Upwind scheme to solve time-periodic temperature effect on convective nanofluid flow in a square cavity

The phenomenon of natural convection of copper–water nanofluid inside a square cavity with time-periodic temperature is studied numerically. The studied configuration is subjected to a temperature gradient, with the bottom wall ( y  = 0) maintained to cold temperature and the top one ( y  =  L ) sub...

Full description

Saved in:
Bibliographic Details
Published inEuropean physical journal plus Vol. 137; no. 2; p. 224
Main Authors Bendaraa, A., Charafi, M. M., Hasnaoui, A.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 12.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The phenomenon of natural convection of copper–water nanofluid inside a square cavity with time-periodic temperature is studied numerically. The studied configuration is subjected to a temperature gradient, with the bottom wall ( y  = 0) maintained to cold temperature and the top one ( y  =  L ) subject to a periodic temperature. The other walls, at x  = 0 and x  =  L , are adiabatic. Dimensionless governing equations formulated using stream function, vorticity, and temperature have been solved by finite difference method, where the upwind scheme was employed. The studied configuration is similar to a cooling block that follows the solar panel in these different inclinations. The objective of the study is to predict the behaviour of this block filled with copper-based nanofluids in the cooling of the solar device. A calculation code was performed to analyse the effect of Rayleigh number (Ra), the oscillations frequency ( f ), the effect of cavity inclination angle, and nanoparticle suspension rate on fluid flow and heat transfer as well as the appearance of cooling periods. It has been found that a good intensification of heat transfer is directly related to the increase in Rayleigh number and the increase in the frequency of temperature oscillation, which is considered a very good control parameter that intensifies convective flow and heat transfer.
AbstractList The phenomenon of natural convection of copper–water nanofluid inside a square cavity with time-periodic temperature is studied numerically. The studied configuration is subjected to a temperature gradient, with the bottom wall (y = 0) maintained to cold temperature and the top one (y = L) subject to a periodic temperature. The other walls, at x = 0 and x = L, are adiabatic. Dimensionless governing equations formulated using stream function, vorticity, and temperature have been solved by finite difference method, where the upwind scheme was employed. The studied configuration is similar to a cooling block that follows the solar panel in these different inclinations. The objective of the study is to predict the behaviour of this block filled with copper-based nanofluids in the cooling of the solar device. A calculation code was performed to analyse the effect of Rayleigh number (Ra), the oscillations frequency (f), the effect of cavity inclination angle, and nanoparticle suspension rate on fluid flow and heat transfer as well as the appearance of cooling periods. It has been found that a good intensification of heat transfer is directly related to the increase in Rayleigh number and the increase in the frequency of temperature oscillation, which is considered a very good control parameter that intensifies convective flow and heat transfer.
The phenomenon of natural convection of copper–water nanofluid inside a square cavity with time-periodic temperature is studied numerically. The studied configuration is subjected to a temperature gradient, with the bottom wall ( y  = 0) maintained to cold temperature and the top one ( y  =  L ) subject to a periodic temperature. The other walls, at x  = 0 and x  =  L , are adiabatic. Dimensionless governing equations formulated using stream function, vorticity, and temperature have been solved by finite difference method, where the upwind scheme was employed. The studied configuration is similar to a cooling block that follows the solar panel in these different inclinations. The objective of the study is to predict the behaviour of this block filled with copper-based nanofluids in the cooling of the solar device. A calculation code was performed to analyse the effect of Rayleigh number (Ra), the oscillations frequency ( f ), the effect of cavity inclination angle, and nanoparticle suspension rate on fluid flow and heat transfer as well as the appearance of cooling periods. It has been found that a good intensification of heat transfer is directly related to the increase in Rayleigh number and the increase in the frequency of temperature oscillation, which is considered a very good control parameter that intensifies convective flow and heat transfer.
ArticleNumber 224
Author Bendaraa, A.
Charafi, M. M.
Hasnaoui, A.
Author_xml – sequence: 1
  givenname: A.
  orcidid: 0000-0002-7191-9781
  surname: Bendaraa
  fullname: Bendaraa, A.
  email: anass.bendaraa@gmail.com
  organization: LS2ME Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University
– sequence: 2
  givenname: M. M.
  surname: Charafi
  fullname: Charafi, M. M.
  organization: LS2ME Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University
– sequence: 3
  givenname: A.
  surname: Hasnaoui
  fullname: Hasnaoui, A.
  organization: LS2ME Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University
BookMark eNqNkEtPAyEYRYmpibX2N0jieiwMzHRYuDCNr6SJG7smlIFKMwNTYPr491JronGjJF-4i3s-yLkEA-usAuAao1uMKZqobt1NAiakRBnK8zSUFNn-DAxzzFBWUEoHP_IFGIewRulQhimjQ7BadDtjaxjku2oVjA4G12xTMK3KOuWNq42EUbUpi9h7BZXWSkboLJTOblM0qW6FdbrpTQ1143bQWChg2PQi9aXYmni4AudaNEGNv-4RWDw-vM2es_nr08vsfp5JQmjMdCUqKRle5vUS0ZwJXWOSS1ILVC4Jnla11jkuRMHqihS4kqWUWglJl7RCsmBkBG5OezvvNr0Kka9d7216kucMs4IwWpLUuju1pHcheKW5NFFE42z0wjQcI37Uy496-UkvT3r5p16-T_z0F9950wp_-AdZnciQCLtS_vt_f6EfMVyX5g
CitedBy_id crossref_primary_10_1088_1402_4896_ad6c83
crossref_primary_10_1177_09544089221132356
Cites_doi 10.1016/j.ijhydene.2016.07.132
10.1063/1.4993866
10.1063/1.4913871
10.1016/j.applthermaleng.2014.05.017
10.1016/j.apm.2015.09.075
10.1016/j.ijheatmasstransfer.2011.04.048
10.1016/S0017-9310(03)00156-X
10.1016/0017-9310(91)90295-P
10.1063/1.4754271
10.1016/j.applthermaleng.2018.01.041
10.1016/j.icheatmasstransfer.2017.06.011
10.1140/epjp/i2019-12814-8
10.1002/fld.1650030305
10.1115/1.2825978
10.1016/j.ijmecsci.2019.04.014
10.1016/j.microrel.2016.09.009
10.1063/1.5124516
10.1201/b12884
10.1016/j.ijheatmasstransfer.2018.04.046
10.1016/j.ijheatmasstransfer.2019.118665
10.1016/j.applthermaleng.2013.10.065
10.1016/j.enbuild.2016.03.053
10.1016/j.applthermaleng.2019.04.109
10.2989/16073606.2017.1404503
10.1166/sl.2019.4067
10.1016/j.ijheatmasstransfer.2017.09.070
10.1016/j.icheatmasstransfer.2013.02.015
10.1016/j.ultsonch.2017.04.001
10.1063/1.5022060
10.1016/0017-9310(94)90219-4
10.1051/matecconf/201824101006
10.1016/j.ijheatmasstransfer.2019.118447
10.1016/j.ijheatmasstransfer.2016.08.034
10.1016/j.cep.2018.03.031
10.1063/1.5091709
10.1016/j.enbuild.2014.03.060
10.1016/j.ijhydene.2017.02.031
10.1016/j.rser.2012.05.023
10.1063/1.5055663
10.1016/j.applthermaleng.2016.01.115
10.1016/j.renene.2018.01.097
10.1063/1.5079789
10.1016/j.apt.2018.01.018
10.1063/1.5074089
10.1016/j.rser.2017.09.005
10.1016/S0142-727X(99)00067-3
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022
The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1140/epjp/s13360-022-02435-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central (New)
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2190-5444
ExternalDocumentID 10_1140_epjp_s13360_022_02435_x
GroupedDBID -5F
-5G
-BR
-EM
-~C
06D
0R~
203
29~
2JN
2KG
30V
4.4
406
408
8UJ
95.
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
ARMRJ
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CCPQU
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HCIFZ
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O93
O9J
P9T
PCBAR
PT4
RID
RLLFE
ROL
RSV
S27
S3B
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z7S
Z7Y
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
DWQXO
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c334t-f8a8cc91b2db0429afd132c3da06b3178dff215a59d83518c6ccfeac4b480c593
IEDL.DBID U2A
ISSN 2190-5444
IngestDate Sat Jul 19 10:40:34 EDT 2025
Tue Jul 01 02:42:26 EDT 2025
Thu Apr 24 23:12:19 EDT 2025
Fri Feb 21 02:46:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-f8a8cc91b2db0429afd132c3da06b3178dff215a59d83518c6ccfeac4b480c593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7191-9781
PQID 2919539463
PQPubID 2044220
ParticipantIDs proquest_journals_2919539463
crossref_citationtrail_10_1140_epjp_s13360_022_02435_x
crossref_primary_10_1140_epjp_s13360_022_02435_x
springer_journals_10_1140_epjp_s13360_022_02435_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-12
PublicationDateYYYYMMDD 2022-02-12
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-12
  day: 12
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle European physical journal plus
PublicationTitleAbbrev Eur. Phys. J. Plus
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Sheikholeslami, Shamlooei (CR36) 2017; 42
Khanafer, Vafai (CR27) 2011; 54
Miroshnichenko, Sheremet (CR19) 2018; 82
CR32
Bianco, Vafai (CR28) 2015
Priyanka, Basak (CR22) 2018; 128
Khanafer, Vafai, Lightstone (CR35) 2003; 46
Mavromatidis (CR6) 2016; 120
Huminic, Huminic (CR9) 2012; 16
Amiri, Vafai (CR41) 1994; 37
Das, Roy, Basak (CR18) 2017; 106
Abelman, Parsa, Sayehvand (CR43) 2018; 41
Rashad, Mansour, Armaghani, Chamkha (CR39) 2019; 31
Taylor (CR30) 2013; 113
Mohebbi, Izadi, Chamkha, Mohebbi, Izadi, Chamkha (CR31) 2017; 29
Xuan, Li (CR42) 2000; 21
CR44
Boualit, Zeraibi, Chergui, Lebbi, Boutina, Laouar (CR49) 2017; 42
Chen, Lin, Chang (CR25) 2018; 124
Bahiraei, Rahmani, Yaghoobi, Khodabandeh, Mashayekhi, Amani (CR8) 2018; 133
Fan, Zhang, Mujumdar (CR10) 2017; 39
El Moutaouakil, Zrikem, Abdelbaki (CR13) 2016; 40
De Vahl Davis (CR47) 1983; 3
Mansour, Bakier (CR21) 2013; 44
Sheremet, Pop, Mahian (CR34) 2018; 116
Hu, He, Gao, Zhang (CR11) 2019; 155
Bendaraa, Charafi, Hasnaoui (CR7) 2019; 17
CR17
Baïri, Zarco-Pernia, García De María (CR20) 2014; 63
CR16
CR15
Schaub, Kriegel, Brandt (CR14) 2019; 144
Fusegi, Hyun, Kuwahara, Farouk (CR48) 1991; 34
Ma, Xu (CR23) 2016; 99
Kashyap, Dass (CR37) 2019; 157–158
Lee, Choi, Li, Eastman (CR45) 1999; 121
Bendaraa, Charafi, Hasnaoui (CR26) 2019; 31
Roy (CR38) 2018; 30
Bendaraa, Charafi, Hasnaoui (CR40) 2019; 134
Haddad, Baïri, Alilat, Bauzin, Laraqi (CR2) 2017; 87
Liu, Zhang, Huang, Suo, Bian, Zhao (CR24) 2019; 142
Khanafer, Vafai (CR29) 2018; 123
Ouakarrouch, El Azhary, Laaroussi, Garoum, Feiz (CR5) 2019; 11
Hamid, Khan, Khan, Haq (CR33) 2019; 31
Phan, Lin (CR4) 2014; 77
Anderson, Tannehill, Pletcher (CR46) 2016
Purusothaman (CR3) 2018; 29
Yang, Wen, Juan, Su, Wu (CR12) 2014; 70
Baïri (CR1) 2016; 66
M Schaub (2435_CR14) 2019; 144
K Khanafer (2435_CR35) 2003; 46
S Abelman (2435_CR43) 2018; 41
L El Moutaouakil (2435_CR13) 2016; 40
2435_CR32
A Baïri (2435_CR20) 2014; 63
J Ma (2435_CR23) 2016; 99
K Fan (2435_CR10) 2017; 39
R Mohebbi (2435_CR31) 2017; 29
S Lee (2435_CR45) 1999; 121
T Fusegi (2435_CR48) 1991; 34
LE Mavromatidis (2435_CR6) 2016; 120
O Haddad (2435_CR2) 2017; 87
A Amiri (2435_CR41) 1994; 37
AM Rashad (2435_CR39) 2019; 31
Y Hu (2435_CR11) 2019; 155
M Hamid (2435_CR33) 2019; 31
M Ouakarrouch (2435_CR5) 2019; 11
D Kashyap (2435_CR37) 2019; 157–158
A Bendaraa (2435_CR40) 2019; 134
Y Liu (2435_CR24) 2019; 142
2435_CR44
K Khanafer (2435_CR27) 2011; 54
A Baïri (2435_CR1) 2016; 66
M Sheikholeslami (2435_CR36) 2017; 42
A Purusothaman (2435_CR3) 2018; 29
V Bianco (2435_CR28) 2015
G De Vahl Davis (2435_CR47) 1983; 3
MA Mansour (2435_CR21) 2013; 44
A Boualit (2435_CR49) 2017; 42
Y Xuan (2435_CR42) 2000; 21
D Anderson (2435_CR46) 2016
A Bendaraa (2435_CR26) 2019; 31
K Khanafer (2435_CR29) 2018; 123
MA Sheremet (2435_CR34) 2018; 116
M Bahiraei (2435_CR8) 2018; 133
2435_CR16
2435_CR15
IV Miroshnichenko (2435_CR19) 2018; 82
2435_CR17
R Taylor (2435_CR30) 2013; 113
G Huminic (2435_CR9) 2012; 16
AS Yang (2435_CR12) 2014; 70
L Phan (2435_CR4) 2014; 77
A Bendaraa (2435_CR7) 2019; 17
HT Chen (2435_CR25) 2018; 124
D Das (2435_CR18) 2017; 106
D Priyanka (2435_CR22) 2018; 128
NC Roy (2435_CR38) 2018; 30
References_xml – volume: 31
  start-page: 052003
  issue: 5
  year: 2019
  end-page: 52012
  ident: CR26
  article-title: Numerical study of natural convection in a differentially heated square cavity filled with nanofluid in the presence of fins attached to walls in different locations
  publication-title: Phys. Fluids
– volume: 123
  start-page: 398
  year: 2018
  end-page: 406
  ident: CR29
  article-title: A review on the applications of nanofluids in solar energy field
  publication-title: J. Renew. Energy
– volume: 30
  start-page: 113605
  issue: 11
  year: 2018
  ident: CR38
  article-title: Natural convection of nanofluids in a square enclosure with different shapes of inner geometry natural convection of nanofluids in a square enclosure with different shapes of inner geometry
  publication-title: Phys. Fluids
– volume: 144
  start-page: 118665
  year: 2019
  ident: CR14
  article-title: Analytical prediction of heat transfer by unsteady natural convection at vertical flat plates in air
  publication-title: Int. J. Heat Mass Transf.
– ident: CR16
– volume: 42
  start-page: 1
  issue: 9
  year: 2017
  end-page: 11
  ident: CR36
  article-title: Fe3O4-H2O nanofluid natural convection in presence of thermal radiation
  publication-title: Int. J. Hydrogen Energy
– volume: 82
  start-page: 40
  year: 2018
  end-page: 59
  ident: CR19
  article-title: Turbulent natural convection heat transfer in rectangular enclosures using experimental and numerical approaches: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 157–158
  start-page: 45
  year: 2019
  end-page: 59
  ident: CR37
  article-title: Effect of boundary conditions on heat transfer and entropy generation during two-phase mixed convection hybrid Al O –Cu/water nanofluid flow in a cavity
  publication-title: Int. J. Mech. Sci.
– volume: 40
  start-page: 2913
  issue: 4
  year: 2016
  end-page: 2928
  ident: CR13
  article-title: Analytical and numerical study of natural convection induced by a volumetric heat generation in inclined cavities asymmetrically cooled by heat fluxes
  publication-title: Appl. Math. Model.
– volume: 37
  start-page: 939
  issue: 6
  year: 1994
  end-page: 954
  ident: CR41
  article-title: Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media
  publication-title: Int. J. Heat Mass Transf.
– volume: 42
  start-page: 8611
  issue: 13
  year: 2017
  end-page: 8623
  ident: CR49
  article-title: Natural convection investigation in square cavity filled with nanofluid using dispersion model
  publication-title: Int. J. Hydrogen Energy
– volume: 128
  start-page: 223
  year: 2018
  end-page: 244
  ident: CR22
  article-title: Role of curvature of walls (concave/convex) for intensification of thermal processing with optimal exergy loss during natural convection of fluid
  publication-title: Chem. Eng. Process. Process Intensif.
– volume: 134
  start-page: 468
  issue: 9
  year: 2019
  ident: CR40
  article-title: Numerical modeling of natural convection in horizontal and inclined square cavities filled with nanofluid in the presence of magnetic field
  publication-title: Eur. Phys. J. Plus
– volume: 121
  start-page: 280
  issue: 2
  year: 1999
  ident: CR45
  article-title: Measuring thermal conductivity of fluids containing oxide nanoparticles
  publication-title: J. Heat Transf.
– volume: 39
  start-page: 47
  year: 2017
  end-page: 57
  ident: CR10
  article-title: Application of airborne ultrasound in the convective drying of fruits and vegetables: a review
  publication-title: Ultrason. Sonochem.
– volume: 46
  start-page: 3639
  issue: 19
  year: 2003
  end-page: 3653
  ident: CR35
  article-title: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids
  publication-title: Int. J. Heat Mass Transf.
– ident: CR15
– volume: 99
  start-page: 625
  year: 2016
  end-page: 634
  ident: CR23
  article-title: Unsteady natural convection and heat transfer in a differentially heated cavity with a fin for high Rayleigh numbers
  publication-title: Appl. Therm. Eng.
– volume: 3
  start-page: 249
  issue: 3
  year: 1983
  end-page: 264
  ident: CR47
  article-title: Natural convection of air in a square cavity: a bench mark numerical solution
  publication-title: Int. J. Numer. Methods Fluids
– ident: CR32
– volume: 16
  start-page: 5625
  issue: 8
  year: 2012
  end-page: 5638
  ident: CR9
  article-title: Application of nanofluids in heat exchangers: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 21
  start-page: 58
  issue: 1
  year: 2000
  end-page: 64
  ident: CR42
  article-title: Heat transfer enhancement of nanofluids
  publication-title: Int. J. Heat fluid Flow
– volume: 63
  start-page: 304
  issue: 1
  year: 2014
  end-page: 322
  ident: CR20
  article-title: A review on natural convection in enclosures for engineering applications. The particular case of the parallelogrammic diode cavity
  publication-title: Appl. Therm. Eng.
– volume: 124
  start-page: 1217
  year: 2018
  end-page: 1229
  ident: CR25
  article-title: Numerical and experimental studies of natural convection in a heated cavity with a horizontal fin on a hot sidewall
  publication-title: Int. J. Heat Mass Transf.
– volume: 31
  issue: 4
  year: 2019
  ident: CR39
  article-title: MHD mixed convection and entropy generation of nanofluid in a lid-driven U-shaped cavity with internal heat and partial slip
  publication-title: Phys. Fluids
– volume: 106
  start-page: 356
  year: 2017
  end-page: 406
  ident: CR18
  article-title: Studies on natural convection within enclosures of various (non-square) shapes—a review
  publication-title: Int. J. Heat Mass Transf.
– volume: 113
  start-page: 011301
  issue: 1
  year: 2013
  ident: CR30
  article-title: Small particles, big impacts: a review of the diverse applications of nanofluids Small particles, big impacts: a review of the diverse applications of nanofluids
  publication-title: J. Appl. Phys.
– volume: 54
  start-page: 4410
  issue: 19–20
  year: 2011
  end-page: 4428
  ident: CR27
  article-title: A critical synthesis of thermophysical characteristics of nanofluids
  publication-title: Int. J. Heat Mass Transf.
– volume: 116
  start-page: 751
  year: 2018
  end-page: 761
  ident: CR34
  article-title: Natural convection in an inclined cavity with time-periodic temperature boundary conditions using nanofluids: application in solar collectors
  publication-title: Int. J. Heat Mass Transf.
– volume: 44
  start-page: 108
  year: 2013
  end-page: 115
  ident: CR21
  article-title: Free convection heat transfer in complex-wavy-wall enclosed cavity filled with nanofluid
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 142
  start-page: 118447
  year: 2019
  ident: CR24
  article-title: Enhancing the flow and heat transfer in a convective cavity using symmetrical and adiabatic twin fins
  publication-title: Int. J. Heat Mass Transf.
– volume: 29
  start-page: 996
  issue: 4
  year: 2018
  end-page: 1004
  ident: CR3
  article-title: Investigation of natural convection heat transfer performance of the QFN-PCB electronic module by using nanofluid for power electronics cooling applications
  publication-title: Adv. Powder Technol.
– volume: 29
  start-page: 122009
  issue: 12
  year: 2017
  ident: CR31
  article-title: Heat source location and natural convection in a C-shaped enclosure saturated by a nanofluid
  publication-title: Phys. Fluids
– volume: 120
  start-page: 114
  issue: 2016
  year: 2016
  end-page: 134
  ident: CR6
  article-title: Study of coupled transient radiation-natural convection heat transfer across rectangular cavities in the vicinity of low emissivity thin films for innovative building envelope applications
  publication-title: Energy Build.
– volume: 70
  start-page: 219
  issue: 1
  year: 2014
  end-page: 230
  ident: CR12
  article-title: Using the central ventilation shaft design within public buildings for natural aeration enhancement
  publication-title: Appl. Therm. Eng.
– volume: 34
  start-page: 1543
  issue: 6
  year: 1991
  end-page: 1557
  ident: CR48
  article-title: A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure
  publication-title: Int. J. Heat Mass Transf.
– volume: 133
  start-page: 137
  year: 2018
  end-page: 159
  ident: CR8
  article-title: Recent research contributions concerning use of nanofluids in heat exchangers: a critical review
  publication-title: Appl. Therm. Eng.
– volume: 11
  start-page: e00249
  year: 2019
  ident: CR5
  article-title: Three-dimensional numerical simulation of conduction, natural convection, and radiation through alveolar building walls
  publication-title: Case Stud. Constr. Mater.
– ident: CR44
– volume: 77
  start-page: 364
  year: 2014
  end-page: 376
  ident: CR4
  article-title: A multi-zone building energy simulation of a data center model with hot and cold aisles
  publication-title: Energy Build.
– volume: 87
  start-page: 204
  year: 2017
  end-page: 211
  ident: CR2
  article-title: Free convection in ZnO–Water nanofluid-filled and tilted hemispherical enclosures containing a cubic electronic device
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 31
  issue: 10
  year: 2019
  ident: CR33
  article-title: Natural convection of water-based carbon nanotubes in a partially heated rectangular fin-shaped cavity with an inner cylindrical obstacle
  publication-title: Phys. Fluids
– ident: CR17
– year: 2016
  ident: CR46
  publication-title: Computational fluid mechanics and heat transfer
– volume: 17
  start-page: 132
  issue: 2
  year: 2019
  end-page: 136
  ident: CR7
  article-title: Study of the nanoparticles concentration effect on thermal performances of Al O based nanofluid in a double pipe heat exchanger
  publication-title: Sens. Lett.
– volume: 41
  start-page: 449
  issue: 4
  year: 2018
  end-page: 467
  ident: CR43
  article-title: Nanofluid flow and heat transfer in a Brinkman porous channel with variable porosity
  publication-title: Quaest. Math.
– year: 2015
  ident: CR28
  publication-title: Heat Transfer Enhancement with Nanofluids Enhancement
– volume: 66
  start-page: 85
  year: 2016
  end-page: 91
  ident: CR1
  article-title: Free convective heat transfer coefficient for high powered and tilted QFN64 electronic device
  publication-title: Microelectron. Reliab.
– volume: 155
  start-page: 650
  year: 2019
  end-page: 659
  ident: CR11
  article-title: Forced convective heat transfer characteristics of solar salt-based SiO2 nanofluids in solar energy applications
  publication-title: Appl. Therm. Eng.
– volume: 42
  start-page: 8611
  issue: 13
  year: 2017
  ident: 2435_CR49
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.07.132
– volume: 29
  start-page: 122009
  issue: 12
  year: 2017
  ident: 2435_CR31
  publication-title: Phys. Fluids
  doi: 10.1063/1.4993866
– ident: 2435_CR15
  doi: 10.1063/1.4913871
– volume: 70
  start-page: 219
  issue: 1
  year: 2014
  ident: 2435_CR12
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.05.017
– volume: 40
  start-page: 2913
  issue: 4
  year: 2016
  ident: 2435_CR13
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2015.09.075
– volume: 54
  start-page: 4410
  issue: 19–20
  year: 2011
  ident: 2435_CR27
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2011.04.048
– volume: 46
  start-page: 3639
  issue: 19
  year: 2003
  ident: 2435_CR35
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(03)00156-X
– volume: 34
  start-page: 1543
  issue: 6
  year: 1991
  ident: 2435_CR48
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(91)90295-P
– volume: 113
  start-page: 011301
  issue: 1
  year: 2013
  ident: 2435_CR30
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4754271
– volume: 133
  start-page: 137
  year: 2018
  ident: 2435_CR8
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.01.041
– volume: 11
  start-page: e00249
  year: 2019
  ident: 2435_CR5
  publication-title: Case Stud. Constr. Mater.
– volume: 87
  start-page: 204
  year: 2017
  ident: 2435_CR2
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2017.06.011
– volume: 134
  start-page: 468
  issue: 9
  year: 2019
  ident: 2435_CR40
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2019-12814-8
– volume: 3
  start-page: 249
  issue: 3
  year: 1983
  ident: 2435_CR47
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.1650030305
– volume-title: Heat Transfer Enhancement with Nanofluids Enhancement
  year: 2015
  ident: 2435_CR28
– volume: 121
  start-page: 280
  issue: 2
  year: 1999
  ident: 2435_CR45
  publication-title: J. Heat Transf.
  doi: 10.1115/1.2825978
– volume: 157–158
  start-page: 45
  year: 2019
  ident: 2435_CR37
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2019.04.014
– volume: 66
  start-page: 85
  year: 2016
  ident: 2435_CR1
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2016.09.009
– volume: 31
  issue: 10
  year: 2019
  ident: 2435_CR33
  publication-title: Phys. Fluids
  doi: 10.1063/1.5124516
– volume-title: Computational fluid mechanics and heat transfer
  year: 2016
  ident: 2435_CR46
  doi: 10.1201/b12884
– volume: 124
  start-page: 1217
  year: 2018
  ident: 2435_CR25
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.04.046
– volume: 144
  start-page: 118665
  year: 2019
  ident: 2435_CR14
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.118665
– volume: 63
  start-page: 304
  issue: 1
  year: 2014
  ident: 2435_CR20
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2013.10.065
– volume: 120
  start-page: 114
  issue: 2016
  year: 2016
  ident: 2435_CR6
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.03.053
– volume: 155
  start-page: 650
  year: 2019
  ident: 2435_CR11
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.04.109
– volume: 41
  start-page: 449
  issue: 4
  year: 2018
  ident: 2435_CR43
  publication-title: Quaest. Math.
  doi: 10.2989/16073606.2017.1404503
– volume: 17
  start-page: 132
  issue: 2
  year: 2019
  ident: 2435_CR7
  publication-title: Sens. Lett.
  doi: 10.1166/sl.2019.4067
– volume: 116
  start-page: 751
  year: 2018
  ident: 2435_CR34
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.09.070
– volume: 44
  start-page: 108
  year: 2013
  ident: 2435_CR21
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2013.02.015
– volume: 39
  start-page: 47
  year: 2017
  ident: 2435_CR10
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2017.04.001
– ident: 2435_CR17
  doi: 10.1063/1.5022060
– volume: 37
  start-page: 939
  issue: 6
  year: 1994
  ident: 2435_CR41
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(94)90219-4
– ident: 2435_CR32
  doi: 10.1051/matecconf/201824101006
– ident: 2435_CR44
– volume: 142
  start-page: 118447
  year: 2019
  ident: 2435_CR24
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.118447
– volume: 106
  start-page: 356
  year: 2017
  ident: 2435_CR18
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.08.034
– volume: 128
  start-page: 223
  year: 2018
  ident: 2435_CR22
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/j.cep.2018.03.031
– volume: 31
  start-page: 052003
  issue: 5
  year: 2019
  ident: 2435_CR26
  publication-title: Phys. Fluids
  doi: 10.1063/1.5091709
– volume: 77
  start-page: 364
  year: 2014
  ident: 2435_CR4
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.03.060
– volume: 42
  start-page: 1
  issue: 9
  year: 2017
  ident: 2435_CR36
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.02.031
– volume: 16
  start-page: 5625
  issue: 8
  year: 2012
  ident: 2435_CR9
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.05.023
– volume: 30
  start-page: 113605
  issue: 11
  year: 2018
  ident: 2435_CR38
  publication-title: Phys. Fluids
  doi: 10.1063/1.5055663
– volume: 99
  start-page: 625
  year: 2016
  ident: 2435_CR23
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.01.115
– volume: 123
  start-page: 398
  year: 2018
  ident: 2435_CR29
  publication-title: J. Renew. Energy
  doi: 10.1016/j.renene.2018.01.097
– volume: 31
  issue: 4
  year: 2019
  ident: 2435_CR39
  publication-title: Phys. Fluids
  doi: 10.1063/1.5079789
– volume: 29
  start-page: 996
  issue: 4
  year: 2018
  ident: 2435_CR3
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2018.01.018
– ident: 2435_CR16
  doi: 10.1063/1.5074089
– volume: 82
  start-page: 40
  year: 2018
  ident: 2435_CR19
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.09.005
– volume: 21
  start-page: 58
  issue: 1
  year: 2000
  ident: 2435_CR42
  publication-title: Int. J. Heat fluid Flow
  doi: 10.1016/S0142-727X(99)00067-3
SSID ssj0000491494
Score 2.2406354
Snippet The phenomenon of natural convection of copper–water nanofluid inside a square cavity with time-periodic temperature is studied numerically. The studied...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 224
SubjectTerms Academic disciplines
Applied and Technical Physics
Atomic
Boundary conditions
Cold
Complex Systems
Condensed Matter Physics
Configurations
Convective flow
Cooling
Copper
Finite difference method
Fluid flow
Free convection
Heat exchangers
Heat transfer
Inclination angle
Mathematical and Computational Physics
Molecular
Nanofluids
Nanoparticles
Optical and Plasma Physics
Physics
Physics and Astronomy
Rayleigh number
Regular Article
Researchers
Reynolds number
Solar energy
Solar panels
Stream functions (fluids)
Temperature effects
Temperature gradients
Theoretical
Vorticity
SummonAdditionalLinks – databaseName: ProQuest Central (New)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEA7qIngRn7i6Sg5ew_aRhvQkKsoiKCIueAt5VVZ2266tuj_fSZvuoge9FUrmMJnMzJeZfIPQuWFcc5lwQllmCXVve1JKFYkNjSTYQMobUp_7BzYa07uX5MVfuFW-rbLziY2jNoV2d-TDKHUFn5Sy-KKcEzc1ylVX_QiNddQDF8wBfPWubh4en5a3LJD_AgSgvrELwMTQlm_lsAJkxgLiOtkdI19CFj_D0irX_FUebaLO7Q7a9ukivmz3dxet2XwPbTZtm7raR6_j8gtANQaIamcW1wUGU_qEj8nMEsdhXJiJxo5-ynMn47Z_Axc5bvrNG2-Hc5kX2fRjYnA2Lb7wJMcSV3MwHou1dMMlDtD49ub5ekT86ASi45jWJOOSa52GKjLKhRyZGYCdOjYyYApSBm6yDIK9TFIDKVjINdM6Ax9MFeWBTtL4EG3kRW6PEFYQ8GXqyoNG0SQGLfNASsNoGCqQnPQR6zQntOcVd-MtpqJ98xwIp3LRqlyAykWjcrHoo2C5sGypNf5fMui2RvizVomVZfRR2G3X6vc_Io__FnmCtqLWTEgYDdBG_f5hTyENqdWZt7VvcHrcOA
  priority: 102
  providerName: ProQuest
Title Upwind scheme to solve time-periodic temperature effect on convective nanofluid flow in a square cavity
URI https://link.springer.com/article/10.1140/epjp/s13360-022-02435-x
https://www.proquest.com/docview/2919539463
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7aIngRn1itJQevofvIhuyxSh8oFhEL9RTyWqm0u9W21p_vZHdbHwcLnnZhmRwmk5lvdibfIHRpGNdcRpxQllhC3d2emFJFQkMDCTYQ85zU567PegN6M4yG30d9uW73VUky99QFn63XtNOXaXMGKRXziGtBd1R6EQH4WI1cAg-mPAha698rAHwB-9Oyo-sP-Z_x6Atk_qqL5uGms4_2SpyIW8XGHqAtmx6inbxfU8-O0PNguoRsGkNuaicWzzMMNvQOL6OJJY68ODMjjR3vVEmajIvGDZylOG80z90cTmWaJePFyOBknC3xKMUSz17BaizW0k2VOEaDTvvxukfKmQlEhyGdk4RLrnXsq8AoF2tkYiDf1KGRHlOAFbhJEojyMooNYC-fa6Z1As6XKso9HcXhCaqkWWpPEVYQ6WXs6oJG0SiE1Ip7UhpGfV_BylENsZXmhC4Jxd1ci7EoLjt7wqlcFCoXoHKRq1x81JC3FpwWnBqbReqrrRHlIZuJIHY1wJiysIb81XZ9fd6w5Nk_ZM7RblDYDvGDOqrM3xb2AkDJXDXQNu90G6ja6j7dtuF51e7fPzRyo_wERMzgJQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRRVcEBQQCy31oRytzcOxnANCCLpsn6eu1JvxK2jRNknJli1_it_ITB5dwaE99RYpsg_jzzPz2eNvAPa9VE6ZTHEhi8AFve3JhbA89SIxiIFctaI-p2dyOhNHF9nFBvwZ3sJQWeXgE1tH7StHZ-TjJKcLn1zI9GN9xalrFN2uDi00Olgch98rpGzNh8MvuL7vk2RycP55yvuuAtylqVjyQhnlXB7bxFvyxqbwyMhc6k0kLUZT5YsC46DJco_ZSaycdK5A9ySsUJHLSHwJXf4jkaY57Sg1-Xp7poPZNhIO0ZeRIXUZh_pHPW6QB8qIU9086f9l_ObfILjObP-7jG1j3OQZPO2TU_apQ9Nz2AjlNmy1RaKueQHfZ_UKKTxDQhwuA1tWDIH7Cz_ml4GTYnLl546R2FWv1My6ahFWlaytbm99KytNWRWL67lnxaJasXnJDGuuEKqBOUOtLF7C7EFM-go2y6oMr4FZTC9MTpeR3oosRT6nImO8FHFsceZsBHKwnHa9ijk101jo7oV1pMnkujO5RpPr1uT6ZgTR7cC6E_K4f8jOsDS639mNXuNwBPGwXOvf90z55u4p9-Dx9Pz0RJ8cnh2_hSdJBxkeJzuwufx5HXYxAVrady3qGHx7aJj_BYC4GPc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mIRAXxFOMZw5co_WRRukRARPPiQOTdovyRENbW1h5_HycPpjgABK3SpVzsF37c21_QejEMK65TDihzFlC_W5PSqkisaGRBB9IeUXqczdklyN6PU7GHXTR7sJU0-5tS7LeafAsTVnZL4xruG2Dvi2eiv4cyisWED-O7mn1EgJQcglicuidexSdfv1qARAMdQBtprt-kf-emxaA80ePtEo9g3W01mBGfFobeQN1bLaJlqvZTT3fQo-j4h0qawx1qp1ZXOYY_OkNHiYzSzyRcW4mGnsOqoZAGddDHDjPcDV0XoU8nMksd9PXicFumr_jSYYlnj-DB1mspb9hYhuNBhcPZ5ekuT-B6DimJXFccq3TUEVG-bwjnYHaU8dGBkwBbuDGOcj4MkkN4LCQa6a1g0BMFeWBTtJ4B3WzPLO7CCvI-jL1PUKjaBJDmcUDKQ2jYajg5KSHWKs5oRtycX_HxVTUi8-B8CoXtcoFqFxUKhcfPRR8CRY1v8bfIgetaUTzwc1FlPp-YEpZ3ENha67F6z-O3PuHzDFauT8fiNur4c0-Wo1qNyJhdIC65curPQSsUqqjyhM_AXQl40A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Upwind+scheme+to+solve+time-periodic+temperature+effect+on+convective+nanofluid+flow+in+a+square+cavity&rft.jtitle=European+physical+journal+plus&rft.au=Bendaraa%2C+A.&rft.au=Charafi%2C+M.+M.&rft.au=Hasnaoui%2C+A.&rft.date=2022-02-12&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2190-5444&rft.volume=137&rft.issue=2&rft_id=info:doi/10.1140%2Fepjp%2Fs13360-022-02435-x&rft.externalDocID=10_1140_epjp_s13360_022_02435_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon