that a good intensification of heat transfer is directly related to the increase in Rayleigh number and the increase in the frequency of temperature oscillation, which is considered a very good control parameter that intensifies convective flow and heat transfer. The phenomenon of natural convection of copper–water nanofluid inside a square cavity with time-periodic temperature is studied numerically. The studied configuration is subjected to a temperature gradient, with the bottom wall ( y = 0) maintained to cold temperature and the top one ( y = L ) subject to a periodic temperature. The other walls, at x = 0 and x = L , are adiabatic. Dimensionless governing equations formulated using stream function, vorticity, and temperature have been solved by finite difference method, where the upwind scheme was employed. The studied configuration is similar to a cooling block that follows the solar panel in these different inclinations. The objective of the study is to predict the behaviour of this block filled with copper-based nanofluids in the cooling of the solar device. A calculation code was performed to analyse the effect of Rayleigh number (Ra), the oscillations frequency ( f ), the effect of cavity inclination angle, and nanoparticle suspension rate on fluid flow and heat transfer as well as the appearance of cooling periods. It has been found that a good intensification of heat transfer is directly related to the increase in Rayleigh number and the increase in the frequency of temperature oscillation, which is considered a very good control parameter that intensifies convective flow and heat transfer. |
ArticleNumber | 224 |
Author | Bendaraa, A. Charafi, M. M. Hasnaoui, A. |
Author_xml | – sequence: 1 givenname: A. orcidid: 0000-0002-7191-9781 surname: Bendaraa fullname: Bendaraa, A. email: anass.bendaraa@gmail.com organization: LS2ME Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University – sequence: 2 givenname: M. M. surname: Charafi fullname: Charafi, M. M. organization: LS2ME Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University – sequence: 3 givenname: A. surname: Hasnaoui fullname: Hasnaoui, A. organization: LS2ME Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University |
BookMark | eNqNkEtPAyEYRYmpibX2N0jieiwMzHRYuDCNr6SJG7smlIFKMwNTYPr491JronGjJF-4i3s-yLkEA-usAuAao1uMKZqobt1NAiakRBnK8zSUFNn-DAxzzFBWUEoHP_IFGIewRulQhimjQ7BadDtjaxjku2oVjA4G12xTMK3KOuWNq42EUbUpi9h7BZXWSkboLJTOblM0qW6FdbrpTQ1143bQWChg2PQi9aXYmni4AudaNEGNv-4RWDw-vM2es_nr08vsfp5JQmjMdCUqKRle5vUS0ZwJXWOSS1ILVC4Jnla11jkuRMHqihS4kqWUWglJl7RCsmBkBG5OezvvNr0Kka9d7216kucMs4IwWpLUuju1pHcheKW5NFFE42z0wjQcI37Uy496-UkvT3r5p16-T_z0F9950wp_-AdZnciQCLtS_vt_f6EfMVyX5g |
CitedBy_id | crossref_primary_10_1088_1402_4896_ad6c83 crossref_primary_10_1177_09544089221132356 |
Cites_doi | 10.1016/j.ijhydene.2016.07.132 10.1063/1.4993866 10.1063/1.4913871 10.1016/j.applthermaleng.2014.05.017 10.1016/j.apm.2015.09.075 10.1016/j.ijheatmasstransfer.2011.04.048 10.1016/S0017-9310(03)00156-X 10.1016/0017-9310(91)90295-P 10.1063/1.4754271 10.1016/j.applthermaleng.2018.01.041 10.1016/j.icheatmasstransfer.2017.06.011 10.1140/epjp/i2019-12814-8 10.1002/fld.1650030305 10.1115/1.2825978 10.1016/j.ijmecsci.2019.04.014 10.1016/j.microrel.2016.09.009 10.1063/1.5124516 10.1201/b12884 10.1016/j.ijheatmasstransfer.2018.04.046 10.1016/j.ijheatmasstransfer.2019.118665 10.1016/j.applthermaleng.2013.10.065 10.1016/j.enbuild.2016.03.053 10.1016/j.applthermaleng.2019.04.109 10.2989/16073606.2017.1404503 10.1166/sl.2019.4067 10.1016/j.ijheatmasstransfer.2017.09.070 10.1016/j.icheatmasstransfer.2013.02.015 10.1016/j.ultsonch.2017.04.001 10.1063/1.5022060 10.1016/0017-9310(94)90219-4 10.1051/matecconf/201824101006 10.1016/j.ijheatmasstransfer.2019.118447 10.1016/j.ijheatmasstransfer.2016.08.034 10.1016/j.cep.2018.03.031 10.1063/1.5091709 10.1016/j.enbuild.2014.03.060 10.1016/j.ijhydene.2017.02.031 10.1016/j.rser.2012.05.023 10.1063/1.5055663 10.1016/j.applthermaleng.2016.01.115 10.1016/j.renene.2018.01.097 10.1063/1.5079789 10.1016/j.apt.2018.01.018 10.1063/1.5074089 10.1016/j.rser.2017.09.005 10.1016/S0142-727X(99)00067-3 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022 The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
DBID | AAYXX CITATION 8FE 8FG AEUYN AFKRA ARAPS BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO HCIFZ P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1140/epjp/s13360-022-02435-x |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central (New) Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2190-5444 |
ExternalDocumentID | 10_1140_epjp_s13360_022_02435_x |
GroupedDBID | -5F -5G -BR -EM -~C 06D 0R~ 203 29~ 2JN 2KG 30V 4.4 406 408 8UJ 95. 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACREN ACZOJ ADHHG ADINQ ADKNI ADKPE ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFKRA AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS ARMRJ AXYYD AYJHY BENPR BGLVJ BGNMA BHPHI BKSAR CCPQU CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI ESBYG FERAY FFXSO FIGPU FNLPD FRRFC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HCIFZ HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O93 O9J P9T PCBAR PT4 RID RLLFE ROL RSV S27 S3B SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z7S Z7Y ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ DWQXO P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c334t-f8a8cc91b2db0429afd132c3da06b3178dff215a59d83518c6ccfeac4b480c593 |
IEDL.DBID | U2A |
ISSN | 2190-5444 |
IngestDate | Sat Jul 19 10:40:34 EDT 2025 Tue Jul 01 02:42:26 EDT 2025 Thu Apr 24 23:12:19 EDT 2025 Fri Feb 21 02:46:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-f8a8cc91b2db0429afd132c3da06b3178dff215a59d83518c6ccfeac4b480c593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7191-9781 |
PQID | 2919539463 |
PQPubID | 2044220 |
ParticipantIDs | proquest_journals_2919539463 crossref_citationtrail_10_1140_epjp_s13360_022_02435_x crossref_primary_10_1140_epjp_s13360_022_02435_x springer_journals_10_1140_epjp_s13360_022_02435_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-12 |
PublicationDateYYYYMMDD | 2022-02-12 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | European physical journal plus |
PublicationTitleAbbrev | Eur. Phys. J. Plus |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Sheikholeslami, Shamlooei (CR36) 2017; 42 Khanafer, Vafai (CR27) 2011; 54 Miroshnichenko, Sheremet (CR19) 2018; 82 CR32 Bianco, Vafai (CR28) 2015 Priyanka, Basak (CR22) 2018; 128 Khanafer, Vafai, Lightstone (CR35) 2003; 46 Mavromatidis (CR6) 2016; 120 Huminic, Huminic (CR9) 2012; 16 Amiri, Vafai (CR41) 1994; 37 Das, Roy, Basak (CR18) 2017; 106 Abelman, Parsa, Sayehvand (CR43) 2018; 41 Rashad, Mansour, Armaghani, Chamkha (CR39) 2019; 31 Taylor (CR30) 2013; 113 Mohebbi, Izadi, Chamkha, Mohebbi, Izadi, Chamkha (CR31) 2017; 29 Xuan, Li (CR42) 2000; 21 CR44 Boualit, Zeraibi, Chergui, Lebbi, Boutina, Laouar (CR49) 2017; 42 Chen, Lin, Chang (CR25) 2018; 124 Bahiraei, Rahmani, Yaghoobi, Khodabandeh, Mashayekhi, Amani (CR8) 2018; 133 Fan, Zhang, Mujumdar (CR10) 2017; 39 El Moutaouakil, Zrikem, Abdelbaki (CR13) 2016; 40 De Vahl Davis (CR47) 1983; 3 Mansour, Bakier (CR21) 2013; 44 Sheremet, Pop, Mahian (CR34) 2018; 116 Hu, He, Gao, Zhang (CR11) 2019; 155 Bendaraa, Charafi, Hasnaoui (CR7) 2019; 17 CR17 Baïri, Zarco-Pernia, García De María (CR20) 2014; 63 CR16 CR15 Schaub, Kriegel, Brandt (CR14) 2019; 144 Fusegi, Hyun, Kuwahara, Farouk (CR48) 1991; 34 Ma, Xu (CR23) 2016; 99 Kashyap, Dass (CR37) 2019; 157–158 Lee, Choi, Li, Eastman (CR45) 1999; 121 Bendaraa, Charafi, Hasnaoui (CR26) 2019; 31 Roy (CR38) 2018; 30 Bendaraa, Charafi, Hasnaoui (CR40) 2019; 134 Haddad, Baïri, Alilat, Bauzin, Laraqi (CR2) 2017; 87 Liu, Zhang, Huang, Suo, Bian, Zhao (CR24) 2019; 142 Khanafer, Vafai (CR29) 2018; 123 Ouakarrouch, El Azhary, Laaroussi, Garoum, Feiz (CR5) 2019; 11 Hamid, Khan, Khan, Haq (CR33) 2019; 31 Phan, Lin (CR4) 2014; 77 Anderson, Tannehill, Pletcher (CR46) 2016 Purusothaman (CR3) 2018; 29 Yang, Wen, Juan, Su, Wu (CR12) 2014; 70 Baïri (CR1) 2016; 66 M Schaub (2435_CR14) 2019; 144 K Khanafer (2435_CR35) 2003; 46 S Abelman (2435_CR43) 2018; 41 L El Moutaouakil (2435_CR13) 2016; 40 2435_CR32 A Baïri (2435_CR20) 2014; 63 J Ma (2435_CR23) 2016; 99 K Fan (2435_CR10) 2017; 39 R Mohebbi (2435_CR31) 2017; 29 S Lee (2435_CR45) 1999; 121 T Fusegi (2435_CR48) 1991; 34 LE Mavromatidis (2435_CR6) 2016; 120 O Haddad (2435_CR2) 2017; 87 A Amiri (2435_CR41) 1994; 37 AM Rashad (2435_CR39) 2019; 31 Y Hu (2435_CR11) 2019; 155 M Hamid (2435_CR33) 2019; 31 M Ouakarrouch (2435_CR5) 2019; 11 D Kashyap (2435_CR37) 2019; 157–158 A Bendaraa (2435_CR40) 2019; 134 Y Liu (2435_CR24) 2019; 142 2435_CR44 K Khanafer (2435_CR27) 2011; 54 A Baïri (2435_CR1) 2016; 66 M Sheikholeslami (2435_CR36) 2017; 42 A Purusothaman (2435_CR3) 2018; 29 V Bianco (2435_CR28) 2015 G De Vahl Davis (2435_CR47) 1983; 3 MA Mansour (2435_CR21) 2013; 44 A Boualit (2435_CR49) 2017; 42 Y Xuan (2435_CR42) 2000; 21 D Anderson (2435_CR46) 2016 A Bendaraa (2435_CR26) 2019; 31 K Khanafer (2435_CR29) 2018; 123 MA Sheremet (2435_CR34) 2018; 116 M Bahiraei (2435_CR8) 2018; 133 2435_CR16 2435_CR15 IV Miroshnichenko (2435_CR19) 2018; 82 2435_CR17 R Taylor (2435_CR30) 2013; 113 G Huminic (2435_CR9) 2012; 16 AS Yang (2435_CR12) 2014; 70 L Phan (2435_CR4) 2014; 77 A Bendaraa (2435_CR7) 2019; 17 HT Chen (2435_CR25) 2018; 124 D Das (2435_CR18) 2017; 106 D Priyanka (2435_CR22) 2018; 128 NC Roy (2435_CR38) 2018; 30 |
References_xml | – volume: 31 start-page: 052003 issue: 5 year: 2019 end-page: 52012 ident: CR26 article-title: Numerical study of natural convection in a differentially heated square cavity filled with nanofluid in the presence of fins attached to walls in different locations publication-title: Phys. Fluids – volume: 123 start-page: 398 year: 2018 end-page: 406 ident: CR29 article-title: A review on the applications of nanofluids in solar energy field publication-title: J. Renew. Energy – volume: 30 start-page: 113605 issue: 11 year: 2018 ident: CR38 article-title: Natural convection of nanofluids in a square enclosure with different shapes of inner geometry natural convection of nanofluids in a square enclosure with different shapes of inner geometry publication-title: Phys. Fluids – volume: 144 start-page: 118665 year: 2019 ident: CR14 article-title: Analytical prediction of heat transfer by unsteady natural convection at vertical flat plates in air publication-title: Int. J. Heat Mass Transf. – ident: CR16 – volume: 42 start-page: 1 issue: 9 year: 2017 end-page: 11 ident: CR36 article-title: Fe3O4-H2O nanofluid natural convection in presence of thermal radiation publication-title: Int. J. Hydrogen Energy – volume: 82 start-page: 40 year: 2018 end-page: 59 ident: CR19 article-title: Turbulent natural convection heat transfer in rectangular enclosures using experimental and numerical approaches: a review publication-title: Renew. Sustain. Energy Rev. – volume: 157–158 start-page: 45 year: 2019 end-page: 59 ident: CR37 article-title: Effect of boundary conditions on heat transfer and entropy generation during two-phase mixed convection hybrid Al O –Cu/water nanofluid flow in a cavity publication-title: Int. J. Mech. Sci. – volume: 40 start-page: 2913 issue: 4 year: 2016 end-page: 2928 ident: CR13 article-title: Analytical and numerical study of natural convection induced by a volumetric heat generation in inclined cavities asymmetrically cooled by heat fluxes publication-title: Appl. Math. Model. – volume: 37 start-page: 939 issue: 6 year: 1994 end-page: 954 ident: CR41 article-title: Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media publication-title: Int. J. Heat Mass Transf. – volume: 42 start-page: 8611 issue: 13 year: 2017 end-page: 8623 ident: CR49 article-title: Natural convection investigation in square cavity filled with nanofluid using dispersion model publication-title: Int. J. Hydrogen Energy – volume: 128 start-page: 223 year: 2018 end-page: 244 ident: CR22 article-title: Role of curvature of walls (concave/convex) for intensification of thermal processing with optimal exergy loss during natural convection of fluid publication-title: Chem. Eng. Process. Process Intensif. – volume: 134 start-page: 468 issue: 9 year: 2019 ident: CR40 article-title: Numerical modeling of natural convection in horizontal and inclined square cavities filled with nanofluid in the presence of magnetic field publication-title: Eur. Phys. J. Plus – volume: 121 start-page: 280 issue: 2 year: 1999 ident: CR45 article-title: Measuring thermal conductivity of fluids containing oxide nanoparticles publication-title: J. Heat Transf. – volume: 39 start-page: 47 year: 2017 end-page: 57 ident: CR10 article-title: Application of airborne ultrasound in the convective drying of fruits and vegetables: a review publication-title: Ultrason. Sonochem. – volume: 46 start-page: 3639 issue: 19 year: 2003 end-page: 3653 ident: CR35 article-title: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids publication-title: Int. J. Heat Mass Transf. – ident: CR15 – volume: 99 start-page: 625 year: 2016 end-page: 634 ident: CR23 article-title: Unsteady natural convection and heat transfer in a differentially heated cavity with a fin for high Rayleigh numbers publication-title: Appl. Therm. Eng. – volume: 3 start-page: 249 issue: 3 year: 1983 end-page: 264 ident: CR47 article-title: Natural convection of air in a square cavity: a bench mark numerical solution publication-title: Int. J. Numer. Methods Fluids – ident: CR32 – volume: 16 start-page: 5625 issue: 8 year: 2012 end-page: 5638 ident: CR9 article-title: Application of nanofluids in heat exchangers: a review publication-title: Renew. Sustain. Energy Rev. – volume: 21 start-page: 58 issue: 1 year: 2000 end-page: 64 ident: CR42 article-title: Heat transfer enhancement of nanofluids publication-title: Int. J. Heat fluid Flow – volume: 63 start-page: 304 issue: 1 year: 2014 end-page: 322 ident: CR20 article-title: A review on natural convection in enclosures for engineering applications. The particular case of the parallelogrammic diode cavity publication-title: Appl. Therm. Eng. – volume: 124 start-page: 1217 year: 2018 end-page: 1229 ident: CR25 article-title: Numerical and experimental studies of natural convection in a heated cavity with a horizontal fin on a hot sidewall publication-title: Int. J. Heat Mass Transf. – volume: 31 issue: 4 year: 2019 ident: CR39 article-title: MHD mixed convection and entropy generation of nanofluid in a lid-driven U-shaped cavity with internal heat and partial slip publication-title: Phys. Fluids – volume: 106 start-page: 356 year: 2017 end-page: 406 ident: CR18 article-title: Studies on natural convection within enclosures of various (non-square) shapes—a review publication-title: Int. J. Heat Mass Transf. – volume: 113 start-page: 011301 issue: 1 year: 2013 ident: CR30 article-title: Small particles, big impacts: a review of the diverse applications of nanofluids Small particles, big impacts: a review of the diverse applications of nanofluids publication-title: J. Appl. Phys. – volume: 54 start-page: 4410 issue: 19–20 year: 2011 end-page: 4428 ident: CR27 article-title: A critical synthesis of thermophysical characteristics of nanofluids publication-title: Int. J. Heat Mass Transf. – volume: 116 start-page: 751 year: 2018 end-page: 761 ident: CR34 article-title: Natural convection in an inclined cavity with time-periodic temperature boundary conditions using nanofluids: application in solar collectors publication-title: Int. J. Heat Mass Transf. – volume: 44 start-page: 108 year: 2013 end-page: 115 ident: CR21 article-title: Free convection heat transfer in complex-wavy-wall enclosed cavity filled with nanofluid publication-title: Int. Commun. Heat Mass Transf. – volume: 142 start-page: 118447 year: 2019 ident: CR24 article-title: Enhancing the flow and heat transfer in a convective cavity using symmetrical and adiabatic twin fins publication-title: Int. J. Heat Mass Transf. – volume: 29 start-page: 996 issue: 4 year: 2018 end-page: 1004 ident: CR3 article-title: Investigation of natural convection heat transfer performance of the QFN-PCB electronic module by using nanofluid for power electronics cooling applications publication-title: Adv. Powder Technol. – volume: 29 start-page: 122009 issue: 12 year: 2017 ident: CR31 article-title: Heat source location and natural convection in a C-shaped enclosure saturated by a nanofluid publication-title: Phys. Fluids – volume: 120 start-page: 114 issue: 2016 year: 2016 end-page: 134 ident: CR6 article-title: Study of coupled transient radiation-natural convection heat transfer across rectangular cavities in the vicinity of low emissivity thin films for innovative building envelope applications publication-title: Energy Build. – volume: 70 start-page: 219 issue: 1 year: 2014 end-page: 230 ident: CR12 article-title: Using the central ventilation shaft design within public buildings for natural aeration enhancement publication-title: Appl. Therm. Eng. – volume: 34 start-page: 1543 issue: 6 year: 1991 end-page: 1557 ident: CR48 article-title: A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure publication-title: Int. J. Heat Mass Transf. – volume: 133 start-page: 137 year: 2018 end-page: 159 ident: CR8 article-title: Recent research contributions concerning use of nanofluids in heat exchangers: a critical review publication-title: Appl. Therm. Eng. – volume: 11 start-page: e00249 year: 2019 ident: CR5 article-title: Three-dimensional numerical simulation of conduction, natural convection, and radiation through alveolar building walls publication-title: Case Stud. Constr. Mater. – ident: CR44 – volume: 77 start-page: 364 year: 2014 end-page: 376 ident: CR4 article-title: A multi-zone building energy simulation of a data center model with hot and cold aisles publication-title: Energy Build. – volume: 87 start-page: 204 year: 2017 end-page: 211 ident: CR2 article-title: Free convection in ZnO–Water nanofluid-filled and tilted hemispherical enclosures containing a cubic electronic device publication-title: Int. Commun. Heat Mass Transf. – volume: 31 issue: 10 year: 2019 ident: CR33 article-title: Natural convection of water-based carbon nanotubes in a partially heated rectangular fin-shaped cavity with an inner cylindrical obstacle publication-title: Phys. Fluids – ident: CR17 – year: 2016 ident: CR46 publication-title: Computational fluid mechanics and heat transfer – volume: 17 start-page: 132 issue: 2 year: 2019 end-page: 136 ident: CR7 article-title: Study of the nanoparticles concentration effect on thermal performances of Al O based nanofluid in a double pipe heat exchanger publication-title: Sens. Lett. – volume: 41 start-page: 449 issue: 4 year: 2018 end-page: 467 ident: CR43 article-title: Nanofluid flow and heat transfer in a Brinkman porous channel with variable porosity publication-title: Quaest. Math. – year: 2015 ident: CR28 publication-title: Heat Transfer Enhancement with Nanofluids Enhancement – volume: 66 start-page: 85 year: 2016 end-page: 91 ident: CR1 article-title: Free convective heat transfer coefficient for high powered and tilted QFN64 electronic device publication-title: Microelectron. Reliab. – volume: 155 start-page: 650 year: 2019 end-page: 659 ident: CR11 article-title: Forced convective heat transfer characteristics of solar salt-based SiO2 nanofluids in solar energy applications publication-title: Appl. Therm. Eng. – volume: 42 start-page: 8611 issue: 13 year: 2017 ident: 2435_CR49 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.07.132 – volume: 29 start-page: 122009 issue: 12 year: 2017 ident: 2435_CR31 publication-title: Phys. Fluids doi: 10.1063/1.4993866 – ident: 2435_CR15 doi: 10.1063/1.4913871 – volume: 70 start-page: 219 issue: 1 year: 2014 ident: 2435_CR12 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.05.017 – volume: 40 start-page: 2913 issue: 4 year: 2016 ident: 2435_CR13 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2015.09.075 – volume: 54 start-page: 4410 issue: 19–20 year: 2011 ident: 2435_CR27 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2011.04.048 – volume: 46 start-page: 3639 issue: 19 year: 2003 ident: 2435_CR35 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(03)00156-X – volume: 34 start-page: 1543 issue: 6 year: 1991 ident: 2435_CR48 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(91)90295-P – volume: 113 start-page: 011301 issue: 1 year: 2013 ident: 2435_CR30 publication-title: J. Appl. Phys. doi: 10.1063/1.4754271 – volume: 133 start-page: 137 year: 2018 ident: 2435_CR8 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.01.041 – volume: 11 start-page: e00249 year: 2019 ident: 2435_CR5 publication-title: Case Stud. Constr. Mater. – volume: 87 start-page: 204 year: 2017 ident: 2435_CR2 publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2017.06.011 – volume: 134 start-page: 468 issue: 9 year: 2019 ident: 2435_CR40 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2019-12814-8 – volume: 3 start-page: 249 issue: 3 year: 1983 ident: 2435_CR47 publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.1650030305 – volume-title: Heat Transfer Enhancement with Nanofluids Enhancement year: 2015 ident: 2435_CR28 – volume: 121 start-page: 280 issue: 2 year: 1999 ident: 2435_CR45 publication-title: J. Heat Transf. doi: 10.1115/1.2825978 – volume: 157–158 start-page: 45 year: 2019 ident: 2435_CR37 publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2019.04.014 – volume: 66 start-page: 85 year: 2016 ident: 2435_CR1 publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2016.09.009 – volume: 31 issue: 10 year: 2019 ident: 2435_CR33 publication-title: Phys. Fluids doi: 10.1063/1.5124516 – volume-title: Computational fluid mechanics and heat transfer year: 2016 ident: 2435_CR46 doi: 10.1201/b12884 – volume: 124 start-page: 1217 year: 2018 ident: 2435_CR25 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.04.046 – volume: 144 start-page: 118665 year: 2019 ident: 2435_CR14 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.118665 – volume: 63 start-page: 304 issue: 1 year: 2014 ident: 2435_CR20 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2013.10.065 – volume: 120 start-page: 114 issue: 2016 year: 2016 ident: 2435_CR6 publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.03.053 – volume: 155 start-page: 650 year: 2019 ident: 2435_CR11 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.04.109 – volume: 41 start-page: 449 issue: 4 year: 2018 ident: 2435_CR43 publication-title: Quaest. Math. doi: 10.2989/16073606.2017.1404503 – volume: 17 start-page: 132 issue: 2 year: 2019 ident: 2435_CR7 publication-title: Sens. Lett. doi: 10.1166/sl.2019.4067 – volume: 116 start-page: 751 year: 2018 ident: 2435_CR34 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.09.070 – volume: 44 start-page: 108 year: 2013 ident: 2435_CR21 publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2013.02.015 – volume: 39 start-page: 47 year: 2017 ident: 2435_CR10 publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2017.04.001 – ident: 2435_CR17 doi: 10.1063/1.5022060 – volume: 37 start-page: 939 issue: 6 year: 1994 ident: 2435_CR41 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(94)90219-4 – ident: 2435_CR32 doi: 10.1051/matecconf/201824101006 – ident: 2435_CR44 – volume: 142 start-page: 118447 year: 2019 ident: 2435_CR24 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.118447 – volume: 106 start-page: 356 year: 2017 ident: 2435_CR18 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.08.034 – volume: 128 start-page: 223 year: 2018 ident: 2435_CR22 publication-title: Chem. Eng. Process. Process Intensif. doi: 10.1016/j.cep.2018.03.031 – volume: 31 start-page: 052003 issue: 5 year: 2019 ident: 2435_CR26 publication-title: Phys. Fluids doi: 10.1063/1.5091709 – volume: 77 start-page: 364 year: 2014 ident: 2435_CR4 publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.03.060 – volume: 42 start-page: 1 issue: 9 year: 2017 ident: 2435_CR36 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.02.031 – volume: 16 start-page: 5625 issue: 8 year: 2012 ident: 2435_CR9 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.05.023 – volume: 30 start-page: 113605 issue: 11 year: 2018 ident: 2435_CR38 publication-title: Phys. Fluids doi: 10.1063/1.5055663 – volume: 99 start-page: 625 year: 2016 ident: 2435_CR23 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.01.115 – volume: 123 start-page: 398 year: 2018 ident: 2435_CR29 publication-title: J. Renew. Energy doi: 10.1016/j.renene.2018.01.097 – volume: 31 issue: 4 year: 2019 ident: 2435_CR39 publication-title: Phys. Fluids doi: 10.1063/1.5079789 – volume: 29 start-page: 996 issue: 4 year: 2018 ident: 2435_CR3 publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2018.01.018 – ident: 2435_CR16 doi: 10.1063/1.5074089 – volume: 82 start-page: 40 year: 2018 ident: 2435_CR19 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.09.005 – volume: 21 start-page: 58 issue: 1 year: 2000 ident: 2435_CR42 publication-title: Int. J. Heat fluid Flow doi: 10.1016/S0142-727X(99)00067-3 |
SSID | ssj0000491494 |
Score | 2.2406354 |
Snippet | The phenomenon of natural convection of copper–water nanofluid inside a square cavity with time-periodic temperature is studied numerically. The studied... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 224 |
SubjectTerms | Academic disciplines Applied and Technical Physics Atomic Boundary conditions Cold Complex Systems Condensed Matter Physics Configurations Convective flow Cooling Copper Finite difference method Fluid flow Free convection Heat exchangers Heat transfer Inclination angle Mathematical and Computational Physics Molecular Nanofluids Nanoparticles Optical and Plasma Physics Physics Physics and Astronomy Rayleigh number Regular Article Researchers Reynolds number Solar energy Solar panels Stream functions (fluids) Temperature effects Temperature gradients Theoretical Vorticity |
SummonAdditionalLinks | – databaseName: ProQuest Central (New) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEA7qIngRn7i6Sg5ew_aRhvQkKsoiKCIueAt5VVZ2266tuj_fSZvuoge9FUrmMJnMzJeZfIPQuWFcc5lwQllmCXVve1JKFYkNjSTYQMobUp_7BzYa07uX5MVfuFW-rbLziY2jNoV2d-TDKHUFn5Sy-KKcEzc1ylVX_QiNddQDF8wBfPWubh4en5a3LJD_AgSgvrELwMTQlm_lsAJkxgLiOtkdI19CFj_D0irX_FUebaLO7Q7a9ukivmz3dxet2XwPbTZtm7raR6_j8gtANQaIamcW1wUGU_qEj8nMEsdhXJiJxo5-ynMn47Z_Axc5bvrNG2-Hc5kX2fRjYnA2Lb7wJMcSV3MwHou1dMMlDtD49ub5ekT86ASi45jWJOOSa52GKjLKhRyZGYCdOjYyYApSBm6yDIK9TFIDKVjINdM6Ax9MFeWBTtL4EG3kRW6PEFYQ8GXqyoNG0SQGLfNASsNoGCqQnPQR6zQntOcVd-MtpqJ98xwIp3LRqlyAykWjcrHoo2C5sGypNf5fMui2RvizVomVZfRR2G3X6vc_Io__FnmCtqLWTEgYDdBG_f5hTyENqdWZt7VvcHrcOA priority: 102 providerName: ProQuest |
Title | Upwind scheme to solve time-periodic temperature effect on convective nanofluid flow in a square cavity |
URI | https://link.springer.com/article/10.1140/epjp/s13360-022-02435-x https://www.proquest.com/docview/2919539463 |
Volume | 137 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7aIngRn1itJQevofvIhuyxSh8oFhEL9RTyWqm0u9W21p_vZHdbHwcLnnZhmRwmk5lvdibfIHRpGNdcRpxQllhC3d2emFJFQkMDCTYQ85zU567PegN6M4yG30d9uW73VUky99QFn63XtNOXaXMGKRXziGtBd1R6EQH4WI1cAg-mPAha698rAHwB-9Oyo-sP-Z_x6Atk_qqL5uGms4_2SpyIW8XGHqAtmx6inbxfU8-O0PNguoRsGkNuaicWzzMMNvQOL6OJJY68ODMjjR3vVEmajIvGDZylOG80z90cTmWaJePFyOBknC3xKMUSz17BaizW0k2VOEaDTvvxukfKmQlEhyGdk4RLrnXsq8AoF2tkYiDf1KGRHlOAFbhJEojyMooNYC-fa6Z1As6XKso9HcXhCaqkWWpPEVYQ6WXs6oJG0SiE1Ip7UhpGfV_BylENsZXmhC4Jxd1ci7EoLjt7wqlcFCoXoHKRq1x81JC3FpwWnBqbReqrrRHlIZuJIHY1wJiysIb81XZ9fd6w5Nk_ZM7RblDYDvGDOqrM3xb2AkDJXDXQNu90G6ja6j7dtuF51e7fPzRyo_wERMzgJQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRRVcEBQQCy31oRytzcOxnANCCLpsn6eu1JvxK2jRNknJli1_it_ITB5dwaE99RYpsg_jzzPz2eNvAPa9VE6ZTHEhi8AFve3JhbA89SIxiIFctaI-p2dyOhNHF9nFBvwZ3sJQWeXgE1tH7StHZ-TjJKcLn1zI9GN9xalrFN2uDi00Olgch98rpGzNh8MvuL7vk2RycP55yvuuAtylqVjyQhnlXB7bxFvyxqbwyMhc6k0kLUZT5YsC46DJco_ZSaycdK5A9ySsUJHLSHwJXf4jkaY57Sg1-Xp7poPZNhIO0ZeRIXUZh_pHPW6QB8qIU9086f9l_ObfILjObP-7jG1j3OQZPO2TU_apQ9Nz2AjlNmy1RaKueQHfZ_UKKTxDQhwuA1tWDIH7Cz_ml4GTYnLl546R2FWv1My6ahFWlaytbm99KytNWRWL67lnxaJasXnJDGuuEKqBOUOtLF7C7EFM-go2y6oMr4FZTC9MTpeR3oosRT6nImO8FHFsceZsBHKwnHa9ijk101jo7oV1pMnkujO5RpPr1uT6ZgTR7cC6E_K4f8jOsDS639mNXuNwBPGwXOvf90z55u4p9-Dx9Pz0RJ8cnh2_hSdJBxkeJzuwufx5HXYxAVrady3qGHx7aJj_BYC4GPc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mIRAXxFOMZw5co_WRRukRARPPiQOTdovyRENbW1h5_HycPpjgABK3SpVzsF37c21_QejEMK65TDihzFlC_W5PSqkisaGRBB9IeUXqczdklyN6PU7GHXTR7sJU0-5tS7LeafAsTVnZL4xruG2Dvi2eiv4cyisWED-O7mn1EgJQcglicuidexSdfv1qARAMdQBtprt-kf-emxaA80ePtEo9g3W01mBGfFobeQN1bLaJlqvZTT3fQo-j4h0qawx1qp1ZXOYY_OkNHiYzSzyRcW4mGnsOqoZAGddDHDjPcDV0XoU8nMksd9PXicFumr_jSYYlnj-DB1mspb9hYhuNBhcPZ5ekuT-B6DimJXFccq3TUEVG-bwjnYHaU8dGBkwBbuDGOcj4MkkN4LCQa6a1g0BMFeWBTtJ4B3WzPLO7CCvI-jL1PUKjaBJDmcUDKQ2jYajg5KSHWKs5oRtycX_HxVTUi8-B8CoXtcoFqFxUKhcfPRR8CRY1v8bfIgetaUTzwc1FlPp-YEpZ3ENha67F6z-O3PuHzDFauT8fiNur4c0-Wo1qNyJhdIC65curPQSsUqqjyhM_AXQl40A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Upwind+scheme+to+solve+time-periodic+temperature+effect+on+convective+nanofluid+flow+in+a+square+cavity&rft.jtitle=European+physical+journal+plus&rft.au=Bendaraa%2C+A.&rft.au=Charafi%2C+M.+M.&rft.au=Hasnaoui%2C+A.&rft.date=2022-02-12&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2190-5444&rft.volume=137&rft.issue=2&rft_id=info:doi/10.1140%2Fepjp%2Fs13360-022-02435-x&rft.externalDocID=10_1140_epjp_s13360_022_02435_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon |